UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

The role of connexins in tissue injury repair

Glass, BJL; (2014) The role of connexins in tissue injury repair. Doctoral thesis , UCL (University College London). Green open access

[thumbnail of Supplementary movie] Text (Supplementary movie)
Supplementary_movie.avi

Download (1MB)
[thumbnail of Supplementary movie figure legend]
Preview
Text (Supplementary movie figure legend)
Supplementary_movie_figure_legend.pdf

Download (6kB)
[thumbnail of Glass_Beverley_Jane_Lauren_Bright_Thesis.pdf]
Preview
Text
Glass_Beverley_Jane_Lauren_Bright_Thesis.pdf

Download (11MB) | Preview

Abstract

Skin integrity is essential for sustaining life and it is important to understand the processes involved in its maintenance and repair. There are several key stages involved in wound healing that rely on the complex communication through gap junctions and their connexins to ensure the resolution of the wound. Gap junctions are expressed in all cells linked with tissue repair and provide a regulated pathway linking the cytoplasm of neighbouring cells and allowing signals to pass freely between the two. In the skin there are three key connexins (Connexins 26, 30 and 43) that undergo dynamic changes and regulate the stages of wound closure. To date, extensive research has shown that inhibiting Cx43 expression can achieve significant improvements in wound repair. Synthetic connexin mimetic peptide Gap27 which possess a conserved homology to the second extracellular loop of Cx43 is now being considered as a candidate to improve the rate of wound repair. At low concentrations Gap27 has been shown to block hemichannels but can target gap junctional intercellular communication at higher concentrations and for longer incubation periods. By using Gap27 as a tool, this thesis explores the importance of connexins, hemichannels and gap junctions in tissue injury and repair. I have dissected out the relative contributions of connexins and their involvement with hemichannels and gap junctions in wound repair while investigating if and how Gap27 reduces other connexins. Further work using in vitro wound healing models has shown how Gap27 can enhance the rate of wound healing in early stages. In the second half of this thesis I continue to use Gap27 to investigate the connexin based communication involved in the spread of cell death and damage during ischemia reperfusion injury in vitro and in vivo. The potential therapeutic implications of the wound healing properties of Gap27 are exciting, novel and promising.

Type: Thesis (Doctoral)
Title: The role of connexins in tissue injury repair
Open access status: An open access version is available from UCL Discovery
Language: English
UCL classification: UCL > Provost and Vice Provost Offices
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Div of Biosciences
URI: https://discovery.ucl.ac.uk/id/eprint/1443464
Downloads since deposit
211Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item