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Abstract: 

We have no appreciation of the level of extinction risk faced by a sixth of 
the 65,000+ species currently on the IUCN Red List. Determining the 
status of these Data Deficient (DD) species is essential to developing an 

accurate picture of global biodiversity and protecting potentially threatened 
DD species. Using terrestrial mammals as our focal taxon, we compared 
the outcomes of seven Machine Learning (ML) tools in predicting threat for 
species of known conservation status using taxonomic, life-history, 
geographical and threat information. ML tools showed very high species 
classification accuracy (up to 92%) and ability to correctly identify centres 
of threatened species richness. Applying the best model to DD species, we 
predict 313 of 493 DD species (64%) to be at risk, increasing the 
estimated proportion of threatened terrestrial mammals from 22% to 27%. 
Regions predicted to contain large numbers of threatened DD species are 
already conservation priorities, but show considerably higher levels of risk 
than previously recognized. We conclude that unless directly targeted for 

monitoring, species classified as DD are likely to slide towards extinction 
unnoticed. Taking into account information on DD species may therefore 
help tackle data gaps in biodiversity indicators and conserve the earth’s 
poorly-known biodiversity. 
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Abstract 12 

We have no appreciation of the level of extinction risk faced by a sixth of the 65,000+ 13 

species assessed by the IUCN Red List. Determining the status of these Data Deficient (DD) 14 

species is essential to developing an accurate picture of global biodiversity and identifying 15 

potentially threatened DD species.  To address this gap in our knowledge, we used 16 

predictive models incorporating species’ life-history, geography and threat information to 17 

predict the conservation status of DD species within terrestrial mammals.   We constructed 18 

the models using seven Machine Learning (ML) tools trained on species of known status. 19 

The resultant models showed very high species classification accuracy (up to 92%) and 20 

ability to correctly identify centres of threatened species richness. Applying the best model 21 

to DD species, we predict 313 of 493 DD species (64%) to be at risk, increasing the estimated 22 

proportion of threatened terrestrial mammals from 22% to 27%. Regions predicted to 23 

contain large numbers of threatened DD species are already conservation priorities, but 24 

show considerably higher levels of risk than previously recognized. We conclude that unless 25 

directly targeted for monitoring, species classified as DD are likely to slide towards 26 

extinction unnoticed. Taking into account information on DD species may therefore help 27 

tackle data gaps in biodiversity indicators and conserve the earth’s poorly-known 28 

biodiversity.  29 
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Introduction 30 

In light of global biodiversity change, the 12
th

 target of the Strategic Plan of the Convention 31 

on Biological Diversity (CBD) states that by “2020 the extinction of known threatened 32 

species has been prevented” (Convention on Biological Diversity 2010). Understanding the 33 

level of extinction risk faced by different species, and why interspecific differences in risk 34 

arise are therefore some of the greatest challenges facing conservation biology. Assessment 35 

frameworks for threatened species are crucial to identifying risk and monitoring progress 36 

towards CBD targets (Jones et al. 2011), and one of the most widely used is the International 37 

Union for Conservation of Nature (IUCN) Red List (IUCN 2001; Butchart et al. 2010). 38 

 39 

There has been much improvement in the taxonomic coverage of the Red List over recent 40 

years, resulting in a more comprehensive understanding of species’ extinction risk (Collen & 41 

Bailie 2010; Böhm et al. 2013). However, a sixth of the 65,000+ species assessed by the IUCN 42 

are classified as Data Deficient (DD) due to a lack of information on taxonomy, geographic 43 

distribution, population status or threats (IUCN 2010). To date 15% of mammals (Schipper et 44 

al. 2008), 25% of amphibians (Stuart et al. 2004), 19% of reptiles (Böhm et al. 2013) and 49% 45 

of freshwater crabs (Cumberlidge et al. 2009) are classified as DD.  Uncertainty within many 46 

groups about the true level of extinction risk of DD species considerably influences our 47 

understanding of patterns of threat and risk (Butchart & Bird 2010; Bland et al. 2012), as the 48 

distribution of DD species is often taxonomically and spatially biased (Bielby et al. 2006; 49 

Bland et al. 2012). For example, 25% of data-sufficient mammals are threatened with 50 

extinction, but estimates range from 21% if all DD species were non-threatened to 36% if all 51 

DD species were threatened (Hilton-Taylor et al. 2009). In addition, genuinely threatened 52 
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DD species may be neglected by conservation programmes due to their uncertain extinction 53 

risk status.   54 

 55 

Determining the true conservation status of DD species is essential in developing an 56 

accurate picture of global biodiversity and enabling the protection of threatened species. 57 

Re-assessment of the 10,673 species currently classified as DD to a data-sufficient category 58 

could be achieved through focused field surveys, but the prospect of this occurring is 59 

unlikely given the monetary and time costs of biodiversity surveys (Balmford & Gaston 60 

1999) and current levels of investment in IUCN Red List assessments (Stuart et al. 2010).  61 

However, large amounts of life-history, ecological and phylogenetic information are 62 

available for DD species. The distribution of many DD species is known, allowing inference of 63 

species’ geographical range size, environmental niche and exposure to anthropogenic 64 

threats. These data alone are insufficient for making a decision on formal Red List status, 65 

but could be used to help inform global estimates of risk. Comparative studies of extinction 66 

risk based on species trait data have previously yielded insight into the determinants of risk 67 

across taxa (Purvis 2008; Cardillo & Meijaard 2012), and could enable the preliminary re-68 

assessment of DD species.  69 

 70 

Comparative datasets frequently contain many variables, with non-linearities, complex 71 

interactions and missing values (Cutler et al. 2007), and as such traditional statistical 72 

methods may lack predictive ability. Machine Learning (ML) methods, derived from the 73 

artificial intelligence literature, are flexible and powerful tools for finding patterns in 74 

datasets (Webb 2002; Hastie et al. 2009). They rely on few assumptions and can utilize large 75 

amounts of data, which has made them increasingly popular with ecologists (Prasad et al. 76 
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2006; Ozesmi et al. 2006; Cutler et al. 2007; Olden et al. 2008). A wide range of ML 77 

algorithms are available, and their relative predictive performance depends on the study 78 

objectives and available data (No Free Lunch Theorem: see Webb 2002 and Hastie et al. 79 

2009). A series of comparisons have been made to identify the strengths and weaknesses of 80 

different ML algorithms for ecological applications (Elith & Graham 2009; Kampichler et al. 81 

2010; Keller et al. 2011), but only tree-based ML methods have been applied to threatened 82 

species classification (Jones et al. 2006; Boyer 2008; Davidson et al. 2009, 2012). The 83 

outputs of ML algorithms are probability estimates of a given outcome, which allow easy 84 

interpretation of levels of certainty in predicting complex processes such as extinction risk.  85 

As a result of these properties, ML algorithms represent a robust approach to identifying the 86 

complex pathways leading to observed patterns of extinction risk, and deriving rules-of-87 

thumb to predict the true level of risk of DD species. 88 

 89 

Here we investigate the performance of ML algorithms in predicting extinction risk and in 90 

estimating the prevalence of risk in DD terrestrial mammals. Terrestrial mammals are a well-91 

suited model taxon for the purposes of our study: they contain a high proportion of species 92 

of known conservation status (85%) and previous studies (Purvis et al. 2000; Cardillo et al. 93 

2005, 2008; Davidson et al. 2009) provide a benchmark against which to measure 94 

improvement in predictive accuracy. There is also a high amount of data available on the 95 

biology of the clade, even for Data Deficient species. We predict extinction risk from data on 96 

a range of intrinsic factors, including species’ life history and ecology, and extrinsic factors, 97 

including environmental data and measures of threat intensity. Specifically, we address the 98 

following questions:  99 
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1)  What are the relative powers of seven different ML methods (classification trees, 100 

random forests, boosted trees, k-nearest neighbours, support vector machines, neural 101 

networks and decision stumps) to predict extinction risk in terrestrial mammals? 102 

2)  How accurately can those methods predict current geographical patterns of extinction 103 

risk? 104 

3)  Using the models obtained, what is the predicted level of extinction risk faced by DD 105 

species?  106 

4)  How do our findings change current geographical patterns of extinction risk for 107 

terrestrial mammals? 108 

 109 

Methods 110 

Dataset 111 

We collated a database for 4,461 terrestrial mammal species with threat status classified as 112 

non-threatened (LC, NT), threatened (VU, EN, CR) and Data Deficient (DD) (IUCN 2008). We 113 

treated species as threatened or non-threatened, as highly imbalanced categories (2,826 LC 114 

species versus 157 CR species) are difficult to discriminate using predictive models (Webb 115 

2002) and uncertainty around  classifications with multiple categories is difficult to interpret 116 

and communicate.  In contrast, machine learning predictions from our binary classification 117 

provide a simple quantification of both the likely probability of threatened status for each 118 

species and the level of uncertainty around that prediction. 119 

 120 

For each species, we collated the following life-history traits (IUCN 2008; Jones et al. 2009): 121 

body mass, litter size, habitat breadth, trophic level and number of IUCN-listed habitats. 122 

Each trait was available for at least 60% of species. Since some ML methods require 123 
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complete data, missing data was either phylogenetically imputed (Fritz et al. 2009; 124 

Bruggeman et al. 2009), or assigned the genus or family median for species missing from the 125 

phylogeny. We used species’ range maps to determine geographical range size (IUCN 2010), 126 

the latitude of range centroid (IUCN 2010), and extract summary statistics within ranges for 127 

a range of global variables: annual mean and seasonality of temperature and precipitation 128 

(Hijmans et al. 2005); minimum and range of elevation (Hijmans et al. 2005);  mean and 129 

minimum human population density for the year 2000 (CIESIN 2005a); and averages for 130 

each of Net Primary Productivity (NPP) (Imhoff et al. 2004), Human Footprint (CIESIN 131 

2005b), GDP for the year 1990 (CIESIN 2002) and human appropriation of NPP (Imhoff et al. 132 

2004). Finally, we recorded biogeographical distribution (IUCN 2010), External Threat Index 133 

(Cardillo et al. 2004) and habitat suitability (Rondinini et al. 2011) for each species. See 134 

Appendix S1 for details.   Previous studies have reached inconsistent conclusions about the 135 

primary traits explaining variation in extinction risk across species (Cardillo & Meijaard 136 

2012). In addition, uninformative explanatory variables are unlikely to affect predictive 137 

performance in problems with fewer variables than species (Webb 2002; Kuhn 2008). We 138 

therefore do not undertake variable selection, but instead focus on using all available traits 139 

implicated in determining extinction risk to make the best predictions.  140 

 141 

Training of Machine Learning tools 142 

Six ML tools were used to model risk status across all variables: classification trees, random 143 

forests, boosted trees, k-nearest neighbours, support vector machines and neural networks. 144 

We also computed decision stumps using geographical range size alone to assess the 145 

predictive power of that variable.  We developed models for all mammals and separately for 146 

rodents, bats, primates and carnivores to explore the taxonomic transferability of ML 147 
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predictive accuracy. ML tools cannot currently take into account phylogenetic relatedness 148 

between species, so we included taxonomic order, family and genus in all models to 149 

partially account for shared evolutionary history. For each taxonomic dataset, we removed 150 

highly correlated (r=0.9) and low variance variables, which can lead to colinearity and zero 151 

variance in cross-validation partitions. All numeric predictors were centred and scaled to a 152 

standard normal distribution before analysis (Kuhn 2008). 153 

 154 

We set aside DD species and, within each taxonomic group, divided the remaining species 155 

into a 25% validation set and 75% training set. For each ML method, we used ten-fold cross-156 

validation on the 75% training set to optimize model tuning parameters by maximizing the  157 

Area Under the Receiver Operating Characteristic Curve (AUROC), which is insensitive to 158 

class imbalance and does not require the specification of misclassification costs (Fawcett 159 

2006). The best ML tool for each dataset for predicting threatened and non-threatened 160 

status was then found by comparing AUROC values of various tuned models on the 25% 161 

validation set.  162 

 163 

In all models, we used Youden’s index (Youden 1950) to identify a probability threshold 164 

above which species are identified as threatened. This lends equal weight to detecting 165 

threatened and non-threatened species, which does not reflect the true prevalence of 166 

threat but is reasonable given the importance of identifying threatened species (Vié et al. 167 

2009). All analyses were conducted in R version 2.14.1, using the caret package (Kuhn 2008) 168 

to optimize model parameters. For further details see Appendix S1. 169 

 170 

Spatial analysis of predictions 171 
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Using species’ range maps (IUCN 2010), we then computed the observed and predicted 172 

proportion of threatened species from the 991 species in the 25% validation set across a 173 

global grid of 4,505 equal-area hexagons. We fitted a linear regression across cells of 174 

observed threat as a function of predicted threat, cell species richness and average range 175 

size of species, excluding cells with fewer than 10 species. We also fitted simultaneous 176 

autoregressive models to account for spatial autocorrelation (Appendix S1).  We produced 177 

maps in ArcGIS 9.3 and conducted all analyses in R version 2.14.1. 178 

 179 

Predictions for Data Deficient species 180 

We predicted the status of 493 DD species from the best performing global model, using the 181 

same threshold as for the validation dataset (Appendix S2) and tabulated the number of DD 182 

species predicted to be threatened and non-threatened in 6,593 hexagons. We then 183 

compared the proportion of threatened species in cells with and without incorporating our 184 

predictions for DD species. Finally, we used linear regression and spatial autoregressive 185 

models of observed threat as a function of predicted threat to test for a regression slope 186 

different from one. 187 

 188 

Results  189 

Comparison of Machine Learning tools and taxonomic levels 190 

Area Under Receiver Operator Characteristic Curve (AUROC) for best models ranged 191 

between 0.873 and 0.961 (Table 1), indicating that ML tools calibrated on species-specific 192 

information can accurately predict species threat. The best model for the global dataset 193 

identified correctly 93.5% of threatened species and 88.7% of non-threatened species 194 
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(Appendix S1). There were significant differences in performance across tools (Friedman 195 

test, χχχχ2=18.3, p=0.005, df=6). Post hoc symmetry tests showed that this difference was 196 

caused by the lack of power of decision stumps based on geographical range size alone, 197 

compared to boosted trees (p=0.05, df=1), neural networks (p=0.05, df=1) and support 198 

vector machines (p=0.05, df=1).  Predictions from the global model for individual orders 199 

achieved higher AUROC than predictions from the order-specific models (Appendix S1), 200 

indicating that predictions are more reliable when information from all mammals is taken 201 

into account. 202 

 203 

Spatial predictions 204 

Observed and predicted proportions of threatened species in assemblages of the validation 205 

set were broadly consistent (Fig. 1), indicating that ML tools can correctly predict 206 

macroecological patterns of extinction risk. In both ordinary least squares (OLS) and spatial 207 

regression (SAR) models, we found a strong positive association between predicted 208 

assemblage threat on observed assemblage threat (OLS: slope=0.592, p<0.0001, ��,����= 209 

79.03, AIC= -18182; SAR: slope= 0.596, p<0.0001, ��,����=5.457, AIC= -19050). The 210 

relationship is mediated by a significant interaction with assemblage species richness in 211 

both OLS and SAR models (OLS: slope=0.066, p-value<0.001, ��,����= 3.865; SAR: 212 

slope=0.096, p-value<0.0001, ��,����= 5.448), with model fit improving with larger 213 

assemblage size (Appendix S1). Mean assemblage risk was globally over-predicted 214 

(observed:  36.8%, predicted: 46.7%), mirroring over-predictions at the species level 215 

(observed: 22.1%, predicted: 26.7%). 216 

 217 

Predictions for Data Deficient species 218 
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Our model outputs predict 313 of 493 DD species to be threatened with extinction, implying 219 

that underlying risk levels are much greater in DD species (63.5%) than data-sufficient 220 

species (22.1%) (Appendix S2).  The spatial congruence between threat hotspots identified 221 

using only data-sufficient species and hotspots incorporating our DD species predictions was 222 

very high (Spearman rank correlation= 0.987, p< 0.001; Fig. 2 and 3).  Additionally, the levels 223 

of threat in centres of threatened species richness may previously have been 224 

underestimated according to our regression model of observed vs. predicted threat (testing 225 

for slope≠1: OLS: slope=1.036, p<0.0001, ��,	���=242.96; SAR: slope= 1.043, p<0.0001, 226 


�,	���
² =214.15). 227 

 228 

Discussion 229 

We have no appreciation of the true level of extinction risk faced by one in six species on 230 

the IUCN Red List. These Data Deficient species are of great conservation concern, as they 231 

contribute to considerable uncertainty in estimates of risk (Butchart & Bird 2010; Bland et 232 

al. 2012) and are neglected by conservation programmes due to their uncertain status. 233 

Accurate predictive models of risk based on species traits could therefore enhance our 234 

understanding of risk patterns, and enable the proactive conservation of threatened Data 235 

Deficient species. 236 

Predictions for Data Deficient species 237 

We predict 313 of 493 (63.5%) DD species are threatened with extinction (Appendix S2). A 238 

previous random forests model (Davidson et al. 2009) predicted only 28 of 341 (8.2%) DD 239 

terrestrial mammals to be at risk, perhaps reflecting the low sensitivity of the model to 240 

detection of threatened species (sensitivity of 47.7% compared to 93.5% in our best model). 241 
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A recently published prediction of species extinction risk using eigenvector methods 242 

predicted 35% of 481 DD species to be at risk (Jones & Safi 2011), but the ability of the 243 

method to integrate phylogenetic signal has been questioned (Freckleton et al. 2011). Our 244 

estimates are considerably larger, increasing the estimated proportion of threatened 245 

terrestrial mammals from 22% to 27% globally.  246 

 247 

Despite this apparent increase in risk, spatial distribution of predicted risk suggests that 248 

global spatial prioritization based on current knowledge is robust to uncertainty. Large 249 

model residuals (Fig. 2) were caused by the predicted threatened status of a few wide-250 

ranging DD species, such as the northwestern Australian marsupial mole Notoryctes 251 

caurinus. Our findings echo those of Joppa et al. (Joppa et al. 2011), who found that regions 252 

predicted to contain large numbers of undiscovered plant species are already conservation 253 

priorities, but show considerably higher levels of species risk than previously acknowledged. 254 

Additionally, areas containing DD species have been shown to contain more recently 255 

described amphibian species than expected by chance (Brito 2010), suggesting that these 256 

sites might hold many undescribed species (Bini et al. 2006). A better understanding of the 257 

likely status of DD species may therefore provide an efficient method for targeting surveys, 258 

as well as incorporating the world’s poorly-known and undescribed species in conservation 259 

planning. 260 

 261 

Our results suggest that DD species are of great conservation concern. DD species have 262 

smaller ranges (median=9,891 km²) than their data-sufficient counterparts (median= 263 

1,666,107 km²), which contributes to their high extinction risk. Maps of DD species ranges 264 

may be uncertain and underestimated when collection effort is low. Nonetheless, the data 265 
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suggest that many DD species are likely to be range-restricted and that geographical 266 

measures derived from the species’ range maps are broadly representative of the species’ 267 

environment. We make the best use of the information available for each species, and note 268 

that risk predictions for individual DD species should be interpreted in the context of their 269 

IUCN Red List documentation. Since 2008, two DD mammal species (pale fox Vulpes pallida 270 

and long-nosed mosaic-tailed rat Paramelomys levipes) have been re-assigned as least 271 

concern; both were predicted not to be at risk by our model. These cases, along with the 272 

high consistency between predicted probability of threat and Red List category in our 273 

validation set (Appendix S1), indicate that DD species that are assigned a high probability of 274 

threat are likely to be at imminent risk of extinction.  275 

 276 

Many Data Deficient mammals are nocturnal, and most are bats and rodents (75%), which 277 

are difficult to observe and identify in the field without expert knowledge. Worryingly, 278 

nearly 40% of DD species are only known from few specimens, old records or from unknown 279 

provenance (Appendix S1), indicating a severe lack of knowledge of mammalian diversity. 280 

Predicted threat levels in those very-poorly known species are particularly high (79.6%), 281 

compared to species classified as DD due to unknown population trends and threats (51.2%) 282 

or uncertain taxonomic status and new discoveries (61.7%). High rate of species 283 

rediscoveries indicate that many species missing for long periods of time remain extant 284 

(particularly those that are only known from type specimens (Scheffers et al. 2011)), but 285 

show considerably higher levels of threat than other species (Scheffers et al. 2011). We may 286 

therefore expect very poorly-known DD species to be extant, but on the brink of extinction. 287 

 288 
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Ninety-one species listed as DD in the 1996 IUCN Red List assessment were assigned to a 289 

data-sufficient category in 2008 (Collen et al. 2011), including 31 (34%) as threatened. We 290 

predict 53 out of 90 species (59%) listed as DD in both the 1996 and 2008 IUCN Red Lists to 291 

be at risk of extinction. This suggests that species already re-assigned to a data-sufficient 292 

category are more abundant and widespread than species still listed as DD on the 2008 Red 293 

List. Hence, we expect threatened DD species to be the last species to be assigned their true 294 

conservation status in future iterations of the Red List. This finding highlights the 295 

importance of prioritizing potentially threatened DD species for monitoring and re-296 

assessment. Collection of life-history and distribution information is especially urgent for 297 

the 174 DD species excluded from our analysis due to insufficient data. 298 

 299 

Comparison of Machine Learning tools and taxonomic levels 300 

For all mammals and within the orders analysed, ML tools achieved very clear discrimination 301 

between threatened and non-threatened species in the independent validation sets. 302 

Classification trees and k-nearest neighbours are conceptually simpler and computationally less 303 

intensive than other tools, and never achieved highest classification performance. Random forests, 304 

boosted trees, support vector machines and neural networks performed particularly well, 305 

and we recommend them as powerful methods for predicting species extinction risk. Why 306 

tools differ in predictive performance depends on the link between the algorithm, fitted 307 

functions and data distribution, which can be investigated by simulating data (see Elith & 308 

Graham (2009) for an example in species distribution modelling). In addition, studies 309 

focusing on explaining the role of underlying risk drivers rather than risk prediction could 310 

undertake variable selection and model simplification. 311 

 312 
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Whether one or all of the recommended methods should be applied to a given situation of 313 

extinction risk prediction depends on available computational resources. We believe that 314 

even small increases in performance achieved by using multiple techniques justify their 315 

combined use, given the importance of accurately predicting species conservation status. 316 

Geographical range size alone provided reasonable discriminatory power in decision 317 

stumps, as expected from its role in categorising species under IUCN criterion B (Purvis et al. 318 

2000).  However, the high AUROC observed in models with all explanatory variables 319 

included indicates that these extra data are necessary to identify species not listed under 320 

criterion B, and to achieve suitable performance for use in conservation decision-making. 321 

 322 

Although comparative studies of extinction risk have been criticized for not providing 323 

findings that are applicable across taxa (Cardillo & Meijaard 2012), our results suggest that, 324 

at least in mammals, information obtained from a wider range of species improves 325 

extinction risk prediction. The additional power provided by including all terrestrial mammal 326 

species has important implications for the development of predictive systems for 327 

conservation. Transferability of predictive power across taxa, and the trade-off between 328 

amount of contextual information and predictive ability should be the focus of future 329 

research.   330 

 331 

Limitations 332 

Although our models achieved high discrimination between threatened and non-threatened 333 

species, a number of factors may have negatively affected predictive performance. 334 

Discarding species due to the absence of a range map and setting aside 25% of the data as 335 

validation reduced the sample size. Our study also lacked a phylogenetic framework, though 336 

Page 15 of 29 Conservation Biology



For review
 only

16 

 

we took into account taxonomy in our models by including taxonomic levels (order, family 337 

and genus) and building four order-level models. However, order-level models achieved 338 

lower predictive performance than order-level predictions from the global model (Appendix 339 

S1), indicating a modest role of order-specific processes in determining extinction risk.  340 

 341 

Missing and inexact explanatory variables and incomplete characterization of the 342 

threatening processes may also have caused misclassifications. For example, Purvis et al. 343 

(2000) identified population density as a significant predictor of elevated extinction risk in 344 

primates, but were unable to use this variable due to its poor coverage across terrestrial 345 

mammals. Analyses based on species’ geographic range maps have been criticized as 346 

species are not evenly distributed across their range, and because some habitats may be 347 

unsuitable or inaccessible for species (Rondinini et al. 2006). Making use of more refined 348 

maps of species range, such as those derived from habitat suitability modelling (Rondinini et 349 

al. 2011), may shed light on how higher resolution range data inform extinction risk 350 

prediction. Anthropogenic threat impacts included in the model were mainly based on 351 

properties of the human population in the area, e.g. human population density and gross 352 

domestic product. Due to the limited characterization of threatening processes, our models 353 

are less likely to identify species threatened by over-exploitation and invasive species than 354 

those affected by habitat loss.  355 

 356 

Finally, model misclassifications may indicate latent potential for recovery or threat and may 357 

be used to inform future species assessments. Three of the 15 species incorrectly classified 358 

as non-threatened by our models (Proechimys roberti, Reithrodontomys microdon and 359 

Scotonycteris ophiodon) were down-listed to a non-threatened category in 2010.  360 
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 361 

Conclusions 362 

Data Deficient species should be of high conservation interest: they bias our understanding 363 

of patterns of extinction risk (Butchart & Bird 2010; Bland et al. 2012) and are neglected by 364 

conservation programmes due to their uncertain status. Resolution of taxonomic 365 

uncertainty and extensive field surveys are unlikely prospects for all 10,673 species currently 366 

listed as DD on the IUCN Red List, given monetary and time costs of surveys (Balmford & 367 

Gaston 1999) and risk assessments (Stuart et al. 2010). Predicting species extinction risk 368 

from contextual information could be a rapid and inexpensive approach for prioritizing taxa 369 

and geographical regions under limited knowledge. ML methods are extremely powerful 370 

tools for statistical pattern recognition, which can readily incorporate decision-makers’ risk 371 

attitudes and quantify prediction uncertainty. As such, they show great potential for 372 

predictive conservation science under increasing availability of biodiversity data. The seven 373 

ML tools used across two taxonomic levels of terrestrial mammals accurately predicted 374 

species extinction risk and centres of threatened species richness. Data Deficient mammal 375 

species are likely to be disproportionately at risk, and unless directly targeted for 376 

conservation action may slide towards extinction unnoticed. Although our study leaves 377 

global mammalian conservation priorities generally unaffected, we conclude risk levels in 378 

terrestrial mammals are likely to have been considerably underestimated. Predicting the 379 

conservation status of DD species can reduce uncertainty in global patterns of threat, and 380 

enable the transparent prioritization for field surveys of potentially threatened DD species. 381 

Such an approach could be particularly cost-effective for taxa containing large numbers of 382 

DD species, such as invertebrates (Samways & Böhm 2010). Finally, DD species may be 383 

indicative of spatial knowledge deficiency and could inform species inventories. Taking into 384 
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account information on DD species may therefore help tackle data gaps in biodiversity 385 

indicators, as well as conserve the earth’s poorly-known biodiversity.  386 
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Tables 549 

Table 1. Number of data-sufficient species, proportion of threatened species, number of 550 

Data Deficient species and number of explanatory variables used in the models across 551 

datasets.  552 

Dataset Number of data-

sufficient species 

Proportion of 

threatened 

species 

Number of Data 

Deficient species  

Number of 

explanatory 

variables  

Global 3967 22.1% 493 35 

Bats 828 17% 108 36 

Carnivores 188 23.2% 14 36 

Primates 304 56.7% 12 32 

Rodents 1666 17% 263 29 

  553 
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Table 2. Area Under the Receiver Operator Characteristic Curve (AUROC) for each 554 

combination of tool and dataset on the validation sets.  555 

 CT RF BT KNN SVM NNET DS 

Global 0.895 0.944 0.935 0.906 0.932 0.922 0.75 

Bats 0.872 0.894 0.897 0.858 0.871 0.891 0.727 

Carnivores 0.896 0.901 0.919 0.849 0.922 0.961 0.736 

Primates 0.803 0.854 0.866 0.788 0.873 0.857 0.738 

Rodents 0.871 0.951 0.933 0.925 0.949 0.935 0.792 

* CT: Classification Tree, RF: Random Forests, BT: Boosted Trees, KNN: K-Nearest 556 

Neighbours, SVM: Support Vector Machine, NNET: Neural Networks, DS: Decision Stump. 557 
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Figure Legends 558 

Figure 1. Global geographic distribution of terrestrial mammal extinction risk in the 559 

validation set. Observed (a) and predicted (b) proportion of threatened species and 560 

standardized model residuals (c). 561 

Figure 2. Global geographic distribution of terrestrial mammal extinction risk. Proportion of 562 

threatened species when Data Deficient species are excluded (a), when Data Deficient 563 

species model predictions are included (b) and standardized model residuals (c). 564 

Figure 3. Extent of congruence between hotspots of proportion of threatened species under 565 

two scenarios, shown across a range of hotspot definitions. The two scenarios are: 1) 566 

exclusion of Data Deficient species and 2) inclusion of Data Deficient species model 567 

predictions. Horizontal line shows expectation under full congruence; vertical arrow shows 568 

2.5% hotspot definition. 569 
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