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Abstract

Latent variable models (LVMs) are widely used in many scientific fields due to the ubiqui-

tousness and feasibility of latent variables. Conventional LVMs, however, have limitations

because they model relationships between covariates and latent variables or among latent

variables with a parametric fashion. A more flexible model framework is therefore needed,

especially without prior knowledge of sensible parametric forms.

This thesis proposes a new non-parametric LVM for the need. We define a model

structure with particular features, including a multi-layered structure constituting of non-

parametric Gaussian Processes regression and parametric factor analysis. The connections

to existing popular LVMs approaches, such as structural equation models and latent curve

models, are also discussed. The model structure is subsequently extended for observed

binary responses and longitudinal application. It follows that model identifiability is ex-

amined through parameter constraints and algebraic manipulations.

The proposed model, despite convenient applicability, has a computational burden

for analysing large data sets due to the computation of the inverse of a large covariance

matrix. To address the issue, a sparse approximation method using a small number of M

selected inputs (inducing inputs) is adopted. The associated computational cost can be

reduced to O(M2NQ2) (or O(M2NT 2)) where N and Q are the numbers of data points

and latent variables (or time points T ), respectively.

Inference within this framework requires a series of algorithmic developments in a

Bayesian paradigm. The algorithms, using Markov Chain Monte Carlo sampling-based

methods and Expectation Maximisation optimisation methods with stochastic variant,

are presented. A hybrid estimation procedure with two-step implementations is proposed

as well, which can further reduce computational cost. Furthermore, a greedy selection

scheme for inducing inputs is provided for better model predictive performance.

Empirical studies of the modelling framework are conducted for various experiments.

Interest lies in inference, including parameter estimation and realization of distribution

of latent variables; and assessments and comparisons of predictive performance with two

baseline techniques. Discussion and suggestions for improvement are provided based on

results.
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Chapter 1

Introduction

1.1 Development of Motivation

The estimation of latent factors explaining observed phenomena is one of the main goals

in behavioural, educational, medical, and social sciences. The task usually can proceed by

statistically examining whether or not reasonability can exist in a hypothesis – data from

observed phenomena is generated by certain variables through a pre-assumed modelling

mechanism. Latent variable models (LVMs) serve for the examination while the involving

posited variables are unobserved or unmeasured directly in reality. Such unobserved vari-

ables are referred as latent (or hidden) variables (or constructs) in different disciplines.

They also entitle LVMs as a conceptual framework to explore underlying factors along

with possible information condensation, and their inter-relations with (multiple) observed

variables.

Abundant literature about LVMs has been published and develops various model for-

mulations and applications. For inter-relation of latent and observed variables, LVMs can

be commonly linear or non-linear (Arminger & Muthén 1998); for model structure, LVMs

can be non-directed (e.g., Markov random field with latent variable (Everitt 2012)) or di-

rected (e.g., Hidden Markov Field (Ghahramani 2001), Autoregressive Latent Trajectory

Model (Bollen 2006)). Conventionally, depending on characteristics of latent and observed

variables, there are four well-studied development categories for LVMs with multiple ob-

served variables (Bartholomew & Knott 1999). They are latent class analysis (categorical1

1Categorical variables contain nomial or ordinal variables.
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latent variables and observed variables), latent trait analysis (metrical2 latent variables

and categorical observed variables), latent profile analysis (categorical latent variables and

metrical observed variables), factor analysis (metrical latent variables and observed vari-

ables). Various types of observed variables and complex data structure motivate model

development as well (Skrondal & Rabe-Hesketh 2004, Lee 2007). Recently, topic mod-

els have attracted a growing attention because of applications on a variety of response

types in text document to search probability distribution of underlying latent variables

(vocabularies describing themes) (Blei 2012).

Structure Equation Modelling (SEM) built on factor analysis (FA) is originally a lin-

ear, directed statistical modelling approach. Due to inheritance of FA (close to principal

component analysis (PCA)), SEM can also be regarded as a dimension-reduction tech-

nique. It also allows inference on cause-effect relationships on two formulations – between

many observed variables and few latent variables; and among latent variables. SEM en-

ables incorporating additional variables into model structure, and this thereby increases

its accountability for data. The connection between ”covariates”3 and latent variables

also brings interest in their dependant latent structure, as well as distributions and pat-

terns in latent-variable space. For example, multiple indicators multiple causes (MIMIC)

model and latent curve model (LCM) (Bollen 2006), in the context of SEM, adopt a linear

directed effect on latent variables from covariates. Moreover, in the former framework

latent variables conventionally serves as random variables represented a posited concept,

measured indirectly by observed variables (or indicators); in the latter, latent variables

can work as modelling temporal change of observed variables, or of conventional latent

variables.

Instead of using linear or non-linear direct sum on latent variables, utilization of non-

parametric frameworks to model the functional relations can be appealing. This con-

sideration may naturally emerge because practitioners need to deliberate what kind of

parametric regression functional form is sensible. That especially rises in the case of mod-

elling the change of latent variables and no prior knowledge about the growth pattern.

Various non-parametric methods for modelling regression relationship have been pro-

vided, such as kernel smoothing estimator, spline method, wavelet regression (Wasserman

2Metrical variables contain discrete or continuous variables.
3Covariates here can be response variables, which depend on practitioners research interests and hy-

potheses.
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2006). But, there is only limited literature in the field of non-parametric SEM. The

Bayesian P-spline, a Bayesian technique to penalized splines, is used to model the func-

tional relationships between observed covariates and latent variables, and among latent

variables (Fahrmeir & Raach 2007, Song & Lu 2010). These works, however, are based

on the assumption that the effects of covariates and latent variables are additive. The

functional relations there are expressed as univariate non-linear functions. By contrast,

a Gaussian Processes (GPs) framework is utilised to model multivariate non-parametric

function between latent variables (Silva & Gramacy 2010).

The GP non-parametric regression approach is emphasized in our works. It has been

developed in spatial statistics over decades and become popular in machine learning field

recently. Its convenience and natural incorporation of the Bayesian inferential work4

allows one to automatically learn an appropriate posterior functional relation to fit data.

It possibly has no need in undertaking trial-and-error experiments to tune the parameters

controlling regression function.

Although GP provides great flexibility in modelling functional relation, computational

expense is high in a large dataset. This increases cubically with dataset size, and the

whole computing process can be extremely lengthy. Several GP researchers have worked

on this issue (Rasmussen & Williams 2006, Seeger et al. 2003, Snelson & Ghahramani

2006a, Quinonero-Candela & Rasmussen 2005). Their ideas are based on a conditional

distribution of GP function values given other variables under certain assumptions. Those

given variables comprise of another set of GP function values evaluated at a finite number

of inducing (or pseudo) inputs. The notions can be the sources to develop an efficient

algorithm for the posited frameworks.

Model estimation can be fulfilled by several methods. One of the possible approaches

is Markov Chain Monte Carlo (MCMC) methods, which has widely spread in statistics

community and produced diverse applications in many disciplines, especially since Gibbs’

sampling method was invented (Geman & Geman 1984). Due to the Bayesian feature

of GP frameworks, the application of MCMC methods can be implemented. In fact,

many authors have used this treatment on similar LVM frameworks (Lee 2007, Titsias &

4It means any modelling frameworks applying Bayesian rule – the posterior distribution of a hypothesis

equals the quotient of the product of its prior distribution and data likelihood (formulated from posited

model structure and distributional assumptions), and marginal likelihood (a constant factor for any hy-

potheses being considered).
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Lawrence 2010). The Expectation Maximization (EM) method (Dempster et al. 1977) is

another approach developed over decades. It addresses estimation problems with missing

values and treats missing values as latent variables. The feasibility of this approach for

many LVM frameworks has been identified. Essentially, it is a deterministic optimisation

method, but several variants, including introducing sampling schemes, like MCMC tech-

niques, can be applied in the case that distributions of latent variables are complicated. In

addition, upon the multiple-output model structure, another estimation method, inspired

by inference function of margin (IFM) (Joe & Xu 1996), can be developed to facilitate

computing. It may bring more computational advantages than solely using the first two

methods on the whole model.

Because of the multiple-output modelling structure, multiple-response prediction prob-

lem is of interest. This problem has been considered in geostatistics and machine learning

research. For example, mining at several locations for various kinds of ore can be expen-

sive, especially when some mines are difficult to detect. The issue may be alleviated via

the correlations with other types of mine to achieve good prediction for locations. Instead

of using independent prediction for each output, various methods (Teh et al. 2005, Álvarez

et al. 2011, Bonilla et al. 2008) have been provided and attempt to capture the correlation

between different output as conventional multiple-output regression does. It would be in-

teresting to assess the predictive performance of the proposed modelling work, compared

with those of baseline methods – using least-squared method, or GP regression framework

independently.

Due to an analogy in model frameworks, potential model extension to the case of

binary variables and applications on longitudinal studies may be taken into account as

well.

1.2 Contributions, Goal and Scope

Our model frameworks make multi-fold contributions from different viewpoints. We ex-

pand the field of non-parametric SEM by using GP regression in the research direction

of modelling functional relations between covariates and latent variables. Two features

also distinguish between our model frameworks and the state-of-the-art multi-output GP

regression. The first difference is that the outputs can be latent variables regressed on co-
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variates. The second is that we allow the latent variables given covariates to be dependent

according to arbitrary covariance structure. Due to non-parametric feature, our model

can be considered as a generalisation of LCM for longitudinal analysis as well.

Our frameworks also follow a series of algorithmic developments and the exploratory

works for model assessment. Note that the sampling estimation algorithm upon the

MCMC approaches in Section 4.3 is particularly novel. The model assessments on empir-

ical studies can be useful reference for future practitioners and the non-parametric LVM

researchers.

The goal of this thesis is to accomplish exploratory works in computation, estimation,

prediction, extension and application for the new modelling methodology - Gaussian Pro-

cess Structure Equation Modelling (GP-SEM). To achieve that, we specify the associated

tasks and the works having been done:

1. Computation / Estimation:

– developed computational efficient algorithms via the MCMC and EM methods,

and a hybrid scheme consisting of the EM and IFM approach.

– modified a greedy selection scheme for inducing inputs.

– examined model identification conditions and convergence diagnosis of param-

eters.

– discovered the relation of parameters and latent variables between before and

after data processing of standardization.

– explored the estimation differences of the proposed algorithms on parameters

and latent variables.

2. Prediction:

– compared model predictive performance between the baseline frameworks (us-

ing linear regression and GP regression) and the proposed GP-SEM (with two

algorithms).

– contrasted the GP-SEM predictive performance under the different scenarios,

including given two selection schemes for inducing inputs, as well as varying

the number of pseudo inputs and latent variables

– conducted posterior predictive checking to realize model appropriateness.
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– learnt the regression functional relationship between a covariate and a latent

variable.

3. Extension / Application:

– extended model frameworks to binary responses

– carried out application on longitudinal studies.

We confine the scope of this thesis to continuous and binary response variables with

continuous latent variables, continuous and categorical covariates. It is incidental that the

latent variables mentioned in the thesis, depending on the context, only mean hypotheti-

cal constructs, or responses underlying binary variables, or missing values or unobserved

heterogeneity.

1.3 Thesis Structure

The remainder of the thesis is at follows: Chapter 2 provides the background literature for

our modelling framework. Chapter 3 illustrates the proposed model structure and exam-

ines identification problems. Chapter 4 presents our estimation methods including intro-

duction for the MCMC methods, EM approaches and the associated limited-information

algorithms, and their implementations. It also provides the computing procedures for

prediction. Chapter 5 shows the experiment results for three studies to evaluate the per-

formance in estimation, prediction and computation. Chapter 6 accentuates the case of

longitudinal study with continuous and binary responses. It has tight connection with the

preceding chapters, including model specification and estimation methods. Another three

empirical studies are carried out and presented as well. Chapter 7 summarises our works,

discusses possible improvement and future work. The relevant technical details and proofs

are provided in the appendix.
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Chapter 2

Background

This chapter provides the foundation of our unifying modelling frameworks which follows

in the subsequent chapters. Here, we provide several related literature to characterise the

main ideas of existing methods.

In Section 3.1, we first discuss the latent variable model - principal component analysis,

factor analysis, structure equation modelling in order and point out their association. In

Section 3.2, we introduce the definition of Gaussian Processes and its function space view

for the regression problem. In Section 3.3 and 3.4, we respectively review several sparse

approximation methods and multiple-outcome prediction methods for Gaussian Process

models. Both proceed under existing general modelling frameworks. We conclude by

summarising the whole chapter.

2.1 Latent Variable Models

2.1.1 Principal Component Analysis

Principal component analysis (PCA) is a classical dimension-reduction technique for a

dataset in which moderate or high intercorrelation exists among variables. The prime ob-

jective is to substitute R continuous correlated variables for Q uncorrelated variables (Q <

R) that explain more variance in the data through linear transformations (Jolliffe 2002).

It therefore allows practitioners to learn a governing pattern from a high-dimensional data

set.

The main idea is founded on the explainability of the new Q uncorrelated variables

(called principle components) for the total variance (the sum of the variances of the original
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R variables). More clearly, the accountability can be defined as the proportion sum of

variances of the new variables over total variance. Alternatively, the central idea can also

be based on the mean squared error between the original variables and the inverse image

of the new variables (Jolliffe 2002).

Let Y∗ = [y∗1, . . . ,y
∗
R]T be a R×N matrix which consists of N data points centred at 0.

To find principle components, one can first obtain the singular value decomposition (SVD)

of Y∗. Let the SVD be PΨRT, where Ψ is a R×N matrix with singular values (assigned

in descending order) on the main diagonal; P and R are a R × R and a N × N matrix

whose columns are arranged according to the descending order of singular values and are

the orthonormal eigenvectors of Y∗Y∗T and of Y∗TY∗, respectively. The practitioners can

select the Q largest singular values and the corresponding vectors to form the principle

components and the linear transformation. Precisely,

Y∗ ≈ PQXQ, (2.1)

where PQ is a R × Q component loading matrix consisting of the first Q columns of P;

moreover, PT
Q transforms the original variables y1, y2, . . . , yR to components x1, x2, . . . , xQ.

XQ is a Q × N matrix comprising the first Q rows of ΨRT which denotes the principal

component scores of N data points. A principal component can be interpreted as a syn-

thesis index of the original variables, or something else based on the component loadings.

PQXQ additionally means the inverse image of XQ through PQ or approximate values

of the original variables. In the above context, the PCA solution actually maximises the

explainability of the components,
∑Q

i=1 φi∑R
i=1 φi

(φi is the variance of the i-th component); that

equivalently minimises the error ||Y∗ − PQXQ||2 (Jolliffe 2002). Note that there are in-

finite solutions for PQ and XQ because the SVD of Y∗, PΨRT can be represented as

POO−1ΨRT using a non-singular matrix O, which makes XQ a unit covariance matrix.

There are several criteria to decide the numberQ of principle components (Bartholomew

et al. 2008). For example, one can select Q components whose sum of variance can ac-

count for a large proportion of the total variance (around 70-80 percentages,) or whose

corresponding singular values starts decreasing abruptly. In addition to using K-fold

cross-validation (CV), the number Q can be learnt based on the overall predictive perfor-

mance over each test set by estimation of PQ and XQ upon the corresponding training set

(Jolliffe 2002). The number Q also sometimes depends on whether the components have

sensible and usual interpretation from the researcher’s knowledge.
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2.1.2 Factor Analysis

Factor analysis (FA), similar to PCA, is another dimension-reduction method. Its dimension-

reduced characteristic, however, is induced from intercorrelation under the assumption

that some observed variables (manifest variables or indicators) depend on the same unob-

served variables (latent variables or factors) by a modelling mechanism. This model-based

orientation can therefore distinguish FA from PCA (Bartholomew et al. 2008).

Closely related to regression analysis, latent variables in FA play the role of explana-

tory variables and account for the correlation among observed variables. Their regression

relationship can be the basis for exploring the underlying patterns within data or testing

causal hypotheses between observed and latent variables. Moreover, like component load-

ings in PCA, factor loadings represent the influence of latent variables on the observed

ones in regression relationship. A noticeable difference is that FA also intends to discover

inverse regression relationship given observed variables in order to learn distributions over

latent variables (Bartholomew et al. 2008).

Classical FA is sometimes classified as exploratory or confirmatory (Lee 2007, Bollen

1989, Bartholomew et al. 2008). For exploring and understanding measured data, the

number of latent variables is not fixed and all manifest variables are linked to all the latent

variables (that means there are no constraints on factor loadings). If factor loadings are

high, one can name the latent variables based on the common features of the corresponding

observed variables, which may enable to be hypothesized as measured indicators of the

factor. In this case, it is referred to as exploratory factor analysis (EFA). For hypothesis

testing and theory development, the number of the latent variables is fixed and manifest

variables are linked to a subset of latent variables only. That implies some of the factor

loadings are zeros, which also reflects a research hypothesis. One can use goodness of

fit test to justify whether the posited model structure is reasonable. In the context, it

is called as confirmatory factor analysis (CFA). Bartholomew et al.(2008) point out that

in practical applications the distinction between EFA and CFA is not absolute because

researchers may adopt mixed strategies.

EFA and CFA also have some analogies in model assumptions. Measurement errors

are typically assumed: (1) mutually uncorrelated with each other, (2) expected values

of zero, (3) identical (or non-identical) variances and (4) uncorrelated with the latent

variables. For EFA, latent variables can also be assumed to hold the assumptions (1)-(3)
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although (1) could be relaxed depending on whether transformed factor loadings through

oblique rotation can be interpreted sensibly or not. For CFA, latent variables are usually

assumed correlated whereas constraints are sometimes imposed on correlation coefficients

for necessity and hypothesis. FA typically adopts a normality assumption on measurement

errors and latent variables.

The algebraic representation of FA model framework is given by:

Y = λ0,y ⊗ 1T
N + ΛyX + Ey, (2.2)

where Y = [y1, . . . ,yR]T is a R × N matrix which consists of N data points with R

observed values each; λ0,y and 1N are a R × 1 intercept vector and a N × 1 vector with

all entries being 1, respectively. With Q latent variables, Λy is a R × Q factor loading

matrix, X is a Q × N factor score matrix for all data points. Ey is a R × N matrix of

measurement errors.

This equation relates to (2.1) through two procedures. At first, if Y is centered on its

mean, then it would nullify the intercept term and lead Y to Y∗ in (2.1). Then removing

the error terms Ey causes the remaining term ΛyX to be the term in the right-hand side

of (2.1), which means an approximate value of Y∗ by a PCA solution. It is noted that

measurement errors Ey can be interpreted as the part of SVD of Y∗ corresponding to the

insignificant components in the context of PCA. In particular, Tipping and Bishop (1998)

found when those insignificant SVD values are roughly equal, a standard PCA solution

would be the same as that estimated iteratively under a linear isotropic Gaussian noise

FA model 1, referred to Probabilistic PCA in their work. All in all, this link reveals PCA

can perhaps be a good guide before using FA.

The data analysis of FA models involves the two covariance matrices. One is the sample

covariance matrix S, which is used as a sufficient statistic. The other is the implied covari-

ance matrix Σ(θ) (theoretical covariance matrix or population covariance matrix), which

is formulised according to model structure and assumptions as a matrix-variate function

of the model parameters θ = {Λy,Var(εy), etc} (factor loadings and error variances). Pa-

rameter estimation proceeds by minimising (or maximising) some objective functions that

measure the discrepancy between S and Σ(θ), such as the weighed least square (WLS)

or the generalized least square (GLS), or equivalently the maximum likelihood estimation

1Isotropic here means the variances of measurement errors are identical, and the covariance matrix is

additionally assumed to have a diagonal structure.
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(MLE). The derivation of asymptotic goodness-of-fit statistics for assessing whether Σ(θ)

fits S which depends heavily on the asymptotic multivariate normality of the discrepancy

between S and Σ(θ). These analysis procedures are referred to as covariance structure

analysis (CSA). More detailed discussion can be found in (Bollen 1989, Lee 2007).

It is noted that an identification problem 2 should be considered before estimation.

2.1.3 Structural Equation Modelling

Structural Equation Modelling (SEM) is a statistical methodology for exploring, testing,

and estimating causal relations by integrating data and qualitative structural and causal

assumptions. Inheriting the characteristics of FA, it allows exploratory and confirmatory

modelling to estimate functional or causal and probabilistic relationships, or to provide

tools for dimension reduction (Bollen 1989, Pearl 2000).

Many families of SEMs are characterized by two sets of equations: a measurement

model and a structural model (Bartholomew et al. 2008). A measurement model specifies

the relationship between observed and latent variables. Like FA, it can be written as a

set of regression equations where latent and measured variables serve as covariate and

response variables respectively. The regression coefficients (factor loadings) imply how

much effect the latent variables bring to the observed variables (manifest variables).

A structural model comprises relationships among latent variables and effects of design

variables on latent variables – a distinction from classical FA. As exploratory variables and

response variables in a regression equation, exogenous latent variables explain endogenous

latent variables. This can allow testing relationships between factors under some hypo-

thetical causal assumptions. Under explicit causal assumptions, the regression coefficients

(called structural parameters) measure direct effects of exogenous latent variables on other

latent variables (Bollen 1989). As the errors in measurement equations, the disturbances

of endogenous latent variables may have the same assumptions of being uncorrelated with

other variables.

2An identification problem is to investigate whether a statistical model is identifiable, in other words,

whether the model parameters are uniquely determined by the model structure and the distributional

information for the variables. Mathematically, a model is identifiable if then only if the function relation

from parameters to probability distributions of the observed variables is a one-to-one map. We will discuss

the problem further and conditions to achieve identifiability later.
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The algebraic representation of a SEM is given by:

y(n) = λ0,y + Λyx
(n) + ε(n)

y , (2.3)

x2
(n) = λ0,x + Λxx

(n) + ε(n)
x = λ0,x + Λx1x1

(n) + Λx2x2
(n) + ε(n)

x , (2.4)

where the superscript (n) means the n-th data point, y is a R× 1 measured response

vector; Λ is a R×Q factor loading matrix; x = (x1
T,x2

T)T is a latent random vector (x1

and x2 are the exogenous and endogenous latent random vectors with size of q1 × 1 and

q2 × 1 respectively ); Λx = [Λx1 Λx2 ] is a q2 ×Q matrix of structure parameters that

represent the causal effects among x1 and x2; εy and εx are q1 × 1 and q2 × 1 random

vectors of measurement errors or residuals. λ0,y and λ0,x are intercept terms (if the

measured and latent variables are taken as deviation from the mean, they are omitted).

Equations (2.3) and (2.4) comprise a standard SEM, sometimes called a LISREL model

(Linear Structural Relations Models) (Bartholomew et al. 2008).

Note that if SEM is used as a confirmatory tool, namely certain manifest variables are

assumed to correlate a specific latent variable, the measurement equations (2.3) could be

written as follows: y
(n)
1

y
(n)
2

 =

 λ0,y1

λ0,y2

+

 Λy1 0

0 Λy2

 x
(n)
1

x
(n)
2

+

 ε(n)
y1

ε
(n)
y2

 , (2.5)

where the block matrices 0 here reflect that disjoint subsets of manifest variables are

assumed to measure only corresponding disjoint subsets of latent variables. The latent

variables in the same subset may share certain manifest variables. One subset of latent

variables may play a role of exogenous variables for the others.

The use of path diagrams equips SEM with a graph-based representation of the rela-

tionships between observed and latent variables, among latent variables, which can also

be viewed as a directed graphical model. For example, Figure 2.1 shows a path dia-

gram of political democracy and industrialization for developing countries, 1960 to 1965

(Bollen 1989). In the graph, boxes denote observed variables, circles denote latent vari-

ables and unenclosed characters denote errors. More specifically, democracy in 1960 (x1)

and that in 1965 (x2) have four indicators respectively, freedom of the press (y1, y5), free-

dom of group opposition (y2, y6), fairness of elections (y3, y7) and the elective nature and

effectiveness of the legislative body (y4, y8); industrialization in 1960 (x3) has three indica-

tors, the gross national product per capita (y9), energy consumption per capita (y10), and
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the percent of the labour force in industrial occupations (y11). Curved lines with arrow-

heads at both ends denote correlations between exogenous variables and/or error terms (as

showed in the graph). Relationships between observed variables and latent variables are

represented by straight lines with an arrowhead pointing towards the dependent variable.

In this example, the coefficients on straight lines additionally reveal how many effects a

variable gives to its dependent variables. Such straight lines also represent assumed causal

relationships where industrialization in 1960 influences democracy in 1960 and that in

1965.
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Figure 2.1: The path diagram of political democracy and industrialization for developing

countries from 1960 to 1965

Covariance structure analysis (CSA) is a conventional method for modelling fitting

in SEM, like its predecessor FA. With the development of Markov chain Monte Carlo

(MCMC) samplings techniques, the Bayesian framework becomes another mainstream
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approach for parameter estimation. A Bayesian approach provides a convenient way to

handle generalizations of such models and does not rely on asymptotic multivariate nor-

mality of the discrepancy (Lee 2007).

The general outline of a Bayesian procedure for SEM is: first, one has to specify the

prior distribution model parameters. This can be done based on prior information from

technical (or specific) expertise and analyses of analogous (or past) data. Often standard

conjugate prior families are used: for example a normal distribution for factor loadings;

an inverse gamma distribution for variances. For the situations without clear prior in-

formation, a non-informative prior could be adopted. Next, the posterior distributions

of parameters and latent variables can be estimated by using a sufficiently large number

of samples that are simulated from the posterior distribution of the unknown parameters

through efficient statistical computing tools, such as MCMC methods. Some functional

quantities of the posterior distribution, such as means or quantiles, can be estimated from

the simulated samples. For more detailed discussion of Bayesian analysis procedure of

various kinds of SEM; refer to (Lee 2007).

2.2 Gaussian Process For Regression

Since Gaussian Processes (GPs) was introduced in the machine learning community, it

has been a popular approach for handling Bayesian non-parametric regression in that field

(Rasmussen & Williams 2006). This probabilistic framework allows imposing a prior on

a regression function by using a multivariate Gaussian distribution based on a specified

covariance matrix. It gives more plausible functional forms to model regressions on which

FA or SEM strongly counts. A GP model also provides another way to make predictions

for test data points with less risk of poor predictions or underfitting compared to restricting

the class of regression functions (for example, linear functions).

A GP can be interpreted as a distribution over functions. Following the definition

in (Rasmussen & Williams 2006), a GP can be formally defined as a collection of normal

variables with any finite number – it consists of a joint Gaussian distribution. More specif-

ically, for a finite set of (multivariate) indices z(1), . . . , z(N), let f = (f(z(1)), . . . , f(z(N)))T,

then f ∼ N (µ,Σ). In a regression context, z(n) corresponds to the covariates of the n-th
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data point3. µ is a mean vector; Σ is a N×N covariance matrix specifying the dependency

between any two function values, f(z(n)) and f(z(n
′
)). It should be noted that because N

is any finite number, therefore one can informally represent a function as a lengthy vector,

where each entry in the vector specifies the function value f(z(n)) at a particular covariate

z(n). The above definition also implies GP has the marginalization property. That means

if GP specifies (f1, f2), that is, p(f1, f2) = N (µ,Σ), then it would be

p(f1) =

∫
p(f1, f2)df2 = N (µ1,Σ11),

where µ1 and Σ11 are the submatrix of µ and of Σ, respectively.

Generally, the GP of f(z) can be written as f(z) ∼ GP(m(z), k(z, z
′
)) (Rasmussen &

Williams 2006). m(z) is the mean function of GP and describes the expected value of

function f for input z. It is usually set to be zero for notational simplicity; hereafter, we

always consider this setup for a GP prior. k(z, z
′
) is the covariance function controlling the

variability of a function, defined as the covariance between two function values f(z) and

f(z
′
) based on the inputs z and z

′
. A covariance function can further be classified into two

categories – stationary and non-stationary. The classification of the former depends on

whether the function is parameterized by the inter-distance of inputs (implies invariance

to translations of inputs).

A covariance function should be symmetric and positive semi-definite, that is, k(z, z
′
) =

k(z
′
, z) and νTKν ≥ 0 for any N × 1 vectors ν (where [K]n,n′ = k(z(n), z(n

′
))). In

addition, the resulting function of any covariance functions through algebraic operations,

such as addition, multiplication and convolution, remains a valid covariance function (see

Chapter 3 of (Rasmussen & Williams 2006)). Through this corollary, a researcher using

GPs modelling formulation can attempt to create a new covariance function to obtain

better data fitting and higher predictive precision.

The covariance function allows flexibility for setting high-level properties of a regression

function (such as, smoothness, periodicity) and is characterised by its hyper-parameters

(Rasmussen & Williams 2006). For example, one can use the squared-exponential (SE)

covariance function

k(z(n), z(n
′
)) = θ2

h,1 exp

(
−1

2θ2
h,2

|z(n) − z(n
′
)|2
)
,

3From now on, we alternatively use the term “covariate” or “input”.
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(a) θh,1 = 0.2, θh,2 = 1

(b) θh,1 = 1, θh,2 = 1 (c) θh,1 = 1, θh,2 = 5

Figure 2.2: Panel (a)-(c) show three functions randomly generated by a GP prior with

zero mean function and squared-exponential covariance function with different values of

signal variance θ2
h,1 and length-scale θh,2.

where θ2
h,1 is the signal variance and θh,2 is the length-scale, and both control the char-

acteristic of the functions generated by a GP. The smaller θh,1 is, the smaller amplitude

a function varies with; and the larger θh,2 is, the slower change a function varies with,

as is showed in Figure 2.2; automatic relevance determination (ARD) is another common

covariance function with a similar functional form as SE function. The difference is that it

can model relevence of L inputs with different length-scales; in other words, θh,l, 1 ≤ l ≤ L,

is the length-scale for the l-th dimension of input vectors z(n). More covariance functions

can be referred in Rasmussen and Williams (2006). For sake of computation, we use the

SE covariance function in all the model exploratory experiments.

Given a dataset of N observations, one can consider a non-parametric regression model

in a Bayesian formalism. The model can be written as follows:

y(n) = f(z(n)) + ε(n)
y ,
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where z is a covariate column vector of dimension L, f(·) is the function value (no func-

tional form here indicates nonparametricity) and y is the observed noisy value, εy is as-

sumed to follow an independent, identically distributed Gaussian distribution with zero

mean and variance σ2
y . The noise assumption implies the likelihood of the observations is

factored over cases in the dataset. Furthermore, a Gaussian likelihood can be written as:

p(y|f ,Z) = N (f , σ2
yIN ),

where f = (f(z(1)), . . . , f(z(N)))T is a function vector where the n-th component is the

function value at the input z(n), y = (y(1), . . . , y(N))T is a column response vector and Z =

{z(1) . . . z(N)} is a set of the covariate vectors. If integrating out f from joint distribution

of y and f (or using (A.7)), one can obtain the marginal likelihood:

p(y|Z) = N (0,K(Z,Z) + σ2
yIN ),

where [K(Z,Z)]n,n′ = k(z(n), z(n
′
)), for 1 ≤ n, n

′ ≤ N , and k(·, ·) is the covariance func-

tion. The marginal likelihood can be used for learning hyper-parameters of a covariance

function by gradient-based optimisation (Rasmussen & Williams 2006). For example,

maximising the marginal likelihood over σ2
y gives a Bayesian estimate of the variance of

the error terms.

Considering GP as a distribution over functions, one can specify a GP prior over

the regression function to express our beliefs about the function before accessing the

observations. The GP prior specifies the distribution of f as:

p(f) = N (0,K(Z,Z)). (2.6)

By Bayes’ rule, the posterior distribution of a regression function can be represented as

the product of the likelihood and the GP prior divided by the normalizing constant (the

marginal likelihood) for the Gaussian likelihood case. One can further derive its algebraic

form as a Gaussian probability density:

p(f |y,Z) = N (mean(fpost), cov(fpost)), (2.7)

where

mean(fpost) = [K(Z,Z)−1 + σ−2
y IN ]−1[K(Z,Z)−10 + σ−2

y IN · y], (2.8)

cov(fpost) = [K(Z,Z)−1 + σ−2
y IN ]−1. (2.9)
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The mean and covariance matrix of the above posterior distribution can be derived by

using the multiplication formula (A.5) of Gaussian distributions. It is noted that the

posterior mean of f is a weighted average of the prior mean 0 and the data y; the posterior

inverse covariance matrix is the sum of the inverted covariance matrices in the prior and

likelihood.

Let the subscript ∗ be the index of an unseen data point, such as data points in a test set

whose function values we would like to predict. The predictive distribution can be derived

by using Gaussian identities relating marginal and conditional distribution (A.6). More

specifically, if a function vector f∗ at the test-input set Z∗ is a priori normally distributed

with mean 0 and covariance matrix K(Z∗,Z∗), then the predictive distribution is

f∗|y,Z,Z∗ ∼ N ( mean(f∗), cov(f∗)), (2.10)

where

mean(f∗) = K(Z∗,Z)[K(Z,Z) + σ2
yIN ]−1y, (2.11)

cov(f∗) = K(Z∗,Z∗)−K(Z∗,Z)[K(Z,Z) + σ2
yIN ]−1K(Z,Z∗). (2.12)

Figure 2.3 shows an example of drawing samples from a prior distribution and samples

from a posterior distribution. The grey area is the 95% confidence region for the prior and

posterior. The region is based on the mean and the variance of a predictive distribution

at test inputs equally located between -5 and 5.

2.3 Sparse Approximations for GP regression

It is common that computational issues arise where using a GP model to calculate the mean

and the covariance of the posterior distribution for a large dataset. Based on equations

(2.8) and (2.9), the involved matrix inversion inevitably dominates computational cost

because of a practically intractable scaling, O(N3). To address this issue, researchers have

proposed several methods.

The Subset of Data (SD) method (Quinonero-Candela & Rasmussen 2005) is certainly

the most naive approximation method one can consider. The main idea is described in

the name. The associated inference, such as parameter estimation and prediction, is the

same as that using full dataset. Total cost is therefore reduced to O(M3), where M is

the size of a subset selected. Despite an easy implementation, it may be prone to poor
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(a) Prior

(b) Posterior

Figure 2.3: Panel (a) shows three functions randomly drawn from a GP prior; Panel (b)

shows three functions randomly drawn from the posterior distribution after adding 10

data points (denoted by +). The grey area is the 95% confidence region for the prior and

posterior. The region is based on the mean and the variance of a predictive distribution

at test inputs equally located between -5 and 5.
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predictive performance because of lack of considering the links between the selected set

and the corresponding function values. Some methods explained later could mitigate the

issue.

There are common features on several approximate methods. For simplicity, we fol-

low the unifying framework of (Quinonero-Candela & Rasmussen 2005) to describe the

methods below.

Let f and f∗ are latent function values on training and test inputs (Z and Z∗, each

with cardinal numbers of N and S respectively), and both are given a GP prior (2.6).

Then their joint prior is

p(f , f∗) = N

0,

 KNN KSN

KNS KSS

 , (2.13)

where K|A||B| denotes the covariance matrix with entries evaluated at a pair of the sets A

and B.

The main idea of different algorithms is simply to introduce another set of latent

variables f̄ with size M (M < N), and then modify the joint prior of f and f∗ through f̄

by some assumptions.

By the marginalization property of GP, we know

p(f , f∗) =

∫
p(f , f∗, f̄)df̄ =

∫
p(f , f∗|f̄)p(f̄)df̄ , (2.14)

where f̄ ∼ N (0,KMM ), KMM = K(Z̄, Z̄) and Z̄ is the set of inputs specifying f̄ . Under

the assumption that f and f∗ are conditionally independent given f̄ , then the approximate

joint prior is

p(f , f∗) ' p̃(f , f∗) =

∫
p̃(f |f̄)p̃(f∗|f̄)p(f̄)df̄ . (2.15)

The approximate conditional distributions p̃(f |f̄) and p̃(f∗|f̄) are the source of difference

in various methods. One should notice that if there is no additional assumption on those

conditionals, then the exact conditionals are simply predictive distributions of f and f∗

given f̄ with means and covariance matrices derived by equations (2.11) and (2.12),

p(f |f̄) = N (KNMK−1
MM f̄ , KNN −QNN ), (2.16)

p(f∗|f̄) = N (KSMK−1
MM f̄ , KSS −QSS), (2.17)

where

QNN = KNMK−1
MMKMN , (2.18)
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QSS is defined in the same way.

The Subset of Regressors (SoR) approximate method (Smola & Bartlett 2001, Quinonero-

Candela & Rasmussen 2005), or Deterministic Inducing Conditional (DIC), uses a deter-

ministic way to approximate the conditionals. As is shown in the following equations, the

approximate conditionals without any noise is simply determined by the mean of the exact

predictive distributions given in (2.16) and (2.17).

p̃SoR(f |f̄) = N (KNMK−1
MM f̄ ,0), (2.19)

p̃SoR(f∗|f̄) = N (KSMK−1
MM f̄ ,0). (2.20)

The resulting approximate joint prior of f and f∗ can be derived by integrating out f̄ as

did in (2.15):

p̃SoR(f , f∗) = N

0,

 QNN QNS

QSN QSS

 . (2.21)

The Deterministic Training Conditional (DTC) method (Quinonero-Candela & Rasmussen

2005) has the approximate conditionals similar to those of SoR approximation, they are:

p̃DTC(f |f̄) = N (KNMK−1
MM f̄ ,0), (2.22)

p̃DTC(f∗|f̄) = p(f∗|f̄). (2.23)

Note that the approximation of f |f̄ is exactly the same as that in SoR method and this

inspires the descriptive name. The mean can be regarded as projection of f from RN to f̄ on

RM , this consideration leads to the alternative names of the DTC approximation, namely

Projected Latent Variables (PLV) (Snelson & Ghahramani 2006a). The approximation of

f∗|f̄ , on the other hand, has the exact form of f∗|f̄ in equation (2.17). It improves flexibility

(of function) when one undertakes posterior predictive task.

The associated joint prior of f and f∗ is:

p̃DTC(f , f∗) = N

0,

 QNN QNS

QSN KSS

 . (2.24)

The Sparse Gaussian process (SPGP) is an outperforming approach on approximative

GP models. Proposed by Snelson and Ghahramani (2006a), it is a more sophisticated

likelihood approximation based on a conditional independence assumption given a set of

latent variable f̄ . Their work can be equivalently represented in the unifying framework of
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Quinonero-Candela and Rasmussen (2005) with the name of Fully Independent Training

Conditional (FITC):

p̃FITC(f |f̄) =
N∏
n=1

p(f (n)|f̄) (2.25)

= N (KNMK−1
MM f̄ , diag[KNN −QNN ]) (2.26)

p̃FITC(f∗|f̄) = p(f∗|f̄). (2.27)

The approximate joint prior of f and f∗ is:

p̃FITC(f , f∗) = N

0,

 QNN − diag[QNN −KNN ] QNS

QSN KSS

 , (2.28)

where diag[·] is a linear operator to transform an input matrix into the corresponding di-

agonal matrix. From equations (2.24) and (2.28), one can recognize the difference between

DTC and FITC is the top left block matrix. The replacement of the diagonal elements

reveals the prior variance of latent function values f at training inputs is as the same as

auto-covariances of KNN .

If a partial independence assumption is imposed on the training conditional f |f̄ 4,

then the Partial Independent Training Conditional (PITC) approximation can be achieved

merely via replacing the diagonal operator by the block diagonal one. More details can

be found in (Quinonero-Candela & Rasmussen 2005, Snelson & Ghahramani 2007).

The aforementioned methods can be categorized as likelihood approximations because

they achieve computational merits by approximating conditional likelihood through a

small number of inducing variables. In fact, one could consider the approximations in

another viewpoint of matrix approximation. From the Mercer theorem (Rasmussen &

Williams 2006), any non-degenerate covariance function (e.g. SE covariance function)

can be represented in terms of infinite non-negative eigenvalues and the associated eigen-

functions. If one selects M pivot eigenvalues and the eigenfunctions to constitute a new

covariance function, the resulting covariance matrix could achieve reduced low rank ap-

proximation to the exact matrix, that is

KNN ≈ B1B
T
1 , (2.29)

where B1 is an N ×M matrix. In practice it is very difficult to acquire an analytic closed-

form of the eigen-decomposition. However, using a set of latent function values f̄ called

4Here“partial” means in full independence assumption only within a disjoint set of training inputs.
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inducing variables could achieve the goal,

KNN ≈ KNMK−1
MMKMN = QNN , (2.30)

where KNM is a matrix whose elements are evaluated at a pair of training set and inducing

inputs. Note that the approximate joint prior involves inducing variables f̄ can also achieve

reduction of time complexity from O(N3) to O(NM2) when one calculates the matrix

inversion involving KNN by the formula (A.1).

Selecting the inducing-input set Z̄ can be crucial for the approximation quality of

sparse models. Traditionally, researchers can choose a subset from training set based on

various methods. A subset could be made up of inputs within each cluster separated by

using a classic K-mean method, or by using support vector machine (Cortes & Vapnik

1995) to choose inputs near the desired optimal separating hyperplane. Greedy posterior

maximisation (Smola & Bartlett 2001) adopts a greedy forward selection scheme to find

a subset that achieves the minimum of a quadratic objective function over transformed

latent function values, where the function is related to the posterior distribution of those

latent values. Seeger et al. (2003) also adopt a greedy forward selection method based on

information gain that alternatively updates inducing inputs and hyper-parameters in two

iterative steps. These sophisticated methods may be worthy of using in some applications.

Here at starting stage for exploring our modelling methodology, we intend to adopt a

scheme based on random selection and greedy selection of inputs.

In particular, if spatial features characterise inputs, one can select or design a set of

knots in spatial space, as inducing inputs, in a regular or irregular way. For instance, one

can set a uniform grid or different sizes of square grid on diverse areas. How to choose or

design the knots in this case is not our focus and beyond our theme scope, one can refer

more details in (Xia et al. 2006, Banerjee et al. 2008).

Another simple scheme one can use is the block Metropolis-Hastings method (Press

2003, Gilks et al. 1995). It simultaneously updates an inducing input (or pseudo input)

and the associated inducing variable (or pseudo function variable) once a run. As this can

be incorporated into a fully Bayesian framework, we will further describe and comment

the sampling procedure in the Chapter 4.

In addition, Snelson and Ghahramani (2006a) consider inducing inputs as free esti-

mated parameters of marginal likelihood. This thereby motivates them to find the loca-

tion by simply using continuous optimisation. Instead of optimising marginal likelihood,
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Titsias et al. (2010) optimise total variance of the conditional distribution of f given in-

ducing variables f̄ (they call control variables) for the selection of the associated input set

Z̄. However, the computation loads could much increase on optimisation over extended

parameter space due to more number of inducing inputs. For a computational reason, this

optimisation scheme for the location of inputs would be not practised in our work.

2.4 Multiple Output Prediction Methods of GPR

Supervised learning on each output independently under GP framework is a naive ap-

proach for multi-output prediction tasks. Despite the simplicity of model formulation,

this scheme likely underperforms in a scenario, for example, mentioned in Section 1.1. To

boost predictability, one can construct covariance functions to capture information shared

between multiple outputs. Several methods based on this idea have been proposed.

Linear models of coregionalization (LMC) (Goovaerts 1997), developed in the geosta-

tistical community, models each of multiple output functions as a linear combination of

independent random functions within a spatial domain. The observations of each output

are simply noisy realizations of the output function at a specific location z.

For convenience, we temporarily omit the noisy observed outputs and their error terms

for the following explanations. Let fr(z), 1 ≤ r ≤ R, be multiple output functions

and νq(z), 1 ≤ q ≤ Q, be independent random functions. The LMC framework can be

expressed as:

fr(z) =

Q∑
q=1

ωrqνq(z), (2.31)

where z lies in L-dimension input space, and ωrq are the linear coefficients (or weights).

If νq(z) follows as a GP (that is, νq(z) ∼ GP(0, kq(z, z
′
))) and is independent of

νq′ (z) for q 6= q
′
, by the proposition about product of covariance functions (Rasmussen &

Williams 2006), one can derive that fr(z) is distributed as another GP. More specifically,

the covariance functions of νq(z) can be written as

cov(νq(z), νq′ (z
′
)) = δqq′kq(z, z

′
), (2.32)

where δqq′ denotes the Kronector delta function. Then the covariance of fr(z) is

cov(fr(z), fr′ (z
′
)) =

Q∑
q=1

ωrqωr′qkq(z, z
′
), (2.33)
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Equation (2.31) can be written in a more general way so that each output enables to

be expressed as a linear combination of groups of νq(z), and each group shares the same

covariance function:

fr(z) =

Q∑
q=1

Sq∑
j=1

ωjrqν
j
q (z), (2.34)

then the covariance function of fr(z) is therefore

cov(fr(z), fr′ (z
′
)) =

Q∑
q=1

Sq∑
j=1

ωjrqω
j

r
′
q
kq(z, z

′
). (2.35)

Given a set of inputs Z with size N , fr = (fr(z
(1)), . . . , fr(z

(N))) denotes the r-th output

vector evaluated at Z, and then the covariance of fr and fr′ is

cov(fr, fr′ ) =

Q∑
q=1

Sq∑
j=1

ωjrqω
j

r′q
Kq;N , (2.36)

where [Kq;N ]i,j is the covariance evaluated at a pair of inputs z(i) and z(j) through kq(·, ·).

The covariance matrix for a joint output vector f = (fT1 , . . . , f
T
R)T can be written

Kff =

Q∑
q=1

ΩqΩ
T
q ⊗Kq;N (2.37)

Ωq is a R × Sq matrix consisting of all linear coefficients ωjrq. From equation (2.37), we

can interpret the covariance matrix captures two sources of information: one from the de-

pendence between output functions, represented by ΩqΩ
T
q ; the other from the dependence

between all inputs, given by Kq;N .

The semiparametric latent factor model (SLFM) (Teh et al. 2005), can be regarded

as a simplified LMC. Firstly, Sq = 1; this means that individual latent factor functions

νq(z) (νq(z) ∼ GP(0, kq(z, z
′
))) linearly mix into each output function fr(z) as shown in

Equation (2.31). Secondly, R < Q; it implies all R output functions linearly represented

by a small number Q of latent functions. This scheme follows the spirit of FA and serves

as a dimension-reduction technique.

The covariance matrix of SLFM for the joint output function vector f can be written

as

Kff =

Q∑
q=1

ωqω
T
q ⊗Kq;N =

Q∑
q=1

(ωq ⊗ IN )Kq;N (ωT
q ⊗ IN ) (2.38)

where ωq is a column vector with R entries. The second equality is obtained by the

properties of Kronecker product.
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Multi-task Gaussian Process (MGP) (Bonilla et al. 2008) for multi-task learning is

another variant of the LMC framework. The main idea is that each output function is a

linear combination of one group of latent functions (drawn from a GP). Moreover, their

covariance function is written as a product of two scalars. One features a free estimated

covariance of output functions for a pair of tasks, and the other the correlation of latent

functions evaluated at a pair of inputs. In the context of the LMC, for Q = 1, the term∑S1
j=1 ω

j
r1ω

j

r′1
in equation (2.35) is factorized by two terms cr,r′ and b1. Then the covariance

matrix for the joint output function vector f is

Kff = C⊗ (b1K1;N ), (2.39)

where C is R×R matrix with elements cr,r′ .

Besides constructing a covariance function for multiple output functions based on the

mechanism of linearly mixing latent functions, utilization of convolution processes has

been undertaken by several researchers (Boyle & Frean 2004, Higdon 2002, Álvarez et al.

2011, Álvarez & Lawrence 2009). The idea involves that each output function is expressed

through a convolution integral between a smoothing kernel and a latent function. Like

equation (2.34), one can generally express each output function as

fr(z) =

Q∑
q=1

Sq∑
j=1

∫
Gjrq(z− z

′
)νjq (z)dz

′
. (2.40)

In addition, if the convolving kernels Gjrq(z− z
′
) are the products of wjrq and Dirac delta

functions δz(z
′
), the LMC framework is derived. The convolved modelling framework

related to multiple outputs can therefore be regarded as a general version of the LMC and

thereby proposes more general mixing fashion. Because our framework is related to FA, we

thus do not use the above scheme to pursue solving multiple output prediction problems.

More details, such as computationally efficient methods and approaches to address an

issue caused by non-smooth latent functions, can be found in (Álvarez et al. 2011, Álvarez

& Lawrence 2009).

Incidentally, the computational issue of the multiple-output prediction methods above

could be generally mitigated by using the concept of sparse approximation approaches

mentioned in section 2.3; that is, the utilization of a limited number of inputs and the

associated latent functions 5.
5MGP in Bonllina et al. (2008) also adopts probabilistic PCA to approximate the linear combination

matrix linking original GP functions to output functions.
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2.5 Remarks

To sum up, PCA, FA and SEM not only can serve as a dimension-reduction technique

with metric latent variables, but also can work for exploring a dominant data pattern in

a low-dimension space constructing by latent variables. Despite the similarity, PCA is

commonly regarded as extracting information from data summarisation through a linear

transformation although in particular, probabilistic PCA can be viewed as a model-based

method. FA, however, is considered as exploring inverse-regression relationship between

latent variables and manifest variables through fitting a probabilistic model. FA and SEM

could be viewed as a model inferring whether a hypothesis (casual relationship between

latent variables and manifest variables and among latent variables) is reasonable.

A GP regression model gives one more flexibility to model functional relations between

observed covariates and outputs for a supervised learning task. Given a Gaussian prior on

function values, one can realize the most possible regression function fitting data points a

posteriori. The characteristic of a regression function generated by a GP is governed by

the covariance function and its hyper-parameters. This implies using a certain covariance

function could perhaps achieve a better predictive performance.

A computational issue of a GP regression model for large dataset can be alleviated

by several approximation methods. Their common idea is to introduce the conditional

independence assumption, through inducing variables (a finite number set of latent func-

tion values), on the joint GP prior of latent function values at training and test inputs.

The selection of inducing inputs, which generates inducing variables, can rely on some

schemes, such as choosing randomly from training inputs, optimizing marginal likelihood

over inducing inputs as free parameters.

Beside adopting an independent scheme, several prediction methods for a multiple-

output GP model intend to capture relation between all outputs. To achieve that, one can

construct a covariance function for each of multiple output functions by linearly mixing

latent functions given GP priors.
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Framework of GP-SEM

This chapter aims to provide a new modelling framework, building on some works pre-

sented in the last chapter. The model structure is furthermore treated with different

estimation methods in the subsequent chapters.

In Section 3.1, we describe the data structure suitable for our modelling framework

and then specify the modelling formulation. We then specify its sparse version. In Section

3.2, we briefly examine the model identification in a simple example. Finally, we conclude

with a general remark about the model structure.

3.1 Model Specification

3.1.1 Data Structure for Modelling Availability

The dataset (consisting of N data points) feasible to our modelling framework is of

multiple-dimensional and each dimension represents a random variable of interest in an

observational or experimental study. A subset of dimensions can be regarded as covariates

that are assumed to indirectly or directly affect the rest of dimensions as responses or

indicators. Furthermore, under our consideration those covariates can be metrical (con-

tinuous, discrete) or categorical (ordinal or nominal)1 and responses can be metrical here.

The responses or indicators are assumed to measure a certain latent characteristics re-

garded as metrical random variables. Take a simple example in an educational study that

1In this case, we adopt the treatment in Bonilla et al. (2008) to create dummy variables for the categor-

ical features. For example, a covariate for four ethnic groups can be replaced by dummy variables“1000”,

“0100”, “0010” and “0001”. Note that it is unnecessary to create dummy variables for a binary covariate.
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we may treat a student’s age, family income, gender and grade as covariates and their

mathematics, physics, history and literature examination scores as responses or indicators

to measure their latent IQ scores.

From the above description, the n-th data point (1 ≤ n ≤ N) has a covariate-response

pair denoted by (z(n),y(n)). Each L × 1 covariate vector z(n) records the L realizations

of the characteristics of the n-th case2. Each R × 1 response vector y(n) registers the

measured values or the response outcomes of the n-th case to measure the n-th case’s Q

latent characteristics of interest, which denotes a x
(n)
q , for 1 ≤ q ≤ Q.

3.1.2 Full Gaussian Process Structure Equation Modelling

The first part of the model framework can be regarded as a black box for the relationship

between a covariate vector z(n) and a latent variable x
(n)
q . In other words, x

(n)
q can be

viewed as a noisy outcome of an input z(n) through a non-parametric function fq(·). Let

f
(n)
q be a function value evaluated at z(n), that is, fq(z

(n)), and Σx be a Q × Q noise

covariance matrix of ε
(n)
x = [ε

(n)
x1 , . . . , ε

(n)
xQ ]T, then the GP model formulation is

x(n)
q = f (n)

q + ε(n)
xq , (3.1)

ε(n)
x ∼ N (0,Σx), (3.2)

where N (m,C) is the multivariate Gaussian distribution with a mean vector m and co-

variance matrix C. The function value f
(n)
q and ε

(n)
xq , and the noise vectors ε

(1)
x , . . . , ε

(N)
x

are assumed to be mutually independent, respectively. It is noted that Σx is also the condi-

tional covariance matrix of the n-th latent variable vector consisting of all latent variables,

denoted x(n) = [x
(n)
1 , . . . , x

(n)
Q ]T, given all corresponding function values f

(n)
1 , . . . , f

(n)
Q . In

addition, a GP prior for function fq(·) is

fq|z1:N ∼ N (0,Kq;N ), (3.3)

where fq = [f
(1)
q , . . . , f

(N)
q ]T is a function value vector, a covariate set z1:N ≡ {z(1), . . . , z(N)},

and Kq;N is a N ×N covariance matrix, determined by z1:N and the q-th covariance func-

tion kq(·, ·).

The measurement model, the second part of the model structure, is to describe the

distribution of the n-th case’s noisy observation vector y(n) given its latent variable vector

2We may alternatively use a word case or subject for data point.
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x(n). Let Σy be a R×R noise covariance matrix of ε
(n)
y = [ε

(n)
y1 , . . . , ε

(n)
yR ]T, we have

y(n) = λ0 + Λx(n) + ε(n)
y , (3.4)

ε(n)
y ∼ N (0,Σy). (3.5)

Here the error terms ε
(n)
y1 , . . . , ε

(n)
yR can be assumed to be mutually independent (it im-

plies Σy is a diagonal matrix) and to be independent of all latent variables x
(n)
1 , . . . , x

(n)
Q .

Furthermore, a R × 1 intercept vector λ0 and a R × Q factor loading matrix Λ can be

interpreted in the same way as coefficients of a linear regression.

The model structure represented in Equations (3.1)-(3.5) is a GP latent variable model.

Because it is of pure GP formulation (without others auxiliary variables), we add a full

before the model name to indicate this characteristic. Furthermore, the GP formulation

part can be viewed as a non-parametric structure model and we therefore refer to as full

Gaussian Process Structure Equation Modelling (full GP-SEM).

The above GP-SEM has multilevel structure. The first level is for the multiple ob-

served responses. The second level is for the general latent characteristics of interest of a

case. These two levels follow a factor analysis framework to realize distributions of latent

variables for exploring a possible pattern in a low-dimensional space. The second level and

the covariates additionally follow a GP framework to enhance flexibility of direct-effect

mechanism of covariates on latent variables for an implicit causal functional relation and

a possible improvement of prediction on manifest responses.

The two-part formulation comprises a semi-parametric framework. In essence, this

GP-SEM can be viewed as a semi-parametric multiple indicators multiple causes (MIMIC)

model (a special SEM allowing covariates directly affect on latent or manifest variables)

although not modelling direct effect on manifest variables. If the GP-SEM is for longi-

tudinal analysis (that means the model with time scaling), it would be considered as a

semi-parametric version of several popular methods, such as Latent Curve Model with

Latent variable (Bollen 2006), multilevel SEM (Steele 2008). More details are presented

in Chapter 6.

It is noted that the full GP-SEM might be non-identifiable and this can lead to some

problems. For classical frequentist inference, failure of being an identifiable model leads

a theoretic issue because of inconsistent parameter estimation – estimates starting at

different initial points do not converge to the same value. For Bayesian inference, a
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non-identifiable model can have more computational issues because it might lead to poor

mixing in MCMC simulations (Silva & Gramacy 2010). In practice, one can solve the issue

by adding constraints on model coefficients and distributional assumptions on variables.

For example, commonly a factor loading corresponding to an indicator can be set to one,

or variances of noise terms can be set to be unity. Adding constraints can make a model

globally or locally identifiable.3

However, sometimes to add what constraints could be another problem. To check

model identification condition may give one an insight to solve. One could examine

whether each free parameter is represented by a function of the moments of observed

variables (such as means, covariances) and other fixed parameters, under the model struc-

ture and distributional information on variables. For full GP-SEM or its sparse version

presented later, we demonstrate the algebraic check given the constraints in the Section

3-2.

Figure 3.1 shows a graphical representation of the model structure with two latent

variables and four manifest variables as an illustrative example 4. From the figure one

can realize the information propagation between latent variables x1 and of x2 possibly is

achieved through the linked noise terms εx1 and εx2 . If the cross-covariances of noise terms

are free parameters, the correlations of indicators belonging to disjoint sets (each of which

measure different latent variables) could perhaps be captured. It may enhance predictive

performance on a certain indicator after being given the rest.

3.1.3 Sparse Gaussian Process Structural Equation Modelling

The above full GP-SEM is simple and model parameters can also be estimated using

prevalent MCMC or EM methods. However, each estimation step, in practice, takes much

computational costs. This is because calculating the covariance matrix of the posterior

distribution of latent variables involves matrix inversion. It leads very low executive speed

when N is simply in hundreds. To address this issue, we introduce an alternative model

framework with a multilayered structure, adapted from the pseudo-input model – Sparse

Gaussian Process (SPGP) Model (Snelson & Ghahramani 2006a) or Full Independent

Training Condition (FITC) model (Quinonero-Candela & Rasmussen 2005). This model

3Being globally identifiable means that a model is identifiable for all the points in parameter space;

being locally identifiable only for a certain neighbourhood of a point.
4The graphical representation mixes a path diagram commonly adopted in the context of SEM.
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Figure 3.1: An illustrative full GP-SEM with 2 latent variable and 4 manifest variables
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allows one to reduce the total computational cost from O(N3Q3) down to O(M2NQ2),

where M < N and M can be chosen according to the available computational resources.

We explain the cost reduction in the next chapter.

For each q, define a pseudo-input set (or inducing-input set) z̄1:M
q ≡ {z̄(1)

q , . . . , z̄
(M)
q },

and each z̄
(m)
q , 1 ≤ m ≤M , has the same dimension as z(n). Moreover, we define a pseudo

latent function value vector f̄q = [̄f
(1)
q , . . . , f̄

(M)
q ]T, and then the pseudo-inputs model is

fq |̄fq, z1:N , z̄1:M
q ∼ N (Kq;NMK−1

q;M f̄q,Vq), (3.6)

f̄q|z̄1:M
q ∼ N (0,Kq;M ), (3.7)

where Kq;NM is a N ×M matrix with [Kq;NM ]n,m = kq(z
(n), z̄

(m)
q ) and Kq;M is a M ×M

matrix with [Kq;M ]m,m′ = kq(z̄
(m)
q , z̄

(m
′
)

q ). Let kq;nM be the n-th row of Kq;NM , then Vq

is a N ×N diagonal matrix with entries [Vq]n,n = kq(z
(n), z(n))− kq;nMK−1

q;MkT
q;nM . This

implies all the components f
(1)
q , . . . , f

(N)
q of the q-th latent function value vector fq are

conditionally independent. One can find Equations (3.6) and (2.26) are almost the same

but the multiple indices q and different covariance matrix notation5.

Note that the pseudo data set, including the pseudo-inputs set z̄1:M
q and pseudo func-

tion values z̄
(m)
q , 1 ≤ m ≤ M , works as another training set. If M = N and z̄1:M

q = z1:N ,

then Equation (3.6) would become the original predictive distribution as Equations (2.10)-

(2.12).

Equations (3.1)-(3.7) comprise another kind of GP-SEM for dealing with a compu-

tational issue, we refer it to as Sparse Gaussian Process Structure Equation Modelling

(Sparse GP-SEM). Figure 3.2 shows the model structure under the same scenario as Fig-

ure 3.1, one can find the differences are the additions of pseudo inputs and pseudo function

values.

GP-SEM here is also close to the modelling framework proposed by (Silva & Gramacy

2010), named as Gaussian Process Structural Equation Modelling with Latent variables

(GPSEM-LV). Their work focuses on the model structure between latent variables but ours

aim to model relations between observed covariates and latent variables. The distinction

can be alternatively viewed as whether to adopt latent covariates or observed covariates.

Both additionally consider utilising pseudo inputs to speed up computation.

In addition, there are differences between sparse GP-SEM and SLFM, the multi-output

5For convenience, we change the notation of the covariance matrix and use that in the following chapters.
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Figure 3.2: An illustrative sparse GP-SEM with 2 latent variable and 4 manifest variables
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GP model proposed by Teh et al. (2005). First, although both exploit a factor-analysis

linear formulation (served dimension reduction), that configuration is installed in different

parts of the models. For (full or sparse) GP-SEM, the latent variables of the measurement

model connect the observed variables in the linearly mixing way. For the SLFM, the latent

variables are represented as a linear combination of the GP latent functions. Secondly,

the SLFM does not involve latent errors εx1 , · · · , εxQ in the GP regression formulation. It

suggests that each of the latent variables is not an error-in-variable in the regression of the

corresponding observed variable. However, our full or sparse GP-SEM incorporates inter-

correlated latent errors. Thirdly, regarding computation, the SLFM uses a sophisticated

technique involving greedy forward selection of inputs and outputs. For sparse GP-SEM,

pseudo inputs are adopted but selected from the original input set through a MCMC

sampling scheme, a random or greedy scheme, as discussed in Chapter 4.

An alternative expression of sparse GP-SEM can be formed by substituting f
(n)
q in

(3.1) with (3.6). It thus consists of Equations (3.2), (3.4),(3.5), (3.7) and the following

new equation:

x(n)
q = kq;nMK−1

q;M f̄q + ε(n)
xq + ε

(n)

f̄q
, (3.8)

where ε
(n)

f̄q
is a Gaussian distribution with mean 0 and variance [Vq]n,n.

Figure 3.3 shows the alternative sparse GP-SEM under the same setting as Figure

3.2. One can observe all the latent function values f
(n)
1 and f

(n)
2 are removed and all the

involved straight lines are changed to point towards latent variables x
(n)
1 and x

(n)
2 .

This alternative expression could be useful when one uses modelling estimation with

MCMC methods. The reason is that high coupling correlation between latent variables x

and latent function values f may lead poor sampling mixing. Therefore, integrating out

latent function values f from the joint distribution of the original sparse GP-SEM can

perhaps mitigate the issue for sampling latent variables. However, one still needs to use

the original sparse GP-SEM for f and the error covariance matrix Σx. More sampling

details will be presented in the next chapter.

3.2 Examination of Identification Condition

Given model formulations and constraints on parameters, we attempt to examine whether

the model identifiability is necessarily achieved by those known parameters and assump-
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tions. In other words, the goal is to search the existence of algebraic functional forms

between known and unknown parameters. The necessity to examine model identifiability

is because the lack may lead inefficient or inconsistent estimation for parameters.

Since the auxiliary pseudo inputs and pseudo latent functions work for computation

and are irrelevant to the identification of GP latent function values, we only consider full

GP-SEM here. Without specifying the data point, the model structure can be expressed

as follows:

x = f(z) + εx (3.9)

y = Λx + λ0 + εy, (3.10)

where f(z) = (f1(z), . . . , fQ(z)) is a vector-valued functional between a covariate vector z

and latent variables x = (x1, . . . , xQ). The remaining variables have the same denotations

with Equations (3.1)-(3.5).

With the assumption of mutual independence between all measurement errors (given

Equation (3.5)), we additionally make the constraints on the intercepts of the anchor

variables 6, and variances of εx. Hence, these constrained parameters are known and the

rest are classified as unknown parameters.

Here we take a simple example for demonstrating the model identifiability, where Q,

the number of latent variables, is 2; and each latent variable has 3 indicators. With the

1st and 4th being anchor variables of the two latent variable, the unknown parameters

are two functional values f1(z) and f2(z), all loadings λ11, λ21, λ31, λ42, λ52, λ62, intercept

terms on non-anchor variables λ02, λ03, λ05, λ06, measurement error variances σ2
y1 , . . . , σ

2
y6

and conditional covariances of latent variables σ2
x1 , σ

2
x2 , σx12 ; the known parameters are

intercept terms on anchor variables λ01, λ04, set to be 0, and conditional auto-covariances

σ2
x1 , σ

2
x2 , set to 1.

6An anchor variable is a variable whose path coefficient (or loading) with latent variables is 1. To select

an anchor variable could depend on whether the corresponding latent variable shares the same measurement

unit as an item of interest does, or on the biggest amplitude among all loadings through exploratory factor

analysis. The anchor variables we used are different from convention to some degrees. In addition, we use

a quick-and-dirty method to select an anchor variable for different latent variable models. For each latent

variable, look at its observed children and pick the one with the highest coefficient of determination R2

with respect to covariates. If this child is assigned to some other latent variables, try the next best child

and so on.
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Under the aforementioned model structure, assumptions and constraints, we can derive

the following equations about the first and second moments of conditional distribution of

observed variables given covariates (referred to as reduced-form distribution):

E(y1|z) = λ11f1(z), E(y4|z) = λ42f2(z),

E(y2|z) = λ21f1(z) + λ02, E(y5|z) = λ52f2(z) + λ05,

E(y3|z) = λ31f1(z) + λ03, E(y6|z) = λ62f2(z) + λ06,

and

V ar(y1|z) = λ2
11 + σ2

y1 , V ar(y4|z) = λ2
42 + σ2

y4 ,

V ar(y2|z) = λ2
21 + σ2

y2 , V ar(y5|z) = λ2
52 + σ2

y5 ,

V ar(y3|z) = λ2
31 + σ2

y3 , V ar(y6|z) = λ2
62 + σ2

y6 .

The cross-covariances are

Cov(y1, y2|z) = λ11λ21, Cov(y4, y5|z) = λ42λ52,

Cov(y1, y3|z) = λ11λ31, Cov(y4, y6|z) = λ42λ62,

Cov(y2, y3|z) = λ21λ31, Cov(y5, y6|z) = λ52λ62,

Cov(y1, y4|z) = λ11λ42σx12 , Cov(y2, y4|z) = λ21λ42σx12 ,

Cov(y1, y5|z) = λ11λ52σx12 , Cov(y2, y5|z) = λ21λ52σx12 ,

Cov(y1, y6|z) = λ11λ62σx12 , Cov(y2, y6|z) = λ21λ62σx12 ,

Cov(y3, y4|z) = λ31λ42σx12 , Cov(y3, y5|z) = λ31λ52σx12 ,

Cov(y3, y6|z) = λ31λ62σx12 .

Through algebraic manipulations, the mathematical formulae of λ11 and λ42 are

λ11 = ±

√
Cov(y1, y2|z)Cov(y1, y3|z)

Cov(y2, y3|z)
, λ42 = ±

√
Cov(y4, y5|z)Cov(y4, y6|z)

Cov(y5, y6|z)
, (3.11)

and thus λ11 and λ42 become known parameters. Based on the mathematical representa-

tion, it is sufficient to derive the functional relationship between the remaining unknown

parameters and the known. For example, the conditional cross-covariance of latent vari-

ables σx12 , a loading λ31, an intercept term λ03, a measurement error variance σ2
y4 and the
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function value f1 are

σx12 =
Cov(y1, y4|z)

λ11λ42
, λ31 =

Cov(y1, y3|z)

λ11
,

λ03 = E(y3|z)− λ31
E(y1|z)

λ11
, σ2

y4 = V ar(y4|z)− λ2
42,

f1(z) =
E(y1|z)

λ11
.

(3.12)

It is noted that because the sign of λ11 can be different, thereby it would affect the

signs of the associated loadings. This scenario happens in λ42 and the rest loadings as well.

Moreover, the sign differences of λ11 and λ42 can alter that of conditional cross-covariance

of latent variables σx12 . The possible sign difference is not an issue because signs can

always be changed the same as the associated parameters and variables. The parameters

having two true values with opposite signs could efficiently converge to one of them if the

initial values merely lie in the neighbourhood of the closest true value.

Instead of imposing constrains on conditional auto-covariance of latent variables σ2
x1

and σ2
x2 , one can also use another option of constrains on the loadings (λ11 and λ42) of

the anchors variables. This does not lead to the situation of two possible estimated values

due to sign difference as before. It implies the resulting model structure becomes global

identifiable theoretically.

The assumption of independence among all measurement errors can be relaxed too.

Here we only take an example for possible relaxations. It is to impose independence be-

tween the errors only on anchor variables, and among the errors corresponding to the same

latent variable. This still leaves identification condition satisfied. The algebraic relations

of the parameters (including factor loadings and intercepts, latent function, measurement

error variances and latent error covariance) is formularised as those in Equations (3.11)

and (3.12). The cross-covariances of the measurement errors corresponding different latent

variables is mathematically represented in terms of known parameters. For example,

Cov(εy1 , εy5) = Cov(y1, y5|z)− λ11λ52σx12 ,

Cov(εy2 , εy6) = Cov(y2, y6|z)− λ21λ62σx12 .
(3.13)

Another analytic examination of model identification is to check the rank of a Jacobian

matrix of all reduced-form parameters7 over unknown parameters. If the rank is equal to

7The reduced-form parameters of a reduced-form distribution can characterize itself, such as the first

and second moment.
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that of unknown parameters, full rank is achieved and thus this can lead to local identifi-

ability of model structure (Skrondal & Rabe-Hesketh 2004). In the previous example, the

size of associated Jacobian matrix is 27×19 (here 27 and 19 are the numbers of reduced-

form and unknown parameters, respectively) full rank can be derived through elementary

matrix multiplication. The derivation process is tedious, so we would not present it here.

3.3 Remarks

Gaussian process (GP) and factor analysis (FA) establish the proposed model structure.

The GP framework provides infinite possible classes of functional relationship between

covariates and latent variables. The FA model endows the feature to explore distributions

of latent variables given the multiple responses.

Through a finite number of pseudo (or inducing) inputs, the model framework re-

duces the computational cost from O(N3Q3) to O(NM2Q2). Under the assumption of

conditional independence of GP functions, individual GP models (latent variables are re-

gressed on covariates) share the same model structure as the SPGP model of Snelson and

Ghahramani (2006a).

The examination of model identification can be implemented by using algebraic op-

erations to check whether a functional relationship exists between unknown and known

parameters. Another approach to conduct identification check is to calculate the rank

of a Jacobian matrix of reduced-form parameters over unknown parameters. Full rank

indicates the existence of a one-one map relationship between reduced-form and unknown

parameters.
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Chapter 4

Computation

This chapter gives computational treatments for sparse GP-SEM, which are applied in

experiments afterwards. In Section 4.1, we briefly present a general idea of Monte Carlo

Markov Chain methods, and focus on Metropolis-Hastings and Gibbs techniques. In

Section 4.2, we provide the sampling scheme for Sparse GP-SEM. Section 4.3 presents

improved samplers with efficient computational technique for several parameters and vari-

ables. Section 4.4 shortly discusses the expectation maximisation (EM) algorithm and its

stochastic variants. Section 4.5 introduces inference function of margin (IFM) approach,

which enables to reduce computation further. Section 4.6 provides the hybrid algorithm

constituted by EM and IFM. Section 4.7 presents the associated predictive distribution

for inference. Section 4.8 proposes a greedy selection scheme for the pseudo-input set,

which aims to improve predictive performance. We remark the whole chapter in the final

section.

4.1 MCMC sampling methods

Monte Carlo Markov Chain (MCMC) methods are literally Monte Carlo integration tech-

niques (about numerical stochastic integration) using Markov Chains (a series of random

variables with Markov property1). The methods aim to solve two practical computing

problems - generating samples from a probability distribution of interest, and evaluating

1Denote time-indexed random variables ν[i], i = 1, 2, . . .; if they have the Markov property, then given

the present state ν[i], the conditional probability distribution of the future state ν[I+1] only depends upon

ν[I] and is independent of the past states ν[I], i = 1, . . . , I − 1.
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the expectation of function under the distribution.

The idea to solve the above problems is to construct a Markov chain satisfying some

conditions (aperiodic, positive recurrent and reversible) (Roberts 1995, Neal 1993). The

constructed chain can guarantee the conditional distribution of the present state (given the

initial state) eventually converges to the target distribution of interest after time transi-

tions. Thereby successive correlated samples can be obtained from the target distribution

beyond a certain time threshold, referred to as burn-in. The expectation of a function

can thus be estimated by averaging all the function values evaluated on the after-burn-in

samples. This estimator is so-called ergodic average and its approximation precision can

be improved by increasing the size of the samples.

Various MCMC methods originate from the framework of Metropolis et al. (1953) and

Hastings (1970), commonly referred to as the Metropolis-Hastings (MH) algorithm. Given

a draw ν[1] from the initial distribution, the next draw ν[2] is obtained through a proposal

distribution g(·|ν[1]), and by this way one can produce a consecutive chain {ν[1], ν[2], . . .}.

The proposed draw ν given ν[i] is a candidate point of ν[i+1]. It is possibly identical to ν[i]

if a uniform random number (between 0 and 1) is greater than the acceptance probability

(or acceptance ratio)

r(ν[i], ν) = min

(
1,

h(ν)g(ν[i]|ν)

h(ν[i])g(ν|ν[i])

)
, (4.1)

where h(·) is the target distribution or the distribution of interest. Note that in this case

the candidate ν is rejected.

This ratio (4.1) can derive the detailed balance condition

h(ν[i])T (ν[i+1]; ν[i]) = h(ν[i+1])T (ν[i]; ν[i+1]), (4.2)

here T (ν[i+1]; ν[i]) is the transition kernel proposing a probability from the state of ν[i] to

that of ν[i+1]. Equation (4.2) can derive that the target distribution h(·) is the stationary

distribution (or invariant distribution) of the Markov chain by integrating both sides with

respect to ν[i]

h(ν[i+1]) =

∫
h(ν[i])T (ν[i+1]; ν[i])dν[i]. (4.3)

It reveals to construct a transition kernel of a Markov chain holding detailed balance

condition (4.2) is what MCMC researchers desire (Gilks et al. 1995, Neal 1993).

52



CHAPTER 4. COMPUTATION

In multiple-dimension state space (dim(ν) > 1), the transition kernel is constructed

by combining several base transition kernels where each holds detailed balance condition

(Neal 1993).

A proposal distribution g(·|·) in principle can be any probability distribution. However

with close approximation to the target distribution, a proposal can enhance simulation

mixing. In practice, a simple probability density may be experimentally used by tuning

the involving parameters (Gilks et al. 1995). This may help one to realize the mixing

for constructing a posteriori and appropriate proposal. Metropolis et al. (1953) initially

considered a symmetric proposal having the form g(ν|ω) = g(ω|ν). For example, a

multivariate normal distribution with a given state ν as mean and a fixed covariance matrix

Σ can propose a new state ω to update the whole components of ν, or a simple normal

proposal can be used to update each component of ν. Then the acceptance probability

here is

r(ν,ω) = min

(
1,
h(ω)

h(ν)

)
. (4.4)

Hastings (1970) provides an insight of non-symmetric proposal distribution as generalisa-

tion of Metropolis algorithm. In this case, the probability evaluation of a candidate given

current state is necessary and the acceptance ratio is exactly the one in Equation (4.1).

The multiple block Metropolis-Hastings method (Press 2003) or single component

Metropolis-Hastings method (Gilks et al. 1995) is a generalized MH method. It is of-

ten used in high-dimension state space for tackling the difficulty of slow convergence to

target distribution. It is actually cyclically to implement the MH method for each block

through individual proposal distributions. And the updating block is drawn from the

proposal conditioned on the updated and the other blocks. More specifically, to gener-

ate a new state vector from ν [i] = (ν
[i]
1 ,ν

[i]
2 , . . . ,ν

[i]
J ) needs to update the J blocks in

order. For 1 ≤ j ≤ J , updating the j-th block MH method is implemented by the j-th

proposal distribution gj(ωj |ν [i]
j ,ν

[i]
\j), where ωj is a candidate of the j-th block ν

[i]
j and

ν
[i]
\j = (ν

[i+1]
1 , . . . ,ν

[i+1]
j−1 ,ν

[i]
j+1, . . . ,ν

[i]
J ) denotes the vector comprising all the updated and

the remaining blocks except the j-th one. Then the corresponding acceptance probability

is

r(ν
[i]
j ,ωj ;ν

[i]
\j) = min

1,
h(ωj |ν [i]

\j)gj(ν
[i]
j |ωj ,ν

[i]
\j)

h(ν
[i]
j |ν

[i]
\j)gj(ωj |ν

[i]
j ,ν

[i]
\j)

 , (4.5)
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where h(ν
[i]
j |ν

[i]
\j) is evaluated at ν [i] by the conditional density h(νj |ν\j) called the full con-

ditional distribution for νj under the target distribution h(ν). Because the full conditional

distribution h(νj |ν\j) is proportional to the joint distribution h(νj ,ν\j) by a normalising

constant2, the acceptance probability in (4.5) has the same expression as the target dis-

tribution. The use of full conditional densities not only avoids calculating normalising

constant but also affords specifying and deriving the target distribution (Gilks 1995).

Gibbs sampling (GS) algorithm (Press 2003, Gelman et al. 2004) is a special class of

multiple block MH methods. Because the full conditional distribution for νj is the corre-

sponding the j-th proposal, the acceptance probability in (4.5) becomes 1. This implies

the proposed candidates are never rejected. Due to convenient random sampling from

full conditional distributions, the GS approach is rather easily applied and has computing

efficiency. However, if the full conditional density is not in standard exponential fam-

ily, it may be inappropriate to use. In addition, it may be necessary to implement GS

along with techniques, such as parameter expansion (Gelman et al. 2005, Liu & Wu 1999),

reparametrisation (Gilks & Roberts 1995), to enhance mixing for sampling highly corre-

lated variables.

Besides the above approaches, dynamical sampling algorithms, including the Hybrid

Monte Carlo method (Neal 2010), propose a candidate point by a discretised dynamical

system. These sophisticated schemes avoid random walk behaviour and can have fast

convergence to the target distribution in some problems (see Neal (1993, 2000)).

4.2 Samplers

The Gibbs sampling (GS) and the Metropolis-Hastings (MH) schemes are used mixedly for

sampling variables and parameters of sparse GP-SEM3. To be specific, the MH method is

applied for sampling the hyper-parameters of the GP covariance functions, pseudo inputs

and pseudo functions. And the GS scheme for the remainder of model parameters (in-

cluding pseudo functions). For computational convenience, we adopt a typical conjugate

prior distribution for most of sampled variables. More details of the prior we use can be

2This normalising constant is formed by integrating out νj from the joint distribution. It is a function

of ν\j and ensures the integral value of the full conditional distribution over νj is 1.
3Here we only treat Sparse GP-SEM (given by Equations (3.1)-(3.7)) because full GP-SEM (defined by

Equations (3.1)-(3.5)) is its special case.
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found in the text and Appendix A.5.

The derivations of full conditional distributions are based on the model structure and

the distributional assumptions of sparse GP-SEM. Here we directly write the outcomes,

some of derivations are provided in Appendix A.3.

4.2.1 Sampling Hyper-parameters of Covariance Function, Pseudo In-

puts and Functions

Hyper-Parameters

For each q, we sample each component θh,qj of hyper-parameters θh,q of the GP covari-

ance function in turn from its non-canonical full conditional distribution. Once the new

value for the j-th component is accepted by the MH method, then the hyper-parameters

are updated for the next component.

Define a pseudo-function set f̄1:M
q ≡ {f̄ (1)

q , . . . , f̄
(M)
q }, a latent-variable set x1:N

q ≡

{x(1)
q , . . . , x

(N)
q }. We use a uniform proposal density over an interval [awθh,qj , (1/aw)θh,qj ]

with the pre-specified width parameter aw (0 < aw < 1) to control the moving step of

a candidate ν4. Then for the i-th sampling step the acceptance probability r(θ
[i]
h,qj , ν) is

given by

r(θ
[i]
h,qj , ν) = min

1,
hqj(ν)g(θ

[i]
h,qj |ν)

hqj(θ
[i]
h,qj)g(ν|θ[i]

h,qj)

 , (4.6)

where

hqj(θh,qj) = πq(θh,qj) · p(x1:N
q |z1:N , z̄1:M

q , f̄1:M
q ,θh,q) · p(f̄1:M

q |z̄1:M
q ,θh,q) (4.7)

is the full conditional of θh,qj integrating out latent functions f1:N
q . πq(θh,qj) denotes the

prior density5 for θiq; g(θh,qj |ν) is the proposal density of the current value θh,qj given a

new state ν. Based on the aforementioned specification, the proposal density is an uniform

distribution over [awν, (1/aw)ν].

4In practice, the proposed values of the GP hyper-parameters can be all positive or negtive. This is

because we use a logarithmic scale for computational convenience, and thereby the initial and successive

values are so.
5Here we adopt a mixture of a gamma(1,20) and a gamma(10, 10) with equal probability for each

density; the prior and the proposed distribution here are also used by Silva and Gramacy (2010) for

modelling non-parametric regression between latent variables.
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The calculation of the ratio r(θ
[i]
h,qj , ν) can be facilitated through simple manipulations.

First we use log-transformation, then sum all the terms (calculated from the individual

densities) and finally recover by adopting exponential transformation. In addition, the

factor p(x1:N
q |z1:N , z̄1:M

q , f̄1:M
q ,θh,q) is obtained based on the alternative form of sparse

GP-SEM6. And the determinant of the involved covariance matrix can be evaluated by

using the matrix identity (A.2).

Pseudo inputs and pseudo latent functions

We sample pseudo inputs z̄1:M
q and the associated pseudo functions f̄1:M

q jointly by the

multiple block MH method.

In brief, the sampling algorithm implements c sampling steps for updating. Before the

implementations, the initial pseudo-input set z̄1:M
q is drawn uniformly at random without

replacement, from the covariate set z1:N . Then, in each step we randomly select one

member from z̄1:M
q , that is, z̄

(m)
q (1 ≤ m ≤ M) as a updating pseudo input. We next

choose another input ν from the complement set of the pseudo inputs in the current step,

as a candidate of z̄
(m)
q . Furthermore, we propose a new pseudo function value f̄νq (this

denotation merely notes the proposed input ν), through a proposal distribution given the

rest of the pseudo inputs and pseudo functions. The proposed pair (ν, f̄νq ) is accepted if

an uniform random number is smaller than the associative acceptance probability.

More specifically, the proposal distribution g(·|z̄(m)
q , z̄

\m
q , f̄

\m
q ) is an univariate Gaussian

with a mean

[Kq;M ]m,\m([Kq;M ]\m,\m)−1 [̄fq]\m (4.8)

and a variance

[Kq;M ]m,m − [Kq;M ]m,\m([Kq;M ]\m,\m)−1[Kq;M ]\m,m, (4.9)

where \m denotes the complement set consisting of all pseudo inputs except the m-th one

and thus z̄
\m
q ≡ {z̄(1)

q , . . . , z̄
(m−1)
q , z̄

(m+1)
q , . . . , z̄

(M)
q }, f̄

\m
q ≡ {f̄ (1)

q , . . . , f̄
(m−1)
q , f̄

(m+1)
q , . . . ,

f̄
(M)
q }. f̄q is a column vector consisting of the set f̄1:M

q . Note that this proposal serves as

the conditional distribution of f̄
(m)
q given z̄

(m)
q , z̄

\m
q , f̄

\m
q . It is also to calculate the density

of a current value f̄
(m)
q .

6That is represented by Equations (3.2), (3.4), (3.5), (3.7) and (3.8).
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For the i-th sampling step, the sampling scheme has an acceptance probability

r((z̄(m),[i]
q , f (m),[i]

q ), (ν, fνq )) = min

(
1,
hq(f̄

1:ν:M,[i]
q )g(f̄

(m),[i]
q |z̄(m),[i]

q , z̄
\m,[i]
q , f̄

\m,[i]
q )

hq(f̄
1:M,[i]
q )g(f̄νq |ν, z̄

\m,[i]
q , f̄

\m,[i]
q )

)
,

(4.10)

where

hq(f̄
1:M
q ) = p(f1:N

q |̄f1:M
q , z1:N , z̄1:M

q ,θh,q) · p(f̄1:M
q |z̄1:M

q ,θh,q) (4.11)

is the full conditional distribution of f̄1:M
q . The value hq(f̄

1:ν:M,[i]
q ) in that ratio is evaluated

at f̄
1:ν:M,[i]
q (which denotes the m-th element of f̄

1:M,[i]
q replaced by f̄νq ) given inputs z1:N ,

the current GP hyper-parameters θh,q, current latent functions f1:N
q , the i-th-sampling-

step pseudo inputs z̄
1:M,[i]
q , pseudo functions f̄

1:M,[i]
q and the current GP hyper-parameters

θh,q. Similarly, hq(f̄
1:M,[i]
q ) is evaluated at f̄

1:M,[i]
q given z1:N , the current θh,q and f1:N

q ,

the i-th-sampling-step proposed pseudo inputs z̄
1:ν:M,[i]
q and proposed pseudo functions

f̄
1:ν:M,[i]
q . In addition, g(·|ν, z̄\mq , f̄

\m
q ) has a mean and variance like those in Equations

(4.8) and (4.9), where the elements of the covariance matrix associated with z̄
(m)
q are

evaluated at its candidate ν.

Note that here implementing the sampling scheme for multiple times is to acquire a

“good” pseudo input set. We expect that the locations of the pseudo inputs can be diffuse

enough to capture the prominent features of regression relationship between the original

input sets and a latent variable.

Pseudo latent functions

Although updating pseudo inputs and pseudo functions jointly via the above sampling

scheme, we consider to re-update pseudo functions by Gibbs sampling for enhancing the

mixing. Basically, the new values f̄1:M
q are drawn from their full conditional distribution

hq(·) in (4.11). It is noted that the full conditional is normally distributed with a covariance

matrix

Σf̄q ,post ≡ (K−1
q;M + K−1

q;MKq;MNV−1
q KT

q;MNK−1
q;M )−1 (4.12)

and a mean vector

Σf̄q ,postK
−1
q;MKq;MNV−1

q fq. (4.13)

The derivations of Equations (4.12) and (4.13) are placed in Appendix A.3.1. The com-

putation of sampling f̄1:M
q is not an issue because the inversion of the N ×N matrix Vq
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(defined in (3.6)) can be easily achieved due to its diagonal structure. fq is a column vector

consisting of the set f1:N
q .

4.2.2 Sampling Latent Variables and Latent Functions

Latent variables

In principle, we can sample all latent variables {x1:N
1 , . . . ,x1:N

Q } conditioning on all

other variables and data. However, to improve mixing, we analytically marginalize out

latent functions {f1:N
1 , . . . , f1:N

Q } from the full conditional distribution. Hence, the result-

ing conditional density is the full conditional distribution of latent variables under the

alternative sparse GP-SEM model structure. The conditional is a Gaussian distribution

and Gaussianity is derived from the multiplication of two Gaussian densities (one from

the measurement model represented by Equations (3.4) and (3.5), one from the sparse GP

formulation given Equation (3.8)), by the identity (A.5). Then the sampling distribution

of latent variable x(n) = (x
(n)
1 , . . . , x

(n)
Q )T has a covariance matrix

Σx(n) =
[
ΛTΣ−1

y Λ + (V(n) + Σx)−1
]−1

, (4.14)

where V(n) is a Q×Q diagonal matrix consisting of the nn-th entry of Vq over all q; and

a mean

µx(n) = Σx(n)

[
ΛTΣ−1

y (y(n) − λ0) + (V(n) + Σx)−1K̃nMK̃−1
M f̄
]
, (4.15)

where K̃nM and K̃M are the block diagonal matrices consisting of all the n-th row of

Kq;NM and with the matrix Kq;M , across q, respectively. f̄ is a column vector whose

elements are all pseudo latent functions {f̄1:M
1 , . . . , f̄1:M

Q }. See the derivations in Appendix

A.3.2.

Latent functions

For all latent functions {f1:N
1 , . . . , f1:N

Q }, a new sample can be drawn explicitly from

the full conditional distribution, which is normally distributed according to the original

model structure of Spare GP-SEM represented by Equations (3.1)-(3.7). The conditional

density of f (n) = (f
(n)
1 , . . . , f

(n)
Q )T has a covariance

Σf (n) =
[
Σ−1
x + (V(n))−1

]−1
, (4.16)
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and a mean

µf (n) = Σf (n)

[
Σ−1
x x(n) + (V(n))−1K̃nMK̃−1

M f̄
]
. (4.17)

Again the normality is derived from two normality densities from Equations (3.1)-(3.2)

and Equation (3.6) respectively by using the Gaussian identity (A.5). The derivations of

(4.16) and (4.17) can be found in Appendix and A.3.3.

Here the sampling of latent functions {f1:N
1 , . . . , f1:N

Q } is used only as an intermediate

step for more complicated sampling schemes of other variables.

4.2.3 Sampling Factor Loadings and Covariance Matrix of Measurement

Errors

Factor loadings

The sampling scheme of factor loadings and intercept terms is identical to the case

of classical Bayesian linear regression. For 1 ≤ q ≤ Q and 1 ≤ r ≤ R, let λqr and

λ0r are the qr-th and r-th elements of factor loading matrix Λ and of intercepts λ0,

respectively. Considering a Gaussian prior, the full conditional density of (λqr, λ0r) is

distributed normally with a covariance matrix

Σλr,post ≡
( 1

σ2
λ

I|Pr| +
1

σ2
yr

[X̃TX̃]Pr,Pr

)−1
, (4.18)

where σ2
λ denotes the prior variance of λqr and of λ0r, I|Pr| is an identity matrix with the

cardinality of the set Pr; X̃ ≡ [x1, . . . ,xQ,1N ], here xq is the column-wise rearrangement

of x1:N
q and 1N ≡ [1, . . . , 1]T with N entries; σ2

yr is the rr-th element of noise covariance

matrix Σy. Pr denotes the parent set of the r-th indicator and the r-th component of

the intercept vector, which indicates the associative indices of the latent variables and the

constant 1. So the parent index of λ0r is always Q + 1, which corresponds to 1N in X̃.

The expression of [·]Pr,Pr denotes the sub-matrix whose entries are the ones of the original

matrix corresponding to the elements of the mutual pair of the parent set. The sampler

mean is
1

σ2
yr

Σλr,post[X̃
T]Pr,·yr (4.19)

where yr is a N × 1 column vector with the r-th indicator of all the data points. [·]Pr,·

means the sub-matrix by extracting the rows from the original matrix, corresponding to

the set Pr. Readers can see Appendix A.3.4 for the derivations of (4.18)-(4.19).
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Covariance matrix of errors

Sampling measurement errors Σy can be implemented from their individual full condi-

tional distributions under the independence assumption imposed in Equation (3.5). Each

conditional follows an inverse Gamma distribution when a conjugate prior is used. Then

each diagonal element σ2
yr of Σy has a distribution as

σ2
yr |e.e. ∼ IG(a0 +

N

2
, b0 +

N∑
n=1

(y(n)
r − λ0,r − λj(r),rx

(n)
j(r))

2) (4.20)

where IG(a, b) represents an inverse gamma distribution with shape parameter a and scale

parameter b. a0 and b0 are hyper-parameters of the prior of σ2
yr , j(r) denotes the index

of the latent variable corresponding to r-th indicator. Appendix A.3.5 provides the short

derivation of (4.20).

4.2.4 Sampling the Correlation Matrix of GP Noise and Algorithm Sum-

mary

We sample the covariance matrix Σx by adopting the efficient Bayesian approach of

(Talhouk et al. 2012), which involves sampling correlation matrix of multivariate Gaus-

sian latent variables. Σx here is a correlation matrix as well because of constraining the

variances of error terms εxq being 1’s. The utilisation of that sampling scheme satisfies

identification condition and meanwhile can improve convergence of the correlation coeffi-

cients.

Instead of updating Σx directly, we sample a covariance matrix Σs under the factor-

ization

Σs = DsΣxDs. (4.21)

Then given the current correlation matrix, we sample [Ds]q,q from the conditional density

[Ds]q,q

∣∣∣Σx ∼ IG(
Q+ 1

2
,
ρqq
2

) (4.22)

where ρqq represents the qq-th entry of (Σx)−1. Employing this conditional density is

because, with a marginally uniform prior for Σx, one can derive an inverse-Wishart prior

for the covariance matrix Σs (Barnard. et al. 2000), namely

Σs ∼ IW (2, IQ). (4.23)
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All the sampled [Ds]q,q serve as a expansion parameter to transform Ex to W0 =

DsEx, where Ex is a Q × N residual matrix with each column being x(n) − f (n). Here

x(n) = (x
(n)
1 , . . . , x

(n)
Q )T and f (n) = (f

(n)
1 , . . . , f

(n)
Q )T.

Then given W0, Σs can be sampled from the conditional distribution

Σs

∣∣∣W0 ∼ IW (2 +N,W0W
T
0 + IQ), (4.24)

where IW(ν,Ψ) represents an inverse Wishart distribution with degree of freedom ν and

the inverse scale matrix Ψ which is positive definite. The sampled covariance matrix can

be projected back to the correlation matrix Σx by Σx = D−1
s ΣsD

−1
s . The brief derivation

of (4.24) can be found in Appendix A.3.6.

Algorithm 1

For each MCMC iteration, the sampling scheme can be summarised as follows:

• Call a sampler of hyper-parameters of covariance functions, computing based on

Equations (4.6) and (4.7).

• Call a sampler of latent variables using (4.14) and (4.15).

• Call a sampler of latent functions first using (4.16) and (4.17) and then sample

pseudo inputs set and pseudo latent functions jointly using (4.8)-(4.11). Next re-

sample pseudo latent functions using (4.12) and (4.13) after re-call a sampler of

latent functions.

• Call a sampler of latent functions first and then call a sampler of correlation matrix

of GP error terms using (4.21)-(4.24).

• Call a sampler of factor loadings using (4.18) and (4.19).

• Call a sampler of variances of measurement errors using (4.20).

Although we adopt a fixed updating order, the order per MCMC iteration can be a

random permutation in principle. One can also update one of the above items with a fixed

probability (Gilks et al. 1995).
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4.3 Improved Samplers

From the features and practices of Algorithm 1, a few possible drawbacks had been noticed.

The first problem is that we do not clear know the necessary number of implementing

sampling scheme to acquire a pseudo input set with expected characteristics. Even using

a medium number of steps, the computing process may be time-consuming as the dataset

size increases. The second could be the intermediate step of sampling latent functions. It

is implemented in the sampling procedures of several variables and therefore makes the

algorithm complicated somewhat. The last one is that strong correlation between latent

variables and factor loadings may cause mixing-slowly simulation chains.

Despite those potential issues, we can still modify the sampler for improvement. To

specify it, the first problem can be mitigated by fixing the initial selected pseudo inputs set.

The second and the third problems can be solved by modifying the associated samplers

and introducing an extra parameter to improve mixing.

It can be reckoned that the original sampling procedure of pseudo latent functions

basically does not lead a computational issue. However, we are still able to modify the

procedure by merely selecting values from the latent functions. This fashion further enable

to save some time.

In the following paragraphs, we only present the improved samplers for some parame-

ters. For the rest, the samplers are the same as before and thus would not be mentioned.

The associated derivations are placed in Appendix A.4.

4.3.1 Samplers of Latent variables and Latent Functions

Latent variables

Let x, f and f̄ be {x1:N
1 , . . . ,x1:N

Q } be column vectors whose elements belong to the

set of all latent variables {x1:N
1 , . . . ,x1:N

Q }, latent functions {f1:N
1 , . . . , f1:N

Q }, and pseudo

functions {f̄1:M
1 , . . . , f̄1:M

Q }. Then their sizes are NQ × 1, NQ × 1 and MQ × 1. The

collection of all pseudo input sets is denoted as z̄1:M
1:Q = {z̄1:M

1 , . . . , z̄1:M
Q }.

In principle, we can sample x conditioning on all other variables and data. But, dif-

ferent from the sampler using (4.14) and (4.15), the modified sampler is the conditional

distribution that f and f̄ are analytically marginalized out from the full conditional dis-

tribution. That conditional distribution has the probability density p(x|e.e.\ f , \f̄), where
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everything else is abbreviated to e.e..

This conditional density is proportional to the multiplication of two Gaussian densities.

One is p(x|z1:N , z̄1:M
1:Q ,Θh,Σx), from the distribution represented by (3.8) and integrating

out pseudo functions; the other is p(Y|x,Λ,Σy), from the measurement model represented

by (3.4)-(3.5). They respectively have covariance matrices Σ0 and Σ1,

Σ0 = K̃T
MNK̃−1

M K̃MN + Ṽ + Σx ⊗ IN , (4.25)

Σ1 = (ΛTΣ−1
y Λ)⊗ IN , (4.26)

and means 0 (with size of NQ×1) and Σ1mx;post, where K̃NM , K̃M and Ṽ are respectively

the block diagonal matrices with all matrices Kq;NM , Kq;M and Vq, for 1 ≤ q ≤ Q. Hence,

Σ0 and Σ1 are NQ×NQ matrices. The elements of the diagonal matrix Vq corresponding

to the selection index (the pseudo inputs are chosen from the original covariates) are

assigned as 0. The reason for this adjustment is to ensure that the values of fq|f̄q evaluated

at the M selected pseudo inputs are deterministically decided by f̄q – see this from the

mean in (3.6). The M latent function values are also the same as the values of fq at the

locations z̄1:M .

In addition, the column vector mx;stack is the column-wise rearrangement of a N ×Q

matrix Mx,

Mx = (Y − λ0 ⊗ 1T
N )TΣ−1

y Λ, (4.27)

where Y is a R×N matrix consisting of all response vectors, Y = [y(1), . . . ,y(N)].

Through the Gaussian multiplication identity (A.5), the modified full conditional dis-

tribution of latent variables x can be derived with the Gaussianity (see Appendix A.4.1).

It has the covariance matrix

Σx,post = (Σ−1
0 + Σ−1

1 )−1, (4.28)

and the mean

µx,post = Σx,postmx;stack. (4.29)

In practical estimation, computing Σx,post and sampling from the above conditional

distribution (specified by Equation (4.28) and (4.29)) are challenges. A naive application

of inversion or matrix division to is an impractical idea, since this would cost O(N3Q3)
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operations, defeating the whole point of using pseudo inputs. To address the issue, we

can use the matrix inversion identity (A.1) twice – one to obtain Σ−1
0 , the other one to

obtain (Σ−1
0 + Σ−1

1 )−1. After the applications of matrix inversion, (Σ−1
0 + Σ−1

1 )−1 can

be decomposed into two covariance matrices of two new random variables. Readers can

refer Appendix A.4.1 to understand the derivations and the positive definiteness of the

two covariance matrices. Then the sampling procedure of latent variables turns into the

generation of samples from the distributions of the new variables, which are

s1 ∼ N (µs1 ,A
−1
1 ), (4.30)

s2 ∼ N (µs2 ,A
−1
1 D1C

−1
1 DT

1 A−1
1 ), (4.31)

where

A = Ṽ + Σx ⊗ IN , A1 = Σ−1
1 + A−1, (4.32)

D1 = A−1K̃T
MN , C1 = K̃M + K̃MNA−1K̃T

MN −DT
1 A−1

1 D1, (4.33)

µs1 = A−1
1 mx;stack, (4.34)

µs2 = (A−1
1 D1C

−1
1 DT

1 A−1
1 )mx;stack. (4.35)

In addition, we can use Cholesky decomposition7 to obtain a random sample from

a multivariate normal distribution. As a result, a new draw of latent variables can be

represented as

x = µs1 + (chol(A1))−1t1 + µs2 + A−1
1 D1(chol(C1))−1t2, (4.36)

where t1 and t2 are the random vectors whose entries are sampled from a standard normal

distribution.

Three points are noted for the above computation procedure. The first is the structure

features of A and A1. A itself is a NQ × NQ matrix with a particular array structure,

which consists of Q × Q block matrix structure and each block matrix with size N × N

has only non-zero elements on the diagonal8. Two reasons for this structure are: 1. A

is Ṽ + Σx ⊗ IN , where Ṽ is a block diagonal matrix made of diagonal matrices Vq; 2.

Σx⊗IN has the same structure as A due to the definition of Kronecker product. It follows

7A Cholesky decomposition of a positive definitive matrix P is to find a upper matrix chol(P) with

positive diagonal elements so that P = chol(P)T · chol(P).
8We call this structure as tiled diagonal structure hereafter.
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that A−1 has the same structure features, and so is A1 (owing to Σ−1
1 being a diagonal

matrix).

The second is the matrix inversion of Σ−1
0 and (Σ−1

0 + Σ−1
1 )−1 by the identity (A.1).

In the applications of (A.1), one also has to compute A−1 and A−1
1 by the identity of

block matrix inversion (A.3). In practice, their tiled diagonal structures facilitate the

computing.

The third is about calculating the Cholesky decompositions of A1 and C1. It could

not be an computational issue. The reasons are that A1 has the tiled diagonal structure,

and C1 is a MQ ×MQ positive definite matrix, where the pseudo input size M can be

rather smaller than N .

Latent functions

For all latent functions, a new sample of f can be drawn from its full conditional

distribution integrating out pseudo latent function vector f̄ . The resulting conditional

density is p(f |e.e. \ f̄).

This density is proportional to the multiplication of p(f |z1:N , z̄1:M
1:Q ,Θh) and p(x|f ,Σx).

The two factors are the densities of the Gaussian distributions with respective covariance

matrices

Σ2 = K̃T
NMK̃−1

M K̃NM + Ṽ, (4.37)

Σ3 = Σx ⊗ IN , (4.38)

and means 0 (with size of NQ× 1) and mf ;stack (equal to Σ−1
3 x).

Then the modified full conditional distribution of f follows a Gaussian distribution

based on the Gaussian multiplication identity (A.5). See the derivation in Appendix

A.4.2, the covariance matrix and the mean can be respectively given

Σf,post = (Σ−1
2 + Σ−1

3 )−1, (4.39)

and

µf,post = Σf,postmf ;stack. (4.40)

Similar to the computational scheme for Σx,post, we again use an application of the

matrix inversion identity (A.1) twice for Σf,post. Σf,post can be decomposed into two
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covariance matrices of two new random variables for sampling. The derivations can be

found in Appendix A.4.2 and the positive definite

s3 ∼ N (µs3 ,A2), (4.41)

s4 ∼ N (µs4 ,Σ3D2C
−1
2 DT

2 Σ3), (4.42)

where

A = Ṽ + Σ3, A2 = Σ3 −Σ3A
−1Σ3, (4.43)

D2 = A−1K̃T
MN , C2 = K̃M + K̃MNA−1K̃T

MN , (4.44)

µs3 = A2mf ;stack, (4.45)

µs4 = (Σ3D2C
−1
2 DT

2 Σ3)mf ;stack. (4.46)

A new draw of latent functions is

f = µs3 + (chol(A2))Tt1 + µs4 + Σ3D2(chol(C2))−1t2. (4.47)

Note that A2 has a tiled diagonal matrix structure as well because Σ3 and A shares

the same array formation. Moreover, A2 is (Ṽ−1 + Σ−1
3 )−1 (this fact can be found in the

proof of positive definiteness of A2), and we can use block matrix inversion identity (A.3)

to compute A2.

The above sampling schemes of latent variables and latent functions can achieve a

better mixing in MCMC simulations. The reason is that the former does not depend on

the associated strongly-correlated variables, and the latter only depends on latent vari-

ables. The resulting computational load may increase slightly due to matrix computation

to jointly produce a new sample. By contrast, the original schemes in Algorithm 1 have

dependence on latent variables and pseudo latent functions although having lighter com-

putational cost.

4.3.2 Sampling Expanded Parameter and Factor loadings

We adopt the technique of parameter expansion (Gelman et al. 2005, Liu & Wu 1999)

to improve sampling efficiency of loadings Λ by introducing a non-identical parameter

α. The idea is to expand latent variables and to contract loadings by the parameter α.

The acts thus produce the new variables wq and new loadings Λα, where wq = αxq and

Λα = αΛ. After the new α is sampled, by which latent variables and loadings can be
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transformed back from wq and Λα. The latent variables and loadings recovered turn less

correlated because of the expanded parameter α randomly generated in the immediate

sampler. Note that wq and new loadings Λα are highly correlated because the latter’s

sampler related to the former.

For a computational reason, a conjugate prior (distributed as an inverse gamma den-

sity) is used for α. Then its resulting sampler can be obtained and shares the inverse

gamma distribution IG−1(a, b) with hyper-parameters

a = a1 +NQ/2, b = b1 + wΣ−1
0 w, (4.48)

where a1 and b1 are hyper-parameters of the prior distribution; w is a column vector

containing all the members of {w1, . . . ,wQ} and Σ0 is used in the sampling procedure of

latent variables. Here Σ0 adopts the derived result by matrix inversion identity during

calculation. See the derivation in Appendix A.4.3.

The sampler of the shrunk factor loadings Λα resembles that of the original Λ, which

simply replaces latent variables x by the transformed latent variables w.

4.3.3 Sampling Hyper-parameters and Algorithm Summary

Hyper-parameters of GP Covariance Function

The sampling of hyper-parameters is similar to the original. The difference is that

in Equation (4.6), the ratio has a different h(θh,qj). Moreover, this h(θh,qj) replaces

p(xq|z1:N , z̄1:M
q , f̄1:M

q ,θh,q) by p(fq|z1:N , z̄1:M
q ,θh,q). The latter is the probability density of

the distribution represented by (3.6) and integrating out pseudo functions – the sampling

efficiency could be improved further. It is also a Gaussian density with a mean N ×1 zero

vector and a covariance matrix Kq;NMK−1
q;MKq;MN + Vq.

The associated evaluation of that density can be facilitated by using the identities of

block matrix for determinant (A.4) and inversion (A.3). Before the use, we can, without

loss of generality, specify Kq;NMK−1
q;MKq;MN + Vq as Vq;N0 + Kq;N0MK−1

q;MKq;MN0 Kq;N0M

KT
q;N0M

Kq;M

 ,
where Vq;N0 and Kq;MN0 are the submatrices of Vq and Kq;MN , excluding the rows or

columns corresponding to the selection indices for the pseudo input set z̄1:M
q . N0 is the
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index set of the rest N −M covariates not selected as pseudo inputs. Hence, Vq;N0 and

Kq;MN0 respectively have sizes of (N −M)× (N −M) and M × (N −M). Note that the

bottom-right block reflects the adjustment of the diagonal elements of Vq corresponding

to the M selection indices, set to 0s. We have discussed the reason for the adjustment in

Section 4.3.1.

Now, by using (A.4) and (A.2) the determinant of Kq;NMK−1
q;MKq;MN + Vq is

|Kq;M | · |Vq;N0 | =
M∏
m

eigm(Kq;M )
∏
j∈N0

[Vq;N0 ]j,j , (4.49)

and by using (A.3) the inverse matrix is (Vq;N0)−1 −(Vq;N0)−1Kq;MN0K
−1
q;M

−((Vq;N0)−1Kq;MN0K
−1
q;M )T K−1

q;M + K−1
q;MKq;MN0(VN0,q)

−1KT
q;MN0

K−1
q;M

 . (4.50)

Algorithm 2

After randomly selecting Q sets of pseudo inputs, the modified algorithm for per

MCMC iteration becomes as follows:

• Call a sampler of hyper-parameters of covariance functions, computing based on

Equation (4.6) but using the modified conditional density for h(θiq), where calcula-

tion involves utilization of Equations (4.49) and (4.50).

• Call a sampler of latent variables using (4.30), (4.31) and (4.36).

• Call a sampler of latent functions using (4.41), (4.42) and (4.47).

• Select pseudo latent functions from the sampled latent functions according to the

selection of the pseudo inputs.

• Call a sampler of parameter expansion using (4.48) and produce transformed latent

variables w.

• Call a sampler of factor loadings using (4.18) and (4.19) with replacing the latent

variables x by w to acquire transformed factor loadings Λα.

• Transform the factor loadings and latent variables back by the expansion parameter

α.
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• Call a sampler of measurement error variances using (4.20).

Sampling latent variables and latent functions need more computational steps than

the others. It is reckoned that both have complexity of O(M2NQ2). This is based on

calculating the number of (multiplication) operations in matrix multiplication about C1

and D1(chol(C1))−1 in Equation (4.36) for latent variables; C2 and D2(chol(C2))−1 in

Equation (4.46) for latent functions. Therefore, we could consider that the whole algorithm

reduces the cost per iteration to O(M2NQ2) (from O(N3Q3)).

4.4 Expectation Maximization methods and Its Stochastic

Implementation

Besides fully Bayesian methods, the Expectation Maximization (EM) algorithm is another

approach to estimate model parameters. Briefly speaking, via maximum likelihood on

a complete data, a combination of realizations of observed variables y and unobserved

variables x 9, EM methods allow one to run parameter estimation in an iterative way

(Dempster et al. 1977, McLachlan & Krishnan 2008). They alternatively implement two

steps: E-step, to calculate the “best” likelihood for model parameters; M-step, to optimise

the model parameters from it.

More specifically, due to computational difficulty, parameter estimation is not based

on calculating and optimising the log-marginal-likelihood of model parameters θ given the

observed data y1:N

l(θ) = log

∫
p(y1:N ,x1:N |θ)dx1:N .

By contrast, the joint log-likelihood under the complete data {y1:N ,x1:N},

lc(θ) = log(p(y1:N ,x1:N |θ))

may have a closed-form expression for the maximum likelihood estimator (MLE) of model

parameters and can facilitate the whole calculation and optimisation. To obtain the “best”

likelihood for estimating θ, however, one needs to introduce an arbitrary distribution over

latent variables b(x) and then calculate the conditional expectation of lc(θ) with respect

to b(x) and the current parameters θ[i]. Through some derivations, the optimal option of

b(x) can be learned as the conditional density of unobserved variables x given the observed

9Here unobserved variables are latent variables or missing values.
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data y1:N and θ[i], that is, the posterior density of x, p(x|y1:N ,θ[i]). Thus, the E-step is

to calculate the conditional expectation, which is defined as a function Q(·|·),

Q(θ|θ[i]) = Eθ[i](lc(θ)|y1:N ) =

∫
b(x) log p(y,x|θ)dx, (4.51)

where b(x) = p(x|y1:N ,θ[i]).

Following this notation, the M-step is to implement optimization as

θ[i+1] = arg maxθQ(θ|θ[i]). (4.52)

It is noted that the Q-function is incremental over the estimation sequence of θ; in other

words, it satisfies Q(θ[i+1]|θ[i]) ≥ Q(θ[i]|θ[i]) (Dempster et al. 1977, McLachlan & Krishnan

2008).

Neal and Hinton (1999) provide an alternative perspective of EM methods that the

E-step and M-step actually can be regarded as two maximization implementation on an

objective function. Their insight is from the decomposition of the marginal log-likelihood

l(θ),

l(θ) =

∫
b(x) log

p(y,x|θ)

b(x)
dx +

∫
b(x) log

b(x)

p(x|y,θ)
dx (4.53)

= G(θ, b) +KL(b(x)‖p(x|y,θ)), (4.54)

where G(θ, b) is the aforementioned objective function for estimation; KL(b‖p) denotes

Kullback-Leibler divergence between two probabilistic distributions b and p, measuring

the difference from b to p. Since l(θ) is fixed and KL(·‖·) is non-negative, G(θ, b) is a

lower bound of the marginal likelihood l(θ). In fact, the lower bound can also be obtained

via Jensen’s inequality and concavity of a logarithm function.

The two optimization procedures are to maximize G(θ, b) on one argument with fix-

ing the other in turn. At the i-th iteration, one can firstly consider maximize G(θ, b) on

b given the current parameter θ[i]. The distribution achieving the maximum is b(x) =

p(x|y1:N ,θ[i]), which can be learned because l(θ) is a constant and the conditional distri-

bution b(x) minimizes KL(b(x)‖p(x|y,θ)). This procedure can actually be viewed as the

E-step of the original EM method with a slight difference10. After the first step, one can

consider maximize G(θ, b) on θ given the fixed distribution b(x) - this is the M-step.

Note that no matter which viewpoint one adapts, the obtained sequence of parameters

θ will iteratively reach a local maximum of marginal likelihood l(θ). This is learnt by the

10The marginal difference is that G(θ[i], b) = Q(θ|θ[i])− c, where c is a constant, from
∫
b(x) log b(x)dx.
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fact that with a fixed distribution b(·), G(θ, b) or Q(θ|θ[i]) is a lower bound of l(θ) and

incremental, that is,

l(θ[i+1]) ≥ G(θ[i+1], b) ≥ G(θ[i], b) = l(θ[i]), (4.55)

or

l(θ[i+1]) ≥ Q(θ[i+1]|θ[i]) ≥ Q(θ[i]|θ[i]) = l(θ[i]). (4.56)

When a statistical model is complex, that is, the variables involved are in high-

dimensional space, calculating Q-function turns difficult. The reasons are lacking of an

analytic closed form and evaluating an intractable high-dimensional integral. Conventional

approaches including analytical approximation or quadrature have their limitations on this

computational issue, especially the dimension is rather high (McLachlan & Krishnan 2008).

Monte Carlo sampling-based methods, including MCMC algorithms, can address the issue

from a high-dimensional integral and allow one to approximate the Q-function. Due to

the characteristic of random sampling, such EM method becomes a stochastic approach.

This implies that given the same starting values, repeating applications may not achieve

the same value of the stationary point after a certain iterations. This stochastic ver-

sion distinguishes itself from its deterministic origin, which mentioned in the preceding

paragraphs.

The above stochastic EM algorithm where in the E-step the Monte Carlo methods are

adopted is refer to as Monte Carlo EM (MCEM) algorithm (Wei & Tanner 1990). More

precisely, at the i-th iteration MCEM approximates Q-function in the E-step by the Monte

Carlo average, which is

Q̃(θ|θ[t]) =
1

mi

mi∑
j=1

log p(y,x[j]|θ[i]), (4.57)

where {x[1], . . . ,x[mi]} are samples generated from the conditional distribution b(x) =

p(x|y1:N ,θ[i]) by using a Monte Carlo method given the sample size mi, which is allowed

to change over the EM iterations. If mi is large enough, by the law of large numbers,

the Q function can be approximated by Q̃ reasonably. The rest procedure of the MCEM

method, the M-Step, is the same as that in the original EM method. If no analytic

closed form for optimal solutions of θ exists, typical iterative methods, such as Newton-

Raphson or quasi-Newton methods, can be used to obtain an optimal solution (McLachlan

& Krishnan 2008).
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There are several stochastic versions of the EM methods, such as the stochastic EM

method in (Celeux & Diebolt 1985, Celeux & Ip 1996); the stochastic approximation EM

approach of (Delyon et al. 1999). The former could be regarded as a special case of MCEM

where mi = 1. The E-step is simply to replace latent variables x (or missing values) with

a sample generated to form a complete data for maximization on model parameters in the

next step. The latter provides another stochastic approximation for the Q-function by a

recursive equation along with a step size and a small and constant of mi (see details in

(Delyon et al. 1999)).

Because MCEM is a basic stochastic version of the EM methods and it connects with

MCMC samplers presented in the last section, we focus on that for practical implementa-

tion. If a simple closed form of posterior density of latent variables can be derived, one can

evaluate the conditional expectation of the complete likelihood by calculating associated

sufficient statistics rather than by using MCMC methods.

4.5 Inference Function for Margins

For a complicated multivariate model, the EM methods introduced before allow estimating

model parameters simultaneously. However, the computational cost can still be expensive.

For example, a practical implementation is conducted for a longitudinal data with multiple

response variables. As for this issue, alternative approaches to make estimation easier are

desired. Rather than estimating model parameters simultaneously, the method of inference

function of margins (IFM) can serve as an alternative.

The IFM method (Joe & Xu 1996, Joe 1997) is to estimate model parameters through

a system of estimating equations from the marginal and joint distributions of response

variables. It is essentially a two-step optimisation approach. More specifically, one can

first classify model parameters into two categories before implementation.

Given a response random vector y = (y1, . . . , yR), one category is from univariate re-

sponse models. For 1 ≤ r ≤ R, the r-th model has the marginal cumulative distribution

function (cdf), Br(yr|θr), with the associated parameters θr. The other category is from

the joint model of response variables. More precisely, those kinds of parameters are the de-

pendence parameters characterising the dependence structure between response variables.

The joint cdf of y is B(y|θ1, . . . ,θR,φ) with all marginal parameters and the dependence
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parameters φ. And Sklar’s theorem (see Section 1.1 of Ruschendorf (2013)) claims that

the joint cdf can be expressed by a copula C11 and written as follow:

B(y|θ1, . . . ,θR,φ) = C
(
B1(y1|θ1), . . . , BR(yR|θR)

∣∣∣φ).
Note that the copula model is parametrised by the dependence parameters φ. Thus

in an example of multivariate normal distribution, the copula model can give structure

information about parameters associated with each pairwise marginal distribution, like

correlation coefficients.

Next, the estimation procedure of (θ1, . . . ,θR) proceeds separately based on the corre-

sponding estimating equation. For each r, the r-th estimating equation is given by partial

derivatives of a log-likelihood function from the marginal cdf Br, that is

∂

∂θr
`r(θr) =

∂

∂θr

N∑
n=1

log br(y
(n)
r |θr), (4.58)

where `r(θr) is the log-likelihood function of θr and br is the probability density function

(pdf) of the response variable yr. An estimate θ̃r can be obtained by solving ∂`r(θr)/∂θr =

0, namely implementing MLE on θr.

At the final step, the way to estimate the dependence parameter φ is similar to that

of θr. The difference is that the associated estimating equation is the score function for

the joint cdf B, which is

∂

∂φ
`(θ1, . . . ,θR,φ) =

∂

∂φ

N∑
n=1

log b(y(n)|θ1, . . . ,θR,φ), (4.59)

where `(θ1, . . . ,θR,φ) is the log-likelihood function of all model parameters and b is the

joint pdf of the response random vector y. An estimate φ̃ of φ is obtained by maximising

`(θ̃1, . . . , θ̃R,φ), where θ̃r, 1 ≤ r ≤ R, are given from the preceding estimation procedures.

Incidentally since the joint pdf b is the product of a copula density c(·) and all marginal

pdf br, the RHD of Equation (4.58) can rewritten as

∂

∂φ

N∑
n=1

log c
(
B1(y

(n)
1 |θ1), . . . , Br(y

(n)
R |θR)

∣∣∣φ) .
As seen, the copula likelihood is the proxy to estimate the dependence parameters φ.

11A copula is a multivariate distribution function with the range a uniform interval [0, 1], the domain

on a multiple-dimensional unit cube defined by marginal distributions.
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Multivariate margins12 can be considered. According to (4.58), the multivariate-

margin dependence parameters are able to be estimated by MLE on the corresponding

log-likelihood. Thereby, the sum of the log-likelihood of all multivariate margins is the

source for all dependent parameter estimates. This feature and the univariate-margin

estimation procedure in (4.57) connects composite (marginal) likelihood methods (Varin

et al. 2011).

The IFM method can also be applied to a multivariate model with covariates and latent

variables. The margin parameters θr there are not estimated by maximising the marginal

likelihood (formed by the margin observations). Instead, the estimation is to maximise

the conditional expectation of the complete likelihood (formed by the margin observations

and latent variables). This follows the EM estimation steps. The same estimation fashion

is implemented for dependence parameters φ. The conditional expectation of the joint

complete likelihood (formed by all observations and latent variables) is calculated in the

E-Step. This scheme is applied to parameter estimation of sparse GP-SEM in the next

section.

4.6 Hybrid Algorithm for Sparse GP-SEM

In Section 4.4 and 4.5, two estimation methods (MCEM and IFM) are introduced. Com-

bining the two features (convenient applicability and efficient computation on latent vari-

able models with multiple outcomes), a hybrid algorithm is presented for sparse GP-SEM

below.

Considering a structure of each outcome with only one parent latent variable, the

hybrid algorithm is essentially to implement the EM method by the two-step estimation

procedure. One step is for the marginal models – each of which consists of covariates and

responses with the same latent variable. The other step is for the joint model – comprising

covariates, all responses and their latent variables.

To specify the implementation, it is primary to formulise the objective function in E-

step, which used in M-step later. The objective function is the conditional expectation of

log complete likelihood with respect to the posterior density of latent variables and latent

12The term ”margin” means a marginal model or a sub-model associated with a subset of response

variables.

74



CHAPTER 4. COMPUTATION

functions. More specifically,

Ep(x,f |y)[log p(x, f ,y|z1:N , z̄1:M ,Θh,Λ,λ0,Σx,Σy)]

= Ep(x,f |y)[log p(y|x,Λ,λ0,Σy) + log p(x|z1:N , z̄1:M ,Θh,Σx) + log p(f |x,Σx)]

= Ep(x,f |y)[−
N

2
log |Σy| −

1

2
tr
(
Σ−1
y (Y − Λ̃(X̃)T)(Y − Λ̃(X̃)T)T

)
] +

Ep(x,f |y)[−
1

2
log |Σ0| −

1

2
tr(Σ−1

0 xxT)] +

Ep(x,f |y)[−
1

2
log |Σx ⊗ IN | −

1

2
tr((Σx ⊗ IN )−1(f − x)(f − x)T)]

= (1) + (2) + (3),

where the notations X̃ and Y happen in Equations (4.18) and (4.27); Σ0 is the same as

that in (4.24). Λ̃ is a R× (Q+ 1) matrix that factor loadings Λ aggregates the intercept

λ0 in columns; x and f are (NQ) × 1 vectors, x = (xT
1 , . . . ,x

T
Q)T and f = (fT1 , . . . , f

T
Q)T.

Θh = {θh,1, . . . ,θh,Q} is the set of all GP hyper-parameters. Note that the conditional

expectation depends on the current parameters (specifying the i-th optimisation step) and

here we skip the notation for simplicity.

The sum of the three terms can be approximated by MCMC methods13 as,

(1) ≈ 1

mi

mi∑
j=1

[
−N

2
log |Σy| −

1

2
tr
(
Σ−1
y (Y[j] − Λ̃(X̃[j])T)(Y[j] − Λ̃(X̃[j])T)

)]
, (4.60)

(2) ≈ 1

mi

mi∑
j=1

[
−1

2
log |Σ0| −

1

2
tr(Σ−1

0 x[j](x[j])T
]
, (4.61)

(3) ≈ 1

mi

mi∑
j=1

[
−1

2
log |Σx ⊗ IN | −

1

2
tr((Σx ⊗ IN )−1(f [j] − x[j])(f [j] − x[j])T)

]
, (4.62)

where Y[j] is merely a replicate of Y. And the joint sample of latent variables and latent

functions can be produced by the individual samplers presented in Section 4.3.1.

Move to the M-step, maximum optimisation for parameter estimation is implemented

upon the objective function presented in Equations (4.60)-(4.62). Moreover, (4.60) con-

tributes the estimates for measurement error variances, factor loadings and intercepts.

The analytic optimisation solutions can be derived through simple algebra, which are

13We discuss the necessity of using MCMC methods later.
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σ̂2
yr =

1

mi

mi∑
j=1

[
yT
r yr − 2([Λ̃]r,Pr)[(X̃[j])T(Y[j])T ]Pr,r

+ ([Λ̃]r,Pr)[(X̃[j])TX̃[j]]Pr,Pr [Λ̃]r,Pr)T
]
, (4.63)

[
ˆ̃
Λ]r,Pr =

1

mi

mi∑
j=1

[
([(X̃[j])TX̃[j]]Pr,Pr)−1[(X̃[j])T(Y[j])T]Pr,r

]T
. (4.64)

θ̂h,ql, the estimator for the l-th hyper-parameter of the q-th GP covariance functions,

would achieve a maximum of (4.61). It does not have a closed form, but by matrix

calculus, the associated derivatives can facilitate the estimation. In practice we directly

adopt an optimal routine (which uses quasi-Newton methods) for the solution to avoid the

tedious derivation process.

The same manner is employed on the sum of (4.61) and (4.62) to obtain the optimiser

for the correlation matrix of εx, which is Σx with constrains on the diagonal elements

being 1’s. It should be noted that the correlation coefficients are restricted between -1 and

1 to ensure positive definiteness when two latent variables are involved, that is, Q = 2.

For Q > 2, more concerns need to be taken. One can first estimate Σx without constraints

and then to solve a non-linear programming problem under a constraint that a solution

matrix is positive definite. These procedures are to obtain the closest solution (under

Frobenius norm) to the preceding estimate.

Define a response vector as y = (yT
R1
, . . . ,yT

RQ
)T where the index Rq denotes the

indicator number for the q-th latent variable xq, and therefore yRq is its indicator random

vector. x and f are the same notation as usual, represented all latent variables and latent

functions. Then the hybrid algorithm is listed as follows:

Algorithm 3

• Randomly select M inducing inputs z̄q from the N inputs z for the q-th marginal

model.

For each iteration,

E-Step (margins)

• Generate mi samples of latent variables xq using Equations (4.30), (4.31) and (4.36),

given the current estimates of the q-th model marginal parameters.

76



CHAPTER 4. COMPUTATION

• (Option) Generate mi samples of latent functions fq using Equations (4.41), (4.42)

and (4.47), given the current estimates of the q-th model marginal parameters.

• Calculate conditional expectation to achieve the objective functions using (4.60),

(4.61), and (4.62)(Option). The objective function here is

Ep(xq ,fq |yRq )[log p(xq, fq,yRq |z1:N , z̄1:M
q , θ̂h,q, λ̂rq, λ̂0q, σ̂

2
yr)].

M-Step (margins)

• Calculate optimal solutions of GP hyper-parameters, factor loadings (with inter-

cepts) and measurement error variances associated with the q-th margin model; for

the latter two parameters using (4.63) and (4.64).

• Implement the preceding procedures over all Q marginal models and then fix all

estimated parameters for the next step.

E-Step (joint)

• Generate mi samples of latent variables x of the joint model using (4.30), (4.31)

and (4.36), given the current estimates of Σx and all the parameter estimates from

fitting marginal models.

• Generate mi samples of latent functions f of the joint model using (4.41), (4.42)

and (4.47), given the current estimates of Σx and all the parameter estimates from

fitting marginal models.

M-Step (joint)

• Calculate optimal solutions of the correlation matrix of latent errors associated with

the joint model. The objective function here is

Ep(x,f |y)[log p(x, f ,y|z1:N , z̄1:M
1:Q , Θ̂h, Λ̂, λ̂0, Σ̂x, Σ̂y)].

The above algorithm divides into two estimation steps - one for margins, the other

for the joint model. Each implements MCEM methods and the parameter estimates of

marginal models are utilized for the estimation of the joint model. It is like the IFM

approach, but the first step is to fit multivariate margins. In addition, all estimation

procedures for the variances of latent errors are omitted due to the constrains of the
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auto-covariances being 1’s. Therefore, it is optional to sample the latent function values

fq.

In addition, the MCMC approximations in this algorithm (Equations (4.60)-(4.62)) can

be not implemented. It is because the closed form of the objective function (the conditional

complete likelihood) can be derived under distributional (Gaussian) assumptions of sparse

GP-SEM. In this case, the conditional expectation of the sufficient statistics related to

latent variables and latent functions are demanded for the derivation.

Note that the time complexities of the algorithm are roughly O(M2NQ) for the first

step and O(M2NQ2) for the second. This is because the cost of sampling latent variables

and latent function values for per margin is O(M2N), and that for the joint model is

O(M2NQ2).

This hybrid algorithm also inspires us to implement the estimation methods presented

in Section 4.3 (or 4.2) in the same fashion. The two-step procedure forms another compu-

tational scheme, and we raise its application in Chapter 5 and 6. The experiment results

are further discussed there, compared with those of estimating all model parameters si-

multaneously.

4.7 Predictive Distribution

Given the estimates of model parameters, the predictive distribution of a new response

vector ynew can be derived under the model structure and distributional assumptions of

sparse GP-SEM14. More precisely, we are given a new covariate vector znew, the original

dataset consisting of response vectors y1:N = {y(1), . . . ,y(N)}, covariate vectors z1:N , and

all the estimated model parameters including GP hyper-parameters Θh, pseudo-input sets

z̄1:M
1:Q , factor loadings Λ, intercept terms λ0, covariance matrix of latent errors Σx and of

measurement errors Σy. Then the predictive distribution of ynew can be written as:

14There is no difference between predictive distributions under the alternative version of GP-SEM defined

by Eqns. (3.2), (3.4),(3.5), (3.7) and (3.8) and the original version defined by (3.1)-(3.5). Here we adapt

the former.
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p(ynew|znew,y
1:N , z1:N ,Ω)

=

∫
p(ynew|xnew,Λ,λ0,Σy) · p(xnew|znew, z̄

1:M , f̄1:M ,Θh,Σx)·

p(f̄1:M |y1:N , z̄1:M , z1:N ,Θh)dxnewd
¯f1:M

=

∫
p(ynew|f̄1:M , znew,Ω) · p(f̄1:M |y1:N , z̄1:M , z1:N ,Θh)df̄1:M ,

(4.65)

where the set of pseudo latent function is denoted as f̄1:M = {f̄1:M
1 , . . . , f̄1:M

Q } and Ω =

{Θh, z̄
1:M ,Λ,λ0,Σx,Σy} is the set containing all the estimated model parameters.

In the first equality, the first two integrand factors consist a probabilistic likelihood

under sparse GP-SEM; the last factor is a posterior density of the pseudo inputs set f̄1:M .

In the second equality, the new latent variables xnew are integrated out, which is equivalent

to merge Equation (3.8) to (3.4). As a result, the first integrand factor becomes a new

probabilistic likelihood accordingly.

This predictive distribution has a closed form with a Gaussian density given training

data and the estimates Ω. The reason is that the integrand factors are distributed normally

(derived from the structure and assumptions of sparse GP-SEM). Rather than deriving the

form analytically, the by-product of MCMC simulation can be utilised to achieve integral

approximation, estimated by

1

Nmcmc −NB

Nmcmc∑
i=NB+1

p(ynew|f̄1:M,[i], znew,Ω
[i]), (4.66)

where Nmcmc is the length of MCMC simulation, NB is a burn-in threshold value. The

superscript [i] denotes the i-th MCMC iteration. Thus Ω[i] is the i-th sample of Ω, as the

point estimates of the model parameters at the i-th iteration. Due to the Gaussianity of

p(ynew|f̄1:M , znew,Ω), the approximate mean of the predictive distribution is

1

Nmcmc −NB

Nmcmc∑
i=NB+1

[
f̄ [i]
c (Λ[i])T + (λ

[i]
0 )T

]
, (4.67)

where f̄
[i]
c is a 1 × Q row vector and f̄

[i]
c = [K

[i]
1;1MK

[i]
1;M f̄

[i]
1 , . . . ,K

[i]
Q;1MK

[i]
Q;M f̄

[i]
Q ]; for 1 ≤

q ≤ Q, Kq;1M is a 1×M vector with [Kq;1M ]1,m = kq(znew, z̄
(m)
q ).

Furthermore, one can generate a new dataset through the predictive distribution, based

on the mean and the covariance matrix of ynew|f̄1:M,[i], znew,Ω
[i], which are respectively

f̄ [i]
c (Λ[i])T + (λ

[i]
0 )T, (4.68)
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and

Λ[i](Σ[i]
x + V

[i]
new)(Λ[i])T + Σ[i]

y , (4.69)

where V
[i]
new is the i-th sample of Vnew, where Vnew is a Q×Q diagonal matrix consisting

of all Vq, defined in Equation (3.6) but only evaluated at znew.

Regarding the hybrid implementation, the approximate mean of the predictive dis-

tribution are almost identical to those represented by (4.67). The differences are that

there is no burn-in threshold value and the MCMC sample size is the one used in the last

optimisation step.

4.8 Greedy selection

The aforementioned procedure provides us a foundation to evaluate the model predictive

performance of sparse GP-SEM. All the estimates are from fitting model on a randomly-

selected pseudo-input set. Such pseudo-input set (with a certain size) likely capture the

main characters of regression relationship between inputs and latent variables.

One of model improvement ideas may emerge is that based on a certain criterion, to

choose a set of pseudo input can provide better input locations so that the prediction

achieves decent or greater accuracy. Such greedy selection scheme is used frequently in

sparse GP approximation methods (Seeger et al. 2003, Teh et al. 2005, Smola & Bartlett

2001, Titsias 2009). We consider a criterion related to entropy.

Entropy is a measure of information complexity of a random variable or process

(MacKay 2003). Low entropy reveals less uncertainty. Intuitively, a random variable given

more information from another variable can be more certainty for predicting behaviour

of a stochastic phenomena. This implies the magnitude of entropy of a conditional dis-

tribution is smaller than that of the unconditional counterpart. The difference between

with and without extra message can be referred to as information gain in entropy (IGE),

which can be one of selection criterion for pseudo inputs. Choosing which input from the

training set z1:N is based on whether the selected input maximises the IGE sum for all

the conditional latent function values.

More specifically, let I be a set consisting the first N integers which index the N

training inputs; S be the current selection index set at the m-th selection step, where

the size is m − 1 and S ⊆ I. We choose a from I for maximising the set function D(a)
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formulising the overall IGE of the conditional GP latent function value f
(i)
q , given the

latent function values generating through the current selection set S and the additional

input a. That is,

max
a∈I

D(a) = max
a∈I

∑
i∈I

[
H(f (i)

q |f (S)
q )−H(f (i)

q |f (S∪{a})
q )

]
. (4.70)

After the m-th input is selected, it is updated into the selection set S for the next selection

step. This selection session stops until the size of S reaches the pre-specified number M .

Here the entropy H of the latent function value f
(i)
q given the current selection set S

and the additional input index a is

H(f
(i)
q |f (S∪{a})

q )

=
1

2
ln{(2πe)

∣∣∣kq({i}, {i})− kq({i},S ∪ {a}) · [kq(S ∪ {a},S ∪ {a})]−1·

kq(S ∪ {a}, {i})
∣∣∣} − const. (4.71)

This equation is derived by the definition of entropy and the identity (A.6) about the

marginal and conditional normal distribution. Furthermore, kq({i}, {i}), kq({i},S ∪{a}))

and kq(S ∪{a},S ∪{a}) are respectively a scalar, a row vector and a matrix that the q-th

covariance function kq(·, ·) evaluates at the inputs indexed as {i}, the set S and {a}15. The

involved hyper-parameters are the point estimates from fitting the q-th marginal model

with a randomly-selected pseudo-input set; and fixed during selection.

Note that in practice, the IGEs in Equation (4.69) are calculated by matrix operations

rather than entry by entry for saving time. All the matrices configured from kq({i}, {i}),

kq({i},S∪{a}), over all i and [kq(S∪{a},S∪{a})]−1 can be saved for calculation in the next

selection step. The new matrices associated with kq({i},S∪{a})and [kq(S∪{a},S∪{a})]−1

are formed based on expanding the old matrices by adding one column or one row of the

original covariance matrix Kq;N , corresponding to the selected index.

The above greedy selection scheme proceeds with fixed GP hyper-parameters. This is

different from the common EM-like manner that one step is to calculate criterion value

and the other step is to select an input are implemented alternatively. The latter manner

can be time-consuming under our model framework.

15Here the expression of kq(·, ·) is different as before. For simplicity we do not use the notation for an

input vector z(n) but keep the superscript for covariates index.
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4.9 Remarks

Based on the ergodic properties of the constructed Markov chains, MCMC methods

provide great availability to estimate parameters for more complex modelling structure,

though samples are dependant and a burn-in threshold value is unknown in prior. The

first two estimation algorithms for sparse GP-SEM mainly depends on the feature of

MCMC methods. More specifically, the MH random-walk sampling approach and its

special version GS sampling methods are applied. As for potentially strongly-correlated

parameters and variables, a strategy of integrating out the associative variables from prob-

abilistic density of the target variable and then sampling it independently is adopted to

improve sampling efficiency, which is similar to the collapsed Gibbs sampling framework

of (Liu 1994). The second algorithm can achieve more efficiency because fixing pseudo in-

puts replaces the MH sampling scheme during iterations. In addition, for latent variables

and latent function whose sampling distributions are Gaussian densities, we use matrix

inversion identities to calculate the mean and covariance matrix boost mixing efficiency.

The third algorithm is mainly founded on optimisation frameworks of MCEM and

IFM. Borrowing features of MCMC methods, the E-step evaluates the conditional ex-

pectation of the complete likelihood (consisting of observations and samples of latent

variables) approximately, and the M-Step conducts parameter optimisation on the ob-

jective function (constructed by the preceding conditional expectation). This procedure

can be implemented for each margin first and then for the joint model, which follows the

IFM estimation scheme. The latter step is to obtain to optimal estimates of dependant

parameters between margins, with fixed margin parameters.

Technically speaking, the predictive distribution of a new data point can be derived as

a normal distribution. However, in practice the approximate evaluation of the mean can

be done simply using the MCMC samples and estimated parameters produced in training

process. In addition, the same instruments works for data generation as well.

Based on information gain in entropy, a greedy selection scheme for pseudo input set is

designed with fixed GP hyper-parameters, estimated by fitting marginal models in prior.

A reduction of predictive error can be possibly achieved.
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Experiments

This chapter provides practice of the proposed methodology and investigates the influence

under different circumstances. The structure follows the empirical studies for three data

sets. Two are the subjects of Section 5.1 and of Section 5.3 (synthetic data), and one is of

Section 5.2 (real criminological data). Each section starts the introduction of dataset with

a brief summary and possible preliminary data process. Each also focuses on two kinds

of experiments - learning and prediction. In Section 5.1, we first conduct convergence

diagnosis for the estimation results from implementing different parameter initialisation

schemes. Then we investigate differences between posterior estimates and true values

of latent variables, and differences in estimates between different model structures. The

experiments for multiple-output prediction proceed with varied number of pseudo inputs,

selection schemes and estimation methods. The assessment of whether the model fits

the data is also implemented. In Section 5.2, we present the results from real data in a

similar way as Section 5.1, and add the prediction study with varied latent variables. In

Section 5.3, we investigate the experiment results by using Bayesian treatment with two

computational strategies in the case of more latent variables involved. This chapter closes

with remarks in Section 5.4.

Note that all experiments are implemented through our Matlab subroutines under a

personal PC with a CPU Intel i5 core 3.2 GHz and 8 RAM.
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5.1 Study I - Synthetic Data

5.1.1 Data description

The properties of the first multiple-output regression dataset are summarised in Table 5.1.

Table 5.1: Properties of Dataset I

Dataset Input Output

Size (N) Dimension (D) character Dimension (R) character

2000 10 continuous 6 continuous

This data are basically generated by the procedures: 1. follow two functional forms

f1(z) = c1
∑10

l=1 z
2
l and f2(z) = c2

∑10
l=1 cos(zl) to produce latent function values, where

c1 and c2 are constants; 2. add Gaussian noises to generate x1 add x2; multiply posited

factor loadings; 3. add Gaussian measurement noises to generate all responses.

Figure 5.1 and Figure 5.2 provide the histograms of covariates and all response variables

respectively. In Figure 5.1 each dimension of a covariate is distributed standard-normally.

It maybe imply that the prominent pattern of regression relationship between covariates

(ranged from -3 and 3) and latent variables, could be captured by random selection for

some pseudo inputs. In Figure 5.2, the distributional shapes reveal that all responses seem

to have a Gaussian density. In fact, the distributions of covariates and responses reflect

the posited data generation mechanism.

The pattern of correlation coefficients shown in Table 5.2 reflects the model structure

used in data generation. Two groups of response variables (y1, y2, y3 and y4, y5, y6) are

designed to measure individual latent variables (that is, Q = 2). As seen, the variables

within the groups have stronger inter-correlations than the variables between the groups.

In the following sections, we adopt a technique of standardisation on the dataset to im-

prove computational efficiency further. We later explore the relationship of the estimated

parameters and variables between before and after the data transformation.
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Figure 5.1: Distributions of the inputs for Dataset I.

Figure 5.2: Distributions of the outputs for Dataset I.
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Table 5.2: Correlation coefficients between response variables of Dataset I

y1 y2 y3 y4 y5 y6

y1 1 0.77 -0.77 -0.18 0.19 0.17

y2 1 -0.76 -0.19 0.19 0.10

y3 1 0.20 -0.21 -0.20

y4 1 -0.77 -0.77

y5 1 0.78

y6 1

5.1.2 Learning

5.1.2.1 Examination of Parameter Initialization and Model Estimation

To set reasonable initial values for parameters could be necessary in the model estimation

proceeding. We use two initialisation settings to investigate the difference of estimation

results. They are random initialisation (RI) - randomly generate initial values for all pa-

rameters; partial deterministic initialisation (PDI) - deterministically assign initial values

for the parameters of marginal models with the prior estimates (from the ergodic average

or the point estimate by fitting marginal models using MCMC or MCEM methods, re-

spectively). Although the initial values of correlations are set randomly here, they could

be obtained from the estimates from the joint modelling fitting. The settings of random

initialisation of correlations connect with the efficient computing strategy we would discuss

later.

For other experiment settings, we set an initial number of pseudo inputs M as 200, the

number of MCMC samples, Nmcmc as 5000, for applying the improved sampler in Section

4.3. And we set the number of samples for marginal model as 3000, the number of EM

iterations as 40 with the varied number of inner MCMC samples (details mentioned later),

for using the hybrid algorithm in Section 4.6.

In Figure 5.3-5.5, we provide the trace plots of 10-chain estimated parameters with

different initialization settings and estimation algorithms - the improved sampling schemes

with MCMC methods and the hybrid approach of IFM and MCEM. In the labels, the

initialisation setting is specified before the comma. The words in the bracket point out

the estimation method for fitting marginal models. The words after the comma indicate

the estimation methods for fitting a joint model. For the bottom-right figures, the term
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(a) RI, MCMC (b) PDI(EM), MCMC

(c) PDI(MCMC), MCMC (d) RI,EM-EM

Figure 5.3: The trace plots of 10 simulations for factor loading λ31 with using different

initialisation settings and estimation methods.

(EM-EM) after the comma represents the use of the hybrid method. Here because of

space we only show the plots of one factor loading, a latent error correlation and one

measurement error variance.

A simple visual inspection for estimation convergence can be implemented. All the

top-left pictures show the 10 chains with different initial values (randomly generated from

an appropriate probability density1) start fluctuating around a value after some iterations,

based on which the value of burn-in can be roughly decided. This perhaps implies the

setting of RI does not greatly affect the MCMC parameter estimation. The top-right and

bottom-left figures indicate the parameter estimate seemingly remains within a range from

the beginning of simulation. This could imply the initial values of parameters, which are

achieved by fitting marginal models by both methods, are rather close to the true values.

The conditional distributions seem unnecessary to transit to the target distribution after

some iterations but remain in it already. The bottom-right plots show the estimates start

increasing or decreasing slowly merely after some EM iterations.

1The random initial values for factor loadings, latent correlation (cross-covariance of GP latent errors)

and measurement error variances, are generated respectively from a Gaussian, uniform, and inverse-gamma

distributions.
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(a) RI, MCMC (b) PDI(EM), MCMC

(c) PDI(MCMC), MCMC (d) RI, EM-EM

Figure 5.4: The trace plots of 10 simulations for measurement error σ2
y6 with using different

initialisation settings and estimation methods.

(a) RI, MCMC (b) PDI(EM), MCMC

(c) PDI(MCMC), MCMC (d) RI, EM-EM

Figure 5.5: The trace plots of 10 simulations for latent correlation σx12 with using different

initialisation settings and estimation methods.
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Instead of simple visual convergence diagnosis, the estimated potential scale reduction

(EPSR) values can be calculated (Lee 2007, Gelman & Rubin 1992, Gelman et al. 2004).

The values assess convergence through variances of between and within multiple simulated

sequences. Moreover, the EPSR value of a parameter is calculated in the quotient of the

marginal posterior variance of the estimate, obtained by a weighted average consisting of

the between-chain and the within-chain variances. If the EPSR values of all parameters

are under 1.2, the simulation convergence can be assumed to be achieved. We report the

results in the following table. Other convergence diagnostic methods for MCMC methods

can be found in a review of (Cowles & Carlin 1996).

Table 5.3: The EPSR values and the relative change rates of estimated parameters under

different circumstances for the standardized Dataset I.

parameter RI, MCMC PDI(MCMC), MCMC PDI(EM), MCMC RI, EM-EM

θh,11 1.08 1.01 1.01 0.001

θh,21 1.08 1.01 1.01 0.001

θh,12 1.11 1.03 1.02 0.001

θh,22 1.10 1.02 1.03 0.000

σx12 1.03 1.01 1.01 0.002

λ11 1.06 1.02 1.02 0.002

λ21 1.06 1.02 1.01 0.002

λ31 1.06 1.02 1.01 0.002

λ42 1.09 1.03 1.02 0.002

λ52 1.09 1.03 1.03 0.002

λ62 1.09 1.03 1.03 0.002

λ02 1.00 1.00 1.00 0.004

λ03 1.00 1.00 1.00 0.004

λ04 1.00 1.00 1.00 0.003

λ05 1.00 1.00 1.00 0.003

σ2
y1 1.00 1.00 1.00 0.000

σ2
y2 1.00 1.00 1.00 0.000

σ2
y3 1.00 1.00 1.00 0.000

σ2
y4 1.00 1.00 1.00 0.000

σ2
y5 1.00 1.00 1.00 0.000

σ2
y6 1.00 1.00 1.00 0.000

As seen in Table 5.3 (except the first and the last column), all EPSR values2 are under

2For latent correlation and factor loadings, due to possible sign differences under the parameter con-

89



CHAPTER 5. EXPERIMENTS

1.2. Some EPSR scales under the setting RI are slightly higher than those under PDI.

This could result from the transits of some chains of parameters starting initial values

departing from the true values. The EPSR scales of the measurement error variances

under RI and PDI are the same because of simulating efficiently.

For convergence diagnosis of the hybrid method, the EPSR values of parameters are

unable to be produced due to the optimisation estimation. Instead, we can calculate

the absolute change (the absolute value of difference of the two successive estimates),

or relative change (the absolute value of the quotient of absolute change and current

estimate) of the estimated values during iterations. Estimation convergence is able to

be claimed if the errors are smaller than a pre-defined tolerance error. This stop rule

should be examined for several iterations because a criterion value may be smaller than

the tolerance by chance. Note that even when convergence is achieved, the estimates could

be different due to the initial values, selected pseudo inputs and the nature of stochastic

simulation.

With the same conditions used in the deterministic scheme3, absolute or relative errors

could still be greater than the pre-determined tolerance when the iterations finish. This

may happen because the errors are dominated by the sampling errors, which are not

diminished enough. One philosophy (Booth et al. 2001, Chan & Ledolter 1995, Wei &

Tanner 1990) claims the errors can be reduced still by increasing the simulation (MC or

MCMC) sample size steadily with iterations. Another philosophy claims that fixing the

sample size for each iteration is sufficient (Delyon et al. 1999, Celeux & Diebolt 1992).

Here, we adopt the former because of the conventional implementation of MCEM (Wei &

Tanner 1990, McCulloch 1997). We set 200 MCMC samples for the first 30 iterations and

500 for the last 10 iterations.

We only report the average relative changes for the last 5 iterations in the last column

in Table 5.3. As can be seen, all relative changes are smaller than 0.005. There are some

other criteria; for example, we calculate the absolute change of values of the score function

(or the Q-function ) as an auxiliary tool, which was also considered in (Caffo et al. 2005).

We report the 10-chain average estimated parameters (acquired by calculating the

strains, we calculate the values after taking absolute values for the estimates.
3Those conditions contain the same initial values and the iteration number, which is sufficient to ensure

convergence under deterministic scheme. And the deterministic scheme is the estimation procedure that

the closed-form of conditional expectation of complete likelihood can be derived.
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ergodic averages) and the average standard deviation of samples in Table 5.4.

Table 5.4: The true values and the averages of the 10-chain estimates under different

circumstances.

True RI, MCMC PDI(EM), MCMC PDI(MCMC), MCMC RI, EM-EM

parameter mean sd mean sd mean sd mean

θh,11 none 2.04 0.07 2.03 0.06 2.06 0.06 2.26

θh,21 none 1.78 0.06 1.79 0.06 1.79 0.06 1.70

θh,12 none 2.54 0.11 2.53 0.11 2.56 0.11 2.86

θh,22 none 2.26 0.11 2.28 0.12 2.27 0.12 2.20

σx12 0.60 0.64 0.05 0.64 0.05 0.64 0.05 0.68

λ11 -0.39 -0.39 0.02 -0.39 0.02 -0.39 0.02 -0.38

λ21 -0.38 -0.39 0.02 -0.39 0.02 -0.38 0.02 -0.38

λ31 0.39 0.39 0.02 0.39 0.02 0.38 0.02 0.38

λ42 -0.39 -0.36 0.02 -0.36 0.02 -0.36 0.02 -0.35

λ52 0.38 0.37 0.02 0.37 0.02 0.37 0.02 0.35

λ62 0.39 0.36 0.02 0.37 0.02 0.36 0.02 0.35

λ02 0.00 0.02 0.01 0.02 0.01 0.02 0.01 0.01

λ03 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.01

λ04 0.02 0.02 0.01 0.02 0.01 0.02 0.01 0.01

λ05 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.01

σ2
y1 0.23 0.24 0.01 0.24 0.01 0.24 0.01 0.23

σ2
y2 0.23 0.24 0.01 0.24 0.01 0.24 0.01 0.23

σ2
y3 0.24 0.25 0.01 0.25 0.01 0.25 0.01 0.23

σ2
y4 0.24 0.25 0.01 0.25 0.01 0.25 0.01 0.23

σ2
y5 0.23 0.23 0.01 0.23 0.01 0.23 0.01 0.22

σ2
y6 0.24 0.24 0.01 0.24 0.01 0.24 0.01 0.23

As we see from Table 5.4, under different initialisation of parameters, the estimates

obtained by fitting a joint model with using the MCMC method are close to true values

(listed in the first column4) and almost within the range of one standard derivation. In

contrast, the hybrid-method estimates in few of factor loadings and σx12 have a compar-

atively noticeable difference with the true values. The GP hyper-parameters in θh,11 and

θh,12 differentiate by 0.2-0.3 from those estimated using MCMC methods under the three

initialisation settings. The estimated loadings are obtained by averaging the absolute er-

godic averages or final point estimates of the chains and then adding the same signs as

4In the next subsection, we would explain how to acquire the values.
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those of the true ones. The same treatment is used for the latent correlation σx12 . Fur-

thermore, the magnitude of the standard deviations can be reduced by generating more

samples if one would like more precise estimates.

5.1.2.2 Comparison between Posterior Estimated and Exact Latent Variables

To learn the Bayesian estimates of latent variables is sometimes useful in applications, such

as cluster analysis. Here we first intend to investigate the similarity between the estimated

latent variables and the true ones. However, our posterior estimates are acquired by fitting

model to a standardized data. It is necessary to discover the inter-relations of parameters

and variables with and without data standardisation.

The posterior estimated latent variables acquired by using MCMC methods are given

by

x̂(n)
q = E[x(n)

q )|Y] =
1

Nmcmc −B

Nmcmc∑
i=B+1

x(n),[i]
q ,

where the notation [i] indexes a MCMC sample at the i-th iteration. The calculation of

the estimates obtain by using the hybrid algorithm is the same but the denominator is

changed to Nmcmc, which indicates the sample size in the last optimisation iteration.

To realize the relationship between the estimates upon standardised and non-standardised

data, the investigation could start from visual observations.

Figure 5.6 shows two evident features by comparing the three-color clusters, where the

blue, green and red indicate the distributions of latent variables under three circumstances

(true values, estimates before and after data standardisation). The first is that the promi-

nent distribution shapes remain, and the second is that a translation seemingly exists

among the green cluster and the others. The standard deviations of those estimates are

rather similar, 2.25 in x1 and 2.23 in x2 with an error of ±0.05, which verifies the analogue

distribution feature. The distances between the individual distributional means in x1 and

x2 reveal that the true latent points and the estimated ones without data standardisation

are almost identical. The mean distances between the estimate with data standardisation

and the true points are 4.39 in x1 and 8.61 in x2. Actually, these magnitudes could be

obtained by some simple derivations below.

Assume the first response y1 is an anchor variable, x1 is the corresponding latent
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Figure 5.6: The distributions of the true latent variables and the posterior estimates before

and after data standardisation.

variable, and let the mean and standard deviation of y1 be µ1 and σ1. Then

y1 = λ01 + λ11x1 + εy1

⇔ y1 − µ1

σ1
=

λ01 − µ1

σ1
+
λ11

σ1
x1 +

εy1
σ1

⇔ y1 − µ1

σ1
=

λ11

σ1
(x1 +

λ01 − µ1

λ11
) +

εy1
σ1

⇔ y∗1 = λ∗11x
∗
1 + ε∗y1 ,

where the superscript ∗ indicates the variables or parameters being transformed; y∗1 is a

standardized response. Next, we assume the second response y2 is a non-anchor variable

which has the same parent latent variable, then

y2 = λ02 + λ21x1 + εy2

⇔ y2 − µ2

σ2
=

λ02 − µ2

σ2
+
λ21

σ2
x1 +

εy2
σ2

⇔ y2 − µ2

σ2
=

λ21

σ2
(x1 +

λ01 − µ1

λ11
) + (−λ21

σ2

λ01 − µ1

λ11
+
λ02 − µ2

λ21
) +

εy2
σ2

⇔ y∗2 = λ∗21x
∗
1 + λ∗02 + ε∗y2 .

The same derivations can be done for the other group of responses. For example, assume

y6 is an anchor variable, x2 is the corresponding latent variable. Then the difference
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between the true and the transformed latent variables is λ06−µ6
λ62

, which also accounts for

the distance of 4.39 in x1 and of 8.61 in x2 shown in Figure 5.6.

The above derivations uncover the relationship between the original variables (or

parameters) and the transformed ones. The transformed measurement error variance

Var(ε∗y1) can also be derived by σ2
y1/σ

2
1. The differences of λ01−µ1

λ11
and λ06−µ6

λ62
mathemat-

ically explain a translation of the original latent variable and the transformed one. The

correlation of latent errors σx12 remain the same after data standardisation. The reason

is that the standardised covariates and the translation of latent variables merely change

the original functional relation, controlled by the new GP hyper-parameters.

Now we can quantitatively compare the transformed latent variables with the poste-

rior estimated counterpart. The mean square error (MSE) is adopted, which is similar to

residual sum of square in regression analysis to measure the dissimilarity; the small mag-

nitude suggests learning the main feature of distributions of latent variables is capable.

The similarity measure is
1

N

∑
n=1

(x̂(n)
q − x(n)

q )2.

It is also interesting to investigate what effects would be on latent variables if no

association between them is assumed. In other words, we assume independence between

latent errors εx. Thereby there is no links between latent variables in the model structure.

Table 5.5 summarises the 10 experiment results for that investigation. It contains the

mean differences of MSEs under different scenarios and their p-values from using Wilcoxon

signed rank test. The first result shows that without association, the MSE differences

between two estimation methods (the MCMC and hybrid approaches5) is statistically

non-significant. This suggests that the estimated latent variables from fitting marginal

models using both methods are evidently similar. The second and third results indicate

that whichever methods are adopted, statistically significant differences exist in the MSEs

of latent variables from fitting model under the structures with and without the linkage.

Although the mean differences in x1 and x2 are small, the effect of structure difference

shows the dissimilarity in latent variables. The fourth comparison suggests that under the

linked model structure, the two methods indeed have difference in the estimation of latent

variables. This reflects the estimation characteristics distinction of the methods. We later

5In this case, one only needs to implement the MCEM method for the first step of the hybrid algorithm

and also to carry out the MCMC method for fitting each marginal model.

94



CHAPTER 5. EXPERIMENTS

discuss the distinction in the associated predictive task. It is noted that the last three

comparison results perhaps explain the estimation difference in factor loadings and latent

error correlation (refer to Table 5.4).

Table 5.5: Comparisons of the MSEs of the posterior estimates for latent variables using

two estimation methods, based on 10 experiment results. The subscripts + and − indicate

the model structures with and without assuming associations between latent errors (or

conditional latent variables given covariates).

MCMC− vs. Hybrid− MCMC+ vs. MCMC− Hybrid+ vs. Hybrid− MCMC+ vs. Hybrid+

mean diff. p-value mean diff. p-value mean diff. p-value mean diff. p-value

x1 -0.001 0.275 -0.027 0.002 -0.017 0.002 -0.011 0.002

x2 0.006 0.557 -0.076 0.002 -0.012 0.002 -0.069 0.002

5.1.3 Prediction

To evaluate model predictive performance, we use a common measure, root of mean square

(RMSE), as our criteria for different predictive tasks. The definition of RMSE is given by√
1

N

∑
n=1

(y
(n)
new − y(n))2.

For this synthetic data, we create 100 independent instances that 2000 data points are

evenly partitioned as training and test points.

5.1.3.1 Comparison of Models with Selection Quantity and Selection Scheme

of Pseudo-inputs

Table 5.6 provides the comparison of experiment results. The first results merely suggest

that there exist non-linear functional relationships between covariates and responses. This

is because the RMSEs by using least square (LS) methods independently are greater than

those by using GP regression (GPR). The second outcomes reveal that as the number of

randomly selected pseudo inputs increases (with 10, 50, 100), the predictive performance

of sparse GP-SEM using MCMC methods becomes parallel to that of GPR. This certainly

makes sense because increasing the number more likely captures the non-linear functional

relation between covariates and latent variables. The RMSEs of sparse GP-SEM with

100 pseudo inputs are statistically significantly smaller than those with fewer inputs by
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marginal differences. This may result from the precise capture of non-linear relation and

good approximation of model parameters, such as factor loadings.

The third experiment shows that the RMSEs of using greedy selection (GS) scheme

indeed outperform those of using random selection (RS) although the differences turn

marginal with the number. The reason can be that the greedily-selected pseudo inputs

somehow constitutes a set of inputs whose latent function values are overall diffuse and

have large enough inter-distance. In other words, the latent function values may sketch

the true functional relation to some extent. Increasing the randomly-selected pseudo-

input number can make the latent function values compact enough to capture non-linear

function relation. This can also happen for the latent function values through greedily-

selected pseudo inputs too. In fact, the GS inputs are selected based on the estimates

using the RS scheme. Hence, this leads almost identical RMSEs under both selection

schemes when the pseudo-input number is large.

The last result shows that with any number of pseudo inputs, the RMSEs of using

the MCMC method have difference with those of using hybrid approaches in terms of

statistically significance. This reflects the small differences in estimated parameters (shown

in Table 5.4) and in latent variables (shown in Table 5.5). It also implies the hybrid method

may slightly lost accuracy in estimation and in prediction to some degree. —

Those RMSE difference could be due to the distinction of the methodological nature.

For any algorithms, when the number is low, the GP latent functions may not capture

the true regression relationship exactly. This may lead inappropriate estimates, such as

the GP hyper-parameter estimates, factor loadings and intercepts. The first step of the

hybrid method may produce more biased estimates because of limited information from

data, consisting of subset of response variables. Fixing those averages for fitting the

joint model (that means implementing the second step), the sampled latent functions f

and latent variable x deviate from the locations where they are generated for fitting a

marginal model (refer to the third comparison result in Table 5.5). The deviation force

could be due to mutual influence among latent variables through the link of latent errors.

The discrepancy of latent-variable location along with the fixed loadings and measurement

error variances cause more predictive errors than those solely fitting marginal models for

prediction.

In contrast, if predicting responses by fitting the joint model, one would not meet
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such kind of discrepancy problem. All parameters and variables seemingly reach relatively

appropriate locations for prediction. This may be because we use full information of data.

In addition, the differences in RMSE between the two methods decrease with pseudo-

input number. It perhaps could result from that the aforementioned discrepancy reduces.

Also, the realised function values gradually capture the true regression functional and the

estimated parameters become closed.

5.1.3.2 Model Checks with Posterior Predictive Checks

Instead of calculating RMSE for each response, we can also assess the discrepancy be-

tween the empirical training data and the replicated data for evaluating model predictive

performance. The reason for the assessment is to know whether any features of the ob-

served data are similar to those of the replicated counterparts generated by the posterior

prediction distribution. If most of the quantitative feature values of the replicated data

cover the observed feature value, it could be believed that model fits data properly. Thus,

it implies the model predictive capability could allow one to capture subtle characteristics

in outcome data given training inputs.

The assessment is based on posterior predictive check (PPC) (Gelman et al. 1996,

Gelman et al. 2004, Gelman & Hill 2007). It follows three procedures: 1. generate a set

of fake data by posterior predictive distribution given all inputs used in model fitting; 2.

calculate “parameter-related” test statistics (or discrepancy) of the empirical data and of

each replicated data, denoted by T (Y) and T (Yrep) respectively; 3. compare the values

and calculate the proportion of T (Yrep) greater than T (Y) as posterior predictive (PP)

p-value, which functions as similarly as does classical p-value. If the pp p-value is close to

0 or 1, say smaller than 0.05 or greater than 0.95, then it reveals that the replicated data

cannot capture the empirical feature in the aspect of test statistics and signals model misfit

with high likelihood. Gelman et al. (2004) also suggests practitioners to use multiple test

statistics for assessment. This can help to realize model defeats and give an insight for

possible model improvement or expansion.

We adopt χ2-type discrepancy quantity which is commonly used to measure goodness

of model fit. It is

T (Y|Ω) =

N∑
n=1

{
[y(n) − E(y(n)|Ω)]TCov(y(n)|Ω)−1[y(n) − E(y(n)|Ω)]

}
, (5.1)
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Table 5.6: Comparisons of the RMSEs under different circumstances, based on 100 ex-

periment results. Here M means the number of psuedo inputs; the superscript IND, RS

and GS indicate independent implementation, random and greedy selection schemes for

pseudo inputs, respectively.

LRIND vs. GPRIND

mean diff. p-value

y1 0.352 0.000

y2 0.339 0.000

y3 0.341 0.000

y4 0.339 0.000

y5 0.343 0.000

y6 0.345 0.000

GPRIND vs. M = 10 M = 50 M = 100

Sp. GP-SEMRS (MCMC) mean diff. p-value mean diff. p-value mean diff. p-value

y1 -0.280 0.000 -0.009 0.000 0.009 0.000

y2 -0.266 0.000 -0.087 0.000 0.012 0.000

y3 -0.276 0.000 -0.093 0.000 0.010 0.000

y4 -0.264 0.000 -0.092 0.000 0.009 0.000

y5 -0.259 0.000 -0.093 0.000 0.009 0.000

y6 -0.262 0.000 -0.092 0.000 0.010 0.000

Sp. GP-SEMRS (MCMC) vs. M =10 M =50 M =100

Sp. GP-SEMGS (MCMC) mean diff. p-value mean diff. p-value mean diff. p-value

y1 0.045 0.000 0.017 0.000 0.000 0.660

y2 0.046 0.000 0.015 0.000 -0.000 0.315

y3 0.047 0.000 0.016 0.000 0.000 0.332

y4 0.052 0.000 0.022 0.000 0.001 0.000

y5 0.059 0.000 0.026 0.000 0.001 0.003

y6 0.058 0.000 0.022 0.000 0.001 0.000

Sp. GP-SEMRS (MCMC) vs. M = 10 M =50 M =100

Sp. GP-SEMRS (Hybrid) mean diff. p-value mean diff. p-value mean diff. p-value

y1 -0.028 0.000 -0.016 0.000 -0.007 0.000

y2 -0.026 0.000 -0.015 0.000 -0.008 0.000

y3 -0.025 0.000 -0.017 0.000 -0.006 0.000

y4 -0.043 0.000 -0.022 0.000 -0.011 0.000

y5 -0.033 0.000 -0.021 0.000 -0.012 0.000

y6 -0.041 0.000 -0.020 0.000 -0.012 0.000
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where Ω contains all estimated parameters; E(y(n)|Ω) and Cov(y(n)|Ω) are given by

Equations (4.62) and (4.63). Based on this formulation, three test statistics (denoted by

T1(Y), T2(Y), T3(Y)6) can be used for model fitting assessment. They are respectively

to calculate the statistic values for the indicators corresponding to the first, the second

latent variable and both. The indicator vector y in Eqn.(5.1) is (y1, y2, y3), (y4, y5, y6)and

(y1, y2, y3, y4, y5, y6).

Figure 5.7 shows the replication distribution of the three test statistics for 2000 fake

data sets. The PP p-values are 0.357, 0.405 and 0.793, which between 0.05 and 0.095.

Also, the three red lines representing the test statistic values for observed data are in the

region where more replicated values lie. All indicates the model fits data well and thus we

could believe the observed data generated by the model and the factor structure.

Figure 5.7: The replicated distributions and the observed value for the three test statistics

(T1(Y), T2(Y), T3(Y)). The vertical red line represents the observed value of the test

statistic. The replicated distributions are formed by 2000 replicated statistic values.

Another experiment can be conducted to investigate the effect on PP p-values given

different factor structure. We deliberately set a factor structure that (y1, y5, y6) and

(y2, y3, y4) measure two different latent variables respectively. After model fitting, the

PPC procedure is conducted as the preceding experiment. Figure 5.8 exhibits a strong

evidence of model misfitting. It is because for all test statistics the PP p-values are 0, and

the observed values are far away from the replicated ones. This experiment suggests that

the model checking (using the three test statistics) indeed has adequate power to detect

inappropriateness of a “wrong” model7.

6For notation simplicity, we skip the estimated parameters Ω.
7 The idea that we use the word ”wrong” here is from George Box’s famous quote “essentially, all

models are wrong, but some are useful.” In reality, we never know whether the factor structure used in
model fitting is true or not, only through the model checking procedure one knows the inappropriateness.
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Figure 5.8: The replicated distributions and the observed value for the three test statistics

(T1(Y), T2(Y), T3(Y)) with another factor structure. The vertical red line represents

the observed value of the test statistic. The replicated distributions are formed by 2000

replicated statistic values.

5.1.3.3 Discovering Functional Relationship

It is also interesting to realize the univariate functional relationship between a covariate

and latent variables.

Since having multiple dimensions of covariates, we need a special procedure. Suppose

the parameters estimated from training process are given first. Then one can use Equation

(4.67) (without involving loadings and intercepts) to evaluate the predictive latent variable

at a specified test input vector, where a constant c is set at a covariate of interest. Next,

one has to average the resulting values consisting of all the evaluations over the specified

test inputs to marginal out the effect of the other covariates. This is correct if covariates

are mutually independent as in our example. Finally, the functional relationship could be

realized by evaluating the mean at different values of c.

Figure 5.9 below shows the realized regression relationship between a covariate z1 and

x1 through prediction. The ten curves are sketched upon the first ten folds of test sets.

They all manifest the true quadratic relation. The results of mirror-reflected characteristics

are due to the sign difference of loadings.
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Figure 5.9: The predictive marginal expectation of the regression of latent variable x1

against a covariate z1. The expected value of E[x1|z1 = c] is evaluated by averaging all

the predictive x1 over test data points, given a test input vector z, where z1 = c.

5.2 Study II - Criminological Data

5.2.1 Data description

The second dataset is extracted from a US community-and-crime study which combines

three associative data in 1990 and 1995.8 The original study has 2215 data points in total,

each represents a US city, and the goal is to investigate whether 129 covariates (including

demographic and socioeconomic information) predict the occurrence of 18 target crime

variables, such as the number and the rate of robbery incident. The data extraction is

that of 129 covariates, we remove some variables which are nominal and of high proportion

of missing value, and then only choose variables whose correlations are less than 0.95.9.

We additionally use log-transformation to adjust the input scale. Next we select target

variables whose missing rate is low and which can present the incident number per 100

thousand populations. Finally we delete data points having missing value in target vari-

8The data (communities and crime unnormalized data set) can be accessed in UCI machine learning

repository website.
9Drop columns of the covariate dataset based on the amount of correlation among items. If two variables

have an absolute correlation exceeding a particular value, drop the one with the highest index.
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ables and extreme values in the predictors (for example a city has more than 100 thousand

inhabitants) and then take log on target variables for scale adjustment. The properties of

the resulting dataset are summarised in Table 5.7.

Table 5.7: Properties of the dataset II

Dataset Input Output

Size (N) Dimension (D) character Dimension (R) character

1744 80 continuous 8 continuous

Note that 80 inputs might still be too high for nonparametric GP regression. Some

inputs may be highly correlated and have weak influence on the outputs. Here we do not

intend to do further variable selection or dimension reduction for covariates. The reason

is that we would like to see how the whole framework tackles and what possible significant

influence of those predictors on the targets are. Feasible treatments for high-dimensional

covariates are left for discussion in conclusion.

Figure 5.10: Distributions of the outputs for Dataset II.

Because of space, we do not provide visual distributional presentation for the 80 co-
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variates here but brief information. Overall, the inputs are distributed variously. Most

have (positive or negative) skewed distributions with different degrees of skewness, but

some appear bell-shaped, could possibly assume as normal distributions.

Figure 5.10 shows the distributions of response variables. In the first histogram, high

proportion of data points comprises a spike situated near 0, and the rest constitutes a

hump located in the right side of the spike and distributed roughly normally. The similar

scenario occurs in the second and eighth pictures but the spike is made up of less data

points and the hump composes more. The rest of graphs exhibit data points seem to has an

nearly normal distribution except the fourth can be regarded as a slightly negative-skewed

distribution.

Table 5.8: Correlation coefficients between response variables of Dataset II

y1 y2 y3 y4 y5 y6 y7 y8

y1 1 0.38 0.53 0.48 0.52 0.37 0.42 0.27

y2 1 0.45 0.50 0.54 0.50 0.38 0.35

y3 1 0.58 0.70 0.55 0.72 0.35

y4 1 0.67 0.47 0.57 0.33

y5 1 0.68 0.64 0.41

y6 1 0.49 0.36

y7 1 0.32

y8 1

In Table 5.8, we can see most of correlation coefficients of the response variables are

low and moderate. There is no clear pattern to classify the variables. However, the 8

target variables represent the numbers of incidents per 100000 people for murders, rapes,

robberies, assaults, burglaries, larcenies, auto thefts and arsons. Hence, we could use

their literal meanings for roughly grouping the response variables. Then murders, rapes,

robberies and assaults are for violent crime; burglaries, larcenies, auto thefts and arsons

are for non-violent crime. Our initial posited factor structure with two latent variables is

used in most of the subsequent subsections.

5.2.2 Learning

For the experiment settings, the number of pseudo inputs M is set as 200, the number of

MCMC samples, Nmcmc as 2000. The sample size for fitting a marginal model as 2000, the
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number of EM iterations as 40 and the inner sample size as 150 for the first 30 iterations

and 400 for the last 10 iterations.

5.2.2.1 Examination of Parameter Initialization and Model Estimation

This section proceeds as Section 5.1.2.1 does. Simple visual inspection can be conducted

for parameter estimation using different methods (the MCMC and hybrid approach) and

two initialisation schemes (RI and PDI). Figure 5.11, 5.12 and 5.13 show the same story

about estimation as before for the factor loading, latent correlation, and measurement

error variance. The convergence recognition is based on that the absolute estimate values

seem consistent. With the RI setting, the 5-chain estimated parameters seem to converge

after some MCMC iterations, but with PDI the values seemingly remain. The estimation

using the hybrid approach (labelled by (RI, EM-EM) appears convergent at different rates.

(a) RI, MCMC (b) PDI(EM), MCMC

(c) PDI(MCMC), MCMC (d) RI, EM-EM

Figure 5.11: The trace plots of 5 simulations for factor loading λ52 with using different

initialisation settings and estimation methods.

Table 5.9 provides quantitative diagnosis for 5 simulation chains. With RI initiali-

sation, most of EPSR values are smaller than 1.2, which indicates setting 2000 MCMC

samples seems reasonable. In contrast, all EPSR values with PDI scheme are lower than

1.2, which can result from the fair initial values. All the relative changes of parameter
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(a) RI, MCMC (b) PDI(EM), MCMC

(c) PDI(MCMC), MCMC (d) RI, EM-EM

Figure 5.12: The trace plots of 5 simulations for measurement error σ2
y3 with using different

initialisation settings and estimation methods.

(a) RI, MCMC (b) PDI(EM), MCMC

(c) PDI(MCMC), MCMC (d) RI, EM-EM

Figure 5.13: The trace plots of 5 simulations for latent correlation σx12 with using different

initialisation settings and estimation methods.
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estimates by using the hybrid method are smaller than 0.005, which could be considered

convergence.

Table 5.9: The EPSR values and the relative change rates of estimated parameters under

different circumstances for the standardized Dataset II.

parameter RI, MCMC PDI(EM), MCMC PDI(MCMC), MCMC RI, EM-EM

θh,11 1.15 1.10 1.09 0.001

θh,21 1.12 1.03 1.03 0.000

θh,12 1.11 1.08 1.08 0.002

θh,22 1.19 1.10 1.09 0.000

σx12 1.01 1.01 1.01 0.005

λ11 1.09 1.05 1.05 0.003

λ21 1.07 1.04 1.04 0.003

λ31 1.12 1.07 1.06 0.004

λ42 1.06 1.02 1.02 0.005

λ52 1.19 1.16 1.16 0.003

λ62 1.09 1.05 1.05 0.001

λ72 1.08 1.04 1.04 0.001

λ82 1.14 1.05 1.05 0.001

λ01 1.00 1.00 1.00 0.003

λ02 1.00 1.00 1.00 0.004

λ04 1.00 1.00 1.00 0.005

λ06 1.00 1.00 1.00 0.004

λ07 1.00 1.00 1.00 0.004

λ08 1.00 1.00 1.00 0.004

σ2
y1 1.09 1.07 1.06 0.000

σ2
y2 1.08 1.05 1.05 0.000

σ2
y3 1.21 1.16 1.17 0.001

σ2
y4 1.10 1.04 1.04 0.001

σ2
y5 1.18 1.14 1.13 0.001

σ2
y6 1.20 1.12 1.12 0.000

σ2
y7 1.12 1.11 1.11 0.000

σ2
y8 1.04 1.04 1.04 0.000

Table 5.10 provides all average parameter estimates over 5 chains. With any initialisa-

tion schemes, all MCMC estimates excluding GP hyper-parameters are almost identical.

By contrast, small differences exist in some of the parameter estimates for using the hybrid

method. Note that all scenarios in estimation are rather similar to those for Dataset I. In

106



CHAPTER 5. EXPERIMENTS

addition, there is one interesting point that the estimated latent correlation σx12 is high,

around 0.9. This may suggest the latent variables (violent crime factor x1 and non-violent

crime factor x2) are highly positive associated, which can be observed in Figure 5.14. It

perhaps concludes that a city with high score in violent crime factor also has high mark

in non-violent crime factor. It may imply that if a city has large numbers of incidents

in 100000 population for murders, rapes, robberies and assaults, then it would have high

incident rates for burglaries, larcenies, auto thefts and arson; vice visa10.

Figure 5.14 also reveals some information about the posterior estimated latent vari-

ables. Firstly, regarding the distributional shapes, a translation seems to occur between

the standardised and non-standardised data. This re-verifies the derivation made in the

last section for Dataset I. Secondly, the distribution also shows the existence of one cluster.

It may indicate that over all data points, each latent variable follows a unimode Gaussian

distribution.

Figure 5.14: The distributions of the true latent variables and the posterior estimates

before and after data standardisation for Dataset II.

10This interpretation is made under the positive factor loadings.
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Table 5.10: The true values and the averages of the 5-chain estimates under different

circumstances.

RI, MCMC PDI(EM), MCMC PDI(MCMC), MCMC RI, EM-EM

parameter mean sd mean sd mean sd mean

θh,11 2.78 0.08 2.96 0.04 2.75 0.04 2.89

θh,21 2.64 0.08 2.73 0.05 2.62 0.06 2.84

θh,12 1.16 0.10 1.21 0.07 1.18 0.09 1.39

θh,22 0.70 0.11 0.82 0.09 0.76 0.08 0.92

σx12 0.86 0.02 0.86 0.02 0.86 0.02 0.90

λ11 0.21 0.01 0.21 0.01 0.21 0.02 0.19

λ21 0.19 0.01 0.19 0.01 0.19 0.02 0.18

λ31 0.27 0.01 0.27 0.02 0.27 0.02 0.25

λ41 0.23 0.01 0.23 0.01 0.23 0.02 0.22

λ52 0.42 0.02 0.42 0.02 0.42 0.02 0.43

λ62 0.35 0.01 0.35 0.01 0.35 0.02 0.35

λ72 0.33 0.01 0.33 0.01 0.33 0.02 0.32

λ82 0.22 0.01 0.22 0.01 0.22 0.02 0.22

λ01 0.02 0.01 0.02 0.01 0.02 0.01 0.01

λ02 0.02 0.01 0.02 0.01 0.02 0.01 0.01

λ04 0.02 0.01 0.02 0.01 0.02 0.01 0.01

λ06 0.02 0.01 0.02 0.01 0.02 0.01 0.01

λ07 0.02 0.01 0.02 0.01 0.02 0.01 0.01

λ08 0.02 0.01 0.02 0.01 0.02 0.01 0.01

σ2
y1 0.56 0.02 0.56 0.02 0.56 0.02 0.55

σ2
y2 0.65 0.03 0.66 0.03 0.65 0.03 0.65

σ2
y3 0.28 0.02 0.28 0.02 0.28 0.02 0.29

σ2
y4 0.47 0.02 0.47 0.02 0.47 0.02 0.47

σ2
y5 0.19 0.01 0.20 0.01 0.19 0.01 0.18

σ2
y6 0.45 0.02 0.45 0.02 0.45 0.02 0.45

σ2
y7 0.51 0.02 0.51 0.02 0.51 0.02 0.52

σ2
y8 0.79 0.03 0.79 0.03 0.79 0.03 0.79
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5.2.3 Prediction

We use 5-fold cross validation to evaluate the model predictive performance. Therefore,

the training and testing sets have around 1395 and 349 data points, respectively.

5.2.3.1 Comparison of Model Predictive Performance with Quantity of Pseudo-

inputs

Table 5.11 compares all model prediction results using least-square (LS), Gaussian pro-

cess regression (GPR), and fitting sparse GP-SEM under the two methods with different

numbers of pseudo inputs. The first comparison indicates the RMSE differences between

using LS and GPR independently on all the responses have small magnitude. Despite the

small differences, one could still regard that all the functional relationships between co-

variates and responses appear non-linear to some degree. The second comparison results

reveal that the difference of RMSEs with GPR and sparse GP-SEM with 10 randomly

selected pseudo inputs are statistically significant11. The differences turn smaller while

one increases the number to 50. At 200 pseudo inputs the RMSE decrement seems not

to occur evidently for all responses, but some do have statistically-significant reduction.

Similar to the previous study, the RMSE decreases could result from few reasons. First

is that when the inducing input number increases, the estimated functional relations be-

tween covariates and latent variables turn consistent over all the experiments. Second is

that the relations are closed to the true underlying ones to some extent. It should be

noted that the magnitudes of differences seem similar to those in the RMSE comparison

of LS against GPR. This may imply certain kinds of inappropriateness for fitting sparse

GP-SEM so that the RMSEs cannot be lower than those of GPR. The last comparison

result re-testifies significant differences in the predictive performance between the MCMC

and hybrid methods.

11Here we still use “statistically significant” because 0.062 is the lowest p-value one can obtain for 5

pairs of observations when using sign rank test – namely, the signs of the observation difference are only all

positive or negative. We believe that if using more pairs of observations, the lowest p-values can decrease

further.
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Table 5.11: Comparisons of the RMSEs under different circumstances, based on 5 exper-

iment results. Here M means the number of pseudo inputs; the superscript IND, RS

and GS indicate independent implementation, random and greedy selection schemes for

pseudo inputs, respectively.

LRIND vs. GPRIND

mean diff. p-value

y1 0.024 0.062

y2 0.016 0.062

y3 0.008 0.313

y4 0.015 0.062

y5 0.012 0.062

y6 0.008 0.813

y7 0.021 0.062

y8 0.015 0.062

GPRIND vs. M = 10 M = 50 M = 200

Sp. GP-SEMRS (MCMC) mean diff. p-value mean diff. p-value mean diff. p-value

y1 -0.072 0.062 -0.031 0.062 -0.027 0.062

y2 -0.052 0.062 -0.045 0.062 -0.020 0.062

y3 -0.170 0.062 -0.059 0.062 -0.013 0.062

y4 -0.064 0.062 -0.034 0.062 -0.063 0.125

y5 -0.071 0.062 -0.015 0.062 -0.019 0.125

y6 -0.080 0.062 -0.070 0.062 -0.044 0.062

y7 -0.187 0.062 -0.141 0.062 -0.020 0.062

y8 -0.045 0.062 -0.030 0.062 -0.025 0.062

Sp. GP-SEMRS (MCMC) vs. M = 10 M = 50 M = 200

Sp. GP-SEMRS (Hybrid) mean diff. p-value mean diff. p-value mean diff. p-value

y1 -0.052 0.062 -0.023 0.062 -0.012 0.062

y2 -0.046 0.062 -0.022 0.062 -0.011 0.062

y3 -0.064 0.062 -0.028 0.062 -0.018 0.062

y4 -0.042 0.062 -0.020 0.062 -0.010 0.062

y5 -0.028 0.062 -0.014 0.062 -0.008 0.062

y6 -0.023 0.062 -0.012 0.062 -0.004 0.062

y7 -0.022 0.062 -0.014 0.062 -0.008 0.125

y8 -0.024 0.062 -0.014 0.062 -0.007 0.062
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5.2.3.2 Comparisons in Predictive Performance of Models with Varied Fac-

tors

Another experiment can be conducted to assess the effects on RMSE for various factor

structures. The beginning model structure is to assign one latent variable to link with all

responses. Next we divide responses into two groups (y1, · · · , y4) and (y5, · · · , y8 ), each of

which measures one latent variable. Finally, we repeat even partition on each group and

it turns out 4 pairs (y1, y2), (y3, y4), · · · , (y7, y8) to measure 4 latent variables. All the

the above model structures are nested. For the experiments, we use 200 pseudo inputs for

fitting model.

Table 5.12 summarises the comparison results in RMSE between GPR and sparse GP-

SEM. Overall, there is no clear pattern on RMSE differences for all responses with the

number of latent variables although the differences for 4 responses appear to decrease.

Furthermore, the RMSEs of GPR are smaller than those of sparse GP-SEM regardless of

the latent factor structures. The reasons for the results could be multiple.

Table 5.12: Comparisons of 5 experiment results about the RMSEs under different circum-

stances. Here the superscript IND means independent implementation on each variable,

and RS indicates random selection scheme for 200 pseudo inputs, respectively. Q is the

number of latent variables. The model fitting is under the nested factor-loading structure.

GPRIND vs. Sp. GP-SEMRS (MCMC) Q = 1 Q = 2 Q = 4

diff. mean p-value diff. mean p-value diff. mean p-value

y1 -0.039 0.062 -0.026 0.062 -0.025 0.062

y2 -0.046 0.062 -0.059 0.062 -0.020 0.062

y3 -0.069 0.062 -0.040 0.062 -0.013 0.125

y4 -0.026 0.062 -0.031 0.062 -0.029 0.062

y5 -0.020 0.062 -0.013 0.062 -0.019 0.062

y6 -0.089 0.062 -0.065 0.062 -0.044 0.062

y7 -0.106 0.062 -0.061 0.062 -0.020 0.062

y8 -0.031 0.062 -0.030 0.062 -0.055 0.062

One may be that the experimental model structures are not appropriate. Some of

individual regression relations between response variables and covariates may be rather

different and we inappropriately group them for fitting model. To verify the idea above, we

perform PPC procedure with the three test discrepancy quantities. The three statistics
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(T1(Y), T2(Y), T3(Y) are defined based on Equation (5.1) and calculate the values for

different groups of responses - (y1, · · · , y8), (y1, · · · , y4 ) and (y5, y6 ). The checking results

are shown in Figure 5.15. Similar to Figure 5.8, all the 2000 replicated values of test

statistics are much smaller than the observed value and extreme PP p-values occur. It

recalls that we maybe adopt wrong factor structures and model fitting under all the

experimental model structures could be inappropriate.

Another possible reason is the failure of model distributional assumptions – the nor-

mality of measurement errors. After obtaining the estimates of the residuals, we can

utilise QQ-plots to detect the deviation of normality. Figure 5.16 shows the QQ-plot for

the estimated errors from fitting model with the factor structure of 4 latent variables.

As seen, overall the observations have severe deviation from the line, especially in those

correponding to response variables. This strongly suggests the Gaussianity assumptions

are violated12. In addition, the other two cases (the model structures for 1 and 2 latent

variables) have the same scenarios and conclusions.

12We also use another normality testing for the check, such as Lilliefors test. The results consist with

the the conclusions we draw for Figure 5.16, all suggest non-normal distributions.
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(a) One factor (b) One factor (c) One factor

(d) Two factors (e) Two factors (f) Two factors

(g) Four factors (h) Four factors (i) Four factors

Figure 5.15: The replicated distributions and the observed value for the three test statistics

(T1(Y), T2(Y), T3(Y)), fitting model with three factor structures. The vertical red line

represents the observed value of the test statistic. The replicated distributions are formed

by 2000 replicated statistic values.
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(a) εy1 (b) εy2

(c) εy3 (d) εy4

(e) εy5 (f) εy6

(g) εy7 (h) εy8

Figure 5.16: The QQ plots for all the estimated measurement errors from fitting model

with the 4-factor model structure.
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5.3 Study III - Synthetic Data

We move our interests to model fitting with more outcomes and latent variables. The

primary reason is to realize the computational performance of our model framework. The

secondary is to acquire a rough insight for parameter estimation and prediction under the

circumstances.

5.3.1 Data description

The properties of the first multiple-output regression dataset are summarised in Table

5.13.

Table 5.13: Properties of Dataset III.

Dataset Input Output

Size (N) Dimension (D) character Dimension (R) character

2500 10 continuous 20 continuous

Dataset II is generated based on the posited model structure and fixed parameters.

Here we only specify the 10 functional for generating latent function values:

f1(z) = c1

10∑
l=1

z2
l , f2(z) = c2

10∑
l=1

cos(zl),

f3(z) = c3

10∑
l=1

exp{5

2
|zl|}, f4(z) = c4[(1 + exp{−1

2

10∑
l=1

zl})−1 + cos(3

10∑
l=1

zl)],

f5(z) = c5

10∑
l=1

4

1 + z2
l

, f6(z) = c6

10∑
l=1

sin(zl),

f7(z) = c7

10∑
l=1

cos(0.8zl), f8(z) = c8 cos(
1

10

10∑
l=1

zl),

f9(z) = c9 cos(
1

30

10∑
l=1

z2
l ), f10(z) = c10

10∑
l=1

(sin(2zl) + cos(2zl)),

where c1, . . . , c10 are constants.

Figure 5.17 and Figure 5.18 gives the histograms of covariates and all response vari-

ables respectively. Both reflect the data generation mechanisms. Each dimension of a

covariate displays uniform distributions. This maybe imply that the behaviour of regres-

sion relationship between covariates and latent variables is possibly captured well near the
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Figure 5.17: Distributions of the inputs for Dataset III.
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Figure 5.18: Distributions of the outputs for Dataset III.
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boundaries if several random selected pseudo inputs are closed to the regions. In Figure

5.18, the distributional shapes show that all the responses have a normal distribution.

Table 5.14 exhibits the correlations of each pair of variables, (y1, y2), (y3, y4), . . . , (y19, y20)

are stronger than those of any other pairs, such as (y1, y3), (y1, y5) and (y18, y20). The 10

groups of variables can be classified and each group is capable of being assumed to mea-

sure one latent variable, as we design. The 10 latent variables (Q = 10) are installed as a

set-up of fitting model for experiments later.

In the following subsections we focus on the experiments of using Bayesian treatment

for model fitting. Two computing strategies are adopted to investigate the difference.

One is to implement the MCMC method (Algorithm 2 in Section 4.3) for fitting the joint

model. The other is similar to adopt the hybrid approach (Algorithm 3 in Section 4.6),

but the MCMC method is used for fitting marginal and joint models.
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5.3.2 Learning

For the experiment settings, we set the number of pseudo inputs M as 250 for both scenario

using two computational schemes. For Scheme 1, the sample size, Nmcmc for fitting the

joint model as 5000 and adopting random initialisation for parameters. For Scheme 2, and

the number of MCMC samples for fitting marginal models as 3000 but the sample size for

fitting the joint model, Nmcmc as 3000.

5.3.2.1 Comparison in Computation, Parameter Estimation and Prediction

At first, the computation time of implementating the two schemes is reported in the Table

5.15.

Table 5.15: Execution time (second) for the implementation of the two strategies: Scheme

1 for a joint model with 5000 iterations; Scheme 2 for 10 margins with each of which

3000 iterations, and then for the joint model with 3000 iterations. The bold values in the

brackets point out the average time per iteration.

Scheme 1 Scheme 2

Margins none 9496 (0.32)

Joint 231258 (46.25) 99188 (33.06)

Total Time 231258 108684

The execution time using Scheme 2 is obviously faster than Scheme 1. The reason

is that the computational cost of fitting Q marginal models per iteration is O(NM2Q)

for estimate the 70 marginal parameters; and the expense of fitting the joint model is

O(NM2Q2) for only 45 correlation coefficients. The cost of Scheme 1 is O(NM2Q2)

for all the 115 parameters. Moreover, these aforementioned costs are reckoned based on

sampling latent variables and latent functions under fitting marginal or joint models, which

occupies most of execution time.

We produce 5 chains to see differences in estimation. The simulation trace plots for

some parameters are provided in Figures 5.19, 5.20 and 5.21. Each of the sub-figures

has three coloured reference lines. The red, green and black are for the true value and

the ergodic MCMC averages using Scheme 1 and Scheme 2, respectively. Here, the true
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values are calculated by the derivation similar to that in Section 5.1.1.2 after we inspect

the translation of the posterior estimates of latent variables with standardizing and non-

standardizing data.

Figure 5.19: The trace plots of factor loading λ11, λ53, λ14,7 and λ18,9, from fitting model

under Scheme 1.

Some facts can be noticed from the figures. In general, no matter what scheme is used,

the ergodic averages are close to the true values. This basically consists with the observa-

tions in estimation results in Table 5.4 (for the first synthetic data study). Furthermore,

the differences between the Scheme 1 estimates and the true values seem smaller than

their counterparts although few parameters appear not, such as, latent correlation σx10,7

in the bottom right panel of Figure 5.20. The reason could be that in higher-dimension

parameter space, few components likely acquire extreme estimates while the sampling

procedure is implemented through a multivariate distribution. Those incidents may affect

the estimations; therefore, their estimates have some deviation from the true values. This

scenario, for instance, could happen in the present case of 10 latent variables – 45 latent

correlations are involved, sampled from a multivariate Wishart distribution.

Another observation is that given the same parameter initial values, the samplings
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Figure 5.20: The trace plots of latent correlations σx14 , σx25 , σx93 and σx10,7 from fitting

model under Scheme 1.

of parameters using Scheme 1 may need to undergo more burn-in simulations to reach

the target distribution. This frequently happens when the parameter space is of high

dimension. By contrast, the two-step sampling procedure of Scheme 2 makes the dimension

relatively lower in each step. Hence, the burn-in threshold values seem smaller, as seen in

Figure 5.22 (here we only choose a few parameters presented in Figure 5.19 and Figure

5.20 for comparison).

Incidentally, the good mixing in sampling measurement error variances could be be-

cause the mutually independence assumptions imposed in the error components do match

the data generation mechanism.

5.3.3 Prediction

5 prediction experiments are conducted to know the difference of the two schemes. The

set-ups of each experiment are on 1250 data points as training set, the rest as test set and

125 pseudo inputs. The average total run-time for all prediction experiments is around

115578 seconds for Scheme 1, and 54342 seconds for Scheme 2. The times are roughly
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Figure 5.21: The trace plots of measurement errors σ2
y5 , σ2

y6 , σ2
y9 and σ2

y15 , , from fitting

model under Scheme 1.

half of those shown in Table 5.15. The comparison result is summarised in Table 5.16. As

seen, there are statistically significant small differences in most of response predictions.

This observation is basically similar to the RMSE comparison between the MCMC and

hybrid methods, shown in Table 5.6 for Dataset I and in Table 5.11 for Dataset II.

The PPC procedure can also be performed to see the differences of two computing

schemes. Based on 2000 replicated data sets, we only use the χ2 test statistics through

all the response values (that is T1 used before). The tail-area probabilities beyond the

observed value of test statistics T1(Y) are 0.858 and 0.873 for Scheme 1 and 2 respectively.

Here the slight difference may reflect the deviations in estimation and prediction, due to the

methodological distinction. In addition the two PP p-valves are still within a reasonable

range (between 0.05 and 0.95), which shows model appropriateness.

Considering trade-off on the estimation, computation and prediction, Scheme 2 can

be an economical computational strategy in practice, especially more latent variables in-

volved. Practitioners could increase more simulation iterations for fitting marginal models

and decrease the iteration number for fitting the joint model. This helps one to obtain as
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Figure 5.22: The trace plots of factor loading λ14,7, λ18,9, and latent correlations σx93 ,

σx10,7 , from fitting model under Scheme 2.

Table 5.16: Comparisons of RMSEs for Scheme 1 against Scheme 2 based on 5 experiment

results.

mean diff. p-value mean diff. p-value

y1 -0.011 0.062 y11 -0.004 0.125

y2 -0.008 0.062 y12 -0.002 0.250

y3 -0.004 0.062 y13 -0.006 0.062

y4 -0.004 0.062 y14 -0.005 0.062

y5 -0.008 0.062 y15 -0.005 0.062

y6 -0.003 0.062 y16 -0.005 0.062

y7 -0.004 0.062 y17 -0.011 0.062

y8 -0.002 0.125 y18 -0.028 0.062

y9 -0.005 0.062 y19 -0.004 0.062

y10 -0.021 0.062 y20 -0.003 0.062
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similar estimation and prediction performance as fitting model using Scheme 1 does. If

one aims to achieve more precise parameter estimation and lower predictive error, Scheme

2 provides reasonable initial values for model fitting using Scheme 1.

5.4 Remarks

The three empirical studies explore our modelling frameworks in aspects of estimation,

prediction and computation. Following typical inspection and diagnosis, convergence can

be assumed to be achieved. The transformation relations are able to be realized in the

estimated latent variables and parameters between before and after data standardisation.

The model structures with and without linking the latent errors (also refer to implement

estimation for the joint model and for marginal models) reflect the effects on estimated

latent variables and parameters.

Prediction results show increasing the number of pseudo inputs indeed reduces the

predictive error. The predictive performance thereby could overtake those of using LS,

or GPR on individual responses, especially when the regression relation between latent

variables and covariates are highly non-linear. Using greedy selection for pseudo inputs

empirically and significantly reduces predictive errors until the selected number increases

to a certain value. Also, examining model appropriateness through the PPC procedure

detects inappropriate factor structure.

The two estimation methods (the MCMC and hybrid approach) have differences in pa-

rameter estimation as well as in predictive error. Moreover, the magnitude of prediction

difference turns smaller with pseudo input number. Despite small differences in estimation

and prediction, using the two-step (hybrid) estimation procedure outperforms in computa-

tion, especially more responses and latent variables involved. Weighing the shortcomings

and strengths, it can be a rather economical computational scheme by controlling itera-

tions in each step if one is unintended to achieve superiority in estimation and prediction

precision.
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Application On Longitudinal

Studies

This chapter focuses on applications of sparse GP-SEM for longitudinal analysis. In Sec-

tion 6.1 we focus on latent curve model (LCM) for development motivation and comparison

reference of our framework. In Section 6.2 we briefly present longitudinal sparse GP-SEM

with two kinds of response types – continuous and dichotomous. In Section 6.3, the rele-

vant identification examination procedure is demonstrated. Section 6.4 briefly points out

the schemes in estimation, prediction and computation. Section 6.5 examines the proposed

longitudinal sparse GP-SEM on three data sets, two of which are synthetic and one real.

The proceeding is the same as the last chapter: data summary, learning tasks (parameter

estimation, growth curve of latent variables) and then prediction assessments. In the last

section, we summarise the chapter.

6.1 Related Work

There are various methodologies for longitudinal empirical data, such as autoregressive

models, repeated measures multivariate analysis of variance, generalized estimate equa-

tions and mixed effects model (Diggle et al. 2002, Skrondal & Rabe-Hesketh 2004).

Recently, Latent curve models (LCM) (or Latent growth models (LGM)) has received

growing attention. It has developed for two decades but originates from a century’s study-

ing in individual and group difference (Bollen 2006). LCMs can be translated to a mixed

effects model with a multilevel model structure, and its extensive applications exist in
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many fields of social and medical science, such as temporal relations between obsessive-

compulsive cognition and disorder symptoms (Novara et al. 2011); the relationship between

changes in socioeconomic status and changes in health (Hallerod & Gustafsson 2011);

change in career satisfaction (Spurk et al. 2011) and in social and political attitude (Steele,

2008).

The simplest LCM can be represented as follows:

y(n) = Λtη
(n) + ε(n)

y , η(n) = µη + ε(n)
η , (6.1)

where y(n) = (y(n1), . . . , y(nT )) is the repeated measured metrical vector of the n-th in-

dividual, for 1 ≤ n ≤ N . Λt is a time-dependent growth factor loading matrix and

η(n) = (η
(n)
1 , . . . , η

(n)
P ) is a latent growth factor vector for the n-th individual (P depends

on which parametric functional form one uses). µη is the expectation of the latent growth

factor. For the case n, ε
(n)
y = (ε

(n1)
y , . . . , ε

(nT )
y ) and ε

(n)
ζ = (ε

(n)
ζ1
, . . . , ε

(n)
ζP

) are the random

disturbance deviations from y(n) and µη with means of zero and being uncorrelated with

each other. Both are assumed uncorrelated for different cases and ε(nt) further can be

assumed optionally uncorrelated for different times. In terms of multilevel modelling (or

hierarchical linear modelling), the first equation is a level-1 equation about the measures

within the individual across time, and the second is a level-2 equation about the latent

growth factors between the individuals. The two equations can further be combined into

a linear mixed model. Although sharing the same specification framework with multilevel

regression, LCM is more flexible on some features, such as the integration of the factorial

structure of the repeated measured variable, extensions to larger structural models (Stoel

et al. 2003).

Conceptually, the latent growth factor η(n) specifies parametric relations between the

observed variables at different time points. It enables the parameters to represent the

functional form of the latent trajectory of the observed variable. For example, commonly

one can use two parameters to represent a linear form - one for the intercept at the starting

time, the other for the slope, showed respectively as η1 and η2 in Figure 6.1. The term

µη also summarises the starting intercepts and the rates of change across all cases in the

group.

Through the corresponding factor loading matrix Λt, latent growth factors η(n) can

exert the effects of time on the observed vector y(n) at different time points, where time

can be considered as a covariate. The loadings can be set by different metrics of time
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based on the associative factors. For a linear LCM in Figure 6.1, the loadings for the

intercept factor can be set to 1 across all time points and those of the slope factor can be

t− 1 at the t-th wave.

Freeing factor loadings indicates that some loadings of the associated latent factor

representing change (such as, the slope factor in linear LCMs) can be set to free parameters

without parametric metrics of time. Noticeably, which factor loadings of the same latent

factor are fixed leads to different interpretation of change of the trajectories.

LCM can also improve the accountability of the difference between patterns of the

trajectories by including covariates. The predictors registered for individuals may be either

constant over time (typically measured at the beginning of the study), or time-varying

(taking on different values at each data collection time point). Figure 6.2 illustrates the

time-invariant covariate z(n) affects the latent growth factors η1 (intercept) and η2 (slope).

For the time-varying covariates, their direct effects are straight on observed variables and

they are introduced into the level-1 equations.

To investigate change across time in a latent variable (or construct) of interest, one of

the state-of-art approach is latent variable LCM (LV-LVM). It is sometimes referred to as

multiple-indicator growth curve models, curve-of-factors models, and second order latent

growth curve model or latent variable longitudinal curve model. The simplest LV-LCM

can be represented:

y(nt) = λ0 + Λx(nt) + ε(nt)
y , x(n) = Λtη

(n) + ε
(n)
η , η(n) = µη + ε(n)

η , (6.2)

where the indicators of n-th respondent at Time t, y(nt) = (y
(nt)
1 , . . . , y

(nt)
R )T, its measured

error ε
(nt)
y = (ε

(nt)
y1 , . . . , ε

(nt)
yR )T, the repeated measure latent variables x(n) = (x(n1), . . . ,

x(nT ))T; and λ0 and Λ are a R×1 intercept vector and a R×1 factor loading matrix as in

conventional factor analysis. The growth factor loading matrix Λt, the growth latent factor

η(n), the random disturbances ε
(n)
x and ε

(n)
η have the same representation as in previous

LCM equations. Non-correlation can additionally be assumed between latent variables and

random disturbances, among random disturbances and between random errors of different

cases (or optionally between different time points). LV-LCM is basically a SEM because

one equation modelling growth of a latent variable and the other modelling measuring it,

feature a structural model and measurement model.
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Figure 6.1: The path diagram of linear latent curve model with a time-invariant covariate

and observed responses at three time points.
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Figure 6.2 shows a simple case of LV-LVM with two indicators for a latent variable

and a time-invariant covariate and responses across three time points.

The factor matrix Λ and the intercept λ0 can be set to be free estimated or time-

dependent. This means the measurement (factorial) invariance assumption can be re-

laxed1. Although latent variables at different times can still be realised, it may cause an

issue about interpretation for the growth (Ferrer et al. 2008). The reason is that varied

factor loadings can confound temporal change of a latent construct.

Considering the growths of multiple latent variables (Q > 1), the structure of LV-LCM

turns complicated. Rather than using the same growth latent factors, the framework is

built on sets of indicators (each of which measures a latent variable ) and modelling inter-

correlation of growth latent factors (belonging to different LV-LCMs). This extension is

referred to multivariate LCM (MacCallum et al. 1997).

In addition, to relax the form of a growth function can be one of research directions

for LCMs. So far, very limited works have been done. To the best of our knowledge, there

is only one paper close to LV-LCM or our modelling frameworks. Gaussian-Process factor

analysis (GPFA) model (Yu et al. 2009) could be categorized as a variant of LV-LCM.

Except utilizing a factor analysis formulation, it incorporates a GP framework to model

regression relationship between the time covariate and latent variables (underlying neural

states). It serves as an approach to reduce dimension of the recorded activity data (from

large populations of neurons) to realize neural trajectories.

6.2 Model Specification

Sparse GP-SEM can model temporal tendency of multiple latent variables for a panel

dataset with several indicators at each time point. The applications, for example, could

include exploring the learning curves of school pupils on quantitative ability and language

proficiency given various teaching methods and materials, based on an education cohort

study; investigating into the temporal devoplement on morale and job satisfication for a

large sample of employees given different leadership or management styles, upon internal

questionnaire results.

1There are several types of measurement invariance applied on different components in the model (see

(Ferrer et al. 2008, Cheung & Rensvold 2002, Meredith 1993)). Here we only consider the type about

factor loadings and intercepts, which is called strong factorical invariance.
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Figure 6.2: The path diagram of linear latent curve model with multiple indicators for

two waves and a time-invariant covariate.
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For clarity, we only consider the case of one latent variable, that is Q = 1. The latent

variable of interest is still regarded as being continuous.

Continuous Responses

The model specification of sparse GP-SEM for longitudinal application is slightly dif-

ferent from the original (presented in Equations (3.1)-(3.7)). The number of the n-th

subject’s covariate vector is not single but multiple, identical to time point size. Each

covariate vector is specified by adding a time scaling in superscript, that is, z(nt), where

t indexes time point. One of covariate dimensions is additionally registered for the time

scaling as well. The rest of variables have the same notation difference. For instance, at

the t-th time point, the n-th subject’s the latent variable is x(nt), its GP latent function

value f (nt) 2 and the r-th response continuous variable y
(nt)
r . There is another difference

in modelling latent errors. We later point it out in the equations for description of model

extension.

Two possible modelling notions can be adopted as well. One is from matrix-variate

Gaussian models (Stegle et al. 2011) and is to build a composite GP covariance function

for modelling regression relations between inputs and latent variables. That function is

constructed by taking a Kronecker product for two covariance functions modelling depen-

dence between latent function values at the inter-time and intra-time inputs, respectively.

The other notion merely follows another GP regression, where only the time covariate is

used (Rasmussen & Williams 2006). It is additionally to model association of latent GP

errors at different time points. Due to the extra computational cost for estimating the GP

hyper-parameters, the above two notions are not adopted here.

Sparse GP-SEM for longitudinal application has three differences from the GPFA

model (Yu et al. 2009) mentioned before. First, GPFA only uses one input (representing

time). Second, it models one subject’s neural trajectories over T time points for several

trials (the number of trials refer to the number of data points in our framework), but all

trial results are treated as being generated independently. Third, it does not use sparse

GP approximation methods to speed up computation.

2Compared with the notation in Equation (3.1), here because only considering the case of one latent

variable, we remove the subscript of q. The other associated variables and matrices follows this fashion as

well.
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Binary responses

A simple model extention we can consider is to handle dichotomous outcome variables.

The augmented model framework is adding underlying continuous responses u
(nt)
r into the

model structure – one of classical treatments (Albert & Chib 1993, Skrondal & Rabe-

Hesketh 2004, Bartholomew et al. 2008, Chib & Greenberg 1998). Moreover, the addition

is to link observed responses and to bear the direct effects of the higher-level latent vari-

ables (or latnet covariate). This postulates observed binary variables are generated by

underlying normally-distributed latent variables with the connection that

y(nt)
r =

 1, if u
(nt)
r > 0 ,

0, otherwise.

To clarify the model specification with binary responses, we present the equational

description here. For 1 ≤ n ≤ N , 1 ≤ t ≤ T , the first three equations show mathematical

formulation of regression relationship between covariates and a latent variable under GP

framework per time point,

x(nt) = f (nt) + ε(nt)x , (6.3)

ε(n)
x ∼ N (0,Σt) (6.4)

f (t)|z1:N,(t) ∼ N (0,K
(t)
N ), (6.5)

where Σt is the covariance matrix of the latent errors between time points, denoted as

ε
(n)
x = [ε

(n1)
x , . . . , ε

(nT )
x ]. And there is an implicit and slight difference with the original

sparse GP-SEM framework, which considers the covariance matrix Σx of the latent errors

between latent-variable indexes. More specifically, the difference results from that only one

latent variable is involved, and Σt indeed works as does Σx. However, when multiple latent

variables are considered, the difference turns evident because the resulting covariance

matrix of latent errors is a Kronecker product of Σx and Σt.

The measurement model has a modification on the original one (represented by (3.4)

and (3.5)). The notation is changed from (n) to (nt), and the response variable vec-

tor y(n) is replaced by the underlying latent variable vector u(nt), denoted by u(nt) =

[u
(nt)
1 , . . . , u

(nt)
R ]. The model equation is

u(nt) = λ0 + Λx(nt) + ε(nt)
u , (6.6)

ε(nt)
u ∼ N (0,Σ(t)

u ), (6.7)
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where a measurement error vector is ε
(nt)
u = [ε

(nt)
u1 , . . . , ε

(nt)
uR ] and Σ

(t)
u is its covariance

matrix. All underlying responses follow a multivariate normal distribution because of

Gaussianity of measurement errors ε
(nt)
u and latent variables x(nt).

The conditional GP prior about sparse approximation

f (t) |̄f (t), z1:N,(t), z̄1:M,(t) ∼ N (K
(t)
NM (K

(t)
M )−1f̄ (t),V(t)), (6.8)

f̄ (t)|z̄1:M,(t) ∼ N (0,K
(t)
M ). (6.9)

The model assumptions are similar to the original ones. For simplicity, we introduce

a notation q as being independent. Thus all the assumptions can be concisely written

as f (nt) ⊥ ε
(nt)
x ; f (nt) ⊥ f (nt

′
); ε

(nt)
x ⊥ ε

(n
′
t)

x ; ε
(nt)
ur ⊥ ε

(nt)
u
r
′ ; ε

(nt)
ur ⊥ ε

(n
′
t)

ur ; ε
(nt)
ur ⊥ ε

(n
′
t)

ur ;

x(nt) ⊥ ε(nt)ur , for any n, t, r and n 6= n
′
, t 6= t

′
, r 6= r

′
.

We also implicitly assume the intercept terms and factor loadings are time-invariant.

In other words, λ
(t)
0 = λ0 and Λ(t) = Λ, where λ

(t)
0 and Λ(t) are the time-variant, intercept

and factor loadings. Note that these two assumptions related to measurement invariance

allow us to interpret the temporal-change of the latent variable of interest.

For satisfying identification condition, we further make some constraints on model

paramters. We specify them in the next section.

The graphical representation of sparse GP-SEM with temporal dichotomous response

variables is shown in Figure 6.3. Compared with Figure 3.2, the differences are evident.

Beside slight changes in notations and covariates, the whole model structure merely has one

more level, encoded between the higher-level latent variables and the lowest-level observed

variables. Furthermore, more differences can be found between Figure 6.2 and figure 6.3.

They are: 1. the GP latent errors εx are correlated; 2. intercepts and loadings are imposed

with different constraints; 3. the upper part of model structure (between covariates and a

latent construct) are using different notions to model the regression relation.

6.3 Examination of identification

Given the modeling formulation, one still needs to consider whether the model is iden-

tifiable before estimation. The identification examination for longitudinal continuous re-

sponses is similar to its static counterpart, as shown in Section 3.3. Functional relations

with unknown and known parameters can be obtained through algebraic derivation.
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Figure 6.3: The path diagram of sparse GP-SEM with four dichotomous responses for two

waves.
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For the case of longitudinal (or static) binary responses, the model identification check-

ing can be implemented by the second approach mentioned in Section 3.3. The method is

based on the Jacobin matrix of reduced-form parameters over all unknown parameters. If

the rank of the Jacobin matrix is the same as the number of unknown parameters, then

local identification of model can be ensured. We exemplify the case of two time points

and two binary variables per time for demonstrating the identification examination.

For 1 ≤ t ≤ 2, without specifying data point the model structure can be expressed as

follow:

x(t) = f(z(t)) + ε(t)
x (6.10)

u(t) = Λx(t) + λ0 + ε(t)
u , (6.11)

where the latent response vector u(t) = [u
(t)
1 , u

(t)
2 ] is related to the observed binary response

variables by the indicator function: y
(t)
r = 1 if u

(t)
r > 0; and 0 otherwise, for 1 ≤ r ≤ 2.

We set some constraints on parameters to ensure identification condition holds. Like

the restrictions introduced in Section 3.3, the variances of ε
(t)
x are ones, and the elements

of intercept terms λ0 corresponding to anchors are zeros. In addition, the measurement-

error variances are all set to ones. The necessity of the variance constraints is discussed

later.

6 unknown parameters are therefore realised, which are {λ02, λ1, λ2, f(z(1)), f(z(2)), σt12},

where σt12 is the cross-covariance of Σt. Due to the measurement-invariance assumption,

there is no need to estimate the intercept term and factor loadings at the 2-nd time points.

The marginal probability of the reduced-form distribution p(y
(t)
r |z(t)) becomes

p(y(t)
r = 1|z(t)) =

1√
λ2
r + 1

∫ ∞
0

φ

(
λ0r + λrf(z(t)) + ξr√

λ2
r + 1

)
dξr

= Φ

(
λ0r + λrf(z(t))√

λ2
r + 1

)
,

where λ0r and λr are, respectively, the r-th elements of intercept λ0 and factor loadings

Λ. Because of the constraints, λ01 is 0, where we assume the first response at each time

point is an anchor. φ(·) is the standard normal density, ξr = λrε
(t), and Φ is the cdf of

standard normal distribution. Hence, the mean m
(t)
r of the underlying latent variable u

(t)
r

is

m(t)
r =

λ0r + λrf(z(t))√
λ2
r + 1

, (6.12)
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and this is identified from the the marginal probability above.

Given the response vector y = [y
(1)
1 , y

(1)
2 , y

(2)
1 , y

(2)
2 ] and a binary vector b, the joint

response probabilities of the reduced-form distribution is p(y = b|z(1), z(2)), determined by

a multivariate four-dimensional Gaussian density with means from (6.12) and a correlation

matrix R = diag(Ω)−1/2 · Ω · diag(Ω)−1/2, where Ω is the covariance matrix of all the

underlying latent variables. The resulting 8 reduced-form parameters contain

m
(1)
1 , m

(1)
2 , m

(2)
1 , m

(2)
2 ,

λ1λ2√
λ2

1 + 1
√
λ2

2 + 1
,

λ1λ2σt12√
λ2

1 + 1
√
λ2

2 + 1
,
λ2

1σt12
λ2

1 + 1
,
λ2

2σt12
λ2

2 + 1
,

where the last 4 parameters are from the unrepeated elements of R.

Now the identification condition can be examined by checking full rank of the Jacobian

matrix, built on all derivatives of reduced-form parameters over all unknown parameters.

The matrix size is 8 × 6 and the rank is 6. Therefore, that ensures local identifiability

(Skrondal & Rabe-Hesketh 2004). One should note that if no constraints on measurement-

error variances are imposed, the number of the unknown parameters increases to 10 and

thereby the local identifiability would not be guaranteed.

Incidentally, while measurement-invariance assumptions are relaxed, the identification

condition of the example remains. The reason is that the associated Jacobian matrix

with size of 10 × 9 has the rank of 9. Specifically, 2 more reduced-form parameters are

the unrepeated entries of R; 3 more unknown parameters are due to the unconstrained

loadings and intercept.

In general cases, the identification condition is still ensured under the imposed con-

straints. It is because given R ≥ 2 and T ≥ 2, the number of the reduced-form parameters,

RT +R(R− 1)/2 +RT (R+ 1)(T − 1)/4, is always greater than that of the unknown pa-

rameters, (R−1)+R+T+T (T−1)/2; and the rank of the associated Jacobian matrix can

be checked as the latter number. Note that the former is comprised of the RT marginal

means, and the rest from the unrepeated correlations of R, where R(R−1)/2 are counted

from correlations not involoving coefficients of Σt but RT (R + 1)(T − 1)/4); the latter

is from the intercepts, factor loadings, latent function values and correlations of latent

errors.
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6.4 Computational Implementations

After model identifiability is ensured, we can consider how to implement computation for

different tasks.

For Estimation

The estimation algorithm is rather similar to that in Section 4.3. We indicate the

differences here.

For temporal continuous variables, if there are no measurement invariance assumptions

imposed, the samplers remain identical except the minor notation differences and the

change of latent-error covarince matrix, from Σx to Σt. Imposing the assumptions indeed

differentiates the samplers for intercepts and factor loadings despite the Gaussianities

being reserved. All prior distributions are still adopted as before in Section 4.2 and 4.3.

The sampler of the r-th intercept and factor loading (λ0r, λr) is distributed normally

with a covariance matrix

Σλr,post ≡ (
1

σ2
λ

I|Pr| +
T∑
t=1

1

σ2

y
(t)
r

[(X̃(t))TX̃(t)]Pr,Pr)−1, (6.13)

where X̃(t) ≡ [(x(t))T,1N ]T, x(t) is a row vector consisting of all scores of N subjects’

latent variables at the t-th wave; the rest notations are the same as those in Equations

(4.18) and (4.19), and a mean

Σλr,post ·
T∑
t=1

[(X̃(t))T]Pr,·y
(t)
r , (6.14)

where y
(t)
r is a N × 1 column vector with the r-th indicator of all the data points at the

t-th time point.

One point should be reminded that (6.13) and (6.14) specify the full conditional dis-

tribution of (λ0r, λr), and the parameter expansion (PE) technique is not adopted there.

If using PE to increase MCMC mixing efficiency, one needs to change the augmentated

latent variable X̃(t) to the transformed one W̃(t) by a working parameter α, which is men-

tioned in Section 4.3. It follows that the resulting distribution can generate a sample of the

transformed intercepts and factor loadings. Then Equations (6.13) and (6.14) have an al-

ternative and equivalent expression which replaces the intercept, factor loading and latent

variable by the transformed counterparts. Furthermore, the sample of the untransformed

parameters can be obtained through α.
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The model estimation for longitudinal binary responses incorporates the sampling

scheme for the underlying response variables. The joint sampling scheme of u(nt) can break

into R samplers because its components are conditional independent given the latent vari-

able x(nt). Following a classic Bayesian treatment for analysing binary and polychotomous

response data (Albert & Chib 1993), the sampler of u
(nt)
r is distributed truncated-normally

as 
I[0,∞] ×N (λ0r + λrx

(nt), 1), if y
(nt)
r = 1

I[−∞,0] ×N (λ0r + λrx
(nt), 1), if y

(nt)
r = 0 ,

(6.15)

where I[0,∞] is an indicator function over the interval [0,∞]. This sampling scheme is also

applied in multivarite probit models (Chib & Greenberg 1998).

For Prediction

Regarding temporal continuous responses, the calculation of predictive responses given

a new covariate vector is still the same as that presented in Section 4.7. By contrast,

the predictive longitudinal binary responses are decided by the predictive underlying re-

sponses, whose calculation is identical to continuous response. To be more specific,
y(nt)
r,new = 1, if u

(nt)
r,new > 0

y(nt)
r,new = 0, if u

(nt)
r,new < 0.

(6.16)

For Computational Schemes

Three computational schemes are adopted to investigate the influence of the measurement-

invariance assumption on estimation and prediction. Scheme 1 relaxes restriction on load-

ings. Therefore, the related samplers are exactly the ones given by Equations (4.18) and

(4.19) under the joint model. In contrast, Scheme 2 sets constraints on loadings. The

samplers are used given by (6.13) and (6.14) under the joint model. Its sampling could be

more efficient than Scheme 1. Scheme 3 is similar to the economical strategy examined

in Section 5-3. Initially it is to implement estimation under marginal models and then

to average the estimated loadings over time. It follows fitting the joint model by fixing

all parameters obtained from the preceding estimations (including the averaged loading).

This can boost more computational efficiency than the first two schemes if one manages

the sample sizes on fitting the marginal and joint models.
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6.5 Experiments

In this section, we pay more attentions to learning and comparing the temporal tendency

of a posterior estimated latent variable, under three schemes. We also briefly report the

prominent feature in parameter estimation and prediction. Incidentally, random selection

for pseudo inputs is adopted in all the experiments.

6.5.1 Study IV - Synthetic Data

The properties of the first multiple-output regression longitudinal data set with metrical

responses are summarised in Table 6.1.

Table 6.1: Properties of Dataset IV. Here p.t.p. is the abbreviation of “per time point”.

Dataset Input Output

Size (N) Time (T) Dim. p.t.p. (D) character Dim. p.t.p. (R) character

2000 4 11 continuous 3 continuous

We use a function form f (t)(z) = c
[
(z

(t)
1 − 1)2 +

∑10
l=2(z

(t)
l )2

]
to generate the latent

function values at the t-th time point, where z
(t)
1 = t and c is a positive contanst. Then

through intercepts and loadings (fixed across time points), we produce all the responses.

The histograms for 44 covariates over time points would be not provided here for saving

space. However, they (except the time covariates) indeed appear Gaussian densities due to

normally random generation. As for all response variables, the histograms are presented

in Figure 6.3. As seen, all distributional shapes seem roughly symmetric although some

have a long tail. In general, the histograms reflect the normal-distribution data generation

machenism.

In Table 6.2, there is an apparent classification in the correlation coefficients of all

response variables. We can classify every three variables in order as one group, and thus

obtain 4 groups in total, which corresponds to the time point number. The variables in a

group have very strong correlation but low with a variable in other groups - further the

decrement of correlation turn large as time proceeds.

Learning
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Figure 6.4: Distributions of the outputs for Dataset IV.

Table 6.2: Correlation coefficients between response variables of Dataset IV.

y
(1)
1 y

(1)
2 y

(1)
3 y

(2)
1 y

(2)
2 y

(2)
3 y

(3)
1 y

(3)
2 y

(3)
3 y

(4)
1 y

(4)
2 y

(4)
3

y
(1)
1 1 0.96 0.97 0.29 0.28 0.29 0.19 0.18 0.19 0.05 0.06 0.05

y
(1)
2 1 0.96 0.28 0.28 0.28 0.19 0.18 0.18 0.06 0.07 0.06

y
(1)
3 1 0.28 0.27 0.28 0.18 0.17 0.18 0.06 0.07 0.06

y
(2)
1 1 0.97 0.97 0.26 0.26 0.26 0.16 0.15 0.16

y
(2)
2 1 0.97 0.27 0.27 0.26 0.17 0.17 0.16

y
(2)
3 1 0.27 0.26 0.26 0.17 0.16 0.16

y
(3)
1 1 0.97 0.97 0.28 0.28 0.28

y
(3)
2 1 0.97 0.28 0.28 0.27

y
(3)
3 1 0.28 0.28 0.28

y
(4)
1 1 0.97 0.97

y
(4)
2 1 0.97

y
(4)
3 1
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The set-ups of simulations, including the pseudo-input number and the MCMC sample

size, are identical to those used in the learning task in Section 5.1.2. For Scheme 3, 5000

iterations are for fitting marginal models and 3000 for the joint model.

5-chain simulations are conducted. All EPSR values for estimated parameters are

under 1.05. One could consider simulation convergence is achieved.

We only select the parameters related to the first time point and present the estimation

results in Table 6.3. Note that the estimate of the loadings and intercepts for Scheme 3

are already averaged over time. The sample standard deviations after burn-in are only

reported based on the estimates from fitting the first marginal model. In addition, the

estimates for Scheme 1 are similar over time. There are only small differences between

the estimates at the first time point and those at other times. For example, the maximal

difference happens in the intercepts by the magnitude from 0.1 to 0.3.

Moreover, the estimates for all the schemes are overall similar to some extent. It is

noted that the true values are in the 95% credible intervals, consisting of the values in the

range centred at the estimated means with 2 standard derivations as radiuses. Comparing

the results on loadings and intercepts for Scheme 2 with Scheme 3, the small mean dif-

ferences can be due to the bias of the two-step estimation procedure. The estimates from

the former appear closer to the true values.

Figure 6.5 shows the trend of the posterior means of the latent variable from model

fitting using the three schemes. Each coloured trajectory depicts the temporal change of

the ergodic-average estimated latent variable for a different data point. Most lie so densely

that they consist of a bundle of lines. This suggests the estimates at each time point

has a unimodal distribution. The green-square-red-dashed line represents the population

trend pattern for all data points. The value at each time point is simply the mean of all

estimated latent variable. As seen, all the population trend lines show a non-linear trend,

which reveals quadratic growing.

Comparing the discrepancy with the true trend line, the mean absolute errors are

reported in Table 6.4. The error magnitudes for all the schemes are rather small compared

with the variance of the estimated latent variable, around 6.5. The mean absolute error

for Scheme 3 is overall the largest and that for Scheme 1 seem the smallest.

Note that the general trend lines are obtained through calculating MCMC samples

a posteriori. This is not like Multilevel-SEM or LV-LCM. The difference is that a set of
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Table 6.3: Comparisons between true values and the 5-simulation-chain averages under

three schemes.

True Scheme 1 Scheme 2 Scheme 3

parameter mean sd mean sd mean sd

θh,11 none 2.27 0.03 2.25 0.04 1.94 0.05

θh,12 none 2.87 0.07 2.83 0.08 2.45 0.08

σt12 0.85 0.83 0.02 0.83 0.02 0.82 0.02

σt13 0.55 0.58 0.03 0.57 0.03 0.62 0.03

σt14 0.30 0.32 0.03 0.32 0.04 0.37 0.04

λ1 4.39 4.36 0.09 4.38 0.07 4.23 0.14

λ2 3.58 3.62 0.08 3.60 0.06 3.48 0.12

λ3 4.25 4.27 0.09 4.29 0.07 4.15 0.14

λ02 -1.27 -1.34 0.16 -1.19 0.08 -1.13 0.16

λ03 -1.04 -0.94 0.17 -1.01 0.09 -1.01 0.17

σ2
y1 3.00 3.05 0.22 3.04 0.23 3.20 0.24

σ2
y2 3.00 3.02 0.18 3.04 0.18 3.08 0.19

σ2
y3 3.00 2.95 0.20 2.96 0.21 3.07 0.23

specified growth factors is embedded into those modelling frameworks. The factors control

the functional family of a growth line, and their means can feature an overall trend change

over all data points.

Table 6.4: Mean absolute errors between the estimated trend and the true one of the

latent variable under the three schemes.

Time point t

1 2 3 4

Scheme 1 0.216 0.197 0.183 0.507

Scheme 2 0.204 0.229 0.315 0.413

Scheme 3 0.351 0.410 0.432 0.550

Prediction

The predictive performance of longitudinal sparse GP-SEM is assessed based on the 10

experiment results (upon 10 sets of even partitioned training-test dataset and 100 pseudo
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Figure 6.5: The trend plots of the posterior means of the latent variable under three

schemes for Dataset IV. Each colour represents a different data point. The green-square-

red-dashed line depicts the population trend pattern for all data points. Its value at each

time point is simply the mean of all estimated latent variable.

inputs). Overall, the mean RMSEs for any schemes are much smaller (twice smaller)

than those for using LS method (the values are around 11). Furthermore, the mean

RMSEs for Scheme 1 are rather similar to those for Scheme 2. Both are also statistically

significantly smaller than those for Scheme 3 by a difference magnitude from 0.12 to 0.2

over all responses.

Considering model checking, posterior predictive (PP) p-values can be calculated. Us-

ing the χ2 test statistics in last chapter, the three PP p-values of the test statistics T1

(involving all response variables) are 0.902, 0.891 and 0.925, corresponding to Scheme 1, 2

and 3, respectively. All are within a safe 0.05-0.95 range. The same scenario also happens

in the p-values of another χ2 test statistics (only involving the responses at the same time

point). All indicate adequateness for the model structure and measurement invariance

assumption.
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6.5.2 Study V - Synthetic Data

The properties of the second longitudinal data set with dichotomous responses are sum-

marised in Table 6.5.

Table 6.5: Properties of Dataset V. Here p.t.p. is the abbreviation of “per time point”.

Dataset Input Output

Size (N) Time (T) Dim. p.t.p. (D) character Dim. p.t.p. (R) character

2000 4 11 continuous 3 binary

We generate the t-th latent function vector at through the function form f (t)(z) =

−c
[
z

(t)
1 +

∑10
l=2(z

(t)
l )2

]
to generate the latent function values at the t-th time point, where

z
(t)
1 = t and c is a positive contanst. Then through intercepts and loadings (fixed across

time points), we produce all the responses.

The 44 covariates over time points (except the time covariates ) appear to have Gaus-

sian densities. The proportions of all response variables are presented in Table 6.6. It

shows the proportions for 0 decrease across time but vice versa for 1.

Table 6.6: Proportions (%) of response binary variables of Dataset V.

y
(1)
1 y

(1)
2 y

(1)
3 y

(2)
1 y

(2)
2 y

(2)
3 y

(3)
1 y

(3)
2 y

(3)
3 y

(4)
1 y

(4)
2 y

(4)
3

0 84.2 84.9 90.1 78.9 73.3 80.0 58.7 58.0 67.6 41.2 42.7 49.4

1 15.8 15.1 9.9 26.1 26.7 20.0 41.3 42.0 32.4 58.8 58.3 50.6

Table 6.7 shows a similar scenario as Table 6.2 and 4 groups (consisting of 3 variables

in order) can be identified. Group members have moderate or strong inter-correlations

within the group, but the between-group correlations turn lower with time.

Learning

There is a difference in the set-ups of simulations -10000 MCMC sampling iterations

for Scheme 1 and 2, but for Scheme 3, 10000 iterations for fitting marginal models, 3000

for the joint model.

Because all EPSR values for estimated parameters from 5-chain simulations are un-

der 1.1, one could regard simulation convergence is achieved. The estimation results of
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Table 6.7: Correlation coefficients between response variables of Dataset V.

y
(1)
1 y

(1)
2 y

(1)
3 y

(2)
1 y

(2)
2 y

(2)
3 y

(3)
1 y

(3)
2 y

(3)
3 y

(4)
1 y

(4)
2 y

(4)
3

y
(1)
1 1 0.61 0.66 0.20 0.20 0.19 0.13 0.14 0.14 0.02 0.04 0.04

y
(1)
2 1 0.59 0.21 0.20 0.21 0.12 0.12 0.14 0.01 0.03 0.03

y
(1)
3 1 0.20 0.19 0.16 0.15 0.13 0.14 0.07 0.05 0.07

y
(2)
1 1 0.64 0.60 0.21 0.19 0.19 0.11 0.09 0.10

y
(2)
2 1 0.62 0.20 0.19 0.18 0.08 0.12 0.09

y
(2)
3 1 0.18 0.19 0.18 0.09 0.08 0.11

y
(3)
1 1 0.69 0.61 0.20 0.19 0.21

y
(3)
2 1 0.63 0.22 0.20 0.21

y
(3)
3 1 0.20 0.21 0.20

y
(4)
1 1 0.73 0.66

y
(4)
2 1 0.70

y
(4)
3 1

some parameters related to the first time point are presented in Table 6.8. Although the

estimates for Scheme 1 at the other time points are not reported in the table, all are

similar over time to some degree. Compared with the estimates at the first time points,

the maximal difference happens in the second intercept terms by the magnitude from 0.1

to 0.15 over time and the differences in the rest of parameters by 0.05 to 0.1. These differ-

ences could result from that the sampling error related to data generation, or the MCMC

sampling errors due to underlying latent variables being involved.

The estimates for all the schemes are overall similar although there are the afore-

mentioned differences in intercepts for Scheme 1 over time. All 95% credible intervals

cover the true values. Furthermore, the estimates for Scheme 2 and Scheme 3, assuming

measurement invariance, are similar despite the small differences.

Figure 6.5 exhibits the trajectories of the posterior estimated latent variable from

model fitting using the three schemes. All the population trend lines (represented by a

green-square-red-dashed object) show a linear decreasing trend. They cross through a

bundle of trajectories from the middle, which may suggests all estimates are distributed

with unimode Gaussianity across time.

To describe the discrepancy with the true trend line quantitatively, the mean absolute

errors are reported in Table 6.9. For all time points, the differences for all the schemes

are relatively small based on the variance of the estimated latent variable, around 6.7. It
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Table 6.8: Comparisons between true values and the 5-simulation-chain averages over

under three schemes.

True Scheme 1 Scheme 2 Scheme 3

parameter mean sd mean sd mean sd

θh,11 none 1.95 0.06 1.83 0.05 1.94 0.10

θh,12 none 2.54 0.11 2.42 0.12 2.45 0.11

σt12 0.70 0.63 0.07 0.63 0.06 0.62 0.07

σt13 0.45 0.42 0.08 0.42 0.08 0.41 0.10

σt14 0.20 0.23 0.09 0.22 0.08 0.26 0.10

λ1 -1.21 -1.16 0.10 -1.15 0.07 -1.12 0.14

λ2 -1.53 -1.45 0.10 -1.41 0.08 -1.39 0.12

λ3 -1.10 -1.15 0.09 -1.08 0.07 -1.03 0.11

λ02 1.75 1.83 0.11 1.77 0.08 1.72 0.10

λ03 0.83 0.84 0.14 0.79 0.09 0.75 0.13

may suggest the green-square-red-dashed lines in Figure 6.6 indeed captures the true mean

trend. Moreover, the mean absolute error for Scheme 3 is overall the largest. This seems to

reflect the bias of using the two-step estimation procedure with limit information (which

consists with the results in Table 5.5 before as well). In addition, the mean absolute errors

for Scheme 2 seems the smallest.

Table 6.9: Mean absolute errors between the estimated trends and true one of the latent

variable under the three schemes.

Time point t

1 2 3 4

Scheme 1 0.493 0.541 0.369 0.392

Scheme 2 0.501 0.491 0.361 0.383

Scheme 3 0.512 0.587 0.385 0.325

Prediction

With the set-ups for previous prediction tasks, we conduct a 10 experiments for model

prediction assessments. Instead of calculating RMSE, we use an accuracy rate, a percent-
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Figure 6.6: The trend plots of the posterior means of the latent variable under three

schemes for Dataset V. Each colour represents a different data point. The population

(green-square-red-dashed) line depicts the general trend pattern for all data points. Its

value at each time point is simply the mean of all estimated latent variable.
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age that the predictive response values match the true ones. The mean accuracy rates for

all schemes are rather similar in terms of statistical level. All values are around 88% to

93%, higher than those for using logistic regression3, where the rate is around 81%.

Except assessing predictive error on each variable, we also use a χ2-type discrepancy

quantity to examine the model suitability by PPC procedures. Similar to the χ2 test

statistic for goodness of fit in contingency table, the discrepancy quantity is

T (Y|Ω) =
[P00(yr, yr′ )− E00]2

E00
+

[P01(yr, yr′ )− E01]2

E01
+

[P10(yr, yr′ )− E10]2

E10
+

[P11(yr, yr′ )− E11]2

E11
,

(6.17)

where Ω contains all estimated parameters; P00(yr, yr′ ) represents the proportion of the

empirical data points with yr = 0 and yr′ = 0. Likewise, E00 is the expectation proportion

of yr = 0 and yr′ = 0 calculated by the multivariate Gaussian distribution of underlying

latent variables (ur and ur′ ) with the mean and covariance matrix given by Eqn. (4.28) and

(4.29). The other observed proportions (P01, P10, P11) and model expectation proportions

(E01, E10, E11) are defined in the respective way as well4.

66 test statistics can therefore be invented based on the combinations for response

pairs. All the discrepancy quantities are able to be calculated by Equation (6.17). Then

the evaluation of the PP p-values follows by comparing the 2000 replicated test statistics

values with their observed counterparts. Three tables of the p-values for all schemes are

provided as a model fitting assessment. The intention is to see whether extreme values (less

than 0.05 and more than 0.95) are overall observed or not, which reveals inappropriateness

of model structure or assumptions5.

Table 6.10, 6.11 and 6.12 show that all PP p-values are between 0.05 and 0.095, which

indicates the model structure and the assumption of factor invariance are adequate. The

conclusion of the checking is indeed not against the fact that the empirical data is actually

generated by the model.

3we use 0.5 as a threshold value, if the predictive probability is larger than 0.5, then a response is valued

as 1 and vice versa.
4The discrepancy quantity uses proportions, and the conventional the χ2 test statistic use frequencies.

The former is obtained from dividing the latter by the data size.
5We already used this procedure to realise the capacity of detecting model misfit. Due to space, we do

not provide the detail experiment description and results here.
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Table 6.10: The PP p-value results of model checking with Scheme 1 upon Dataset V.

Each value is calculated based on comparing the values of chi-squared test statistic of

empirical and replicated data for a pair of response variables.

y
(1)
1 y

(1)
2 y

(1)
3 y

(2)
1 y

(2)
2 y

(2)
3 y

(3)
1 y

(3)
2 y

(3)
3 y

(4)
1 y

(4)
2 y

(4)
3

y
(1)
1 0.170 0.273 0.110 0.101 0.140 0.162 0.158 0.173 0.124 0.125 0.133

y
(1)
2 0.213 0.121 0.128 0.127 0.179 0.137 0.185 0.106 0.192 0.142

y
(1)
3 0.161 0.157 0.148 0.246 0.154 0.214 0.197 0.269 0.217

y
(2)
1 0.279 0.320 0.350 0.269 0.240 0.316 0.176 0.288

y
(2)
2 0.321 0.322 0.289 0.215 0.160 0.212 0.282

y
(2)
3 0.306 0.271 0.234 0.322 0.239 0.371

y
(3)
1 0.532 0.698 0.751 0.530 0.710

y
(3)
2 0.560 0.906 0.828 0.634

y
(3)
3 0.812 0.834 0.504

y
(4)
1 0.524 0.558

y
(4)
2 0.707

y
(4)
3

Table 6.11: The PP p-value results of model checking with Scheme 2 upon Dataset V.

y
(1)
1 y

(1)
2 y

(1)
3 y

(2)
1 y

(2)
2 y

(2)
3 y

(3)
1 y

(3)
2 y

(3)
3 y

(4)
1 y

(4)
2 y

(4)
3

y
(1)
1 0.350 0.785 0.194 0.102 0.466 0.700 0.634 0.528 0.826 0.752 0.871

y
(1)
2 0.279 0.144 0.127 0.185 0.482 0.699 0.172 0.710 0.332 0.680

y
(1)
3 0.277 0.315 0.839 0.261 0.769 0.338 0.569 0.182 0.168

y
(2)
1 0.738 0.365 0.137 0.327 0.499 0.291 0.635 0.286

y
(2)
2 0.530 0.188 0.195 0.597 0.577 0.459 0.295

y
(2)
3 0.359 0.429 0.625 0.355 0.538 0.173

y
(3)
1 0.139 0.803 0.125 0.432 0.174

y
(3)
2 0.793 0.143 0.090 0.288

y
(3)
3 0.085 0.092 0.450

y
(4)
1 0.522 0.849

y
(4)
2 0.748

y
(4)
3
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Table 6.12: The PP p-value results of model checking with Scheme 3 upon Dataset V.

y
(1)
1 y

(1)
2 y

(1)
3 y

(2)
1 y

(2)
2 y

(2)
3 y

(3)
1 y

(3)
2 y

(3)
3 y

(4)
1 y

(4)
2 y

(4)
3

y
(1)
1 0.671 0.862 0.070 0.081 0.265 0.504 0.502 0.386 0.883 0.724 0.812

y
(1)
2 0.534 0.062 0.106 0.104 0.333 0.627 0.109 0.771 0.308 0.628

y
(1)
3 0.130 0.195 0.698 0.174 0.641 0.209 0.419 0.149 0.898

y
(2)
1 0.901 0.772 0.116 0.408 0.446 0.368 0.674 0.389

y
(2)
2 0.861 0.207 0.415 0.607 0.783 0.613 0.415

y
(2)
3 0.329 0.438 0.617 0.435 0.701 0.237

y
(3)
1 0.442 0.901 0.069 0.308 0.104

y
(3)
2 0.871 0.106 0.069 0.235

y
(3)
3 0.057 0.088 0.429

y
(4)
1 0.535 0.881

y
(4)
2 0.694

y
(4)
3

6.5.3 Study VI - Offense Crime Justice Data

The third longitudinal dataset is an extraction of Offense Crime Justice Study (OCJS)

conducted from 2003 to 2006.6 The original cohort study follows 2539 responders and doc-

uments 1044 items, which contain temporal demographic and socio-economic information,

and responses of study questionnaires for offense history and risk factors. The extraction

procedure is that for each year we first select 5 variables from a limited socio-economic

variables, which are age, gender, household tenure, household income, employment status,

and add one extra variable as time covariate. To simpify the empirical analysis, we make

the house-income covariate a continuous variable by assigning a value through processing7,

and transform employment status as a binary variable by combining categories8. Next, we

select 4 items and combine two variables (property offense and criminal damage offense)

as a new variable. Therefore, the three responses represent other theft offense, vehicle

theft offense, property damage offense. The final step is to delete the data points that

missing value occurs on all covariates and responses over time.

Table 6.13 summaries the properties of the resulting dataset where p.t.p. means per

6The OCJS panel data can be accessed in the website of UK Data Archive.http://discover.

ukdataservice.ac.uk/series/?sn=2000042
7A value is generated from a uniform density over the specific income ranges and then re-scaled.
8The status “student” is combined with employment, denoted by 1; “Economically inactive (others)”

with non-employment, denoted by 0.
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time point. Here the input character are mixed, we therefore separate the description into

Figure 6.6 and Table 6.14.

In Figure 6.6, the distribution of responders’ age (denoted by z
(t)
1 , for 1 ≤ t ≤ 4)

shows that more teenagers aged around between 10 and 14 in the first year, the rest

lightly spread ranged around from 14 to 25. The distributions for the successive years

have similar scenario - more responders are teenagers but not merely transitions by years.

For household income (denoted by z
(t)
4 , for 1 ≤ t ≤ 4), the temporal distributions seem

different. In the first two years, more people’s income are below scale 5 (which originally

means 50000 pounds) and a spike is made of the most abundant family. In the remaining

years more people’s income are above scale 5 and the spikes at the top income family

become more eminent. The lowest-income column also turns less.

Table 6.13: Properties of Dataset VI. Here p.t.p. is the abbreviation of per time point.

Dataset Input Output

Size (N) Time (T) Dim. p.t.p. (D) character Dim. p.t.p. (R) character

1274 4 6 mixed 3 binary

Table 6.14 shows that the proportions of female and male responders are almost 50-50,

where the variables representing age (z
(t)
2 , 1 ≤ t ≤ 4) are time-invariant. The household-

tenure covariates (z3(t), 1 ≤ t ≤ 4) have stable proportions over time - around two third

of the responders are owners and one third are tenants. For employment status (z5(t), 1 ≤

t ≤ 4), the steady time-varied proportions are about 90% being employed and 10% being

unemployed.

Table 6.14: Proportions (%) of binary covariates of Dataset VI.

z
(1)
2 z

(1)
3 z

(1)
5 z

(2)
2 z

(2)
3 z

(2)
5 z

(3)
2 z

(3)
3 z

(3)
5 z

(4)
2 z

(4)
3 z

(4)
5

0 47.9 68.5 91.1 47.9 69.9 90.4 47.9 70.0 89.9 47.9 69.9 89.5

1 52.1 31.5 8.9 52.1 30.1 9.6 52.1 30.0 10.1 52.1 30.1 10.5

Tables 6.15 reveals that most responders did not commit vehicle theft offense (y
(t)
2 , 1 ≤

t ≤ 4) and property damage offense (y
(t)
3 , 1 ≤ t ≤ 4). The proportions of the latter seem

to increase with time. For other theft offense (y
(t)
1 , 1 ≤ t ≤ 4), only almost one-tenth have
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Figure 6.7: Distributions of the inputs for Dataset VI.
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committed over time expect 13% at the second year.

Table 6.15: Proportions (%) of binary response variables of Dataset VI.

y
(1)
1 y

(1)
2 y

(1)
3 y

(2)
1 y

(2)
2 y

(2)
3 y

(3)
1 y

(3)
2 y

(3)
3 y

(4)
1 y

(4)
2 y

(4)
3

0 90.7 98.7 97.2 86.9 98.7 98.6 90.3 98.8 98.8 90.3 97.2 98.9

1 9.3 1.3 2.8 13.1 1.3 1.4 9.7 1.2 1.2 9.7 2.8 1.1

Table 6.16 shows every three variables documented at the same time have lower-

moderate inter-correlations. Overall, they have more even lower correlations with variables

at other times, especially in further years. We assume them to measure one latent variable.

Table 6.16: Correlation coefficients between response variables of dataset VI.

y
(1)
1 y

(1)
2 y

(1)
3 y

(2)
1 y

(2)
2 y

(2)
3 y

(3)
1 y

(3)
2 y

(3)
3 y

(4)
1 y

(4)
2 y

(4)
3

y
(1)
1 1 0.27 0.26 0.33 0.12 0.14 0.20 0.10 0.02 0.16 0.04 0.02

y
(1)
2 1 0.29 0.12 0.05 -0.05 0.04 0.06 0.06 0.01 -0.01 -0.01

y
(1)
3 1 0.19 0.17 0.02 0.09 0.13 0.08 0.11 0.10 0.03

y
(2)
1 1 0.22 0.18 0.36 0.15 0.08 0.24 0.05 0.04

y
(2)
2 1 0.20 0.09 0.13 0.13 0.12 -0.01 -0.01

y
(2)
3 1 0.19 -0.01 0.05 0.09 0.07 0.13

y
(3)
1 1 0.21 0.21 0.31 0.10 0.17

y
(3)
2 1 0.28 0.15 0.26 0.14

y
(3)
3 1 0.13 0.26 0.43

y
(4)
1 1 0.21 0.23

y
(4)
2 1 0.19

y
(4)
3 1

Learning

200 pseudo inputs are used in these experiments. For Scheme 1 and 2, we set 30000

MCMC sampling iterations. But for Scheme 3, we fit a marginal model with 50000 samples

and the joint model with 3000.

The EPSR values from 5-chain simulations are under 1.2 for all shemes. Achievement

of simulation convergence can be considered.

Table 6.17 presents the estimation results of some parameters at the first time point.

Overall the estimates of GP hyper-parameters and latent correlations are similar for all
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schemes. However, the rest manifest different results except the loading (corresponding

to the third indicator). For those estimates that appear different, the overlap of the

constructed 95% credible intervals are less.

The Scheme 1 estimates over the first three time points are similar. But, they are

different from those at the fourth time point, except the parameters of the second loading

and intercept. The maximal difference happens in one of loadings (corresponding to the

first indicator) by the magnitude of around 1.6. This may suggest the measurement

invariance assumption should not be imposed.

Table 6.17: Comparisons between true values and the 5-simulation-chain averages under

three schemes.

Scheme 1 Scheme 2 Scheme 3

parameter mean sd mean sd mean sd

θ11 2.37 0.15 2.30 0.19 2.35 0.14

θ12 0.97 0.37 0.93 0.30 1.11 0.30

σt12 0.65 0.06 0.66 0.06 0.64 0.07

σt13 0.52 0.08 0.56 0.08 0.54 0.10

σt14 0.52 0.09 0.51 0.08 0.52 0.10

λ1 2.35 0.44 1.67 0.16 1.03 0.40

λ2 1.44 0.30 0.91 0.19 1.97 0.36

λ3 0.98 0.24 0.88 0.11 1.05 0.24

λ02 -1.72 0.17 -1.80 0.09 -1.27 0.20

λ03 -1.2 0.14 -1.60 0.07 -1.03 0.13

Figure 6.8 shows temporal changes of the latent-variable estimates under the three

schemes. The trajectories, each of which forms by linking the ergodic average estimates

at different time points, overall exhibit a similar pattern. A bundle of lines lie in the lower

part of each subfigure, and some located over them have relatively huge fluctuations over

time. This pattern can be more evidently found in the subfigures for Scheme 1 and 2.

Also, it suggests the distribution of the estimates at each time point has multiple modes

or a mixture distributional structure or a long tail. We later provide another figure to

evidence the suggestion.

The three population trend lines are drawn into the upper edge of the bundle. They do

not pass through it from the middle and remain level at the three time points. Moreover,

the lines for Scheme 2 and 3 stay even at the end, but that for Scheme 1 has a drop.
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It should be noted that the pattern of the population line for Scheme 1 may not be

interpreted for the growth trend of the latent variables because measurement invariance

assumption is not imposed. It only works as a reference line for the comparison with those

for the other two schemes. The population trend lines for Scheme 2 and Scheme 3 overall

remain negative and have no change under the measurement invariance assumption. One

could name the latent variable as stealing potentials and interpret the general trend that

subjects have had rather weak inclination in stealing or robbing acroos time9.

Figure 6.8: The trend plots of the posterior means of the latent variable under three

schemes for Dataset VI. Each colour represents a different data point. The green-square-

red-dashed line depicts the population trend pattern for all data points. Its value at each

time point is simply the mean of all estimated latent variable.

Figure 6.9 provides another perspective to see posterior estimated latent variables at

the first three waves under all schemes. Each subfigure is the projection of the four-

dimensional latent variable into two-dimensional subspace. Two prominent features for

all subfigures can be observed: a large cluster consisting of high proportions of data points

is located in the bottom-left area corresponding to negative values; four small clusters

9The interpretation is made under the positive associated loadings are positive.
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roughly lie in the centre or the top-right area. The second characteristic seems more

evident over the points under Scheme 1 and 2; however, that is comparably not clear

under Scheme 3.

Figure 6.9: Scatter plots of the posterior estimates for latent variables (x(1), x(2)) and for

(x(1), x(3)) under all schemes.
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In fact, Hales et al. (2009) already uses latent class analysis to detect five distinct

groups of offense behavioural patterns over all subjects 10. This may reflect the number

of the clusters we observe in Figure 6.9.

Prediction

We still conduct a 5-fold cross validation for model prediction assessment, where the

sizes of each training set and test set are around 1019 and 255 and the pseudo-input size

is 150.

As the previous study, we calculate the mean accuracy rates over 5 test sets under

all schemes. All resulting values are identical across the schemes and are close to the

proportion of 0 in Table 6.15. This is because all underlying predictive latent variables

are valued left far from the axis origin. The accuracy rates of using logistic regression are

lower to a degree, which may be due to the non-linear regression relation.

The results of PPC procedure for model fitting under three schemes are provided.

Table 6.18 shows only one PP p-value is out of a reasonable range. Therefore we can still

consider the appropriateness of the model is acceptable despite the defect. Table 6.19 and

6.20 reveals imposing the measurement invariance assumption may be not sensible. The

reason is that more extreme p-values (coloured as red) occur – 14 are found in Table 6.19

and 17 in Table 6.20.

6.6 Remarks

Our model framework for longitudinal analysis shares some similarity on factor analysis

model structure with LV-LCM. But, both frameworks adopt different concepts to model

temporal change of a latent variable. LV-LCM with latent variables uses a set of pre-

specified latent factors to restrict regression functional family between covariates and latent

variables. The latent factors and the related random disturbances characterise an overall

temporal pattern and the difference across all the units. Instead, longitudinal sparse GP-

SEM can utilize non-parameteric probabilistic framework to increase the flexibility for

modelling the regression function. Through post-processing calculations, the individual

trajectories and general temporal pattern of a latent variable can be obtained.

10The responses they chose for data analysis are somewhat different from ours.

158



CHAPTER 6. APPLICATION ON LONGITUDINAL STUDIES

Table 6.18: The PP p-value results of model checking with Scheme 1 upon Dataset VI.

Each value is calculated based on comparing the values of chi-squared test statistic of

empirical and replicated data for a pair of response variables.

y
(1)
1 y

(1)
2 y

(1)
3 y

(2)
1 y

(2)
2 y

(2)
3 y

(3)
1 y

(3)
2 y

(3)
3 y

(4)
1 y

(4)
2 y

(4)
3

y
(1)
1 0.208 0.154 0.098 0.188 0.198 0.147 0.178 0.073 0.092 0.207 0.095

y
(1)
2 0.659 0.384 0.683 0.446 0.203 0.631 0.608 0.181 0.467 0.313

y
(1)
3 0.418 0.328 0.718 0.364 0.459 0.432 0.261 0.609 0.461

y
(2)
1 0.398 0.394 0.151 0.397 0.136 0.097 0.085 0.095

y
(2)
2 0.428 0.262 0.501 0.642 0.215 0.579 0.344

y
(2)
3 0.241 0.573 0.692 0.261 0.449 0.246

y
(3)
1 0.361 0.374 0.061 0.330 0.305

y
(3)
2 0.783 0.213 0.079 0.535

y
(3)
3 0.275 0.484 0.019

y
(4)
1 0.087 0.289

y
(4)
2 0.446

y
(4)
3

Table 6.19: The PP p-values of model checking with Scheme 2 upon Dataset VI.

y
(1)
1 y

(1)
2 y

(1)
3 y

(2)
1 y

(2)
2 y

(2)
3 y

(3)
1 y

(3)
2 y

(3)
3 y

(4)
1 y

(4)
2 y

(4)
3

y
(1)
1 0.124 0.004 0.168 0.869 0.893 0.500 0.780 0.638 0.709 0.889 0.856

y
(1)
2 0.001 0.111 0.239 0.139 0.101 0.206 0.217 0.070 0.160 0.163

y
(1)
3 0.003 0.005 0.005 0.003 0.005 0.005 0.002 0.004 0.009

y
(2)
1 0.383 0.268 0.043 0.378 0.191 0.315 0.089 0.202

y
(2)
2 0.497 0.318 0.652 0.814 0.659 0.847 0.767

y
(2)
3 0.314 0.725 0.908 0.661 0.778 0.399

y
(3)
1 0.452 0.356 0.270 0.416 0.364

y
(3)
2 0.898 0.629 0.091 0.826

y
(3)
3 0.605 0.649 0.004

y
(4)
1 0.117 0.566

y
(4)
2 0.964

y
(4)
3
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Table 6.20: The PP p-values of model checking with Scheme 3 upon Dataset VI.

y
(1)
1 y

(1)
2 y

(1)
3 y

(2)
1 y

(2)
2 y

(2)
3 y

(3)
1 y

(3)
2 y

(3)
3 y

(4)
1 y

(4)
2 y

(4)
3

y
(1)
1 0.108 0.018 0.000 0.885 0.559 0.032 0.777 0.367 0.102 0.781 0.678

y
(1)
2 0.034 0.065 0.822 0.475 0.216 0.878 0.567 0.153 0.725 0.619

y
(1)
3 0.008 0.384 0.146 0.047 0.273 0.084 0.051 0.277 0.199

y
(2)
1 0.044 0.008 0.000 0.033 0.005 0.001 0.010 0.010

y
(2)
2 0.454 0.263 0.853 0.744 0.291 0.903 0.848

y
(2
3 0.081 0.667 0.478 0.119 0.732 0.468

y
(3)
1 0.197 0.053 0.001 0.206 0.116

y
(3)
2 0.562 0.211 0.063 0.916

y
(3)
3 0.081 0.569 0.032

y
(4)
1 0.040 0.082

y
(4)
2 0.991

y
(4)
3

The proposed methodology addresses continuous or binary responses. The former

model framework has analogy with its static version presented in Chapter 3. The latter

is an extension of the former and adds another level for latent continuous responses.

That level represents the underlying distribution of binary responses. In the aspects

of estimation, prediction and computation, the modelling fitting with binary responses

are similar to that with continuous ones. The differences are the augmented sampling

scheme for the underlying latent variables, which adopts truncated Gaussian densities.

The predictive binary values are based on the means of the predictive latent continuous

responses.

Imposing the measurement invariance assumption or conducting the two-step estima-

tion procedure differentiates computational schemes. The measures can give a genuine

implication for temporal changes of a latent variable and endow a possible computational

benefit. The appropriateness of the invariance assumption can be examined by initially

inspecting the estimates and then conducting posterior predicitive checking.
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Chapter 7

Discussion and Conclusion

In this thesis we have done exploratory works for GP-SEM in model estimation, efficient

computation, multiple-output prediction and applications to longitudinal analysis. Here,

we review our works and main contributions; also discuss possible improvement and future

works.

We have presented our new modelling methodology (GP-SEM), which is built on GP

probability framework and factor analysis model. Due to the constitution features, GP-

SEM has capabilities including exploring distributions of latent variables (constructs),

reducing response dimension, and realizing functional regressions between covariates and

latent variables. It can serve as a causal model like SEM or MIMIC model (Bollen 1989,

Pearl 2000) to examine a posited causal relationship between observed covariates and

responses, where latent variables are medium. Although the structural model in GP-SEM

is to describe assumed causal relations between observed covariates and latent variables

rather than among latent variables, the framework can certainly extend to the latter case

by simply incorporating another factor model.

We have adapted GP-SEM to addresses a computational issue on large dataset. The

idea is motivated by the sparse GP (SPGP) approximation approach (Snelson & Ghahramani

2006a). We adopt a set of variables to modify the original GP prior of function values.

Our sparse approximation treatment is different from the SPGP model. The pseudo (or

inducing) inputs are selected from a training dataset rather than freely estimated by op-

timisation.

We also have demonstrated GP-SEM as a longitudinal analysis instrument to realise

temporal change of latent variables under appropriate assumptions. Unlike LV-LCM
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to capture the mean trend simultaneously with estimation though, GP-SEM enables to

achieve the task by post-processing calculations.

Given the model structure, we have demonstrated its identification examination under

appropriate parameter constraints. We used two ways – algebraic derivations through

moments and rank calculations of a Jacobian matrix – to ensure one-one relations between

unknown and reduced-form parameters for local identifiability.

Regarding the computational algorithms we have provided three estimation methods.

The first two mainly rely on Gibbs sampling and Metropolis-Hastlings simulation ap-

proaches. The second algorithm, parameter expansion, is additionally applied to enhance

mixing for factor loadings and latent correlation matrix. For continuous responses, ex-

periment results show simulations converge fast, but for binary responses, more MCMC

samples are demanded, especially for factor loadings and intercepts. Instead of imposing

more restrictions, it may be worth trying to apply the technique of parameter expansion

data augmentation (PX-DA) (Liu & Wu 1999) to increase sampling efficiency on those

parameters. The technique found successful for MCMC implementation of (multivariate)

probit regression although in the applications the covariates are observed.

Furthermore, we have adapted an approach for the locations of inducing inputs. A

random walk sampling scheme is initially created in Algorithm 1. And then considering

possible computation cost reductions, a random selection scheme is utilized in Algorithm

2 before model fitting. We further used greedy selection based on information gain in

entropy. The associated and fixed estimates of GP hyper-parameters for selection are

from preliminary fitting by marginal models. We found that as the number of inducing

inputs increase, the predictive performance of sparse GP-SEM (under either selection

schemes) overtakes that of GP regression by independently fitting models for individual

responses.

The third estimation method is a hybrid algorithm combining MCEM and IFM ap-

proaches. Though an estimation bias occurs and the predictive capability underperforms,

parameter estimates, to some degree, are still close to the true values or the ones estimated

merely under a joint model. The issue of slow convergence of parameters (for loadings

and intercepts), usually happening in EM implementations, does not emerge in our ex-

periments. The reason could be due to prior-centring responses and randomly generated

starting points not departed from true values by chance. To avoid this, one can use a tech-
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nique of parameter expansion expectation maximum (PX-EM) (Liu et al. 1998), which

introduces a non-zero auxiliary parameter to make latent variables more uncertain.

The two-step estimation scheme of the hybrid algorithm is additionally adopted with

MCMC methods in experiments as well. The estimates from marginal models are close

to the true values. This suggests it is reasonable to set those estimates as starting values

before fitting a joint model. We found that under that set-up, MCMC simulation converges

indeed more efficiently than it does under random initialization. We also inspected that

using the two-step computational scheme can be much less time-consuming than using

the one-step scheme (fitting a joint model). This happens especially when more latent

variables are involved.

We also did some other works in empirical studies. For learning tasks we explored

distribution of latent variables before and after data standardisation and discovered the

effect of processing. We gave mathematical explanation about the processing effect. The

investigation into differences in latent variables estimated from marginal models and a joint

model was conducted as well. For prediction tasks, instead of assessing model predictive

performance for each response by RMSE, we further adopted predictive posterior checking

to assess discrepancy between empirical and replicated datasets. This reflects whether or

not model fitting is appropriate. Additionally, through a special procedure, we realized

individual functional relationship between each covariate and a latent variable in high-

dimensional input space.

The limit of the model frameworks results from huge computation cost in some cir-

cumstances. Although inventing efficient estimation methods to reduce computational

expenses, we do not completely solve the computational problem. When the scale of a

dataset is rather large, the size of inducing inputs may be increased relatively. In addition

to more latent variables (constructs) or more time points involved, all make computa-

tion very slow. Practitioners could consider divide the dataset into relatively smaller-size

subsets and directly implement estimation with the two-step computational strategy.

There are several points that our framework still demands concerns and the improve-

ment can be carried out in the future. First is the GP covariance function and high-

dimensional inputs. We only adopt square-exponential (SE) covariance function in all

experiment implementations for computational convenience. It gives regression function

equal smoothness on each dimension of covariates. This feature is unrealistic likely on
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some dataset, especially when some covariates may be inappropriate as a predictor. Using

automatic relevance determination (ARD) (Rasmussen & Williams 2006) covariance func-

tion may lead a refined model and improve model predictive performance. It can diminish

effect of covariates whose length scales are large in the corresponding input dimension.

Furthermore, one could introduce a covariance function to project input space on a low-

dimension subspace (Snelson & Ghahramani 2006b). If a SE covariance function is still

considered, one can generate latent covariates by PCA for input dimension reduction.

Next point is about inducing inputs. When the number of pseudo input is low, the

RMSEs of using greedy selection are smaller than those of using random selection. This

may imply the locations by the former selection are more appropriate to capture the un-

derlying regression functional relations. The greedy selection scheme depends on the fixed

estimates of hyper-parameters. We could perhaps examine whether using an iteratively-

varied1 low-size pseudo inputs reduces predictive errors further.

On the other hand, if using a large number of inducing inputs is necessary, the model

predictive performance may suffer from overfitting. That issue is reported in some of SPGP

applications but does not occur in our few experiments. There are possible reasons why

overfitting does not happen. It may be that the selected inducing inputs are good enough

to sketch the underlying functional relationship between covariates and latent variables.

It could be that the functional relationship is rather smooth, not too wiggly; or the

inducing inputs are selected to be fixed rather than freely estimated by optimisation. To

avoid that possible issue, our framework can be extended by adopting Titsias’s variational

approximation scheme (Titsias 2009). We could use greedy selection for inducing inputs

to maximise the variational lower bound of the log marginal likelihood of latent variables.

Several modelling variants can be considered in circumstances for different types of re-

sponse. Although only dealing with data with fully continuous or dichotomous outcomes,

we can certainly apply GP-SEM to mixed type. One merely needs to modify the model

structure compatible for the both types. The involved binary responses link latent con-

tinuous responses as before. For ordered categorical responses, we can extend GP-SEM

by adding framework for sampling the categorical thresholds of latent responses. For re-

1“Iteratively-varied” means the low-size pseudo inputs are obtained by conducting alternative estimation

and greedy selection with iterations. Note that each iteration produces new estimates of hyper-parameters

and new pseudo inputs.
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sponses of discrete event counts, the model structure can be changed to the one without

measurement errors. The mean of outcome variables associated with the linear predictor

of latent variables (constructs) by a link log. This is a typical formulation in generalized

linear models (Skrondal & Rabe-Hesketh 2004).

Our framework can be applied to incomplete data. However, concerns and necessary

data processing may need to be drawn. If missing values occur in covariates, practitioners

demand to adopt some treatments, such as imputation or listwise deletion (Gelman &

Hill 2007). If missing values happen on response variables, there could be no problem in our

framework under the assumed missing-at-random (MAR) mechanism. For pure sampling

estimation methods, one can simply regard missing values as latent variables and use data

augmentation technique (Tanner & Wong 1987). Those missing responses are able to be

sampled through the corresponding full conditional density. For the hybrid method about

MCEM and IFM, one can still sample those missing responses and other latent variables

to approximate conditional expectations in E-step. Incidentally, the MAR assumption

maybe can be examined by assessing the MAR+ assumption (Potthoff et al. 2006).

Sensitivity analysis can be done for different choices of prior distributions and covari-

ance functions. The instruments of analysis can be predictive posterior checks by various

discrepancy statistics or cross-validation by different measure criteria.

The results of the final empirical study prompt us to develop an expanded framework

for better modelling fit. One potential idea is to further expand GP-SEM into mixture

model framework. We may need to introduce another set of latent variables for the

proportion of different groups of data points. And also it would expand more model

parameters, such as factor loadings and intercepts. The different components of latent

constructs are possibly modelled by separate GP frameworks. The related estimation

method can refer existing approaches, such as the sampling MCMC methods (Lee 2007).
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Appendix A

A.1 Matrix identities

A.1.1 Matrix inversion lemma (Sherman-Morrison-Woodbury formula)

(A + CBCT)−1 = A−1 −A−1C(B−1 + CTA−1C)−1CTA−1 (A.1)

|A + CBCT| = |B||A||B−1 + CTA−1C| (A.2)

A.1.2 Block Matrix inversion lemma

A =

 A11 A12

AT
12 A22

 ,

A−1 =

 Ã11 Ã12

ÃT
12 Ã22

 =

 A−1
11 + A−1

11 A12Ã22A
T
21A

−1
11 −A−1

11 A12Ã22

−(A−1
11 A12Ã22)T Ã22

 , (A.3)

where Ã22 = (A22 −AT
12A

−1
11 A12)−1

|A| = |A11||Ã22| (A.4)

A.2 Gaussian identity

A.2.1 Multiplication

fa(ν) and fb(ν) are the pdf of N (a,A) and N (b,B), then fa(ν) · fb(ν) is a Gaussian

function proportional to the pdf of N (c,C), where

c = CA−1a + CB−1b,

C = (A−1 + B−1)−1.
(A.5)

166



APPENDIX A.

A.2.2 Conditional distribution

If ν1 ∼ N (a,A), ν2 ∼ N (b,B) and ν1

ν2

 ∼ N(
 a

b

 ,
 A C

CT B

),
then

ν1|ν2 ∼ N (a + CB−1(ν2 − b),A−CB−1CT) (A.6)

A.2.3 Integration

If ν|ω ∼ N (Cω,A) and ω ∼ N (0,B), then integrating out ω from the joint likelihood of

ν and ω leads to achieve the marginal likelihood of ν,

p(ν) =

∫
p(ν|ω)p(ω)dω,

and

ν ∼ N (0,A + CBCT). (A.7)

A.3 Derivation of Samplers in Section 4.2

A.3.1 Pseudo latent functions

f̄q denotes the q-th pseudo latent function vector, the full conditionals is

p(f̄q|e.e.) ∝ p(fq|f̄q, z1:N , z̄1:M
q ,θh,q)p(f̄q|z̄1:M

q ,θh,q)

∝ exp
{
− 1

2
(fq −Kq;NMK−1

q;M f̄q)
TV−1

q (fq −Kq;NMK−1
q;M f̄q)

}
·

exp
{
− 1

2
f̄Tq K−1

q;M f̄q

}
∝ exp

{
− 1

2
(f̄q − µf̄q ,post)

TΣ−1
f̄q ,post

(f̄q − µf̄q ,post)
}

by (A.5),

where e.e. means eveything else.
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A.3.2 Latent variables

Let all latent variables denoted X = [x(1), . . . ,x(N)], x(n) = [x
(n)
1 , . . . , x

(n)
Q ]T then the full

conditionals:

p(X|e.e.) ∝ p(Y|X,Λ,Σy)p(X|z1:N , z̄1:M
1:Q ,Θh,Σx, f̄)

∝
N∏
n=1

[
exp

{
− 1

2
(y(n) −Λx(n) − λ0)TΣ−1

y (y(n) −Λx(n) − λ0)
}
·

exp
{
− 1

2
(x(n) − K̃nMK̃−1

M f̄)T(V(n) + Σx)−1(x(n) − K̃nMK̃−1
M f̄)

}]
∝

N∏
n=1

[
exp

{
− 1

2
[Λx(n) − (y(n) − λ0)]TΣ−1

y [Λx(n) − (y(n) − λ0)]
}
·

exp
{
− 1

2
(x(n) − K̃nMK̃−1

M f̄)T(V(n) + Σx)−1(x(n) − K̃nMK̃−1
M f̄)

}]
∝

N∏
n=1

[
exp

{
− 1

2
(x(n) − µx(n))TΣ−1

x(n)(x
(n) − µx(n))

}]
by (A.5)

A.3.3 Latent functions

Let latent functions be F = [f (1), . . . , f (N)], f (n) = [f
(n)
1 , . . . , f

(n)
Q ]T, then the full condi-

tionals:

p(F|e.e.) ∝ p(X|F,Σx)p(F|z1:N , z̄1:M
1:Q ,Θh, f̄)

∝
N∏
n=1

[
exp

{
− 1

2
(x(n) − f (n))TΣ−1

x (x(n) − f (n))
}
·

exp
{
− 1

2
(f (n) − K̃nMK̃−1

M f̄)T(V(n))−1(f (n) − K̃nMK̃−1
M f̄)

}]
∝

N∏
n=1

[
exp

{
− 1

2
(f (n) − µf (n))TΣ−1

f (n)(f
(n) − µf (n))

}]
by (A.5)
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A.3.4 Factor loadings and intercept

For any r, let λr = (λqr, λ0r)
T, and s indicates the corresponding index of latent variables

to the indicator r. Let yr = (y
(1)
r , . . . , y

(N)
r )T, xs = (x

(1)
s , . . . ,x

(N)
s )T and X̃s = [xs1N ],

then the full conditionals:

p(λr|e.e.) ∝ p(yr|xs, σ2
yr)p(λr)

∝ exp
{
− 1

2
(yr − X̃sλr)

T(σ2
yr)−1(yr − X̃sλr)

}
exp

{
− 1

2
λT
r (σ2

λ)−1λr

}
∝ exp

{
− 1

2
λT
r [X̃T

s X̃s(σ
2
yr)−1 + (σ2

λ)−1]−1λr − yT
r (σ2

yr)−1X̃sλr

−(X̃sλr)
T(σ2

yr)−1yr

}
∝ exp

{
− 1

2
(λr − µλr,post)TΣ−1

λr,post
(λr − µλr,post)

}
where µλr,post = (σ2

yr)−1Σλr,post(X̃s)
Tyr.

A.3.5 Measurement error variances

For any r, let measurement error variances be σ2
yr , denote xs = (x

(1)
s , . . . , x

(N)
s )T and

x̃
(n)
s = (x

(n)
s , 1), then the full conditional:

p(σ2
yr |e.e.) ∝ p(σ2

yr) · p(yr|xs,λr, σ2
yr , )

∝ (σ2
yr)−a0−1 exp{−b0/σ2

yr} ·
N∏
n=1

(σ2
yr)−1/2 exp

{
− 1

2
(y(n)
r − x̃(n)

s λr)
T(σ2

yr)−1(y(n)
r − x̃(n)

s λr)
}

∝ (σ2
yr)−(a0+N/2)−1 exp

{
−
[
b0 +

1

2

N∑
n=1

(y(n)
r − x̃(n)

s λr)
2
]
(σ2
yr)−1

}

A.3.6 Correlation matrix of GP noises

The full conditionals of Σs is

p(Σs|e.e.) ∝ p(W0|Σs)p(Σs)

∝ |Σs|−N/2 exp
{
− 1

2
tr(Σ−1W0W

T
0 )
}
·

|Σs|−(2+Q+1)/2 exp
{
− 1

2
tr(Σ−1IQ)

}
∝ |Σs|−(N+2+Q+1)/2 exp

{
− 1

2
tr
(
Σ−1(W0W

T
0 + IQ)

)}
.
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A.4 Derivation of Samplers in Section 4.3

A.4.1 Latent variables

Let X = [x(1), . . . ,x(N)], x is the columnwise rearrangement of X. The full conditional of

latent variable vector x is

p(X|e.e. \ f , \f̄) ∝ p(Y|X,Λ,Σy)p(X|z1:N , z̄1:M
1:Q ,Θh,Σx)

∝
N∏
n=1

[
exp

{
− 1

2
(y(n) −Λx(n) − λ0)TΣ−1

y (y(n) −Λx(n) − λ0)
}]
·

exp
{
− 1

2

[
xT(K̃T

MNK̃−1
M K̃MN + Ṽ + Σx ⊗ IN )−1x

]}
by (A.7)

∝
N∏
n=1

exp

{
− 1

2

[
x(n) − (ΛTΣ−1

y Λ)−1ΛTΣ−1
y (y(n) − λ0)

]T
·

(ΛTΣ−1
y Λ)

[
x(n) − (ΛTΣ−1

y Λ)−1ΛTΣ−1
y (y(n) − λ0)

]}
·

exp

{
− 1

2

[
xT(K̃T

MNK̃−1
M K̃MN + Ṽ + Σx ⊗ IN )−1x

]}
∝ exp

{
− 1

2

[
(x−Σ1mx;stack)

TΣ−1
1 (x−Σ1mx;stack)

]}
·

exp
{
− 1

2
(xTΣ−1

0 x)
}

∝ exp
{
− 1

2
(x− µx,post)TΣ−1

x,post(x− µx,post)
}

by (A.5)

Σx,post can be further written as the sum of two terms for computation.

Σ−1
x,post = Σ−1

0 + Σ−1
1

=
[
K̃T
MNK̃−1

M K̃MN + (Ṽ + Σx ⊗ IN )
]−1

+ Σ−1
1

= (DBDT + A)−1 + Σ−1
1

= A−1 −A−1D(B−1 + DTA−1D)−1DTA−1 + Σ−1
1 by (A.1)

= (A−1 + Σ−1
1 )−A−1D(B−1 + DTA−1D)−1DTA−1

= A1 + D1B1D
T
1

=⇒ Σx,post = A−1
1 −A−1

1 D1(B−1
1 + DT

1 A−1
1 D1)−1DT

1 A−1
1 by (A.1)

= A−1
1 + A−1

1 D1(B−1 + DTA−1D−DT
1 A−1

1 D1)−1DT
1 A−1

1

= A−1
1 + A−1

1 D1C
−1
1 DT

1 A−1
1

In practical sampling scheme, it is necessary to ensure the positive-definiteness of A1

and C1 when one uses Cholesky decomposition. It is obvious for the first; but for the
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second term, it is the same to prove B−1 + DTA−1D − DT
1 A−1

1 D1 (namely, C1) is a

positive-definite matrix as well, the proof is as follows:

for any non-zero s, if s is a vector such that sTD = 0, then

s[B−1 + DTA−1D−DT
1 A−1

1 D1]s = sTB−1s > 0.

Here the positivity is from the positive-definiteness of B (namely, K̃M ).

For any non-zero s, if s is a vector such that sTD 6= 0, then

sT[B−1 + DTA−1D−DT
1 A−1

1 D1]s

= sTB−1s + sT
[
DT(A−1 −A−TA−1

1 A)D
]
s

= sTB−1s + sT
{

DT
[
A−1 −A−T(A−1 + Σ−1

1 )−1A
]
D
}

s

= sTB−1s + sTD(A + Σ1)−1sD > 0, by (A.1)

where sD = Ds and B and A + Σ1 allow C1 to achieve positive-definiteness.

A.4.2 Latent functions

Let F = [f (1), . . . , f (N)], f is the column-wise rearrangement of F. Then the full conditional

is :

p(F|e.e. \ f̄) ∝ p(X|F,Σx)p(F|z1:N , z̄1:M
1:Q ,Θh)

∝ exp

{
− 1

2
(x− f)T(Σx ⊗ IN )−1(x− f)

}
·

exp

{
− 1

2

[
fT(K̃T

MNK̃−1
M K̃MN + Ṽ)−1f

]}
by (A.7)

∝ exp
{
− 1

2
(f − x)TΣ−1

3 (f − x)
}
· exp

{
− 1

2
(fTΣ−1

2 f)
}

∝ exp
{
− 1

2
(f − µf,post)TΣ−1

f,post(f − µf,post)
}

by (A.5)
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Analogous to the sampling procedure of latent variables, Σf,post can be decomposed into

two terms.

Σ−1
f,post = Σ−1

2 + Σ−1
3

=⇒ Σf,post = (Σ−1
3 + Σ−1

2 )−1

= Σ3 −Σ3(Σ2 + Σ3)−1Σ3 by (A.1)

= Σ3 −Σ3(Ṽ + K̃T
MNK̃−1

M K̃MN + Σ3)−1Σ3

= Σ3 −Σ3

[
(Ṽ + Σ3) + K̃T

MNK̃−1
M K̃MN

]−1
Σ3

= Σ3 −Σ3(A + DBDT)−1Σ3

= Σ3 −Σ3

[
A−1 −A−1D(B−1 + DTA−1D)−1DTA−1

]
Σ3 by (A.1)

= (Σ3 −Σ3A
−1Σ3) + Σ3A

−1D(B−1 + DTA−1D)−1DTA−1Σ3

= A2 + Σ3D2C
−1
2 DT

2 Σ3

A2 and B−1 + DTA−1D (namely, C2) are positive-definite matrices. The proofs are

straightforward. For the former, the proof is:

A2 = Σ3(Σ−1
3 −A−1)Σ3

= Σ3

{
Σ−1

3 −
[
Σ−1

3 −Σ−1
3 (Ṽ−1 + Σ−1

3 )−1Σ−1
3

]}
Σ3 by (A.1)

= (Ṽ−1 + Σ−1
3 )−1.

As a result, positive-definiteness is achieved by the same properties Ṽ and Σ3 have.

The proof of positive-definiteness of C2 is similar to that of C1. For any non-zero s, if

s is a vector such that sTD = 0, then

s(B−1 + DTA−1D)s = sTB−1s > 0.

Here the positivity is from the positive-definiteness of B (namely, K̃M ).

For any non-zero s, if s is a vector such that sTD 6= 0, then

sT[B−1 + DTA−1D]s = sTB−1s + sT
(
DTA−1D

)
s

= sTB−1s + sTDAsD > 0,

where sD = Ds, B and A (namely, Ṽ + Σ3) are positive-definite.
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A.4.3 Parameter Expansion

The full conditional of parameter expansion α2 is

p(α2|e.e.) ∝ p(W|z1:N , z̄1:M
1:Q ,Σx,Θh, α) · p(α2)

∝ |α2 ·Σ0|−1/2 exp
[
− 1

2
wT(Σ−1

0 /α2)w
]
· (α2)−a1−1 exp(−b1/α2)

by w = αx and (A.7)

∝ (α2)−NQ/2 exp
[
− 1

2
wT(Σ−1

0 /α2)w
]
· (α2)−a1−1 exp(−b1/α2)

= (α2)−(a1+NQ/2)−1 exp
[
− 1

α2
(b1 +

1

2
wTΣ−1

0 w)
]

A.5 Specification of the prior distributions

Pseudo inputs

z̄1:M
q ∼ U(Z),

where U denotes a uniform distribution, and Z is the collection of all pseudo input sets

(with the size of M) selected from the original input set z1;N .

Hyper-parameters

θh,qj ∼
1

2
G(1, 20) +

1

2
G(10, 10).

Pseudo functions

f̄q|z̄1:M ,θh;q ∼ N (0,Kq;M ).

Latent functions

fq|z1:N ,θh;q ∼ N (0,Kq;N ).

Factor loadings and intercepts

λr| ∼ N (0, σ2
λ · I|Pr|).

Measurement error variances

σ2
yr | ∼ IG(a0, b0).

Covariance matrix of GP latent errors

Σs| ∼ IW(2, IQ).

Parameter expansion

α2| ∼ IG(a1, b1).
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