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Abstract

How should we choose a model that predicts human
choices? Two important factors in this choice are a
model’s predictive power and a model’s flexibility. In
this paper, we compare these aspects of models in a
large set of models applied to an experiment in which
participants chose between brands of fictitious chocolate
bars and a quasi-experiment predicting movies’ gross
revenue. We show that there is a trade-off between flex-
ibility and predictive power, but that this trade-off ap-
pears to lie more towards the “flexible” side than what
was previously thought.
Keywords: Choices; Forecasting; Overfitting.

Introduction
Choosing a good model to predict choices is an important
task for both researchers of decision making and statis-
ticians. One crucial debate within this area concerns the
flexibility of the model used to predict human choices.
On the one hand, there is the belief that more flexible
models should be preferred as they potentially capture
the underlying psychological phenomenon well. Propo-
nents of this approach try to show how more flexible
models can outperform simpler models in many differ-
ent predictive tasks (Chater et al., 2003). On the other
hand, there are researchers who argue that models which
are too flexible tend to overfit the data, capturing unim-
portant noise in the training set which results in sub-
optimal generalization to the test set. One example for
overfitting is that by increasing the degrees of a poly-
nomial regression to capture the average temperature of
one year, one will reach a point where the models’ predic-
tive performance for the next year goes down (Gigerenzer
& Brighton, 2009). Both sides at least implicitly assume
that if a Model A makes more correct predictions than
a Model B, Model A somehow captures the underlying
process better than Model B, an assumption that can
be argued against from various points (Salmon, 1971).
However, given an equal amount of evidence for both
Model A and Model B, it is common practice to accept as
better the model that makes more accurate experimental
predictions. In the past, researchers such as Gigerenzer
& Brighton (2009) showed that in tasks such as predict-
ing city sizes or professors’ salary, simple models can
outperform more sophisticated models such as Multiple
Regression or Naive Bayesian Classifiers. Later, Chater
et al. (2003) showed that other models such as Decision
Trees or Feedforward Networks can perform at least as
well as simple models such as Take The Best. How-
ever, both studies only used a limited amount of models

applied to a somewhat artificial data set. The paper
at hand puts the aforementioned performance-flexibility
trade off to a test in the potentially more interesting area
of human choices. In doing so, we will introduce an em-
pirical measurement of a model’s flexibility based on its
ability to recover and predict data generated by other
models. Furthermore, we will use this flexibility mea-
surement to rank and compare the 21 models’ perfor-
mance in predicting human choices in a two-alternative
forced-choice task, and predicting movies’ gross revenue
and a different key variable. We conclude that, even
though there clearly is a trade-off between flexibility and
predictive performance, the point at which more flexibil-
ity diminishes predictive performance is at a higher level
of flexibility than was previously expected.

Assessing model flexibility

To shed more light on the debate about various degrees
of flexibility and performance, one needs to introduce a
reliable measurement of flexibility. Different measure-
ments have been suggested, such as Kolmogorov com-
plexity (Chater & Vitányi, 2003) and a model’s degrees
of freedom. The flexibility measure proposed here is de-
fined in terms of the average ability of a model to capture
and predict observations that have been generated from
a different model. Importantly, the generating model has
itself been fitted to a random set of data, and the best
fitting parameters are then used to generate the learning
and test sets. We used randomly generated data sets for
the initial model fits in order to not bias the final recov-
ery result in any systematic direction. While we could
have used real world data sets for this initial simulation
stage, our main concern was to assess a model’s ability to
recover data generated by different models, and not their
ability to recover systematic characteristics of particular
data sets. The averaged overall predictive performance
then is rank-transformed as an indicator for a model’s
relative flexibility within the set of models under con-
sideration. The models used here and their performance
and obtained flexibility ranks are presented in Table 11.

In more detail, we obtained the relative flexibility mea-
sure as follows. We first generated 100 values for four
independent variables Xj by sampling each value inde-
pendently from a Normal distribution with a mean of

1All models were fitted using Matlab R2011B.
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µ = 0 and a standard deviation of σ = 2.5, i.e.

Xij ∼ N (0, 6.25), i = 1, . . . , 100, j = 1, . . . , 4 (1)

We used a normal distribution for the initial simulation
as the variables in the actual tasks were generated by
a normal distribution as well. Of course, the choice of
this initial distribution is rather artificial, but we believe
that a normal distribution is more likely (as for example
compared to a uniform distribution) to represent the ac-
tual distributions in the data sets later on. In addition,
values of a dependent variable Y were generated as inde-
pendent draws from a Bernoulli distribution with a prob-
ability of p = .5, i.e. Yi ∼ Bern(p = 0.5), i = 1, . . . , 100.
A given model was then fitted to this data set of 100
observations. The fitted model was used to generate 2
new data sets of 100 observations each by drawing new
values of the independent variables according to Equa-
tion 1 and then generating new values of the dependent
variable as the model prediction for these values of the
independent variable. One of these new data sets was
treated as a learning set and the other was used as a test
set. An alternative model was then fitted to the learn-
ing set and used to predict the dependent variable in the
test set. This procedure was repeated 100 times for ev-
ery possible model-model combination and the average
number of correct predictions over these 100 replications
was calculated at the end. For a set of 21 models, this
means that every model produced 21 averaged values of
how well it recovered and predicted all the other mod-
els (including the model itself2). These 21 values were
then averaged across each model to get an overall mea-
surement of a model’s flexibility. This measurement was
rank-transformed to obtain relative flexibility values (for
the question at hand, the exact differences do not matter
as much as the fact that one model is more flexible than
another). The ranked values are an unbiased estimate of
each model’s position in the whole population of models,
reflecting the probability that a randomly chosen model
is less flexible.

We acknowledge that our proposed flexibility measure-
ment can only be seen as an approximation to the de
facto flexibility of a given model as it only checks for
the ability to recover structure within a limited domain.
In addition, it can be argued that including more mod-
els that are either more or less flexible could change the
ranking completely; a concern that we tried to address
by including a set of models that –in our opinion– can
be seen as representative for models that are normally
used within standard data mining tasks. Our set up fits
into the more common set up of model mimicry in that
models that are able to mimic the behavior of a large
set of different models tend to have a higher flexibil-
ity score. However, it is not completely the same as a

2One of our earlier questions was about specificity. The
ability to capture data well that was produced by the same
model class.

model’s complexity Wagenmakers et al. (2004). As com-
plexity is normally defined as rather being model-specific
and our flexibilty measurement is a combination of the
situation and the model, complexity is not the same as
predictive accuracy a priori. Flexible models can be not
very complex and vice versa Spiegelhalter et al. (2002).
We have chosen to use random data at the first simu-
lation stage to avoid systematic biases in the flexibility
comparison. This of course means that some of the orig-
inal model fits are very weak, a behavior that can be
changed in future studies to see whether more system-
atic relations at that stage might shift the measurement
into a different direction.
In general, our flexibility measurement is a first attempt
to quantify flexibility in the psychological domain and
the resulting ranking seems to be prima facie plausible.
Additionally, our experiments show that it can be used
to produce reliable and reproducible results.

Experiment 1: Choices over time
The first experiment confronted participants with two-
alternative forced choices between fictitious chocolate
bars that were described on 4 different scales. The de-
scriptions of these scales were generated from a pilot
study (n = 21, bars= 12), where participants had to
describe real chocolate bars on 30 different scales. The
evaluations then were entered into a factor analysis with-
out rotation, forcing the total number of factors to be
equal to 4. The resulting factor structure explained 82%
of the variance and from each resulting dimension one
scale was chosen so that all the 4 scales were slightly
positively correlated with each other3. The final scales
were described as “Design”, “Calories”, “Crunchiness”
and “Richness of Taste”. The main experiment was pro-
grammed in HTML and hosted online on the Unipark
survey platform. Participants were recruited via uni-
versity email lists. Within the experiment, participants
were presented with pairs of fictitious chocolate bars that
were described by a value on the aforementioned scales.
Their task was to choose which of the two bars they
would prefer. The values describing the bars were gener-
ated at random to be distributed as N (5, 6.25) between
the range of 0 and 10. As such, participants revealed
how they integrate the presented information in order to
make a final choice between chocolate bars. Participants
were randomly assigned to one of five inter-correlations
between the dimensions, r ∈ {0, 0.2, 0.4, 0.6, 0.8}. Differ-
ent levels of inter-correlation were used in order to make
the results more generalizable across different choice en-
vironments. The experiment was spread over 6 days;
participants were presented with 50 pairs of chocolate
bars on the first day, and 20 pairs of chocolate bars on
each of the following days. Different time-points were

3We wanted the factors to be slightly correlated to allow
for a range of different inter-correlations in the actual exper-
iment.
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Table 1: Model description, flexibility performance and assigned rank value

Model Description Performance Rank Score
Coin Flip No fitting involved, assumes that each

possible outcome is equally likely
50.0% 0.00

Pick cue at random Picks one of the 4 predictors at random
and predicts that the item with a higher
value wins

59.2% 0.05

Tallying Unit weight strategy, sums up all the
values of the cues per item and predicts
that the item with the higher sum wins

70.5% 0.10

Minimalist Take The Best-algorithm with ran-
domly determined cue order

71.9% 0.15

Biased Coin Calculates the mean of the dependent
variable and flips a coin with p(y) =
µ(Ylearning sample)

73.4% 0.20

Response Bias Calculates the mean of the independent
variable and predicts that all values will
be what the majority of the items were
in the learning sample

73.8% 0.25

Context Model Uses the weighted distance to every win
and loss for predictions

74.1% 0.30

Take The Best Standard Take The Best (Gigerenzer &
Goldstein, 1999)

75.9% 0.35

Nearest Neighbour Predicts that the same is going to hap-
pen as in the most similar case in the
learning sample

76.7% 0.40

Classification Trees Builds a classification tree to classify
items

78.7% 0.45

Linear Discriminant Analysis Draws a linear function within the di-
mensions to separate losses from wins

82.2% 0.50

Logistic Regression Standard Logistic Regression 82.7% 0.55
Cascade Network Neuronal Network with cascade back-

wards propagation, MSE-learning, 5
neurons

82.9% 0.60

Multi-Adaptive Regression Splines Non-parametric regression that uses a
weighted sum of linear basis functions

83.9% 0.65

Naive Bayesian Classifier Estimates the conditional probability
to win or lose given the data to classify
items, assumption of no covariance

84.4% 0.70

Generalized Regression Network Uses a Radial function to approximate
the underlying data structure

85.2% 0.75

Polynomial Logistic Polynomial regression with up to 3 de-
grees of freedom, determined by AIC

85.8% 0.80

Pattern Recognition Network Network with a Tansig backward prop-
agation and MSE training function

85.9% 0.85

Support Vector Machine Support Vector classifier with a linear
Kernel

86.8% 0.90

Random Forest Ensemble classifier based on decision
trees, prediction is the mode of the out-
puts of all trees

87.2% 0.95

Feed Forward Network Unsupervised Net with 2 layers, num-
ber of knots determined by cross-
validation of training set

89.2% 1.00
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used in order to asses to what extent participants’ pref-
erences are consistent over a (relatively short) period
of time. 15 participants (µage = 24.5, σage = 1.4, 7
females) participated in the study and received a real
chocolate bar as a reward.

After the experiment was completed, each of the 21
models in Table 1 was fitted to the first 50 choices of
each participant individually by calculating the differ-
ences between the corresponding scales4 and treating the
choices as binary. Afterwards, every model was used to
predict the following 100 choices and the percentage of
correct predictions for every day was calculated. Based
on the argument above, we hypothesized the following:

1. More flexible models will, on average, perform better
than less complex models.

2. There is a point after which an increase in flexibility
will reduce predictive performance.

Results and discussion

The predictive performance of the models is shown in
Figure 1. The overall correlation between flexibility and

Figure 1: Bar chart of model performance
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performance was r = 0.53, p < 0.01. This significant
positive correlation means that, on average, more flex-
ible models indeed performed better than less flexible
models. In order to check for a potential turning point,
we analyzed the data by using a generalized polynomial
regression with a logit link function and mean-centering
the complexity (the resulting scale of flexibility was be-
tween -0.5 and 0.5). As can be seen in Table 2, the Cu-

4Resembling the same structure as in the rank generation.

Table 2: Estimates of the different polynomials within
the generalized linear regression. ∗ = best model.

Form AIC
Linear 7392.9
Quadratic 7367.2
Cubic 7351.2∗

Quartic 7352.7

bic form was found to be the best according to Akaike’s
“An Information Criterion” (AIC; Akaike (1974)). This
means that the final model is of the form presented in
Equation 1.

f(x) = β0 + β1x+ β2x
2 + β3x

3 (2)

The estimated parameters for this model are presented in
Table 3, alongside their standard errors. From the cubic

Table 3: Parameters estimates of the best fitting gener-
alized polynomial linear regression model in Experiment
1.

βi σ(βi)
β0 -0.04 0.01
β1 0.71 0.08
β2 -0.59 0.11
β3 -1.88 0.44

regression model, it is straightforward to calculate the
flexibility value with maximum predictive performance5

as follows:

f(x) = −0.04 + 0.71x− 0.59x2 − 1.88x3

d

dx
f(x) = 0.71− 1.18x− 5.64x2

d

dx
f(xmax) = 0→ xmax = 0.77

Thus, the maximum point is at a normalized relative
flexibility level of about 0.776. The model closest to
this point is the generalized regression network, which
is also the model that performs best overall with an
average of 80% correct predictions. Interestingly, the
Minimalist heuristic performed surprisingly well in the
task too, which could indicate that the way participants
integrated information might have changed over time.
However, when we explored this possibility, we did not
find an effect of time on model performance; this may
be because the time period was relatively short.

Summarizing Experiment 1, more flexible models seem
to perform better on average, but there is a flexibility-
performance trade-off, which occurs in our experiments

5The point after which more flexibility starts reducing the
predictive performance of the model.

6Checking that d2

dx2 f(x) < 0, which is true in our case
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at a normalized relative rank of 0.77. This is further to-
wards the side of flexibility than those proposing simple
heuristics may have expected. As this experiment con-
tained a limited number of subjects, and choices were
made between fictitious products, we sought to replicate
these findings with a different data set.

Experiment 2: Movies’ gross revenue
The second (quasi-)experiment had a similar design as
the first experiment, but this time we used publicly avail-
able data from the internet on movies’ gross revenue
(how much money a given movie made whilst running
in the cinemas). Notice that this can still be seen as a
choice scenario, where a movie with a higher gross rev-
enue was preferred by more people than a movie with
a lower gross revenue. As predictors of revenue, we in-
cluded the costs of the movie, the number of google hits
received, its IMDB-score, as well as the number of likes
on facebook (as of July 2011). All the models were fitted
to 80 randomly-drawn pairs of movies from the IMDB
Top 100 of the year 2000 and used to predict 20 randomly
drawn pairs from the Top 100 of each of the following
years between 2001 and 2010 (100 predictions in total).
The proportion of correct predictions for each model and
year were calculated as before. The hypotheses tested in
Experiment 2 were as follows:

1. There will be again a trade-off between flexibility and
predictive accuracy.

2. The point of this trade-off will be close to the point
found in Experiment 1.

Results and Discussion

Replicating the findings of Experiment 1, flexibility was
again positively correlated with overall performance,
r = 0.71, p < 0.01. A similar logistic regression anal-
ysis as before, where predictive success is regressed on
model flexibility, revealed a cubic polynomial without
the quadratic term as the best model. The final form

Table 4: Estimates of the different polynomials within
the generalized linear regression. ∗ = best model.

Form AIC
Linear 918.4
Quadratic 920.4
Cubic 914.4
Cubic (without quadratic term) 912.4∗

of this model is presented in Equation 3 and the param-
eter estimates are presented in Table 5, alongside their
standard errors.

f(x) = β0 + β1x+ β2x
3 (3)

Table 5: Parameters estimates of the best fitting gener-
alized polynomial linear regression model in Experiment
2.

βi σ(βi)
β0 -0.49 0.05
β1 0.9 0.21
β2 -3.3 0.31

Again, it is possible to calculate the point of max-
imum performance (where increasing flexibility further
reduces predictive performance) through the following
calculations:

f(x) = −0.49 + 0.9x− 3.3x3

d

dx
f(x) = 0.9− 9.9x2

d

dx
f(xmax) = 0→ xmax = 0.8

The maximum point thus lies roughly at the same point
as in Experiment 1.

Experiment 2 tried to replicate the overall findings
from Experiment 1 within a different setting. Again,
we found a trade-off between flexibility and predictive
performance and the optimal level of flexibility was close
to that found in Experiment 1. However, this time the
Random Forest algorithm (flexibility=0.95) performed
best overall, even though the fitted model showed the
smooth maximum to be at around 0.8. Interestingly,
for this data, the Minimalist heuristic only achieved a
performance predicting 60% of the choices correctly.

While one could argue that predicting a movies’ gross
revenue is not a very psychological problem in itself, or
that variables such as facebook likes or IMDB scores
are directly caused by how many people watch a movie,
so that this is more a problem of backwards prediction,
the data analysed here closely resembles those used in
similar studies of model performance. Importantly, the
replication of the flexibility-performance trade-off tells
us that there seems to be some truth behind the fact
that more flexible models do not always lead to better
predictive performance.

General Discussion

In two experiments we found a flexibility-performance
trade-off that occurred at an assigned relative rank value
of about 0.8. This result nicely brings together both
opinions mentioned in the introduction, according to
which either more flexibility or more simplicity should
be preferred. At least according to our findings, there
exists a point where more flexibility reduces a model’s
predictive performance, but this points occurs rather far
on our generated scale. This means that –in some sense–
both sides of the argument seem to be right (and wrong).
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On the one hand, flexible models should not always be
preferred if one wants to make good predictions, as there
is a point at which increasing flexibility reduces predic-
tive performance. But the point where flexibility starts
penalizing predictive performance lies more towards the
flexible side than what some might have expected. For
example, all of the included simple heuristics were far
less flexible than the optimal level of flexibility.

To our knowledge, we compared more mathematical
models of choice than ever before in a single study. In
addition, we proposed a relative flexibility measure that
was useful to investigate the trade-off between flexibil-
ity and predictive performance. The paper at hand can
be seen as a first attempt to capture real psychological
choices with a large set of different models, whereas past
work has mainly focused on rather artificial data sets
such as city sizes or professors’ salaries (e.g., Gigerenzer
& Goldstein, 1999; Chater & Vitányi, 2003). Of course,
there are limitations to the interpretation of our findings.
First of all, our focus was on the flexibility-performance
trade-off, whereas some might argue that the real trade-
off is between complexity and performance. Model sim-
plicity is an ambiguous concept. For example, if a heuris-
tic had happened to be the best within our simulations,
then the heuristic would have been assigned the high-
est flexibility rank, even though one might not consider
heuristics as very complex models. But whether a model
is intuitively “simple” is, loosely put, language depen-
dent (Speekenbrink, 2003). While we admit a model’s
ability to recover data generated by other models is not
a direct indication of a model’s complexity, flexibility as
defined here captures one of the main reasons why overly
complex models have poor predictive performance: their
ability to fit random noise in a training set. Additionally,
recovery ability has been used to show superior model
performance in the literature before (Pitt & Myung,
2002). Another problem is that rank-transforming flex-
ibility values allows for only relative positioning. In-
troducing many even more complicated models would
arbitrarily push the rankings towards 0 and the found
trade-off point might have been closer to the less flexi-
ble side. A main reason for rank-transforming the values
is to make them less task-dependent. The finding that
the optimal trade-off point is relatively more towards the
more flexible side remains, even if we used the actual per-
centages of correct predictions Our proposed method to
assess model flexibility involved fitting models to a test
data set generating by pairing random values of a de-
pendent variable (e.g., choices) to plausible values of the
independent variables (e.g., product dimensions). This is
similar to using permutation methods in non-parametric
statistics. In future work, we plan to explore this link
further. Another future step could include simulations
of different environments in order to find out the nec-
essary conditions for less flexible models to outperform

other models. For example, modelling changing environ-
ments between the learning and the test set could give
us a better understanding of the driving forces behind a
model’s performance. By doing so, one could then cata-
logue the specific attributes of environments that lead to
a superior performance of a certain model class. Another
step could be to model even more realistic scenarios with
our approach. Modelling real choice scenarios could shed
more light on the flexibility required to make good pre-
dictions in naturalistic situations.

Only by focusing on real psychological phenomena as
well as using computationally rigorous approaches can
we actually try to answer the question of how we as
scientists should actually predict human behavior, but
this choice is up to us.
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