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Abstract

This chapter is concerned with the mathematical modeling of dense fluidized suspensions, and focuses on
the so-called Eulerian or multifluid approach. It introduces newcomers to some of the techniques adopted
to model fluidized beds and to the challenges and long-standing problems that these techniques present.
After introducing the principal approaches for modeling fluid-solid systems, we focus on the multifluid,
overviewing the main averaging techniques that consent to describe granular media as continua. We then
derive the Eulerian equations of motion for fluidized powders of a finite number of monodisperse particle
classes, employing volume averages. We present the closure problem, and overview constitutive relations
for modeling the granular stress and the interaction forces between the phases. To conclude, we introduce
the population balance modeling approach, which permits handling suspensions of particles continuously
distributed over the size and any other property of interest.
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1 Introduction

Fluidization is a well-established technology used in several industrial processes such as coal combustion,
biomass gasification, waste disposal and food processing. To design fluidized beds, engineers have resorted
for many years to experimental correlations and pilot plants. This practical approach to fluidization is well
reflected in the first textbooks on the subject (see for instance Leva, 1959). These correlations, however, lack
general validity and can help design only standard units: they cannot tell us how changes in vessel geometry,
introduction of internals (like heat exchanger tubes) or feed repartition over various entry points affect fluid
dynamics and performance. To answer these and similar questions, and improve the design of conventional
units, one needs a theory for predicting how dense fluidized powders behave; pilot plants are not a convenient
alternative, being expensive, time-consuming and not always leading to adequate scale up.

When fluidized beds were first employed in the 1920s -1940s, engineers did not appreciate this problem,
probably because at the time the required plant performance was either not critical (like in FCC plants) or
easily achievable (like in roasting and drying). Nevertheless, when later the problem revealed itself in other
and more demanding applications, with some plants falling far short of the expected conversions previously
achieved in pilot units, it became clear that this matter had to be addressed thoroughly. Researchers hence
endeavored to find more reliable methods to predict the dynamics of fluidized suspensions.

In the 1960s, scientists began to adopt the conservation laws of mass, momentum and energy to analyze
nearly any physical and chemical problem. This innovative approach, most probably fostered by the release
of the influential textbook Transport Phenomena (Bird et al., 1960), led to significant theoretical headway,
bolstered the hope to explain theoretically the behavior of fluidized powders and prompted the first trials to
develop fluid dynamic models based on transport equations.
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Anderson & Jackson (1967) were among the first to model fluidized systems; starting from the continuity
and dynamical equations for single-phase, incompressible fluids and the Newtonian equations for rigid-body
motion, they derived averaged equations of conservation for the fluid and solid phases by applying a formal
mathematical process of volume averaging. Afterwards, several researchers did the same, refer for instance
to Whitaker (1969), Drew (1971) and Drew & Segel (1971). Initially, they used these models to understand
better the complex behavior of multiphase systems, but without regarding them as a viable way to design real
industrial units. Nonetheless, when faster computer processors and advanced numerical methods to integrate
partial differential equations became available, they realized that a mathematical theory of multiphase flows
could indeed become a useful design tool.

With the further development of new and more rigorous formulations of multiphase equations of motion
(Buyevich, 1971; Hinch, 1977; Nigmatulin, 1979; Drew, 1983; Jenkins & Savage, 1983), the late 1970s and
early 1980s witnessed the first endeavors to simulate numerically granular flowing systems (Pritchett et al.,
1978; Gidaspow & Ettehadieh, 1983; Gidaspow et al., 1986). The promising results of these few pioneering
studies generated an increasing interest in computational fluid dynamics (CFD) and multiphase flows, which
rapidly started to turn into research areas in their own right.

Nowadays, CFD has become an almost indispensable tool to solve problems of academic and industrial
interest. In the field of fluidization, CFD has assisted to understand fluid-solid interactions and has enabled to
predict numerous macroscopic phenomena encountered in particulate systems. Similarly, multiphase flows
and fluidization dynamics have become topics of interest not only for the scientific community but also for
the industrial world. Over the years, many researchers have developed mathematical models to predict the
dynamics of dense fluidized suspensions, proposing several approaches and mathematical schemes; we now
briefly overview some of them, highlighting their advantages and limitations.

2 An overview of fluidized bed modeling

Fluidized beds can be modeled at various levels of detail. At the most fundamental, the motion of the system
is determined by the Newtonian equations for translation and rotation of each particle and the Navier-Stokes
transport equations to be satisfied at every point occupied by the interstitial fluid. In this approach, referred
to as Eulerian-Lagrangian, the flow field of the fluid is modeled at a length scale far smaller than the particle
size; one, therefore, is able to determine the pressure and velocity gradient over the surface of each particle,
and from there the interaction force between the fluid and the particles (see for instance Pan et al., 2002). No
closure problem hence arises for this force. Furthermore, since the particles are considered individually, the
solid phase is not modeled as a continuum, retaining its granular nature; the equations describing its motion,
consequently, feature no granular stress. Also the closure problem for this term, which arises in macroscopic
models, is therefore absent.

This modeling strategy is appealing: it is conceptually quite simple – being probably the most natural for
describing the dynamics of particulate systems – and it is the least affected by closure problems. It presents,
nonetheless, a few disadvantages. First of all, it is extremely demanding computationally: simulations of this
kind have been performed only for systems containing a relatively small number of particles; extending these
calculations to dense suspensions in large domains, like those found in industrial fluidized beds, is presently
inconceivable. Moreover, even if this were feasible, the information provided by the solution would be much
too detailed, and one would have to filter the results to render them useful. Note that such results are of little
direct interest to most end-users: the simulations yield the position and velocity of each particle at any given
time, but what are the spatial distributions of the observables, such as the granular temperature and pressure,
which are of real interest in applications? With the output of Eulerian-Lagrangian simulations one can obtain
these distributions (if one knows how the observables of interest are related to the fluid and particle dynamics
at the microscopic length scale, a knowledge that is acquired when one derives the averaged equations which
characterize continuum models), but a complex calculation is required.

These observations suggest that it might be convenient to formulate equations of change governing the
evolution of these observables directly. In this approach, we renounce to capture the details described above,



An overview of fluidized bed modeling 3

satisfying ourselves with a far reduced description of the flow. Although there exists no guarantee that these
simplified equations can be really obtained – in closed form, that is – several studies have been conducted in
such a pursuit (Anderson & Jackson, 1967; Whitaker, 1969; Drew, 1971; Drew & Segel, 1971; Drew, 1983;
Drew & Lahey, 1993; Gidaspow, 1994; Zhang & Prosperetti, 1994; Enwald et al., 1996; Jackson, 1997,
1998, 2000). Owing to the complexity of the problem, one does not aim to derive the general exact averaged
multiphase equations of motion; the intent is merely to formulate models which may describe satisfactorily
phenomena of interest for industrial applications.

Various mathematical techniques yield such equations, and several claims have been advanced as to the
superiority of each form of averaging versus the others. However, the resulting transport equations are very
similar and present many common features. Two are the most significant. First, they are all written in terms
of mean variables defined over the entire physical domain; so, they resemble those that one would write for a
set of imaginary fluids which interpenetrate one other and occupy simultaneously the same physical volume.
The model, known as Eulerian-Eulerian or multifluid, thus takes the form of coupled differential equations
subjected to initial and/or boundary conditions assigned only on the boundaries of the domain containing the
mixture, and no longer on the surface of the particles, as in Eulerian-Lagrangian models. Second, the process
of averaging generates a number of indeterminate terms unrelated to the averaged variables, but associated
with details of the motion at the particle (that is, microscopic) length scale. These are key terms, represented
by the fluid and solid stress tensors and by the interaction forces exchanged by the phases. A closure problem
hence arises, which one cannot usually solve analytically; in fact, there is no guarantee that a solution exists.
So, one has to resort to empirical relations, this being the main shortcoming of the method.

Besides these two approaches, there is a third that can be regarded as a hybrid between them. Averaged
equations of motion are used for the fluid phase, but rigid-body Newtonian equations are solved for every
particle of the system. These do not interact with the fluid through its microscopic velocity field – as is the
case in Eulerian-Lagrangian models – but with the averaged value of the latter. For instance, the overall force
exerted by the fluid on each particle is not computed by integrating over the particle surface the local traction
arising from the fluid velocity gradients: the force is instead calculated in terms of slip velocity between the
average fluid velocity and the velocity of the particle center of mass and by resorting to empirical relations.
This strategy, called discrete particle modeling (DPM), is significantly less demanding computationally than
the Eulerian-Lagrangian and has met with resounding success (Tsuji et al., 1993; Hoomans et al., 1996; Xu
& Yu, 1997; Ouyang & Li, 1999; Kafui et al., 2002; Lu et al., 2005; Zhu et al., 2008; Di Renzo et al., 2011;
He et al., 2012; Wang et al., 2013; Deen et al., 2014).

To describe particle collisions, modelers use two approaches: hard and soft sphere. In the first, particles
interact via binary, instantaneous, pointwise collisions. Their velocities after an encounter are computed by
requiring that linear and angular momentum are conserved in the collision. This approach was pioneered by
Allen & Tildesley (1990). Since their publication many authors have found it useful to model the collision
dynamics in granular systems. Hoomans et al. (1996) used it in their model for gas-fluidized beds; it was the
first time that the technique had been applied to a dense system. Many authors have since published papers
with this strategy (see for instance Ouyang & Li, 1999). The soft sphere model for fluidized beds was instead
pioneered by Tsuji et al. (1993), who developed their approach on the basis of earlier work done by Cundall
& Strack (1979). Here, during an encounter, particles overlap slightly and the contact forces are calculated
from the deformation history of the solids using a linear spring-dashpot model. This has been employed by
Xu & Yu (1997), Pandit et al. (2005), Ye et al. (2005) and several other researchers.

Among the three modeling approaches discussed, the second is often preferred for its valuable feature of
being computationally less demanding. Due to the number of particles present in industrial plants, Eulerian
(continuum) modeling is unlikely to be replaced by its Lagrangian (discrete) counterparts in the near future;
furthermore, Eulerian models appeal more to end-users, because they provide information of direct interest.
The role of discrete modeling is yet paramount. The method, to be considered more as an effective research
tool than a practical design instrument, by yielding information about the dynamics of multiphase systems at
the microscopic length scale, may significantly help to develop and improve continuous models through the
derivation of accurate closure relations. Eulerian-Lagrangian and DPM simulations are to multiphase flows
what direct numerical simulations are to turbulent flows. This multiscale modeling strategy is represented in
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Figure 1: Multiscale modeling strategy.

Figure 1. The goal of the strategy is clear, but how to link the models and extract from each the information
needed by those higher up in the hierarchy is an open challenge.

3 An overview of averaging theory

In the present section, we focus on three techniques that one can adopt to derive averages of point variables:
statistical, volume and time averaging.

3.1 Statistical averaging

As previously mentioned, predicting the dynamics of fluidized suspensions may appear conceptually simple:
one has to solve the Newtonian equations of motion for each particle and the Navier-Stokes equations for the
fluid. In practice, doing so is extremely demanding, because the number of particles is quite large; however,
one could argue that this is only a practical and temporary issue, which future generations of computers will
certainly overcome. There is, nevertheless, a more fundamental problem: to integrate the equations, one has
to know the initial positions and velocities of all the particles. For large particle numbers, this information is
impossible to obtain. The problem, therefore, cannot be addressed deterministically: a statistical approach is
necessary. To clarify this concept, let us be more definite.

Consider a fluidized suspension of ν identical, spherical, smooth particles, and let xs(t) and vs(t) be the
position vector and linear velocity of the sth particle center, respectively. Initially, the sth particle is located
in the point x̄s with velocity v̄s. If Fs(t) denotes the unit mass force acting on the particle, as time advances
the latter moves obeying the equations:

ẋs(t) = vs(t) ; v̇s(t) = Fs(t) ; xs(0) = x̄s ; vs(0) = v̄s (3.1)

Consequently, if we know the initial conditions for each particle and the functional expression of the overall
force acting on each particle, by integrating the above differential equations we may predict, with certainty,
the particle positions and velocities at any future time. For a realistic number of particles, knowing the initial
positions and velocities of the particles appears to be impossible even in principle.

For systems comprising a great number of particles, therefore, we cannot know the initial state of every
particle; in consequence, we cannot assign the initial conditions deterministically, as we did in Eq. 3.1. What
we usually know are solely macroscopic – and therefore measurable – properties of the system, such as its
local density, temperature or mean velocity. But there are infinite system configurations yielding the same
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macroscopic properties, each with a certain probability of occurrence. So, we must replace the deterministic
initial conditions above with probabilistic initial conditions. To this end, we introduce a probability density
function (PDF) defined so that:

πν(x1, . . . ,xν ,v1, . . . ,vν ; t)dx1 . . . dxνdv1 . . . dvν (3.2)

gives the joint probability that at time t the first particle has position and velocity in the ranges dx1 and dv1

about the real-space point x1 and the velocity-space point v1, the second particle has position and velocity in
the ranges dx2 and dv2 about the real-space point x2 and the velocity-space point v2, and so on up to the last
particle forming the particulate system. If we let:

r ≡ (x1, . . . ,xν ,v1, . . . ,vν) (3.3)

we can regard r as the position point identifying the state of the entire particulate system in an abstract phase
space of 6ν dimensions. Then πν(r; t)dr is the probability that at time t the configuration of the particulate
system lies in the range dr about the phase-space point r. We refer to the function πν(r; t) as the ν-particle
joint PDF or master joint PDF. At any given time, we do not know the exact configuration of the system, but
the master joint PDF states how probable each configuration is. πν(r; 0)dr, in particular, is the probability
that the initial configuration lies in the range dr about r. No determinism is present: the system can be in any
configuration, but for each one the PDF tells us the probability of occurrence. Knowing the master joint PDF
means having complete statistical knowledge of the population of particles.

Another useful function is the one-particle marginal PDF, which gives the probability of finding a single
particle in a differential neighborhood of a given state – independently of the states of all the other particles.
For a system in which the particles are identical, and consequently indistinguishable, the ν-particle joint PDF
is symmetrical with respect to the particle state variables and the one-particle marginal PDF is equal for all
the particles. Let π1(x1,v1; t) denote the latter (for the real-space and velocity-space variables the subscript
is unimportant; the one reported has been selected only for convenience). By definition, π1(x1,v1; t)dx1dv1

is the probability of finding at time t a particle – any particle of the population, not just the first particle – in
the ranges dx1 and dv1 about the pointsx1 and v1. The one-particle marginal PDF contains significantly less
information about the particulate system than the master joint PDF; however, as we shall see, in most cases of
real interest this is all the information that is truly required.

We reduce the ν-particle joint PDF to the one-particle marginal PDF by integrating out the state variables
of every particle but the first one:

π1(x1,v1; t) ≡
∫
Ωx

. . .

∫
Ωx

∫
Ωv

. . .

∫
Ωv

πν(r; t)

ν∏
s=2

dxsdvs (3.4)

where Ωx and Ωv represent the ranges of variation of the particle positions and velocities, respectively; the
former coincides with the region of physical space enclosed by the vessel containing the suspension, whereas
the latter is unbounded and coincides with R3.

Knowing the master joint PDF allows calculating any average associated with the population of particles.
Take a function b(r) that associates a scalar value with the state of the particulate system. This is referred to
as dynamical function (Balescu, 1975). If the system changes configuration (that is, the value of r changes),
the value of the function changes. The observable 〈b〉s associated with the function b is the average value of
the latter over all the system configurations; therefore, it is:

〈b〉s(t) ≡
∫
Ωr

b(r)πν(r; t)dr (3.5)

where Ωr represents the range of variation of r. In the integral above, we are summing all the values that the
dynamical function can take, each one weighted by the probability of occurrence of the system configuration
to which that value refers. Being macroscopic variables, observables do not depend on the microscopic state
of the system, but can be functions of the time, real-space and velocity-space coordinates; in the expression
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above 〈b〉s is only a function of time, for b does not depend on real-space and velocity-space coordinates; in
general, however, this dependence will be present. Eq. 3.5 suggests that to calculate any kind of macroscopic
property of the system one needs to know the master joint PDF (that is, one has to have complete knowledge
of the system). In general this is true, but fortunately this is not always the case.

A class of dynamical functions of particular theoretical importance is given by functions which take the
following mathematical form:

b(r) =
ν∑
s=1

b1(xs,vs) (3.6)

where b1 is an arbitrary function of the phase-space state of one particle. This dynamical function depends on
the state of the entire system, but the state of each particle is taken one at a time. An example is given by the
total kinetic energy of the system, in which case b1 ≡ m(vs · vs)/2, where m is the particle mass. For this
class of dynamical functions, we can write:

〈b〉s(t) =
ν∑
s=1

[∫
Ωr

b1(xs,vs)πν(r; t)dr

]

= ν

∫
Ωx

∫
Ωv

b1(x1,v1)π1(x1,v1; t)dx1dv1 =

∫
Ωx

∫
Ωv

b1(x1,v1)f1(x1,v1, t)dx1dv1 (3.7)

where it is:

f1(x1,v1, t) ≡ νπ1(x1,v1; t) (3.8)

Here we have exploited the symmetry properties of the ν-particle PDF, which hold insofar as all the particles
are identical. Thus, for this class of dynamical functions, to calculate the observables one needs to know only
the one-particle marginal PDF, or equivalently the scalar function f1(x1,v1, t).

Known as number density function (NDF), the latter arises naturally from the passages shown above, but
has as well an important physical interpretation: f1(x,v, t)dxdv represents the average number of particles
present at time t in the range (or infinitesimal volume) dx around the real-space point x with velocity in the
range dv around the velocity-space point v (we have removed the subscript from the arguments of the NDF
for convenience). f1(x,v, t), in other words, is an observable representing the mean particle number density
in the six-dimensional phase space formed by the union of the real space Ωx and velocity space Ωv. To prove
this, we must show that the NDF is the mean value of the number density of particles present in the real-space
point x with velocity v. This density has this expression:

ϕ1(r;x,v) ≡
ν∑
s=1

δ(xs − x,vs − v) (3.9)

This is because if no particle is located in x with velocity v the density is zero, whilst if a particle is therein
located the density diverges (assuming that the volume of the particles is negligibly small compared with the
macroscopic volumes of interest). Notice thatϕ1(r;x,v) belongs to the special class of dynamical functions
defined by Eq. 3.6. Thus, we have:

〈ϕ1〉s(x,v, t) = ν

∫
Ωx

∫
Ωv

δ(x1 − x,v1 − v)π1(x1,v1; t)dx1dv1 = νπ1(x,v; t) (3.10)

This differs from the NDF defined in Eq. 3.8 merely in notation. Because of the important physical meaning
that the NDF possesses, one usually favors the latter over the one-particle marginal PDF; knowledge of either
function, however, permits calculating observables associated with dynamical functions of the class defined
by Eq. 3.6. Of course, to determine observables of this kind, one needs to know how the NDF evolves in each
phase-space point; this, as we shall see at the end of this chapter, is extremely challenging.
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To conclude this section, we present three examples of observables that are particularly significant: mass,
linear momentum and energy density. The dynamical functions with which these macroscopic quantities are
associated take the following expressions:

bM(r;x) ≡ m
ν∑
s=1

δ(xs − x) ; bL(r;x) ≡ m
ν∑
s=1

vsδ(xs − x)

bE(r;x) ≡ (m/2)
ν∑
s=1

(vs · vs)δ(xs − x) (3.11)

Eq. 3.7 then gives:

〈bM〉s(x, t) = mn(x, t) ; 〈bL〉s(x, t) = mn(x, t)〈v〉s(x, t)

〈bE〉s(x, t) = (m/2)n(x, t)〈v · v〉s(x, t) (3.12)

where n represents the expected number of particles per unit real-space volume, or equivalently the expected
number density of particles in real space, 〈v〉s the expected particle velocity and 〈v · v〉s twice the expected
kinetic energy per particle unit mass. Mathematically, their expressions are:

n(x, t) ≡
∫
Ωv

f1(x,v, t)dv ; 〈v〉s(x, t) ≡
1

n(x, t)

∫
Ωv

vf1(x,v, t)dv

〈v · v〉s(x, t) ≡
1

n(x, t)

∫
Ωv

(v · v)f1(x,v, t)dv (3.13)

In this section, to simplify the treatment, we have assumed that the state of each particle is identified only
by position in real space and velocity. Additional coordinates can be introduced, such as the particle size, but
the concepts presented do not change. For a more general treatment of this subject, we refer to the literature,
in particular to the recent textbook by Marchisio & Fox (2013).

3.2 Volume averaging

Another method of deriving observables relies on volume averages; these are computed over spatial domains
that are large enough to contain a statistically-significant number of particles, but which are small compared
with the length scale of variation of the observables.

There are two kinds of volume averages: hard and soft. In the former, a volume Vx bounded by a surface
Sx is attached to every spatial point x; within this volume, one averages the property of interest by using the
mean value theorem of integral calculus. The values of the property within Vx are accounted for and ascribed
the same weight in the average, whilst those outside Vx are ignored. Soft averages are based on an alternative
technique, more elegant and convenient from a mathematical viewpoint, that uses radial weighting functions.
These are continuous, monotone, decreasing functions of the radial distance from the spatial point in which
the average is evaluated. This mathematical device ascribes a weight to the property values within the whole
physical domain; however, the length scale over which the weighting function decays significantly (referred
to as weighting function radius) identifies a spherical volume around the point of averagex outside which the
property values affect the average negligibly. The two averaging schemes, accordingly, are not as different as
they may appear. For mathematical convenience, in what follows we favor soft averages.

Volume-averaged variables might appear to depend on the specific choice of volume Vx or of weighting
function (in particular on its radius). The larger the ratio between the smallest length scale of variation of the
observables and the particle size, the more such a dependence dwindles provided that the weighting function
radius is properly chosen. If this radius is denoted by r2, the particle radius by r1 and the macroscopic length
scale by r3, the local average is expected not to depend on the particular form of weighting function provided
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that the condition r1 Î r2 Î r3 is satisfied. In such a case, there is said to exist separation of scales between
the macroscopic fluid dynamic problem and the detailed motion at the scale of a single particle. Only in this
instance the volume-averaged variables have an unambiguous physical meaning.

In multiphase systems, made up of one continuous phase (the fluid) and one or more discrete phases (the
particles), one can employ volume averages to obtain mean properties for each phase. We now first introduce
formally the weighting functions and then report how such averages are defined.

3.2.1 Weighting functions

Weighting functions are characterized by the following mathematical properties:

1) The weighting function ψ is a scalar function of r defined for r > 0, where r denotes the distance of a
point z from a point x in Euclidean space:

ψ = ψ(r) , r ≡ |x− z| (3.14)

2) ψ(r) is positive for any value of r, decreases monotonically with r and possesses continuous derivatives
of any order. In other words, it is a function of class C∞.

3) ψ(r) is normalized so that, if Ωx denotes the spatial domain occupied by the system of interest (assumed
here to stretch out to infinity), it is:∫

Ωx

ψ(|x− z|)dz = 4π

∫ ∞
0

ψ(r)r2dr = 1 (3.15)

In the integral on the left-hand side, z is the spatial variable of integration, while x is the spatial position in
which the volume average is computed. The radius of the weighting function is defined as the scalar r2 that
satisfies the following equation:

4π

∫ r2

0

ψ(r)r2dr = 4π

∫ ∞
r2

ψ(r)r2dr =
1

2
(3.16)

The weighting function radius is thus a measure of the linear size of the spherical neighborhood ofx in which
the spatial points have appreciable weight in the averaging process.

3.2.2 Fluid-phase volume averages

The void fraction, or fraction of space occupied by the fluid, and the fluid-phase volume average of a generic
point variable ζ(x, t) calculated in x at time t are so defined:

ε(x, t) ≡
∫
Λe

ψ(|x− z|)dz ; 〈ζ〉e(x, t) ≡
1

ε(x, t)

∫
Λe

ζ(z, t)ψ(|x− z|)dz (3.17)

In the equations above, Λe represents the domain occupied by the fluid phase at time t (we have left out the
explicit dependence on t to simplify the notation).

3.2.3 Solid-phase volume averages

In a system with ν solid phases, the volume fraction of the rth phase Sr and the solid-phase volume average
of a generic point variable ζ(x, t) calculated in x at time t are so defined:

φr(x, t) ≡
∑
Sr

∫
Λr

ψ(|x− z|)dz ; 〈ζ〉rs (x, t) ≡ 1

φr(x, t)

∑
Sr

∫
Λr

ζ(z, t)ψ(|x− z|)dz (3.18)
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where Λr is the region of Eulerian space occupied by a generic particle of phase Sr at time t. The summation
is over all the particles of phase Sr. In 〈ζ〉rs the subscript s indicates that this is a solid-phase volume average,
whilst the superscript r indicates that the average refers to solid phase Sr.

This average, used by several researchers (Enwald et al., 1996; Drew & Passman, 1998), operates on the
microscopic properties of the particle material, considering point fields ζ(x, t) that vary within the particles.
It is an average which exactly parallels the one given for the fluid. Another approach, advanced by Anderson
& Jackson (1967), is based on properties ζr(t) of the particles as a whole.

3.2.4 Particle-phase volume averages

Since the particles are rigid, their motion is determined by the translation of their centers of mass and by the
rotation of their bodies about instantaneous axes of rotation. Thus, the resultant forces and torques acting on
the particles suffice to establish their motion. We can then introduce a different kind of volume average that
depends only on properties of the particles as a whole. We define the number density of particles of class Sr

calculated in x at time t as follows:

nr(x, t) ≡
∑
Sr

ψ(|x− zr(t)|) (3.19)

zr(t) being the position occupied at time t by the center of mass of a generic particle of solid phase Sr. The
volume fraction φr(x, t) is related to the number density nr(x, t) as follows:

φr(x, t) ≈ nr(x, t)Vr (3.20)

in which Vr is the volume of a particle of solid phase Sr. As indicated, this equation is approximate, but it is
accurate if the separation-of-scale requirement is met and the weighting function radius is selected correctly;
this, as said, must be far larger than the particle radius.

Generalizing the averaging scheme of Jackson (1997), we define the particle-phase volume average for
a particle property ζr(t) of solid phase Sr calculated in x at time t as:

〈ζ〉rp(x, t) ≡
1

nr(x, t)

∑
Sr

[
ζr(t)ψ(|x− zr(t)|)

]
(3.21)

In 〈ζ〉rp the subscript p indicates that this is a particle-phase volume average, whilst the superscript r indicates
that the average refers to solid phase Sr.

3.3 Time averaging

The third averaging method available is time averaging. Let us consider a field ζ(x, t); for any fixed spatial
position x̄, ζ(x̄, t) is a function of time that fluctuates irregularly. We denote the time scale that represents
these fluctuations as τ1. In x̄, we can obtain a mean value of ζ(x, t) by time averaging over a large number
of fluctuations, considering a time interval τ2 much larger than the time scale of the fluctuations. Again, we
resort to the mean value theorem, this time writing:

〈ζ〉t(x, t) ≡
1

τ2

∫ t+α

t−α
ζ(x, τ)dτ , α ≡ τ2/2 (3.22)

where 〈ζ〉t(x, t) denotes the time average and τ is a dummy integration variable. Also now, the mean value
is expected to be insensitive to the averaging time scale provided that τ1 Î τ2 Î τ3, where τ3 represents the
time scale of the mean flow variations. That is, there has to be separation of scale (now in the time domain)
between the macroscopic motion of the fluid-solid mixture and the microscopic motion of the particles; only
in this case the time-averaged variables have an unambiguous physical meaning.
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3.4 A final remark

Before concluding this section on averaging, we would like to point out that different averaging schemes can
lead to different average values. If the values are equal, the system is said to be ergodic, but not all systems
present this feature. For details, refer, for instance, to Jackson (2000).

4 Averaged equations of motion for fluid-particle systems

We now derive the averaged equations of motion for a generic fluid-particle system of ν solid phases by using
volume averages. Similar equations can be obtained with statistical and time averages; refer, for instance, to
Gidaspow (1994), Drew & Passman (1998) and Brilliantov & Poschel (2004). Our treatment is an extension
of the work of Jackson (2000) and Owoyemi et al. (2007). Below, we adopt Einstein’s convention: repeated
indices are summed over the values one to three, with the exception of r and s, used as phase indices, and of e
and p, used to specify the volume average type.

4.1 Fluid phase

Let us first derive the volume-averaged continuity equation. The starting point is the microscopic continuity
equation for the fluid. If we assume that the latter is incompressible, this reads:

∂aua = 0 (4.1)

where ∂a ≡ ∂/∂xa and ua is the ath component of the fluid velocity vector u(x, t) with respect to a generic
orthonormal vector basis. Let us multiply both sides by ψ(|x− z|) and integrate over Λe with respect to z;
doing so yields this averaged equation:

ε〈∂aua〉e =

∫
Λe

[
∂aua(z, t)

]
ψ(|x− z|)dz = 0 (4.2)

In this form the equation is not useful, because it is written in terms of averaged derivatives of point variables
instead of derivatives of averaged point variables. We may, however, manipulate the equation by using these
mathematical relations, whose proof is given in the appendix:

ε〈∂aζ〉e = ∂a

(
ε〈ζ〉e

)
−

ν∑
r=1

∑
Sr

∫
∂Λr

ζ(z, t)ka(z, t)ψ(|x− z|)dσz (4.3)

ε〈∂tζ〉e = ∂t

(
ε〈ζ〉e

)
+

ν∑
r=1

∑
Sr

∫
∂Λr

ζ(z, t)u(z, t) · k(z, t)ψ(|x− z|)dσz (4.4)

Here ∂t ≡ ∂/∂t, k(x, t) is the outward unit normal to the surface ∂Λr bounding Λr, whilst ka(x, t) is the ath
component of the unit vector k(x, t). Setting ζ ≡ ua and ζ ≡ 1 in Eqs. 4.3 and 4.4, respectively, and adding
the results yields the averaged continuity equation in the form that we sought:

∂tε+ ∂a

(
ε〈ua〉e

)
= 0 (4.5)

In this equation, as we should have expected, the fluid volume fraction takes on the role that the fluid density
has for single-phase compressible fluids.

Let us go on to derive the volume-averaged linear momentum balance equation for the fluid. The starting
point is the corresponding microscopic balance equation:

ρe

[
∂tua + ∂b(uaub)

]
= ∂bTab + ρega (4.6)
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where ρe is the (constant) fluid density, Tab(x, t) is the abth component of the point fluid stress tensor, while
ga is the ath component of the gravitational field. Multiply both sides by ψ(|x− z|) and integrate over Λe
with respect to z. To treat the left-hand side of the averaged equation obtained, write Eqs. 4.3 and 4.4 with
ζ ≡ uaub and ζ ≡ ua, respectively, whilst to treat the right-hand side, use Eq. 4.3 with ζ ≡ Tab. With these
relations, the averaged equation becomes:

ρe

[
∂t

(
ε〈ua〉e

)
+ ∂b

(
ε〈uaub〉e

)]

= ∂b

(
ε〈Tab〉e

)
+ ερega −

ν∑
r=1

∑
Sr

∫
∂Λr

Tab(z, t)kb(z, t)ψ(|x− z|)dσz (4.7)

The last term on the right-hand side is the sum over all particle classes of the mean resultant traction forces
exerted by the fluid on the particles of each class. The force:∑

Sr

∫
∂Λr

Tab(z, t)kb(z, t)ψ(|x− z|)dσz (4.8)

is the sum of the average resultant forces exerted by the fluid on the rth phase particles. To compute this force
for each particle, we first weight the differential traction forces acting on each infinitesimal region dσz of the
particle surface using the value of ψ(|x− z|) corresponding to each region, and then we sum the (infinite
number of) contributions. The fluid-solid interaction force, defined by Eq. 4.8, couples the linear momentum
balance equation of the fluid to that of each particle class.

For reasons that will be clear later (when we deal with the solid phases), it is convenient to express Eq. 4.8
differently. To do so, we expand the weighting function in a Taylor series about the center zr(t) of a generic
particle of phase Sr, writing:

∀ z ∈ ∂Λr : ψ(|x− z|) ≈ ψ(|x− zr|)

−
[
∂bψ(|x− zr|)

]
rrkb(z) + (1/2)

[
∂2
bcψ(|x− zr|)

]
r2rkb(z)kc(z) (4.9)

where rr is the radius of the particles of phase Sr. As the particle radius is far smaller than the radius of the
weighting function, we may truncate the Taylor series at the second-order term with acceptably small error.
Using this relation, we approximate the force in Eq. 4.8 as:

nr 〈fa〉
r
p − ∂b

(
nr 〈Aab〉

r
p

)
+ (1/2)∂2

bc

(
nr 〈Babc〉

r
p

)
(4.10)

where it is:

nr(x, t)〈fa〉
r
p(x, t) ≡

∑
Sr

[
ψ(|x− zr|)

∫
∂Λr

Tad(z, t)kd(z, t)dσz

]
(4.11)

nr(x, t)〈Aab〉
r
p(x, t) ≡

∑
Sr

[
ψ(|x− zr|)rr

∫
∂Λr

Tad(z, t)kd(z, t)kb(z, t)dσz

]
(4.12)

nr(x, t)〈Babc〉
r
p(x, t) ≡

∑
Sr

[
ψ(|x− zr|)r2r

∫
∂Λr

Tad(z, t)kd(z, t)kb(z, t)kc(z, t)dσz

]
(4.13)

The quantities defined above are the components of a vector, a second-order tensor and a third-order tensor,
respectively. The force in Eq. 4.8 is obtained by first weighting the differential traction forces exerted on the
infinitesimal surface elements of the fluid-particle interface, using the values of the weighting function at the
locations of the elements, and then by summing such contributions. The force in Eq. 4.11, on the other hand,
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is obtained by first calculating the forces acting on the entire surface of each particle, then by weighting them
using the values of the weighting function at the particle centers, and finally by summing such contributions.
This second average interprets better the fluid-particle interaction force and fulfills the principle of action and
reaction, as we will see in Section 4.2; this is why we prefer to operate in terms of this average force, and of
the additional contributions appearing in Eq. 4.10.

The convective term in Eq. 4.7 features the average of the product of point velocity components. We find
it convenient to decompose it into the sum of a product of average velocity components and of an average of
velocity fluctuations; thus, we write:

〈uaub〉e ≈ 〈ua〉e〈ub〉e + 〈ûa ûb〉e (4.14)

Here hatted variables denote the deviations of point variables from their respective mean values. The relation
above is not exact, holding only when there is separation of scale between the microscopic and macroscopic
descriptions of the flow. Introducing Eqs. 4.10 and 4.14 into Eq. 4.7 yields:

ρe

[
∂t

(
ε〈ua〉e

)
+ ∂b

(
ε〈ua〉e〈ub〉e

)]
= ∂b〈Sab〉e −

ν∑
r=1

(
nr 〈fa〉

r
p

)
+ ερega (4.15)

where it is:

〈Sab〉e ≡ ε〈Tab〉e +
ν∑
r=1

[
nr 〈Aab〉

r
p − (1/2)∂c

(
nr 〈Babc〉

r
p

)]
− ερe〈ûa ûb〉e (4.16)

This term is the fluid-phase effective stress tensor. Finding an analytical closure for it is extremely complex,
but Jackson (1997) did so for the limiting case of diluted, Stokesian, monodisperse suspensions fluidized by
Newtonian fluids. We will address the problem of closure, for all the terms featuring on the right-hand side of
Eq. 4.15 and of the ν solid-phase averaged dynamical equations, later on in Section 5.

4.2 Solid phases

The volume-averaged continuity equation for the generic solid phase Sr can be derived quite easily by using
this mathematical relation, whose proof is given in the appendix:

nr 〈ζ̇〉
r

p = ∂t

(
nr 〈ζ〉

r
p

)
+ ∂a

(
nr 〈ζva〉

r
p

)
(4.17)

where the dot denotes a total time derivative and 〈ζva〉
r
p(x, t) is the average of the product of ζr(t) and of the

ath component of the velocity vr(t) of the particle center. Setting ζr ≡ 1 gives:

∂tnr + ∂a

(
nr 〈va〉

r
p

)
= 0 (4.18)

which is the equation sought. Here the particle number density, or equivalently the volume fraction, takes on
the (compressible) fluid density role.

To derive the volume-averaged equation of motion for the generic solid phase Sr, we adopt the equation
governing the motion of the generic particle of such phase:

ρrVr v̇r,a(t) =

∫
∂Λr

Tab(z, t)kb(z, t)dσz +

ν∑
s=1

∑
Ss

frs,a(t) + ρrVr ga (4.19)

where ρr denotes the density of the particles of phase Sr, v̇r,a(t) the ath component of the acceleration of the
particle center of mass, while frs,a(t) the ath component of the force exerted on the r particle by the generic
s particle of phase Ss when a collision takes place. This force does not vanish only if particles r and s are in
direct contact (it is zero for most s particles). Notice also that frs,a(t) vanishes when r and s refer to the same
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particle, because particles r and s need, of course, to be different. The surface integral on the right-hand side
of the equation is the overall force exerted by the fluid on the particle.

To average Eq. 4.19, we multiply both sides by ψ(|x− zr|) and sum over all the particles belonging to
phase Sr. Doing so gives:

ρrVr
∑
Sr

[
ψ(|x− zr(t)|)v̇r,a(t)

]
=
∑
Sr

[
ψ(|x− zr(t)|)

∫
∂Λr

Tab(z, t)kb(z, t)dσz

]

+
∑
Sr

[
ψ(|x− zr(t)|)

ν∑
s=1

∑
Ss

frs,a(t)

]
+ ρrVrga

∑
Sr

ψ(|x− zr(t)|) (4.20)

We now employ Eqs. 3.19,3.21,4.11 and 4.17, with ζr ≡ v̇r,a in the second and ζr ≡ vr,a in the forth, and the
following relation, whose proof is left to the reader:

∑
Sr

[
ψ(|x− zr(t)|)

ν∑
s=1

∑
Ss

frs,a(t)

]
=

ν∑
s=1

∑
Sr

[
ψ(|x− zr(t)|)

∑
Ss

frs,a(t)

]
(4.21)

to obtain:

ρrVr

[
∂t

(
nr 〈va〉

r
p

)
+ ∂b

(
nr 〈vavb〉

r
p

)]

= nr 〈fa〉
r
p + nrρrVrga +

ν∑
s=1

∑
Sr

[
ψ(|x− zr(t)|)

∑
Ss

frs,a(t)

]
(4.22)

The first term on the right-hand side is the fluid-particle interaction force – which also features, with opposite
sign, in Eq. 4.15. This force satisfies the action-and-reaction principle, as it should. The final term combines
the resultant forces arising from the particle-particle contacts among particles that belong to the same phase
(s = r) and to different phases (s 6= r). These contributions are conceptually different, insofar as the former
is a self-interaction term that represents the stress internal to the phase under examination, while the latter is
a contact force acting between the Eulerian solid phases. To let the collisional solid stress tensor associated
with phase Sr appear explicitly in Eq. 4.22, we need to manipulate the equation further. We first consider the
following double sum over the particles r and s of the rth phase:∑

Sr

∑
Sr

[
ψ(|x− zrs(t)|)frs,a(t)

]
(4.23)

in which zrs(t) denotes the position vector of the point of mutual contact between the rigid particles r and s.
This double sum vanishes, inasmuch as zrs = zsr and, for the action-and-reaction principle, frs,a =−fsr,a.
If we then expand ψ(|x− zrs|) in a Taylor series around zr, letting krs denote the unit vector of the vector
zrs − zr, we obtain from the equation above that:

∑
Sr

[
ψ(|x− zr(t)|)

∑
Sr

frs,a(t)

]
≈ ∂b

[
nr 〈Mab〉

r
p − (1/2)∂c

(
nr 〈Nabc〉

r
p

)]
(4.24)

where it is:

nr(x, t)〈Mab〉
r
p(x, t) ≡

∑
Sr

{
ψ(|x− zr(t)|)rr

∑
Sr

[
frs,a(t)krs,b(t)

]}
(4.25)

nr(x, t)〈Nabc〉
r
p(x, t) ≡

∑
Sr

{
ψ(|x− zr(t)|)r2r

∑
Sr

[
frs,a(t)krs,b(t)krs,c(t)

]}
(4.26)
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The second-order tensor so defined:

〈Cab〉
r
p ≡ nr 〈Mab〉

r
p − (1/2)∂c

(
nr 〈Nabc〉

r
p

)
(4.27)

is the collisional stress tensor of the rth particle phase which accounts for the transfer of linear momentum at
collisions between alike particles over the distance 2rr separating their centers. This physical phenomenon
is important in dense fluidized suspensions, where the total volume occupied by the particles is not negligible
compared with the volume of the vessel containing them. For rarefied granular gases, which one can model
adopting the Boltzmann-Grad limit, defined as:

rr → 0 ; νr →∞ ; νrr
2
r bounded (4.28)

in which νr represents the overall number of particles belonging to solid phase Sr, because zr → zrs → zs,
the collisional stress vanishes (this result is well known in kinetic theory of gases; see, for instance, Chapman
& Cowling, 1970 or Gidaspow, 1994). This is consequence of the principle of action and reaction, insofar as
in the Boltzmann-Grad limit it is:

∑
Sr

[
ψ(|x− zr(t)|)

∑
Sr

frs,a(t)

]
→
∑
Sr

∑
Sr

[
ψ(|x− zrs(t)|)frs,a(t)

]
= 0 (4.29)

Consider now the other contribution to the overall particle-particle contact force appearing on the right-hand
side of Eq. 4.22. This term, which represents the contact forces acting between r particles of phase Sr and s
particles of phase Ss, can be expressed as:

∑
Sr

[
ψ(|x− zr(t)|)

∑
Ss

frs,a(t)

]
(4.30)

where s 6= r and with particles r and s belonging to phases Sr and Ss, respectively. Given its definition, this
force should fulfill the principle of action and reaction, so that:

∑
Sr

[
ψ(|x− zr(t)|)

∑
Ss

frs,a(t)

]
=−

∑
Ss

[
ψ(|x− zs(t)|)

∑
Sr

fsr,a(t)

]
(4.31)

Clearly, this condition is not satisfied, since even if frs,a = −fsr,a, it is ψ(|x− zr|) 6= ψ(|x− zs|). Only
when rr → 0 and rs → 0 this equation holds. We conclude that the force in Eq. 4.30 cannot be regarded as
the interaction force between phases Sr and Ss, but must include an additional contribution which does not
satisfy the action-and-reaction principle. To find this force, we expand ψ(|x− zrs|) in a Taylor series about
the point zr. Doing so gives:

∑
Sr

[
ψ(|x− zr(t)|)

∑
Ss

frs,a(t)

]
≈ nr 〈fa〉

rs
p + ∂b

[
nr 〈Pab〉

rs
p − (1/2)∂c

(
nr 〈Qabc〉

rs
p

)]
(4.32)

where it is:

nr(x, t)〈fa〉
rs
p (x, t) ≡

∑
Sr

{
ψ(|x− zrs(t)|)

∑
Ss

frs,a(t)

}
(4.33)

nr(x, t)〈Pab〉
rs
p (x, t) ≡

∑
Sr

{
ψ(|x− zr(t)|)rr

∑
Ss

[
frs,a(t)krs,b(t)

]}
(4.34)

nr(x, t)〈Qabc〉
rs
p (x, t) ≡

∑
Sr

{
ψ(|x− zr(t)|)r2r

∑
Ss

[
frs,a(t)krs,b(t)krs,c(t)

]}
(4.35)
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Continuity equation – Fluid phase

∂tε+ ∂x ·
(
ε〈u〉e

)
= 0

Continuity equation – Particle phase r

∂tφr + ∂x ·
(
φr 〈v〉

r
p

)
= 0

Dynamical equation – Fluid phase

ρe

[
∂t

(
ε〈u〉e

)
+ ∂x ·

(
ε〈u〉e〈u〉e

)]
= ∂x · 〈S〉e −

ν∑
r=1

nr 〈f〉
r
p + ερeg

Dynamical equation – Particle phase r

ρr

[
∂t

(
φr 〈v〉

r
p

)
+ ∂x ·

(
φr 〈v〉

r
p〈v〉

r
p

)]
= ∂x · 〈S〉rp + nr 〈f〉

r
p +

ν∑
s 6=r=1

nr 〈f〉
rs
p + φrρrg

Table 1: Eulerian-Eulerian averaged equations of motion for a system of ν particle classes.

The second-order tensor so defined:

〈Dab〉
rs
p ≡ nr 〈Pab〉

rs
p − (1/2)∂c

(
nr 〈Qabc〉

rs
p

)
(4.36)

is the collisional stress tensor related to the momentum transferred at collisions between phases Sr and Ss.
We find it natural now to introduce the following tensor:

〈Sab〉
r
p ≡ 〈Cab〉

r
p +

ν∑
s 6=r=1

〈Dab〉
rs
p − nrρrVr 〈v̂a v̂b〉

r
p (4.37)

This is the effective stress tensor of phase Sr. The first two contributions, taken together, represent the (total)
collisional stress tensor, while the last, which arises from the Reynolds decomposition of the convection term
in the averaged dynamical equation, represents the kinetic stress tensor.

In light of the results obtained above, we can express the averaged linear momentum balance equation for
phase Sr as follows:

ρrVr

[
∂t

(
nr 〈va〉

r
p

)
+ ∂b

(
nr 〈va〉

r
p〈vb〉

r
p

)]
= ∂b〈Sab〉

r
p + nr 〈fa〉

r
p +

ν∑
s 6=r=1

nr 〈fa〉
rs
p + nrρrVrga (4.38)

In this equation, the interaction forces between the phases (represented by the second and third terms on the
right-hand side) satisfy the action-and-reaction principle. Table 1 reports, in absolute notation, the multifluid
equations of motion just derived.

5 The problem of closure

The averaged equations of motion for the fluid and solid phases just derived are mathematically unclosed, for
they feature terms related to point (i.e., microscopic) variables. In their current form, therefore, the equations
cannot be solved. An example of such terms is given by the interaction force between the fluid phase and the
generic solid phase Sr. This force, as seen, is equal to:

〈f〉rp(x, t) ≡
1

nr(x, t)

∑
Sr

[
ψ(|x− zr|)

∫
∂Λr

T (z, t) · k(z, t)dσz

]
(5.1)
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To calculate it, one needs to know the point fluid stress distribution T (x, t) over the surface of each particle
as well as the position of each particle. This distribution is related to the point velocity field of the fluid, not to
its volume average; because in a macroscopic description of the flow this field and the particle positions are
unknown, Eq. 5.1 has no practical use (in a macroscopic modeling context).

We manipulated the averaged equations of motion in such a way that the closure problem is confined to
a small number of well-defined terms. These are the effective stress tensor for each phase and the interaction
forces between the fluid and each solid phase and between each pair of solid phases. Overcoming the closure
problem means deriving expressions for them in terms of averaged variables only. Analytical closures based
on purely theoretical arguments are prohibitively difficult to obtain; there is no guarantee that such equations
even exist. Usually, the goal is far less ambitious and is finding equations that consent to analyze the systems
of interest with the desired accuracy; such equations should be the simplest able to capture enough physics to
describe the fluid dynamics of the suspension satisfactorily.

In what follows, we first present some strategies for modeling the effective fluid and solid stress tensors;
we then analyze the mean fluid-particle interaction force, laying emphasis on the buoyancy and drag forces,
and the mean particle-particle interaction force.

5.1 Effective stress

Owing to the many contributions, yielded by the averaging process, that make up the effective stress tensors,
these are complex to model. Closing these quantities is further complicated by the absence of experimental
measurements having a direct bearing on them. Notwithstanding, researchers usually suppose that both fluid
and solid phases behave as Newtonian fluids, writing:

Se = −
[
pe −

(
κe −

2

3
µe

)
trDe

]
I + 2µeDe ; Sr =−

[
pr −

(
κr −

2

3
µr

)
trDr

]
I + 2µrDr (5.2)

where pe, pr, κe, κr, µe and µr are the averaged pressures, dilatational viscosities and shear viscosities of the
fluid and rth solid phase, respectively; furthermore, I is the identity tensor, whileDe andDr are the rate of
deformation (or strain) tensors, defined as:

De ≡
1

2

(
∂xue + ∂xu

T
e

)
; Dr ≡

1

2

(
∂xvr + ∂xv

T
r

)
(5.3)

From now on, as done in these last expressions, we simplify the notation by leaving out the angular brackets
that imply averaging. Experimental evidence has shown that in several fluidization regimes the assumption
of Newtonian behavior is satisfactory, especially for powders far from maximum packing.

If Eqs. 5.2 hold, the closure problem reduces to finding suitable constitutive expressions for the pressure,
dilatational viscosity and shear viscosity of each phase. As done in Section 4, often one assumes that the fluid
is incompressible, so that no constitutive equation is required for pe, that κe is zero and that µe is proportional
to ε, the proportionality constant being the shear viscosity of the pure fluid.

For the solid phases, constitutive expressions for these quantities have been derived from granular kinetic
theory (Gidaspow, 1994; Brilliantov & Poschel, 2004), a generalization of the mathematical theory of dense
non-uniform gases (Chapman & Cowling, 1970). The idea is that, because dense granular gases resemble in
many ways dense molecular gases, the constitutive equations that govern the two should be derivable, at least
in part, from the same theoretical framework. Similarly to a molecular gas, particle pressure and viscosities
are functions of a granular temperature, which is governed by a balance equation for a pseudointernal energy
related to the particle peculiar velocity. For solid phase Sr, the balance equation is:

ρr

[
∂t
(
φrUr

)
+ ∂x ·

(
φrUrvr

)]
=− ∂x · qr + Sr : ∂xvr +Gd,r − Sv,r − Sc,r (5.4)

where Ur ≡ 3/2Θr is the pseudointernal energy per unit mass, Θr being the granular temperature, and qr is
the pseudothermal heat flux. The equation differs from the classical internal energy balance equation (Bird
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et al., 1960) because of a sink term Sc,r(x, t) representing energy degradation caused by inelastic collisions,
a source termGd,r(x, t) representing generation of particle velocity fluctuations by fluctuating fluid-particle
forces and a sink term Sv,r(x, t) representing their dampening by viscous resistance to particle motion. qr is
usually modeled using Fourier’s law, writing:

qr =− kr∂xΘr (5.5)

where kr is the granular thermal conductivity of the rth solid phase. Different closures have been developed
for this parameter; Gidaspow et al. (1992), for instance, proposed:

kr =
150ρrsr (πΘr)

1/2

384αr (1 + er)

[
1 + (6/5)φrαr (1 + er)

]2
+ 2φ2

rρrsrαr (1 + er)(Θr/π)1/2 (5.6)

where sr denotes the particle diameter, er the coefficient of restitution for particle collisions and αr the radial
distribution function for the rth solid phase. Various expressions are available for this function; for instance,
that advanced by Iddir & Arastoopour (2005) reads:

αr =
[
1− (φ/φmax)

]−1

+ (3sr/2)
ν∑
s=1

(φs/ss) (5.7)

where φ is the overall solid volume fraction and φmax is the maximum solid compaction (i.e., the maximum
value which φ can take). Here αr diverges positively when φ approaches φmax. An expression in which αr is
bounded is that of Lebowitz (1964), where φmax does not feature:

αr = (1/ε)

[
1 + (3sr/2ε)

ν∑
s=1

(φs/ss)

]
(5.8)

To close Eq. 5.4, one needs constitutive equations also for the terms Gd,r, Sv,r and Sc,r. For briefness, we
do not report them; the interested reader may refer, for instance, to Gidaspow (1994), Syamlal et al. (1993),
Fan & Zhu (1998) and Jackson (2000).

Various closures for the solid pressure are available in the literature, all derived from the granular kinetic
theory. As an example, we report the expression advanced by Lun et al. (1984), suitably extended to cater for
polydisperse suspensions:

pr =

[
1 + 2

ν∑
s=1

(srs/sr)
3φsαrs(1 + ers)

]
φrρrΘr (5.9)

where sr and ss are the particle diameters for phases r and s, respectively, ers is the coefficient of restitution
for collisions between particles of phases r and s, while:

srs ≡ (sr + ss)/2 ; αrs ≡ (srαs + ssαr)/(sr + ss) (5.10)

As an example of constitutive equations for the solid-phase dilatational and shear viscosities, we report those
given in Gidaspow (1994), even if several are available in the literature:

κr = (4/3)φ2
rρrsrαr (1 + er)(Θr/π)1/2 (5.11)

µr =
10ρrsr (πΘr)

1/2

96αr (1 + er)

[
1 + (4/5)φrαr (1 + er)

]2
+ (4/5)φ2

rρrsrαr (1 + er)(Θr/π)1/2 (5.12)

These expressions are those originally developed for monodisperse suspensions and do not directly account
for the presence of the other solid phases.

The expressions given above, as said, are based on the kinetic theory of granular flows. This assumes that
particles are smooth and spherical, that collisions are binary and instantaneous, and that the suspension is far
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from the frictional packing limit, which marks the transition from the viscous to the frictional flow regime. In
the first regime, particles undergo transient contacts, momentum transfer is translational and collisional, and
the granular kinetic theory holds; in the second, particles undergo enduring contacts and momentum transfer
is mainly frictional. Granular kinetic theory does not account for these interactions and thus in the frictional
flow regime the closures reported above are inadequate.

In regions of high solid volume fraction, particles interact with multiple neighbors and the mechanism for
stress generation is not merely due to kinetic and (particularly) collisional contributions, but also to sustained
contacts among particles. Such contacts make particles dissipate considerable energy, letting them form very
dense regions in the bed. This increases the ability of the granular assembly to resist shearing, for tangential
frictional forces at contact points are now present. Hence, the solid viscosity is larger than that predicted by
the granular kinetic theory.

To describe the frictional stress other models, empirical, phenomenological or based on the theory of soil
mechanics, are needed. Usually, one assumes that it is:

S?r =− p?rI + 2µ?rDr (5.13)

where the star indicates that the quantity refers to the frictional flow regime. Syamlal et al. (1993) proposed
this equation for the frictional pressure:

p?r = φrp
? , p? ≡ 10A(φ− φf )B (5.14)

where φf denotes the frictional solid packing (the solid volume fraction threshold value at which the powder
enters the frictional flow regime). The coefficients A and B are very high, with typical values of 25 and 10,
respectively. For other constitutive equations the reader is referred to the literature. An expression often used
for the frictional shear viscosity is that of Schaeffer (1987), which reads:

µ?r =
p?r sinϑr

2
√
I2(Dr)

(
ν∑
s=1

φs

)−1

, I2(Dr) ≡
1

2

[
(trDr)

2 − trD2
r

]
(5.15)

where ϑr is the angle of internal friction of the rth granular material, while I2(Dr) is the second invariant of
the rate of deformation tensor. Other expressions are available in the literature. In the frictional flow regime,
one usually accounts also for the kinetic and collisional contributions to the solid stress; the easiest way to do
this is adding the viscous stress tensor to the frictional one.

5.2 Fluid-particle interaction force

There are five main contributors to the fluid-particle interaction force. The first is the buoyancy force, whose
definition in the context of multiphase flows is not unique and needs to be discussed. The second acts in the
direction of the fluid-particle slip velocity – that is, the fluid velocity relative to an observer moving with the
same local mean velocity as the particles. The third is normal to the slip velocity, the fourth is parallel to the
relative acceleration between the phases and the fifth is proportional to the local mean acceleration of the
fluid. The last four terms are commonly referred to as drag force, lift force, virtual mass force and local fluid
acceleration force, respectively. As we shall see, the local fluid acceleration force is not always present, but
features only when one definition of buoyancy force is used – in particular, the classical definition presented
later on. Among these five terms, often the buoyancy and drag forces are dominant.

5.2.1 Buoyancy force

A first definition sets this force equal to the weight of the fluid displaced by the solid; accordingly, if we refer
the force to the unit volume of suspension, it is:

nrf
?
B,r ≡− φrρeg (5.16)
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Since it is consistent with the Archimedes’s principle original formulation, we call this classical definition.
For a given value of φr, this force is constant, being unrelated to the flow.

The second definition relates the force to the effective fluid stress tensor, as reported by Jackson (2000);
per unit volume of suspension, it is:

nrf
•
B,r ≡ φr∂x · Se (5.17)

Another definition often encountered in the literature considers solely the isotropic part of the effective stress
tensor of the fluid; the closure therefore takes the form:

nrf
◦
B,r ≡− φr∂xpe (5.18)

These definitions lead to different values of the buoyancy force. There is nothing wrong with this, for we are
free to define this force as we like: what is crucial is that the total fluid-particle interaction force nrf r, which
has an objective physical meaning, be correctly calculated. Thus, modelers who adopt different definitions of
buoyancy force will also need to employ different expressions for the complementary force that makes up the
total fluid-particle interaction force. The value of the latter must be the same in all models. So, for instance, if
one opts to use Eq. 5.18, the contribution of the deviatoric part of Se must be included in the complementary
force: it will still be present, the only difference being that it is not regarded as part of the buoyancy force, but
as part of the complementary force.

To better understand the meaning of these definitions, consider a monodisperse suspension of motionless
particles equally distributed in space (i.e., an ideal homogeneous bed). The second and third definitions here
coincide, becauseDe vanishes and Se is therefore isotropic:

Se =− peI ⇒ nf •
B = nf ◦

B (5.19)

where n is the particle number density. We can derive an expression for this force using the mean dynamical
equations reported in Table 1; these reduce to:

nf =− ∂xpe + ερeg ; nf =− φρsg (5.20)

where φ denotes the solid volume fraction, ρs the particle density and nf the fluid-particle interaction force.
Subtracting the two equations and using Eq. 5.18 gives:

∂xpe = (ερe + φρs)g ; nf •
B = nf ◦

B =− φ(ερe + φρs)g (5.21)

Thus, for ideal uniform fluidized beds the difference between the first and the other two definitions reduces to
the density choice in the force expression: the first requires the fluid density, while the second the suspension
bulk density. For further details about this topic, we refer to Jackson (2000).

5.2.2 Local fluid acceleration force

If the classical definition of buoyancy force is employed, the complementary force to the total fluid-particle
interaction force must include a term known as local fluid acceleration force (this term is absent otherwise).
Per unit volume of suspension, this force is given by:

nrf
?
A,r ≡ φrρeDe

tue , De
tue ≡ ∂tue + ue · ∂xue (5.22)

where the derivative on the right-hand side is a material derivative relative to a Lagrangian observer moving
with the locally averaged velocity of the fluid.

If the fluid acceleration is far less than the gravitational acceleration, the local fluid acceleration force is
far less than the buoyancy force and so its contribution is negligible. This force, nonetheless, is conceptually
important, as the following thought experiment reveals. Consider a uniform assembly of particles at rest in a
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body of fluid. The fluid is also at rest in a vertical container placed on a horizontal plane. The system resides
in a uniform gravitational field. If the plane supporting the container and the constraints keeping the particles
at rest are suddenly removed, the entire system falls freely with an acceleration equal to g. Since the mean
velocity fields of both phases are uniform and no pressure gradients are present, the effective stress tensors of
both phases vanish, and the dynamical equations in Table 1 reduce to:

ερeD
e
tue =− nf + ερeg ; φρsD

s
tvs = nf + φρsg (5.23)

For convenience, we have used the non-conservative formulation of the equations; to obtain them, one must
combine the dynamical and continuity equations (see, for instance, Bird et al., 1960). The material derivative
for the solid phase is defined similarly to that for the fluid phase. In the case at hand, both material derivatives
are equal to the gravitational acceleration, and Eqs. 5.23 lead to the same result: the fluid-particle interaction
force must vanish. This condition can be met only if the local fluid acceleration force is accounted for. As the
two phases move identically, no slip velocity and acceleration are present between them; consequently, the
drag, virtual mass and lift forces are all zero (see the sections below dedicated to these forces). Conversely, if
its classical definition is adopted, the buoyancy force is nonzero. So, the total fluid-particle interaction force
can vanish only if the local fluid acceleration force is considered:

nf = nf?B + nf?A =− φρeg + φρeg = 0 (5.24)

If the other definitions of buoyancy force are adopted, the local fluid acceleration force must not be included,
because in both cases, being the effective fluid stress tensor zero, the buoyancy force vanishes. Note that this
is not only true for solid suspensions but also for single bodies moving in pure fluids.

5.2.3 A consideration on the complementary force

As stated, all models need to agree on the value ascribed to the total fluid-particle interaction force, but they
can use different repartitions for such force. A model may use the classical definition for the buoyancy force
and include the local fluid acceleration force, while another may adopt one of the buoyancy force definitions
given in Eqs. 5.17 and5.18 without including the local fluid acceleration force. Both choices are acceptable,
but the models will have to adopt different expressions for the complementary force to the total fluid-particle
interaction force. Let us write:

nrf r = φrρe(D
e
tue − g) + nrf

?
r ; nrf r = φr∂x · Se + nrf

•
r (5.25)

We wonder how the complementary forces nrf
?
r and nrf

•
r are related. To answer this question, we consider

the following relation, obtained by combining the equations above:

nrf
•
r = nrf

?
r + φr(ρeD

e
tue − ρeg − ∂x · Se) (5.26)

Then, using the dynamical equation for the fluid phase reported in Table 1, with a few mathematical passages
not reported for briefness, one can prove that:

φr(ρeD
e
tue − ρeg − ∂x · Se) =− (φr/ε)

ν∑
s=1

nsf
•
s (5.27)

We now use this relation in Eq. 5.26 and then sum both sides of the resulting equation over the phase index r.
Doing so gives:

ν∑
r=1

[
nrf

?
r − (1/ε)nrf

•
r

]
= 0 (5.28)

This is the condition that needs to be satisfied to render the two models consistent. This condition can be met
by imposing the following restriction:
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nrf
•
r = ε

(
nrf

?
r

)
(5.29)

If we denote as τ e the deviatoric part of the effective stress tensor of the fluid, then, using the equation above,
we immediately obtain:

nrf
◦
r = ε

(
nrf

?
r

)
+ φr∂x · τ e (5.30)

where nrf
◦
r represents the complementary force to the total fluid-particle interaction force that arises when

Eq. 5.18 is employed for defining the buoyancy force.

The main constituents of the complementary forces defined above are the drag force, the lift force and the
virtual mass force. We will now discuss how these forces are expressed constitutively.

5.2.4 Drag force

By definition, the drag force is parallel to the fluid-particle slip velocity (a vector that fulfills the principle of
material frame-indifference); hence, it is:

nrfD,r ≡ βr (ue − vr) (5.31)

where βr denotes the drag coefficient for the rth particle phase. Finding a closure for the drag force amounts
to finding a constitutive expression for βr. We now report some of these expressions, written in a way that is
consistent with the classical definition of buoyancy force.

Ergun & Orning (1949) developed an empirical correlation for assessing the unrecoverable pressure drop
through packed beds. Extending its range of validity to homogeneous fluidized suspensions, one obtains the
following constitutive equation:

βr = 150
µeφr(1− ε)

(εsr)
2

+ 1.75
ρeφr |ue − vr|

εsr
(5.32)

Gidaspow (1994) recommends using this closure for values of the void fraction up to 0.80, even if the Ergun
equation was developed (and has been extensively verified) for fixed beds in which the void fraction is small,
with values close to 0.40. For void fraction values larger than 0.80, Gidaspow (1994) recommends using the
expression of Wen & Yu (1966), which is one of the most popular correlations for the calculation of the drag
coefficient in dense fluidized suspensions:

βr =
3

4
CD(Rer)

ρeφr |ue − vr|
sr

ε−2.70 (5.33)

where:

Rer ≡
ρeε|ue − vr|sr

µe
; CD(Rer) =


(
24/Rer

)(
1 + 0.15Re0.687r

)
for Rer < 1000

0.44 for Rer ≥ 1000
(5.34)

The expression above has been proposed by Schiller & Naumann (1935). In Eq. 5.33, as we see, the exponent
in the voidage function ε−α is constant and equal to 2.70.

Di Felice (1994) suggested that the exponent α should be a function of the particle Reynolds number; the
expression that he proposed is:

α(Rer) = 2.70− 0.65 exp
[
− (1/2)(1.50− log10 Rer)

2
]

(5.35)

The value of the exponent reduces to that employed in the expression of Wen & Yu (1966) for very small and
very large values of the Reynolds number. In the intermediate region, nevertheless, the deviation from 2.70 is
significant, the exponent reaching a minimum value of 2.05 when Rer ≈ 32.
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The closures reported above are extensively used; nevertheless, they are not consistent with the empirical
equation developed by Richardson & Zaki (1954) to describe the expansion of homogeneous fluidized beds
of non-cohesive particles. Since this equation is very accurate, the inconsistency is a shortcoming of the drag
force closures. To overcome this limitation, Mazzei & Lettieri (2007) derived an expression that is consistent
with the Richardson and Zaki correlation over the entire range of fluid-dynamic regimes and for any value of
the suspension void fraction. It has the following formulation:

α(ε,Rer) =− (1/ ln ε) ln


[
0.63 + 4.80(Rer/ε

γ)−1/2
]2

(
0.63 + 4.80Re−1/2

r

)2 ε2(1−γ)

 (5.36)

where:

γ(ε,Rer) =
4.80 + 2.40 · 0.175(Rer/ε

γ)3/4

1 + 0.175(Rer/εγ)3/4
(5.37)

To calculate γ one needs to solve a nonlinear equation. Since γ has a very narrow range of variation, finding
the solution requires few iterations. For a detailed discussion on how this closure was derived and on how it
compares with the other expressions reported above, we refer to Mazzei & Lettieri (2007).

5.2.5 Virtual mass and lift forces

If a body immersed in a fluid accelerates, some of the surrounding medium must also accelerate; this results
in a force, named virtual mass force, equal to:

nrfV,r ≡ φrρeCV (φr)(D
e
tue −Dr

tvr) (5.38)

whereDe
t (·) andDr

t (·) are the material derivatives associated with the fluid and rth solid phase, respectively.
The virtual mass coefficient, denoted asCV (φr), depends on the particle shape and on the volume fraction of
the solid phase considered. For very dilute mixtures of spherical particles, CV (φr) is taken to be 1/2, since
this is the calculated value for a single sphere in an infinite fluid (Maxey & Riley, 1983). The same result was
found by Zhang & Prosperetti (1994) for an inviscid fluid and low particle concentration. For larger values of
the solid volume fraction the coefficient is expected to increase. Using lattice-Boltzmann simulations (but for
bubbly suspensions), Sankaranarayanan et al. (2002) showed thatCV (φr) is nearly linear; at moderate values
of the solid volume fraction, Zuber (1964) suggested that:

CV (φr) = (1 + 3φr)/2 (5.39)

The virtual mass force is important when the density of the fluid is higher than that of the disperse phase; so,
in fluidized beds, especially when the fluidization medium is a gas, this force usually plays a secondary role.
In bubble columns, conversely, it strongly affects the dynamics of the system.

If an object moves in a fluid which is in shearing flow, it experiences a force transverse to the direction of
relative motion. This lift force is equal to:

nrfL,r ≡ φrρeCL(φr)(∂x × ue) × (ue − vr) (5.40)

The lift coefficient, denoted asCL(φr), depends on the particle shape and on the volume fraction of the solid
phase considered. For very dilute mixtures of spherical particles, CL(φr) is also taken to be 1/2. One reason
for this is that Eqs. 5.38 and5.40 are not frame-independent when taken separately, but their sum satisfies the
principle of material objectivity if the coefficients of the two forces are equal. Hence, to satisfy this principle,
one should setCL(φr) = CV (φr). In fluid-solid systems the lift force is often (slightly) more important than
the virtual mass force, but both forces are outweighed by the drag force. For more details about these forces,
we refer to Marchisio & Fox (2013) and the references therein provided.
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5.2.6 Other forces

Other contributions to the fluid-particle force could be considered. A comprehensive overview can be found
in Drew & Passman (1998). Here we cite only the Faxen force and a history-dependent term analogous to the
Basset force for the motion of isolated particles (Basset, 1888). For the latter, we can reasonably believe that
for fluidized suspensions the averaging of history-dependent forces should result in a vanishing contribution,
since averaging would most probably erase any historical effects of the motion of the particles on the fluid in
their immediate neighborhood. We thus expect this force to be negligible.

5.3 Particle-particle interaction force

In fluidized mixtures of several monodisperse particle classes, each class exchanges linear momentum with
all the others; this momentum transfer arises from particle collisions and results into a particle-particle drag
force. Soo (1967) was among the first to quantify it, deriving a theoretical expression for the force acting on a
single particle of species r in a cloud of particles of species s. Nakamura & Capes (1976) and Arastoopour
et al. (1982) made similar efforts. Many authors have since then put forward other correlations, most of them
being variations of earlier works. The force is expressed as the product of a drag coefficient by the velocity of
slip between the particle classes:

nrf rs ≡ ζrs(vs − vr) (5.41)

where nrf rs is the force exerted by phase s on phase r per unit volume of suspension (see Table 1) and ζrs
is the particle-particle drag coefficient for the two particle classes involved. The closure problem reduces to
finding a constitutive expression for ζrs. Gidaspow et al. (1985) advanced the relation:

ζrs = Crs(1 + ers)

[
φrφsρrρs(sr + ss)

2

ρrs
3
r + ρss

3
s

]
|vs − vr| (5.42)

where ρr, ρs, sr and ss are the densities and diameters of the particles of classes r and s, respectively, ers is
their coefficient of restitution and Crs is given by:

Crs ≡
3Φ

1/3
rs + (φr + φs)

1/3

4
[
Φ

1/3
rs − (φr + φs)

1/3

] (5.43)

where:

Φrs ≡ (1− srs)
[
Φr + (1− Φr)Φs

]
(1−Xrs) + Φr for Xrs ≥

Φr

Φr + (1− Φr)Φs

Φrs ≡
[
(Φr − Φs) + (1− srs)(1− Φr)Φs

][
Φr + (1− Φr)Φs

]Xrs

Φr

+ Φs otherwise (5.44)

In the relations above, Φr and Φs are the particle volume fractions at maximum packing for phases r and s,
respectively; moreover, it is:

Xrs ≡
φr

φr + φs
; srs ≡

(
ss
sr

)1/2
if sr ≥ ss and srs ≡

(
sr
ss

)1/2
otherwise (5.45)

Another popular closure if that of Syamlal (1987), which reads:

ζrs =
3

4
(1 + ers)

(
1 +

π

4
Frs

)[
φrφsρrρsgrs(sr + ss)

2

ρrs
3
r + ρss

3
s

]
|vs − vr| (5.46)

in which Frs denotes a coefficient of friction for phases r and s, while grs the radial distribution function of
Lebowitz (1964), given by Eq. 5.8. Gera et al. (2004) suggested that the equations above should include an
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additional term that is necessary to prevent the particle phases from segregating when they are fully packed.
Without it, Eqs. 5.42 and 5.46 permit packed particles of different size to segregate, a phenomenon which is
not observed experimentally. To prevent this, they recommended adding to the coefficient ζrs the term Ψp?,
where p? is given by Eq. 5.14 and Ψ is a coefficient that must be adjusted to match the actual segregation rate
of the powder considered. The value that Gera et al. (2004) used was 0.30, but they stressed that this is not of
general validity. Ψp? is added so that when the powder approaches maximum packing the particle-particle
drag increases sufficiently to make the solid phases r and smove together as if they were one phase, thereby
hindering segregation. This additional term is included only for φ > φf .

6 Population balance modeling

In the previous sections, we have presented the Eulerian equations of motion for dense fluidized suspensions
constituted of ν particle classes, the rth class being characterized by a density ρr and a diameter sr. A serious
limitation of this modeling approach is that changes in particle size are not permitted: particles can segregate
or mix, and so the particle size distribution (PSD) in every real-space point can change in time, but the size of
the particles for each class is fixed. In general, nevertheless, particles can grow, shrink, aggregate and break,
and new particles, of vanishing small size, may nucleate; these size changes reflect the physical and chemical
processes taking place in the system and strongly affect the evolution of the PSD. Predicting this evolution is
essential for a realistic description of the system behavior. We now introduce a modeling approach, referred
to as population balance modeling, which has this capability.

Population balance modeling is statistical in nature; it can be regarded as a generalization of the statistical
modeling approach presented in Section 3.1. There, the state of a particle was identified by two coordinates:
position in real space x and velocity v; this number can be increased, if additional properties are required to
fully characterize the particle state. Here we will add only the particle size s. The complete description (in a
statistical sense) of the system is given by the master joint PDF, which we introduced in Section 3.1; now, this
function depends on 7ν internal coordinates plus the time coordinate (the phase space of the entire particulate
system has 7ν dimensions). To calculate many of the macroscopic properties of practical interest, however,
the one-particle marginal PDF, or equivalently the number density function, suffices; this is because many of
the microscopic functions of interest take the following form:

b(r) =

ν∑
s=1

b1(xs,vs, ss) =

ν∑
s=1

b1(rs) (6.1)

where b1 is an arbitrary function of the phase-space state of one particle, and where r and rs are the position
points of the entire particulate system and of particle s in their phase spaces, respectively. For a function of
this kind, one can prove that:

〈b〉s(t) =

∫
Ωx

∫
Ωv

∫
Ωs

b1(x1,v1, s1)f1(x1,v1, s1, t)dx1dv1ds1 (6.2)

where Ωs is the range of variation of s, while f1 is the NDF. By definition, f1(x,v, s, t)dxdvds represents
the expected number of particles located at time t in the volume dx around the point x with velocity in the
range dv around the velocity v with size in the range ds around the size s. f1(x,v, s, t)dxdvds, therefore,
is an observable representing the mean particle number density in the seven-dimensional phase space made
up by the union of the real space Ωx, velocity space Ωv and size space Ωs. Knowing the NDF is equivalent to
knowing the particle size and velocity distributions in any real-space point at any time. In Eq. 6.2, 〈b〉s is only
a function of time, since b does not depend on real-space, velocity-space and size-space coordinates.

So, knowing the NDF permits calculating observables associated with microscopic functions of the class
defined by Eq. 6.1. To calculate observables of this kind, one has to know how the NDF evolves in the phase
space of one particle. An evolution equation for it is hence necessary. This is called (generalized) population
balance equation (PBE). One may derive this equation rigorously starting from the microscopic description
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of the particulate system, given by the transport equation of the master joint PDF, which is a generalization of
the Liouville equation (Marchisio & Fox, 2013). Here we follow a less rigorous, and therefore easier, method
that regards the population balance equation as a simple continuity statement written in terms of the number
density function in the phase space of one particle (this space in our case has seven dimensions: three in real
space, three in velocity space and one in size space). This is the most popular derivation method used in the
literature on polydisperse fluid-particle systems.

Consider an arbitrary, fixed control volume Λr ≡Λx∪Λv∪Λs in the phase space of a single particle. The
number of particles that accumulate in it per unit time is:

ACC = ∂t

∫
Λr

f1dr =

∫
Λr

∂tf1dr (6.3)

where, to simplify the notation, we have denoted as r the position point of the particle in its phase space. The
operations of time differentiation and space integration can be interchanged insofar as the control volume is
not time-dependent. The net number of particles entering Λr per unit time is:

IN −OUT =−
∫
∂Λr

f1 ṙ · nrdσr =−
∫
Λr

∂r · f1 ṙdr (6.4)

where ṙ and ∂r are the particle velocity and the nabla operator in phase space, respectively, and where nr is
the unit vector normal to the hypersurface bounding Λr directed outwards. To turn the surface integral into a
volume integral, we have used the Gauss theorem.

The difference between the two terms above has to balance the net number of particles generated per unit
time within Λr. Particle generation is caused by collisions, breakage, aggregation and similar instantaneous
processes (no process, of course, is instantaneous; however, these processes have characteristic times that are
so smaller than those characterizing the evolution of the NDF that we can regard them as instantaneous). For
instance, if two particles located outside Λv collide, their velocities vary abruptly, and after the collision one
particle (or even both) might be located within Λv, having thus entered Λr without crossing its boundaries. If
we denote as Gr the net number of particles generated per unit volume of phase space and unit time owing to
instantaneous phenomena, it is:

GEN =

∫
Λr

Grdr (6.5)

If we equate the accumulation term to the sum of the convection and generation terms, we obtain, after a few
minor rearrangements, the following integral equation:∫

Λr

(∂tf1 + ∂r · f1 ṙ −Gr)dr = 0 (6.6)

Because the integration volume Λr is arbitrary and the integrand is (assumed to be) continuous, we conclude
that the integrand must vanish:

∂tf1 =− ∂r · f1 ṙ + Gr (6.7)

This is the PBE. We find it convenient to rewrite it in terms of the velocities which the particles possess in the
real, velocity and size spaces. Letting ∂v and ∂s represent the nabla operators in the velocity and size spaces,
respectively, and v̇ and ṡ be the particle velocities in the velocity and size spaces, respectively, (v̇ represents
the particle acceleration in real space and ṡ the particle growth rate), we can write:

∂tf1 =− ∂x · f1v − ∂v · f1 v̇ − ∂s(f1 ṡ) + Gr (6.8)

or equivalently:

∂tf1 =− v · ∂xf1 − ∂v · f1 v̇ − ∂s(f1 ṡ) + Gr (6.9)
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The two expressions are equivalent insofar as the real-space particle velocity v is an independent coordinate
and not a function of x; the same is not true for v̇ and ṡ, which in general may depend on the coordinates v
and s, respectively. For instance, since v̇ is the real-space particle acceleration, and since this is equal to the
total force per unit mass acting on the particle, if the latter depends on the particle velocity also v̇ will. This is
surely the case in fluidized beds, where a component of the force is the drag.

The PBE, as said, is the transport equation of the NDF. Solving it allows determining the NDF evolution.
The equation, nevertheless, can be solved only if it is closed. Here by closed we mean that all the terms in the
equation can be computed from knowledge of the number density function (of course, these functionals need
to be known). This is not the case for the generation term, because, as we know from statistical mechanics, it
involves correlations between two particles (involving therefore the two-particle marginal PDF). A closure,
consequently, will have to be introduced to express Gr in terms on the NDF. This is a significant challenge,
because these closures are in general complex to derive (Balescu, 1975). Once this has been done, the PBE is
closed, but its solution will be extremely difficult to obtain. This is because in general the PBE results to be a
nonlinear, integral, partial differential, functional equation in a seven-dimensional space. As a consequence,
one does not usually attempt to solve it, using the equation to extract solely the information about the system
behavior that is of interest in the application at hand.

The topics of how to close the PBE and how to solve it are vast. We thus refer to the specialized literature
(we strongly recommend Chapman & Cowling, 1970, Gidaspow, 1994, Ramkrishna, 2000 and Marchisio &
Fox, 2013). Here we just briefly mention a powerful solution method that allows tuning the PBE into a set of
four-dimensional equations that can be solved with normal computational fluid dynamics numerical codes.
This is called quadrature-based moment method (several variants exist, but all of them are based on the same
idea, which we will now present).

Often engineers are only interested in few integral properties of the NDF. Called moments, these may be
important because they control the product quality or because they are simple to measure and monitor. The
idea behind the method of moments is to derive transport equations for the moments of interest by integrating
out the coordinates v and s from the PBE. For any given function ϕ(v, s), we can write:

∂t

∫
Ωv

∫
Ωs

ϕ(v, s)f1dvds =−
∫
Ωv

∫
Ωs

ϕ(v, s)∂r · f1 ṙdvds+

∫
Ωv

∫
Ωs

ϕ(v, s)Grdvds (6.10)

The integral on the left-hand side is the moment of f1 associated with the function ϕ(v, s), and depends only
on x and t. As a consequence, the equation above, which governs the evolution in time and real space of the
moment of the NDF associated with ϕ(v, s), can be solved by any CFD numerical code. We have therefore
overcome the dimensionality issue. The problem with the equation above is that it is usually unclosed, since
for any set of moments which the modeler wishes to track, obtained with a finite set of functions ϕ1, . . . , ϕn,
the equations involve also moments external to the set.

To overcome the closure problem, we can operate as follows. As mentioned, the moment method aims to
solve the dimensionality issue by turning a problem involving one higher-dimensional differential equation
into a problem involving a set of four-dimensional differential equations solvable by a CFD code. To capture
all the information contained in the PBE, one would have to consider an infinite set of equations. But since
we neither want nor can solve an infinite number of equations, the idea behind the method of moments is to
satisfy only a finite number of them. This leaves the NDF largely undetermined, because only the infinite set
would yield the correct NDF. This means that we can choose – to a certain extent – the NDF arbitrarily and
then let the moment equations determine the details which we have left unspecified. Moment methods differ
in the choice of the function ϕ and in the arbitrary input for the NDF. Their common feature is to choose the
latter so that f1 is a given function of v and s containing 3α undetermined parameters (two scalars and one
vector) depending on x and t. So, if we take 5α scalar moment transport equations, we obtain 5α differential
equations for the unknown parameters. One hopes that, for α sufficiently large, the result is accurate enough
and independent of the form chosen for the NDF.

The quadrature methods of moments are examples of this approach; they overcome the closure problem
by assuming that the NDF has the following functional expression:
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f1(x,v, s, t) =

α∑
r=1

nr(x, t)δ
[
v − vr(x, t)

]
δ
[
s− sr(x, t)

]
(6.11)

This is a quadrature formula, in which α is the number of nodes, vr(x, t) and sr(x, t) are the rth quadrature
nodes and nr(x, t) is the rth quadrature weight. This formula represents the particle population by means of
α solid phases, the rth having number density nr(x, t) and being made up of particles with velocity vr(x, t)
and size sr(x, t). The difference between this representation and that used in Section 4 is that here the size of
each particle class is not fixed, but evolves in time and space. Here the 3α parameters which one must obtain
via the moment transport equations are nr(x, t), vr(x, t) and sr(x, t). For details about how this is done, we
refer the reader to the literature previously cited.

7 Conclusions

We presented three strategies for modeling fluidized beds: Eulerian-Lagrangian Modeling, Discrete Particle
Modeling and Eulerian-Eulerian Modeling. Tracking the motion of each particle, the first two give a detailed
description of the system dynamics; these methods, however, are too expensive computationally to be of any
use for describing systems of industrial interest. We thus focused on Eulerian-Eulerian modeling, describing
the averaging techniques that turn granular systems into continuous media and deriving the volume-averaged
equations of mass and linear momentum balance for fluidized suspensions made up of ν particle classes. We
then addressed the closure problem, describing the main constitutive equations used by modelers to express
the fluid-particle and particle-particle interaction forces and the effective fluid dynamic stress. We concluded
the chapter by introducing the population balance modeling, which permits describing systems in which the
particles are continuously distributed over the size, and in which the size is free to vary owing to continuous
and discontinuous processes, such as chemical reaction, growth, aggregation and breakage.

8 Appendix

8.1 Fluid-phase volume average of point variable spatial derivatives

We intend to derive an expression for the fluid-phase volume average of point variable spatial derivatives; to
this end, we start by considering the derivative:

∂a

[
ε(x, t)〈ζ〉e(x, t)

]
(8.1)

Now, using the definition of fluid-phase volume average given in Eqs. 3.17 and the derivation chain rule, we
write the quantity above as:

∂xa

∫
Λe

ζ(z, t)ψ(|x− z|)dz =

∫
Λe

ζ(z, t)∂xaψ(|x− z|)dz =−
∫
Λe

ζ(z, t)∂zaψ(|x− z|)dz

=

∫
Λe

[
∂zaζ(z, t)

]
ψ(|x− z|)dz −

∫
Λe

∂za

[
ζ(z, t)ψ(|x− z|)

]
dz (8.2)

For the first integral, we can write:∫
Λe

[
∂zaζ(z, t)

]
ψ(|x− z|)dz = ε(x, t)〈∂aζ〉e(x, t) (8.3)

For the second, the Gauss theorem allows writing:∫
Λe

∂za

[
ζ(z, t)ψ(|x− z|)

]
dz
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=

∫
∂Λx

ζ(z, t)na(z, t)ψ(|x− z|)dσz −
ν∑
r=1

∑
Sr

∫
∂Λr

ζ(z, t)ka(z, t)ψ(|x− z|)dσz (8.4)

where ∂Λx is the surface bounding the domain containing the mixture and na(x, t) is the ath component of
the unit vector normal to ∂Λx pointing away from the mixture. If the shortest distance from the generic point
x ∈ ∂Λx is considerably larger than the weighting function radius, the first term of the right-hand side of the
equation above is much smaller than the second. Neglecting it, we obtain Eq. 4.3.

8.2 Fluid-phase volume average of point variable time derivatives

Similarly, to derive an expression for the fluid-phase volume average of point variable time derivatives, we
start by considering the derivative:

∂t

[
ε(x, t)〈ξ〉e(x, t)

]
(8.5)

Using the definition of fluid-phase volume average given in Eqs. 3.17 and then applying the Leibnitz theorem
allows writing this as:

∂t

∫
Λe

ζ(z, t)ψ(|x− z|)dz =

∫
Λe

[
∂tζ(z, t)

]
ψ(|x− z|)dz

−
ν∑
r=1

∑
Sr

∫
∂Λr

ζ(z, t)u(z, t) · k(z, t)ψ(|x− z|)dσz

+

∫
∂Λx

ζ(z, t)u(z, t) · n(z, t)ψ(|x− z|)dσz (8.6)

The integral on ∂Λx can be neglected for the same reasons given in Section 8.1. Now, using the definition of
fluid-phase volume average given in Eqs. 3.17, we have:∫

Λe

[
∂tζ(z, t)

]
ψ(|x− z|)dz = ε(x, t)〈∂tζ〉e(x, t) (8.7)

Obtaining Eq. 4.4 is then immediate. Note that if Λx is time independent, u(z, t) = 0 on ∂Λx, and therefore
the last integral on the right-hand size of Eq. 8.6 rigorously vanishes.

8.3 Particle-phase volume average of point variable time derivatives

We intend to derive an expression for the particle-phase volume average of point variable time derivatives; in
this case, we consider the derivative:

∂t

[
nr(x, t)〈ζ〉

r
p(x, t)

]
(8.8)

Now, employing the definition of particle-phase volume average given in Eq. 3.21, we can express the partial
derivative above as:∑

Sr

∂t

[
ζr(t)ψ(|x− zr(t)|)

]
=
∑
Sr

[
ζ̇r(t)ψ(|x− zr(t)|)

]
+
∑
Sr

[
ζr(t)∂tψ(|x− zr(t)|)

]
(8.9)

From the definition of particle-phase volume average, it is:∑
Sr

[
ζ̇r(t)ψ(|x− zr(t)|)

]
= nr(x, t)〈ζ̇〉

r

p(x, t) (8.10)
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Applying the derivation chain rule yields:∑
Sr

[
ζr(t)∂tψ(|x− zr(t)|)

]
=−

∑
Sr

[
ζr(t)vr,a(t)∂xaψ(|x− zr(t)|)

]

=− ∂xa
∑
Sr

[
ζr(t)vr,a(t)ψ(|x− zr(t)|)

]
=− ∂xa

[
nr(x, t)〈ζva〉

r
p(x, t)

]
(8.11)

having used again the partial derivatives commutative property and the definition of particle-phase average.
Replacing these last two results in Eq. 8.9 yields Eq. 4.17.
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