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Abstract

We report a laboratory experiment that enables us to estimate
four prominent models of ambiguity aversion — Subjective Expected
Utility (SEU), Maxmin Expected Utility (MEU), Recursive Expected
Utility (REU), and a-Maxmin Expected Utility (a-MEU) — at the
level of the individual subject. We employ graphical representations of
three-dimensional budget sets over bundles of Arrow securities, one of
which promises a unit payoff with a known probability and two with
unknown (ambiguous) probabilities. The sample exhibits considerable
heterogeneity in preferences, as captured through parameter estimates.
Nonetheless, there exists a strong tendency to equate the demands for
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the securities that pay off in the ambiguous states. This feature is more
easily accommodated by the a-MEU model than by the REU model.
JEL Classification Numbers: D81, C91.
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1 Introduction

The distinction between settings with risk, involving objective and known
probabilities, and ambiguity, which involves subjective and unknown prob-
abilities dates back to at least the work of Knight (1921). However, in
Savage’s (1954) celebrated theory of Subjective Expected Utility (SEU), an
individual acts as if a single probability measure governs uncertainty over
states of the world. Ellsberg (1961) countered this reduction of subjective
uncertainty to risk with several thought experiments suggesting an aversion
to ambiguity. Subsequently, a large experimental literature has confirmed
Ellsberg’s suggested choices, while a large theoretical literature has devel-
oped models to accommodate this behavior. On the other hand, with few
exceptions, these literatures have developed in parallel with little contact
with the other.

In this paper, we connect the experimental evidence with the theoretical
models by estimating the parameters of four models of choice under ambigu-
ity. The first is the SEU model; the second is the Maxmin Expected Utility
(MEU); the third is Recursive Expected Utility (REU); and the fourth is
a-Maxmin Expected Utility («-MEU).! The SEU and MEU respectively
capture probabilistic sophistication and extreme ambiguity aversion, while
the REU and a-MEU models allow for heterogeneous degrees of ambiguity
aversion.

In particular, the experimental test we study is a portfolio choice problem
involving three assets. In our preferred interpretation, there are three states
of nature denoted by s = 1,2,3 and, for each state s, there is an Arrow
security that pays one dollar in state s and nothing in the other states. To
distinguish the effects of risk (known probabilities) and ambiguity (unknown
probabilities), we assume that state 2 has an objectively known probability,
whereas the probabilities of states 1 and 3 are ambiguous. Specifically, state

!See, respectively, Savage (1954); Gilboa and Schmeidler (1989); Ergin and Gul (2004).
Klibanoff, Marinacci, and Mukerji (2005), among others; and Ghirardato, Macherroni, and
Marinacci (2004), and Olszewski (2006).



2 occurs with probability mo = % and states 1 and 3 occur with unknown

probabilities 7m; and 3. Subjects were only informed that m; + 73 = %

We consider the problem of allocating an individual’s wealth between
the three securities. Let x5 denote the demand for the security that pays
off in state s and let ps denote its price. Without essential loss of gener-
ality, assume the individual’s wealth is normalized to 1. The budget set is
defined by the feasibility constraint p - x < 1, where x = (x1,z2,23) and
p = (p1,p2,p3). The individual can choose any portfolio that satisfies this
constraint. These budget sets are presented using a novel graphical interface
that has proved useful in the (objective) risk experiment of Choi, Fisman,
Gale and Kariv (2007a, 2007b) (henceforth CFGKa, CFGKb). The design’s
most useful feature is that it allows subjects to make numerous choices over
a wide range of budget sets, and this yields a rich dataset that is well-suited
to analysis at the level of the individual subject.

We begin the analysis of these experimental data by looking for general
signs of ambiguity aversion in the aggregate data. In this choice problem,
ambiguity aversion can realize itself behaviorally by a desire to hedge pay-
offs across ambiguous states. A subject can avoid ambiguity completely by
demanding equal amounts of the securities that pay off in the ambiguous
states 1 = x3. The resulting portfolio pays an amount xo with probability
% and an amount x; = x3 with probability %, thus eliminating any ambi-
guity about the distribution of returns. Similarly, choosing x; close to x3
will reduce exposure to ambiguity, without eliminating it altogether. The
tendency to equate z1 and z3 could, of course, result from simple risk aver-
sion, but this is where the unambiguous and risky state becomes useful: the
tendency to equate demands is strikingly higher between the securities that
pay off in the ambiguous states than between any other pair of securities.

The aggregate data tell us little about the particular portfolios chosen
by individual subjects. In select cases, it is possible to readily identify sub-
jects whose choices correspond to prototypical preferences simply from the
scatterplots of their choices. We conduct case studies of several subjects
where the regularities in the data are very clear. We also find many inter-
mediate cases, but these are difficult to see directly on a scatterplot due to
the fact that all prices shift in each observation. This is the purpose of our
individual-level econometric analysis.

Before beginning this econometric analysis, we test whether the observed
choices are consistent with utility maximization. Afriat (1967) shows that
if finite choice data satisfy the Generalized Axiom of Revealed Preference
(GARP), there exists a well-behaved utility function that the choices max-
imize. We replicate under ambiguity the conclusions of CFGKb for choice



under risk: that although individual preferences are complex and highly
heterogeneous, for most subjects, the violations are sufficiently minor that
we can ignore them for the purposes of recovering preferences or construct-
ing appropriate utility functions. We emphasize that the variation in budget
sets (prices and incomes) is essential for a non-trivial test of consistency, and
that while GARP implies rationality in the sense of a complete, transitive
preference ordering, it does not imply the Savage axioms.

The centerpiece of the paper is the econometric estimation of four theo-
ries of ambiguity aversion/neutrality at the level of the individual subject.
This exercise has two faces. First, the theory informs our view of the data.
The estimated parameters serve as useful statistics to summarize the rich
variation in individual-level choices generated by our design. Once this in-
formation is succinctly summarized, we can compare risk and ambiguity at-
titudes across subjects and get a broad picture of the heterogeneity of these
attitudes. For any given model, the parameter estimates vary dramatically
across subjects, implying that individual preferences are very heterogeneous,
ranging from risk neutrality with ambiguity aversion to ambiguity neutrality
with risk aversion to infinite risk aversion.

Second, the data informs our view of the theories. Most importantly,
our experiment employs a broad range of budget sets that provide a serious
test of the ability of each model to interpret the data. We did not expect to
crown any model as a winner. Indeed, the absolute and relative ability of the
models to fit observed individual data vary across subjects, suggesting that a
variety of models may be needed to explain the different choices patterns in
the population. One particular feature of the data is a widespread attraction
by subjects to hedge ambiguity perfectly, i.e. select portfolios which equalize
the demands for the securities that pay off in the ambiguous states. This
pattern is much more easily accommodated by the a-MEU model than the
REU model.

Finally, for each model, we compare the estimated parameters in our am-
biguity experiment (my = % and 7 + w3 = %) with the analogous estimated
parameters in an otherwise identical risk experiment, where the probabil-
ities of all states are objectively known and equal (73 = m = 73 = %)
While we find no difference in the distributions of the parameter interpreted
as the coefficient of (absolute) risk aversion, the distributions of the second
parameter (in the a-MEU and REU models), which measures ambiguity
aversion, shift considerably to the right, especially in the REU model, when
calculated using the ambiguity data as compared to the risk data.

The rest of the paper is organized as follows. Section 2 provides a dis-
cussion of closely related literature. Section 3 describes the experimental
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design and procedures. Section 4 summarizes some important features of
the data, and Section 5 establishes the consistency of the data with utility
maximization. Section 6 discusses the different models that are calibrated
to the data. Section 7 provides the econometric analysis, and Section 8 con-
tains some concluding remarks. Experimental instructions, technical details,
and individual-level data are gathered in appendices.

2 Related Literature

We will not attempt to review the enormous experimental literature on am-
biguity aversion.? Instead, we focus attention on some recent papers that
are relevant to our study. Halevy (2007) cleverly designs an experiment to
verify the connection between the reduction of objective compound lotteries
and attitudes to ambiguity. Four different urns are used to elicit choices in
the presence of risk, ambiguity, and two degrees of compound uncertainty.
Different models of ambiguity with recursive structures generate different
predictions about how the reservation values for these four urns will be or-
dered. The experiment can therefore classify each subject according to which
model predicts his ordering of reservation values. We share Halevy’s start-
ing point that different models might be appropriate in describing different
subjects’ behaviors. But, we take this view of heterogeneity even further:
not only is there variation in the appropriateness of different models, but
also variation in the degree of ambiguity aversion within the subjects who
do conform to a particular model.

Hayashi and Wada (2007) examine attitudes toward imprecise infor-
mation, which incorporates objective restrictions on the distributions over
states of nature as a consideration in decision making. This is obviously
closely related to ambiguity aversion. They present subjects with different
objective restrictions on the possible probabilities over states, and see how
imprecision-free equivalents vary with these restrictions. Although the elic-
itation procedures are very different, our work shares with theirs the aim of
estimating parameters at an individual level.

3 Experimental Design

The experimental procedures described below are identical to those used
by CFGKDb to study decisions under risk when there are two unambiguous

?See Camerer and Weber (1992) and Camerer (1995) for excellent, if now somewhat
dated, surveys.



states and two associated securities. The experiment was conducted at the
Experimental Social Science Laboratory (X-Lab) at UC Berkeley under the
X-Lab Master Human Subjects Protocol. The subjects in the experiment
were recruited from all undergraduate classes and staff at UC Berkeley and
had no previous experience in experiments employing the graphical com-
puter interface. After subjects read the instructions (reproduced in Appen-
dix I), the instructions were read aloud by an experimenter. At the end
of the instructional period subjects were asked if they had any questions
or difficulties understanding the experiment. No subject reported difficulty
understanding the procedures or using the computer interface. Each exper-
imental session lasted about one and a half hours. Payoffs were calculated
in terms of tokens and then converted into dollars, where each token was
worth $0.50. A $5 participation fee and subsequent earnings, were paid in
private at the end of the session.

Each experimental session consisted of 50 decision rounds. In each round,
a subject allocates tokens between three accounts, labeled x, y and z. Each
of these accounts corresponds to an axis in a three-dimensional graph. Each
choice involved choosing a point on a budget set of possible token alloca-
tions. An example of one such budget set is illustrated in the experimental
instructions reproduced in Appendix I. For each round, the computer se-
lected a budget set randomly from the collection of those which intersect at
least one of the axes at 50 or more tokens, but with no intercept exceeding
100 tokens. The budget sets selected for each subject in different decision
problems were independent of each other and of the sets selected for any of
the other subjects in their decision problems.

The axes of the graph were scaled from 0 to 100 tokens. The resolution
compatibility of the budget sets was 0.2 tokens. At the beginning of each
decision round, the experimental program dialog window went blank and
the entire setup reappeared. The appearance and behavior of the pointer
were set to the Windows mouse default and the pointer was automatically
repositioned randomly on the budget constraint at the beginning of each
decision round. Subjects could use the mouse or the keyboard arrows to
move the pointer on the computer screen to the desired allocation. Choices
were restricted to allocations on the budget constraint, so that subjects could
not violate budget balancedness. Subjects could either left-click or press the
Enter key to record their allocation. The process was repeated until all 50
rounds were completed.

The payoff in each decision round was determined by the number of
tokens in each account. At the end of the round, the computer selected one
of the accounts, x, ¢ or z in a random manner such that account y was always



selected with probability m, = % and accounts z and z were selected with

unknown probabilities 7, and 7,. Subjects were only informed that 7+, =
%. In practice, m, was drawn from the uniform distribution over [0, %]
As a counterpoint, we borrow data collected in a concurrent experiment
which is identical to ours, except that w, = w, = % and announced to
the subjects, eliminating any ambiguity. We will refer to these data under
objective risk (47 subjects) as belonging to the risk experiment, as opposed
to the ambiguity experiment (76 subjects) described previously.

In each decision round, each subject received the number of tokens al-
located to the account that was chosen. Subjects were not informed of the
account that was actually selected at the end of each decision round. At the
end of the experiment, the experimental program randomly selected one de-
cision round from each participant to carry out for payoffs. Each round had
an equal probability of being chosen, and the subject was paid the amount
he had earned in that round. Note that the payoff method does not provide
a randomization with which to hedge ambiguous portfolios across rounds

since the probabilities m, and 7, are unrelated across decision rounds.

4 Data description

In this section, we take an initial look at some broad features of the ex-
perimental data as a prelude to our estimation of parametric models of
ambiguity aversion.

4.1 Aggregate behavior

We begin with an overview of the basic features of the aggregate data. For
any portfolio x = (x1, xe, 23), we define the token share of the security that
pays off in state s to be x5/(x1 + x2 + x3), that is, the number of tokens
payable in state s as a fraction of the sum of tokens payable in all three
states. We also define the expenditure share of the security that pays off in
state s to be the expenditure on tokens invested in this security as a fraction
of total expenditure. Since prices are normalized so that total expenditure
equals unity, the expenditure share is simply psxs. Table 1 displays sum-
mary statistics and percentile values for the token share (Table 1A) and the
expenditure share (Table 1B) of each security s = 1,2, 3. Both distributions
are very similar. On average, our subjects invested approximately 35 per-
cent of the tokens in the security with unambiguous payoff, accounting also
for 35 percent of total expenditure. This is only marginally higher than the
32 percent of the token and expenditure shares of the other securities.



[Table 1 here]

For any portfolio x = (z1, 22, x3) and any pair of securities s and s’ # s,
we define the relative demand to be x5/ (zs + xs), that is, the demand for
the security that pays off in state s as a fraction of the sum of demands for
securities that pay off in state s and s’. This ratio measures the extent to
which the demand for securities s and s’ are equalized. Table 1 above also
displays summary statistics and percentile values for the three relative de-
mands (Table 1C). In each case, we screen the data for portfolios that spend
10 percent or less of the total expenditure on tokens invested in securities s
and s’ (these portfolios account for only 2.8, 3.3 and 2.2 percent of the data,
respectively). The three distributions are quite similar. Additionally, per-
haps as expected, the distributions are nearly symmetric and concentrated
around the midpoint of 0.5.

Interestingly, the mode around the midpoint is more pronounced in the
relative demand for the securities that pay off in ambiguous state x1/ (z1 + x3),
which provides clear evidence of ambiguity aversion. In the presence of am-
biguity, subjects can create a hedge against ambiguity by equalizing their
portfolio holdings across the securities that pay off in the ambiguous states
1 and 3, making their payoffs less sensitive to their unknown probabilities
71 and m3. Figure 1 depicts kernel density estimation of z/ (z1 + x3) and
compares it with x1/ (z1 + z2), which measures the extent to which sub-
jects equalize payoffs in two states, exactly one of which is ambiguous (the
distribution of x3/ (z2 + x3) is identical). For 45.5 percent of the portfolios,
the the relative demand x1/ (z1 + 23) is between 0.45 and 0.55. If we con-
sider z1/ (x1 + x2) and 3/ (x2 + x3) this decreases to 34.2 and 35.0 percent,
respectively.

[Figure 1 here]

4.2 Individual behavior

The aggregate distributions above tell us little about the portfolios chosen
by particular subjects. To get some sense of the considerable heterogeneity
of individual behavior, we discuss a few subjects whose choices can easily be
explained in terms of some notion of ambiguity or risk aversion. For each
subject, Figure 2 shows the portfolio choices in terms of token shares (left
panel) and expenditure shares (right panel) for the three securities. The
vertices of the unit simplex correspond to portfolios consisting of one of the
three securities. Each point in the simplex represents a portfolio as a convex



combination of the extreme points. The figures for the full set of subjects
are available in Appendix II, where we also show, for each subject, the re-
lationships between the log-price ratio In (p;/p2) and the relative demand
x1/(z1 + x2) and between the log-price ratio In (p1/ps) and the relative de-
mand x1/(x1+z3). The scatter plots in these panels illustrate the sensitivity
of portfolio decisions to changes in relative prices. We emphasize that for
most subjects the data are much less regular and, for those subjects, it is
more difficult to see these relationships in a scatterplot. Nevertheless, the
portfolio choices for the full set of subjects reveal striking regularities within
and marked heterogeneity across subjects.

[Figure 2 here]

Figure 2A depicts the choices of a subject (ID 129) who always chose
nearly equal portfolio holdings x1 = x2 = x3, suggesting infinite risk aver-
sion. Figure 2B depicts a very different case, the choices of the only subject
(ID 314) who, with a few exceptions, invested all his tokens in the cheapest
security, indicating pure risk neutrality. Figure 2C depicts a subject (ID
339) who equalizes expenditure pix; = paxa = psws, rather than tokens,
across the three securities. This behavior is consistent with a logarithmic
von Neumann-Morgenstern utility function over tokens. A more interesting
regularity is illustrated in Figure 2D, which depicts the decisions of a subject
(ID 322) who, with very few exceptions, invested nearly equal amounts in the
securities corresponding to ambiguous states 1 and 3, that is, 1 = x3 # x2.
A similar regularity, albeit implemented less precisely, is illustrated in Fig-
ure 2E, which depicts the decisions of another subject (ID 130). Finally,
Figure 2F depicts a subject (ID 407) who did not equalize his payoffs in
ambiguous states, but tended to choose payoffs 1 and z3 that were much
closer to each other than to the value of x2. The behaviors of these subjects
(ID 322, 130 and 407) suggest ambiguity aversion, in the sense that they
are trying to reduce the sensitivity of their payoffs to states with ambiguous
probabilities.

5 Testing Rationality

As a matter of theory, ambiguity aversion may be perfectly rational, in the
sense of being consistent with a complete and transitive preference ordering.
In practice, however, one might suspect that individuals who exhibit ambi-
guity aversion are more likely to violate the axioms of rational behavior. For
this reason, before considering alternative parametric utility functions, we



investigate whether subjects’ choices can be generated by maximizing any
utility function.

Afriat’s (1967) theorem tells us that there exists a utility function that
rationalizes the observed portfolio choices if and only if the data satisfy the
Generalized Axiom of Revealed Preference (GARP). Moreover, if GARP is
satisfied the utility function can be chosen to be piecewise linear, continuous,
increasing, and concave. Since GARP offers an exact test (either the data
satisfy GARP or they do not), whereas in practice there will always be some
small violations, we compute a measure of how nearly the data complies with
GARP. Afriat’s (1972) Critical Cost Efficiency Index (CCEI) measures the
amount by which each budget constraint must be relaxed in order to remove
all violations of GARP. The CCEI is bounded between zero and one. The
closer it is to one, the smaller the perturbation of budget constraints required
to remove all violations and thus the closer the data are to satisfying GARP.
We refer the interested reader to CEFGKa for a discussion of consistency tests.

The CCEI scores averaged 0.942 and 0.938 in the ambiguity and risk
experiments, respectively, which is close enough to passing GARP to suggest
that our subjects’ choices are indeed consistent with utility maximization.
Following Bronars (1987) we compare the actual CCEI scores with the scores
of simulated subjects who randomize uniformly among all portfolios on each
budget set. Figure 3 shows histograms of the distribution of CCEI scores
for a random sample of 25,000 simulated subjects versus the scores for the
actual subjects in the ambiguity (blue) and risk (red) experiments.

[Figure 3 here]

The histograms in Figure 3 make plain that the significant majority
of our subjects came much nearer to consistency with utility maximization
than random choosers would have done and that their CCEI scores were only
slightly worse than the score of one of the perfect utility maximizers. The
fact that choices are sufficiently consistent to be considered utility-generated
is a striking result in its own right. The presence of ambiguity could cause
not just a departure from expected utility, but a more fundamental departure
from rationality. Our analysis suggests otherwise. At the very least, choices
under ambiguity are at least as rationalizable as choices under risk.

6 Models of Ambiguity

In this section, we first provide an overview of the different models that will
be estimated using individual-level data: Subjective Expected Utility (SEU),
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Maxmin Expected Utility (MEU), Recursive Expected Utility (REU), and
a-Maxmin Expected Utility (a-MEU). We skip the models’ development
and analysis and instead focus on the identifying assumptions placed on
these general models to generate specific parametric formulations amenable
to analysis. We refer the interested reader to Appendix III for more details.
Throughout, we assume that cardinal utility over tokens exhibits constant
absolute risk aversion (CARA):

u(t) = —e,

where p is the coefficient of absolute risk aversion and ¢ is the number of
tokens. This specification has two advantages. First, it is independent
of the (unobservable) initial wealth level of the subjects. Second, it can
accommodate boundary portfolios, where x5, = 0 for some state s.

6.1 Models description

Subjective Expected Utility (SEU) As a benchmark we use the SEU

model (Savage (1954)). The decision maker has a von Neumann-Morgenstern

utility function that he integrates with respect to a subjective probability

distribution. We proceed by making the identifying assumption that am-

biguous states are equally probable, that is, the subjective probability dis-
111

tribution is 7 = (3,3,3). Letting exp{t} = e’, the utility function over

portfolios x = (z1, z2, z3) takes the form:

Usgu (x; p) = —% exp{—pz1} — %exp{—pwz} - %exp{—pxa}-
Maxmin Expected Utility (MEU) By contrast with the SEU model,
a decision maker whose preferences are described by MEU (Gilboa and
Schmeidler (1989)) evaluates a portfolio by its least expected utility over
some set of subjective prior probabilities. This minimization reflects aversion
to ambiguity. Here we make the identifying assumption that the subjective
probabilities agree with the objective probabilities announced in the exper-
iment. In other words, the set of admissible probability distributions over
which the expected utility will be minimized is {r : 75 = £ and m +m3 = 3}.
Then the utility function over portfolios x = (1, x2,x3) becomes:

—Zexp{—pz1} — Texp{—pao} if 21 <3

Umgu(x; p) =
—Zexp{—pz3} — s exp{—paa} if 21 >3
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Recursive Expected Utility (REU) A recent view of ambiguity aver-
sion (Ergin and Gul (2004), Klibanoff, Marinacci, and Mukerji (2005), Nau
(2005), and Seo (2007); as well as related work by Ahn (2008), Giraud
(2006), and Halevy and Feltkamp (2005)) assumes the decision maker has
a subjective (second-order) prior over the possible (first-order) probabili-
ties over states m = (w1, 72, 73). Unsure which of the possible first-order
probabilities actually governs the states, the decision maker transforms the
expected utilities for all distributions 7 using a concave function before inte-
grating these utilities with respect to his second-order prior. This procedure
is entirely analogous to the transformation of wealth into cardinal utility
before computing objective expected utility. The concavity of this transfor-
mation captures ambiguity aversion. We follow Halevy (2007) in referring
to this model as REU, owing to its recursive double expectation.

We parameterize this model by assuming that the second-order proba-
bility is uniformly distributed over the set {7 : my = % and m + w3 = %}
consisting of all priors consistent with the objective information. In this case,
the utility function over portfolios x = (x1, z2, x3) takes the two-parameter
form:

Urru(x; ag, p) =
2

1 % —m1 exp{—pz1} ) }
— —expl —« dmy,
a0 Jo p{ 0 ( —% exp{—pxa} — (% — 7r1) exp{—pzxs3} 1
where 30
o= $
1 — exp{30ap}

reflects the curvature of the aggregator and, hence, the decision maker’s
ambiguity aversion. The implicit equation for a in terms of oy normalizes
the raw ambiguity coefficient to control for differences in risk aversion across
decision makers (see Appendix III for precise details). It can be shown that
the REU model reduces to SEU when o« = 0 and approaches MEU as a — oc.

a-Maxmin Expected Utility (a-MEU) An alternative approach (Ghi-
rardato, Macherroni, and Marinacci (2004), and Olszewski (2006)) considers
a decision maker who evaluates each portfolio by a convex combination of
its worst and best expected utilities over some fixed set of subjective prob-
abilities over states, using the weights o and 1 — « for the best and worst
expected utilities, respectively. The parameter o can be interpreted as a
measure of ambiguity aversion. Assuming that the set of subjective proba-
bilities is consistent with the objective information, the utility function over

12



portfolios x = (1, x2,x3) takes the two-parameter form:

_2 —px1} — % exp{—
3O‘eX2P{ pr1} — 3 exp{—pr2} it 1 <3
—3(1 — 04) eXp{—p:B?,}
Ua-MEU(X; @, p) = 9 1
—3aexp{—pz3} — 5 exp{—pz2}

if xqy>x
—3(1 — ) exp{—pz1} b

As with REU, the a-MEU model reduces to SEU when o = % and MEU
when o = 1.3

6.2 Properties of demand

The models described above can all be characterized by axioms over pref-
erences. Since we are interested in estimating the models using our design,
what matters most is the implications of the models for portfolio choice.
To better understand the properties of each model, we have simulated the
demand for securities as a function of prices. Figure 4 below illustrates the
relationships between the log-price ratio In (p;/p3) and the optimal relative
demand z7/(x + %) (left panels) and between In (p1/p2) and 75 /(a + 3)
(right panels), for each model, using a range of parameter values.

Figure 4A illustrates the case of SEU. Note that an increase in the level
of absolute risk aversion p makes the curves flatter. For high values of
p, the decision maker is extremely risk averse and always chooses nearly
safe portfolios 7 = x5 = 3. The relationships between In (p;/p3) and
x7/(z7 + «3%) and between In(pi/p2) and z7/(x] + 23), which illustrate the
tradeoffs that the decision maker makes between the payoffs in ambiguous
states and between the payoffs in an ambiguous state and the unambiguous
state, are identical.

The case of the MEU model is illustrated in Figure 4B. By contrast with
the case of SEU, the optimal relative demand for securities paying off in
ambiguous states, x7/(z] + %), is insensitive to the level of risk aversion.
This is because MEU embodies an extreme form of ambiguity aversion that
implies the optimal portfolio choice satisfies 7 = x3. On the other hand,
the relationship between In (p;/p2) and z7/(z] + %) is qualitatively very
similar, whether preferences satisfy MEU or SEU.

Figure 4C depicts the same relationships in the case of REU, for different
values of @ and p (each panel assumes a different value for ). We note

3We can also use a change of variables to interpret a-MEU as a model of imprecise
information, in the sense of Hayashi, Gajdos, Tallon, and Vergnaud (forthcoming), as
explained in Appendix III.
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that the two optimal relative demand curves are smooth for all price ratios.
The ambiguity aversion parameter a flattens the z7/(z] + x3%) curves in a
manner qualitatively similar to having increased risk aversion, whereas the
x}/(x] + x%) curves remain very similar to those in the case of SEU with
the corresponding level of risk aversion p.

Finally, Figure 4D illustrates the case of a-MEU. If the prices of the secu-
rities that pay off in the ambiguous states, p; and ps, are similar (In (p1/p3)
is close to zero), then the optimum portfolio choice satisfies 27 = «% and is
insensitive to ambiguity. The only effect of increasing the level of ambiguity
aversion « is to make this intermediate range of price ratios larger. For more
extreme price ratios (the absolute value of In (p;/p3) is large), the relation-
ship between In (p1/p3) and z7 /(27 + «%) is the same as in the SEU model
(the same curve “stretched” apart at the point 0.5). The key feature of the
a-MEU model is this flat range in which the portfolio satisfies 7 = x3 and
is insensitive to ambiguity. By contrast, the choice of a portfolio without
ambiguity is a knife-edge case in the REU model.

[Figure 4 here]

7 Estimation

7.1 Specification
50

i=1
where x' = (2,24, 2%) is the actual portfolio chosen by the subject and
p' = (p}, ph, ph) denotes the vector of the security prices. For each subject n
and for each model, we generate estimates of the parameters for ambiguity
aversion &, (for the REU and a-MEU models) and the parameter for risk
aversion p,, using nonlinear least squares (NLLS). These estimates are chosen
to minimize

The data generated by an individual’s choices are denoted by {(xi, p’)}

50 . .
'Z:I sz —x*(p'; an, pn)|
1=

: (1)

where ||-|| denotes the three-dimensional Euclidean norm.
We note two observations about the econometric specification:

e First, very large coefficients of risk aversion p are computationally
unidentified. For high values of p, all models predict perfect hedging
by choosing the safe portfolio 1 = x5 = x3. We thus impose the re-
striction p < 2 on the estimations in order to avoid this identification
problem. Similarly, we also impose the restriction a@ < 2 in the REU
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model. Moreover, when p is large, ambiguity aversion cannot be sep-
arately identified, since all of the hedging between the securities that
pay off in the ambiguous states can be attributed to the extreme risk
aversion. Therefore, when p = 2, we set & = 0 in the REU model and
a = % in the a-MEU model, the respective parameter values which

correspond to ambiguity neutrality in the two models.

e Secondly, according to Afriat’s (1967) theorem, if choices are made
from convex budget sets there is no loss of generality in assuming
that utility functions are well-behaved (piecewise linear, continuous,
increasing, and concave). In particular, price and quantity data do not
allow us to distinguish between risk- or ambiguity-loving behavior, on
the one hand, and risk- or ambiguity-neutral behavior, on the other.
We therefore restrict the parameters to the range of risk and ambiguity
averse values: p > 0 in all models, and o > 0 in the REU model and
a > 1/2 in the a-MEU model.

7.2 Econometric results

Appendix IV presents, subject by subject, the estimated &, (for the REU
and a-MEU models) and p,, for each model. The additional column lists the
CCEI scores. Table 2 below displays summary statistics and percentile val-
ues. An interesting feature of the estimates is the considerable heterogeneity
in the parameters &, and p,, in both the ambiguity and risk experiments.
Despite this heterogeneity, the distributions of risk aversion across the am-
biguity and risk experiments, as reflected in the percentile values for p,,
are very similar, which is comforting since there should be no difference in
risk attitudes across the ambiguity and risk experiments (the differences in
means and standard deviations are driven by a few subjects with very large
coefficients in the risk experiment). On the other hand, the distributions
of the ambiguity parameter &, in the a-MEU and REU models in the two
experiments are very different. Precisely, the distributions of &, calculated
using the ambiguity data lies considerably to the right (especially in the
REU model) compared to distributions of &, calculated using the risk data.

[Table 2 here]

Figure 5 presents the data from Appendix IV graphically in the form of
scatterplots of the estimates, and illustrates the heterogeneity of preferences
that we find in all models. Figure 5A shows a scatterplot of g, in the SEU
and MEU models with the sample split by ambiguity (blue) and risk (red)
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experiments. To facilitate presentation of the data, we omit 11 subjects in
the ambiguity experiment and eight subjects in the risk experiment whose
pn value is higher than 0.2 in either model. Perhaps most interestingly, the
estimates are concentrated around the 45 degree line indicating a strong
similarity within subjects between the risk estimates in the SEU and MEU
models. Figure 5B shows a scatterplot of &, and p,, in the REU model
with the sample again split by ambiguity (blue) and risk (red) experiments.
Again, to facilitate presentation of the data, we omit 19 subjects in the
ambiguity experiment and 11 subjects in the risk experiment whose &, or
prn, value is higher than 0.2. Finally, Figure 5C shows the same scatterplot
for the a-MEU model after omitting 13 of the ambiguity subjects and ten
of the risk subjects, whose &,, value is higher than 0.7 or whose p,, value is
higher than 0.2.

[Figure 5 here]

Finally, Figure 6 shows the relationship between log-price ratio In (p1 /p3)
and the actual relative demand z1/(x1 + x3) (blue) and estimated relative
demand Z1/(%1+23) (red) in the two-parameter models REU (left panel) and
a-MEU (right panel) for the group of subjects that we followed in the non-
parametric analysis (ID 129, 130, 314, 322, 339, 407). Note that &1/(21 +
Z3) is calculated using the individual-level estimates, &, and p,. Through
these examples, we hope to reinforce the message that different subjects
have qualitatively different responses to ambiguity and that neither model
obviously “wins” and dominates the other in its ability to fit the behavior
of all subjects. The figures for the full set of subjects and for all models
are available in Appendix V, which also depicts the relationship between
the log-price ratio In (p;/p2) and the actual relative demand z1/(z1 + x2)
(blue) and estimated relative demand &1 /(%1 + Z2), as well as the actual and
estimated portfolios in terms of token and expenditure shares represented
as points in a simplex.

[Figure 6 here]

Figure 6A shows the relationship between In (p1/p3) and the estimated
relative demand z1 /(x1+x3) for a subject (ID 129) with prgu = pa-MEU = 2.
This subject very precisely implemented infinite risk aversion preferences.
The ambiguity aversion parameter of this subject is therefore unidentified
and set equal to the neutral value, @grgy = 0 and &ovrEyu = 0.5. The
fit is nearly perfect in both REU and a-MEU. Figure 6B shows the sub-
ject (ID 314) who most closely approximated risk neutral preferences with
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(&, p)reu = (0.01,0.00) and (&, p)a-mev = (0.52,0.00). Both the REU and
a-MEU models suggest a nontrivial degree of ambiguity aversion, which
is driven by a few exceptional choices where this subject chose nearly un-
ambiguous portfolios z1 = x3. Notice that both models do a very good
job of predicting his boundary portfolios, but perform less well in predict-
ing the “outliers.” This subject appears to be very close to risk neutrality,
but perhaps reveals some degree of ambiguity aversion through his outlying
portfolios.

Figure 6C shows the subject (ID 339) who precisely implemented loga-
rithmic preferences with (&, p)regu = (0.00,0.08) and (&, p),,xy = (0.50,0.08).
Nonetheless, the exponential form performs quite well in terms of fit. More
interestingly, Figure 6D shows the relationship for a subject (ID 322) with
(&, p)reu = (2.00,0.42) and (&, p)a-mru = (0.71,0.43), who quite precisely
chose unambiguous portfolios 1 = z3. The estimated ambiguity parameters
for both the REU and a-MEU models are among the highest in the sample.
A visual inspection of the estimation results and the observed data reveals
the fit to be quite good for both the REU and a-MEU models. However,
both REU and a-MEU provide substantial improvement in fit over SEU,
but little improvement over MEU. This subject thus closely approximates
MEU preferences.

Figure 6E shows the fitted relationships for a subject (ID 130) with
(&, p)reu = (0.00,0.06) and (&, p)a-meu = (0.57,0.05), who with few ex-
ceptions chose unambiguous portfolios (1 = x3). This subject’s departures
from unambiguous portfolios are precipitated by extreme log-price ratios
In(p1/p3). This is entirely consistent with a-MEU. Furthermore, the a-
MEU model provides an improved fit over MEU, especially in picking up
the few extremely ambiguous portfolios. On the other hand, REU fails
to pick up this subject’s aversion to ambiguity. Clearly, it cannot accom-
modate both the large interval of intermediate log-price ratios In(p;/ps) in
which unambiguous portfolios 1 = x3 are chosen and the extremely am-
biguous portfolios ;1 = 0 or &3 = 0 chosen for low and high price ratios,
respectively. The estimated relationship for REU makes clear that the model
gives up the former to improve its fit for the latter. A review of the full set of
subjects shows, in many cases, a substantial number of unambiguous port-
folios (1 = x3), which can only be accommodated by the MEU or a-MEU
models.

Finally, Figure 6F shows the fitted relationship for a subject (ID 407)
with (&, p)reu = (1.99,0.08) and (&, p)a-meu = (0.87,0.08). This subject
chose portfolios with smaller differences between z; and z3 than between
any other pair of securities, but did not usually move to the extreme of
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choosing unambiguous portfolios (z; = z3). Although this subject is averse
to ambiguity, the fit of the a-MEU model barely improves on the MEU
model. On the other hand, the REU model improves the fit considerably
over either MEU or SEU. This is especially true for extreme log-price ratios
In(p1/p3), where MEU predicts values for z; far too close to x3, while SEU
predicts values far too distant.

8 Conclusion

In this paper, we have estimated four models of choice under uncertainty
— SEU, MEU, REU and a-MEU. In undertaking this estimation exercise,
we had two main objectives in mind. In the first place, we were interested
in the parameter estimates as measures of individual attitudes toward risk
and ambiguity. In the second place, we wanted to explore the ability of the
models to capture important features of the data. The experimental method
enables us to collect many observations per subject, and we can therefore
estimate the models at the individual level. Most importantly, the broad
range of budget sets that our experiment employs provides a serious test of
the ability of each theory, and a structural econometric model based on the
theory, to interpret the data.

The parameter estimates reveal a large amount of individual heterogene-
ity. Nevertheless, there is a strong tendency to equate the demands for the
securities that pay off in the ambiguous states, 1 = x3. This feature is more
easily explained by the a-MEU model than by the REU model. We do not
regard the estimation exercise as a competition to determine a general win-
ning model. Obviously, all theoretical models have their limitations and a
model that works well in the present setting may not work so well in others.
Further, we made specific parametric assumptions in order to implement
the different models of ambiguity preferences, which may have affected the
performance of the different models. We do believe, however, that some
of the features of the data generated by this experiment, particularly the
observation of so many hedged portfolios satisfying x; = x3, are robust and
need to be taken into account in future work.
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Table 1. Aggregate statistics

A. Token shares

s=1 s=2 s=3

Obs. 3800 3800 3800

Mean 0.326 0.351 0.323

SD 0.203 0.222 0.204

5 0.001 0.001 0.002

25 0.224 0.233 0.217

50 0.333 0.333 0.330

75 0.404 0.445 0.393

95 0.705 0.804 0.706

B. Expenditure shares

s=1 s=2 s=3

Obs. 3800 3800 3800

Mean 0.323 0.353 0.322

SD 0.191 0.208 0.194

5 0.002 0.002 0.004

25 0.228 0.235 0.218

50 0.318 0.338 0.312

75 0.406 0.456 0.406

95 0.650 0.726 0.642

C. Relative demands

Xy (X + X ) [ X /(Xq + X3)[ X5 /(X2 + X3)

Obs. 3694 3676 3716

Mean 0.488 0.503 0.486

SD 0.255 0.241 0.255

5 0.003 0.003 0.004

25 0.368 0.442 0.364

50 0.500 0.499 0.499

75 0.599 0.582 0.585

95 0.994 0.993 0.997



Table 2. Summary of estimation results

A. SEU
p

Exp. |Ambiguity Risk

Mean 0.136 0.242

SD 0.291 0.559

5 0.007 0.011

25 0.027 0.018

50 0.045 0.043

75 0.113 0.079

95 0.607 2.000

C.REU
p a

Exp. [Ambiguity Risk |Ambiguity Risk
Mean 0.115 0.252 0.247 0.125
SD 0.257 0.603 0.516 0.364
5 0.007 0.010 0.000 0.000
25 0.022 0.017 0.007 0.000
50 0.038 0.038 0.042 0.021
75 0.092 0.068 0.153 0.058
95 0.464 2.043 1.985 0.506

B. MEU
p

Exp. |Ambiguity Risk

Mean 0.127 0.252

SD 0.288 0.571

5 0.013 0.015

25 0.031 0.026

50 0.042 0.043

75 0.096 0.070

95 0.463 1.999

D. o-MEU
p a

Exp. [Ambiguity Risk |Ambiguity Risk
Mean 0.119 0.223 0.565 0.552
SD 0.274 0.532 0.089 0.114
5 0.006 0.010 0.500 0.500
25 0.022 0.018 0.500 0.500
50 0.041 0.041 0.529 0.503
75 0.088 0.070 0.604 0.541
95 0.428 1.999 0.789 0.881
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Figure 2: Individual-level data
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Figure 3: The distribution of CCEI scores

0.6 1

0.5

B Ambiguity B Risk ORandom

0.4

0.3

0.2 1

0.1 1

0.0

. n |

0.05 0.10 0.15 0.20 0.25 0.30 035 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

CCEI

A

1.00




Figure 4: An illustration of the relationships between log-price ratio In(p, / p;)and optimal token share
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C: Recursive Expected Utility (REU)
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Figure 5A: Scatterplot of the SEU and MEU estimates
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Figure 5B: Scatterplot of the REU estimates, a and p
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Figure 5C: Scatterplot of the a-MEU estimates, a and p
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Figure 6: The relationship between log-price ratio In(p, / p;) and estimated token share x, /(% + x;)
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