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The most commonly used family of models in representing the UK building stock, BREDEM (the Building Research

Establishment Domestic Energy Models), assume that all homes exhibit the same heating pattern and hence can be

expected to have similar temperature profiles over the course of a day. The presented research shows that homes

differ significantly in their respective temperature profile over the course of the day. A cluster analysis performed on

temperature data from 275 living rooms in English homes over three winter months resulted in four different clusters

of temperature profiles. The clusters differ significantly in their shape, as revealed by visual inspection, and supported

by significant differences in minimum and maximum temperatures and temperature variability across the day. About

40% of homes showed a bimodal temperature pattern as assumed under BREDEM. However, the remaining 60%

showed very different profiles. These findings challenge the assumption that one standard pattern fits all homes.

Different temperature demand profiles have important implications for future peak power demands, particularly if

domestic space heating is switched to electricity. It is also helpful for relating occupant demographics to appropriate

forms of fabric retrofit.

Keywords: consumption practices, heating patterns, housing, occupancy schedules, occupant behaviour, space heating

demand, temperature profiles

Introduction
Home energy consumption comprises approximately
32% of all energy use in the UK with space heating
the largest contributor (Committee on Climate
Change, 2010). Consequently, it is an important
target area for energy reduction in order to meet the
UK government target of reducing carbon emissions
by 80% by 2050 (Department for Energy and
Climate Change, 2008). The heating demand tempera-
ture (which usually reflects the thermostat set-point
temperature used in a dwelling to control the heating
system) and the duration of heating period (i.e. the
number of hours that the heating system is on) have
the greatest influence on a home’s space heating
energy use and associated CO2 emissions, as revealed
by sensitivity analysis conducted on BREDEM (Build-
ing Research Establishment Domestic Energy Model)

class models (Firth, Lomas, & Wright, 2010;
Hughes, Palmer, Cheng, & Shipworth, 2013). Several
papers have examined internal temperatures (see
below), but in particular the variability between
homes and the time course of temperatures over a
day has received little attention.

In the UK, the most commonly used models for model-
ling the building stock belong to the BREDEM family
(see Kavgic et al., 2010, for a review of UK residential
stock models). These models usually use default
assumptions on how homes are heated and to what
temperature. BREDEM models are driven by an ‘occu-
pancy schedule’ that is set externally to the model and
which can be varied by the model user. This stipulates
that the living room is heated to 218C for nine hours on
weekdays (07.00–09.00 and 16.00–23.00) and for
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16 hours on weekends (07.00–23.00) (Anderson et al.,
2002). Between these periods, the model assumes the
heating is switched off, and the house cools in accord-
ance with an estimate of the envelope heat loss largely
determined by the thermal time-constant of the fabric
and ventilation losses. Internal temperature thus expo-
nentially decays from the set-point until the subsequent
heating period commences. However, as Oreszczyn
and Lowe (2004) point out, there are little data that
could validate the BREDEM model or capture the vari-
ations in occupant behaviour known to occur in the
stock. In fact, estimates of energy demand made with
these models have been shown to be a poor predictor
of actual energy consumption (Kelly, 2011), and a
recent paper showed that homes vary widely in their
temperatures during those time windows when
models would assume them to have 218C (Huebner
et al., 2013).

The BREDEM-based models serve several primary
purposes. As part of regulatory instruments, like the
Standard Assessment Procedure (SAP), the UK govern-
ment’s primary assessment mechanism for determining
energy efficiency of homes, they set standards for
energy use against which individual dwelling design
proposals are evaluated for compliance. That is, they
serve a normative function representing how the
fabric and heating technology in dwellings should
perform; they standardize occupant influences in
order to assess the building performance independently
of occupant effects. In this case, a consideration of
variability in internal temperatures and heating behav-
iour would indeed be opposed to the purpose of the
modelling, and it is of secondary importance whether
the assumed behaviour reflects the average actual be-
haviour. However, BREDEM-based models are also
used to estimate an individual consumer’s likely
energy savings following energy efficiency retrofits.
This is done by calculating the current and possible
future SAP ratings and estimated energy consumption.
These calculations of course use the standardized SAP
ratings. However, the huge range in actual temperature
profiles indicates that the energy saving estimates based
on SAP are likely to be quite misleading for a large pro-
portion of households; some will save much more and
some much less than predicted. Moreover, when
BREDEM-based models are used as the basis for build-
ing stock modelling, their purpose is to indicate how
homes (i.e. occupied houses) actually perform. In this
function it is of primary importance that they correctly
represent occupant influences in order to estimate cor-
rectly national energy demand from the nation’s
homes.

In general, it has been recognized that both human
factors and building characteristics impact on energy
consumption in domestic households (e.g. Allcott &
Mullainathan, 2010; Dietz, Gardner, Gilligan, Stern,
& Vandenbergh, 2009; Druckman & Jackson, 2008;

Gill, Tierney, Pegg, & Neil, 2010; Lutzenhiser, 1993;
Shorrock & Utley, 2008; Utley & Shorrock, 2006).
These and other studies have addressed energy con-
sumption in general, but very few have addressed
heating demand temperature and patterns in particu-
lar. Kelly et al. (2013) developed a model for predicting
daily mean internal temperature that was able to
explain 45% of the variance of internal temperature
between dwellings. Behavioural, socio-demographic
and building energy efficiency variables were used as
predictors and contributed to predicting the mean
internal winter temperature in the English housing
stock as a whole to within approximately 0.718C at a
95% confidence interval. Some of the significant
predictors were the presence of children or retired
occupants, building characteristics such as roof insula-
tion, wall U-values, building type and the presence of
thermostats or thermostatic radiator valves. Oreszc-
zyn, Hong, Ridley, and Wilkinson (2006) found that
similar socio-demographic variables, such as the age
of householders and number of people, and building-
demographic variables, such as construction and
thermal efficiency, influenced internal temperatures of
low-income households. Similarly, Hunt and Gidman
(1982) found that internal temperatures in their UK
sample varied according to dwelling type and tenure.
They also found that those with low incomes had
cooler homes and the presence of young children or
elderly residents affected temperatures. In a cross-
sectional survey where space heating energy consump-
tion was derived from energy bills, Cayla, Allibe, and
Laurent (2010) further found that standard socio-
demographic variables such as age and income were
indicative in explaining variance in heating-related
energy use in a sample homes in France, even more
than self-reported indications of heating and energy
practices (e.g. window opening). In a nationally repre-
sentative study of New Zealand homes, of which only
5% are centrally heated, French, Camilleri, Isaccs, and
Pollard (2007) found that winter living room tempera-
tures averaged 17.98C. They further found no signifi-
cant correlations between mean internal winter
temperatures and income, though they did find corre-
lations with house age (older houses were cooler) and
the main driver for mean living room temperatures
was the type of heating system. In a small Danish
sample of low-energy homes, Isaksson and Karlsson
(2006) also found internal temperature differences
related to type of housing. Shipworth et al. (2010)
used measured internal temperature to estimate ther-
mostat settings and heating duration patterns. They
found average maximum internal temperature for
three winter months, used as a proxy for the thermo-
stat setting, was 21.18C, in line with the heating
demand temperatures as assumed by BREDEM-based
models. Average estimated heating duration was 8.2
hours for weekdays and 8.4 hours for weekends.
Importantly, the analysis of Shipworth et al. (2010)
revealed large variability in the data, in particular
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regarding heating demand temperature (standard devi-
ation (SD) of 2.58C). For heating duration estimates
the SD was 1.5 hours.

Whilst those studies provide some insight on levels and
determinants of internal temperatures, to our knowl-
edge no national study has explicitly addressed the pat-
terns of how temperatures vary over the course of a
day. Do they follow the standard weekday and
weekend patterns of heating as assumed by
BREDEM, i.e. display a profile of internal tempera-
tures with a peak in the early morning and a peak in
the evening for weekdays (termed the ‘bimodal’
pattern) and continuous temperatures from 7.00 to
23.00 hours on weekends, or do distinctly different
patterns of internal temperatures exist?

This question is of importance for several reasons. It is
plausible that different temperature profiles are charac-
terized by different levels of internal temperature, with
varying hours of heating and levels of energy demand.
In this case:

. The prediction of future energy demand might be
incorrect when using default values. In future, sig-
nificant demographic change is expected with an
ageing population and more, but smaller, house-
holds. If certain profiles with different energy con-
sumptions are linked to certain segments of the
population, predictions of future energy demand
could be incorrect.

. The imprecision for predicting energy consump-
tion of individual homes or the inaccuracy for pre-
dicting energy consumption of sectors of homes
would be considerable.

. Through failing to represent the range of observed
temperature profiles in the stock as a function of
building-demographic and socio-demographic
variables, assuming profiles can be linked to such
explanatory variables, the opportunity is lost to
target policy interventions to specific demographic
segments.

Even if energy demand did not vary across different
temperature profiles, the finding of distinct tempera-
ture profiles would be of interest. They would indicate
that homes are used in different ways (assuming that
cluster membership would not be entirely determined
by building factors) and could reveal different
comfort requirements. Moreover the timing of
heating demand greatly affects the energy demanded
by the system over the course of the day. This is par-
ticularly important if, as is currently planned, more
UK heating was to be provided by electricity. In this
case knowledge about whether the demand for high
temperatures (as a proxy for heating) would be the

same in all buildings or would be spread out would
be of importance in designing the energy supply
system. The aim of this paper is to test if internal temp-
eratures in homes follow one standard pattern or
whether they exhibit distinctly different temporal
profiles. Cluster analysis (CA) is used here to identify
patterns of internal temperatures, and link them to
socio-demographic variables (e.g. age, income, tenure
and household size) and building-demographic vari-
ables (e.g. type of housing and heating system). The
basic idea behind CA is to group entities (here, house-
holds) on the basis of their similarity regarding selected
variables (here, temperatures over the day) so that
households in one group are as similar as possible to
other households in that group (i.e. high within-
group homogeneity) and as dissimilar as possible to
households in other groups (low between-group hom-
ogeneity) (Clatworthy, Buick, Hankins, Weinman, &
Horne, 2005).

This analysis provides a first step in moving away from
default heating patterns for the whole population.
Internal temperatures are often considered a proxy
for heating patterns; however, it should be kept in
mind that temperatures do not necessarily correspond
to heating patterns. A range of factors may lead to
internal temperature profiles differing from heating
demand patterns, including various forms of incidental
gains and ventilation heat losses.

Methods
Survey and temperaturemeasurements
The data analysed in this paper are taken from the
Carbon Reduction in Buildings Home Energy Survey
(CaRB HES), the first national survey exclusively
focused on energy use in English homes1 that com-
menced in early 2007 (for details, see Shipworth
et al., 2010). Households were selected by stratified
random sample drawn from the postcode address
file. Sampling and face-to-face interviews in 427
homes were carried out by the National Centre for
Social Research (NatCen). During the interview,
householders answered questions on the building
characteristics of their home, heating practices and
socio-demographics (for details, see Table A1 in
Appendix A). For a subset of homes, temperatures
were monitored in the bedroom and living room
from mid-July 2007 to early February 2008. HOBO
UA 001-08 sensors were used, which are self-contained
data loggers programmed to record spot temperature
every 45 min, resulting in 32 measurements per day.
They were placed in the home by the interviewer
and/or homeowner with instructions on correct place-
ment, i.e. between knee and head height, away from
any heat sources or direct sunlight. The sensors have
a manufacturer reported accuracy of +0.478C,
however calibration measurements were taken for
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each logger before placement in the home and used to
correct subsequent readings after the recorded data
had been extracted.

Overview of sample
Table 1 summarizes key characteristics of the CaRB
HES data with N ¼ 275 dwellings in comparison
with the nationally representative English House
Condition Survey (EHCS) 2007/08 (Department for
Communities and Local Government, 2010, 2011).

As shown in Table 1, the CaRB HES sample over-rep-
resents owner-occupied dwellings, as well as the dwell-
ing type category ‘bungalows or detached houses’.
Also of note, 84% of the CaRB HES sample had gas
central heating (either gas or liquefied petroleum gas
– LPG) as compared with 87% in the EHCS
(Nowak, 2009).

Pre-processing of temperature data
For the present paper, only living room data in the
winter months were used. Winter was defined as
ranging from 1 November 2007 to 31 January 2008
and, hence, encompassed the three months November
2007, December 2007 and January 2008. The temp-
erature loggers were withdrawn after 31 January
2008; since the date of removal in February 2008
varied across households, only temperature data until
31 January were considered to ensure the same data
range in all households. A variable expressing
average daily external temperature was created based
on minimum and maximum temperatures at local
weather stations within the respondent’s government
office regions (Kelly et al., 2013). For no day or
region in the data analyses for this paper did the
average maximum external temperature exceed
15.58C; above this value, it is assumed that there is
no need for heating (CarbonTrust, 2012). The
recorded internal temperature data were screened for
outliers, i.e. for recorded temperatures below 108C
or above 358C, and for changes of more than 108C
in 45 min (indicating placement close to a heating
source or through exposure to direct sunlight). Those
potentially erroneous data points occurred on fewer
than 0.2% of days and were excluded from further
analysis. The dataset was managed in MS Access and
STATA and for this paper analysed using SPSS and
MatLab.

Cluster analysis
A cluster analysis (CA) of the temperature data was
conducted to identify typical profiles of temperatures
in the home. CA is an exploratory data tool for orga-
nizing data into meaningful groups; it maximizes the
similarity of cases within each cluster and maximizes
the dissimilarity between groups that are initially
unknown.

The temperature data for each dwelling were centra-
lized by subtracting each day’s average from the 32
individual measurement time points. Centralizing was
done because the shape of the temperature profile
was of primary interest, not the absolute temperature.
The centralized data at the 32 measurement points for
each day of the week were averaged across the different
weeks. An agglomerative hierarchical clustering analy-
sis was then performed, using Ward’s minimum var-
iance method based on the squared Euclidean

Table 1 Key characteristics of CarbonReduction in Buildings
HomeEnergySurvey (CaRBHES) andEHCS

Variable CaRBHES
2007/08
(valid%)

EnglishHouse
Condition Survey
(EHCS) 2007 (%)

Age (Average value,
not per cent)

MeanHRPage 55.7 52.4

Mean age of youngest 42.6 38.4

Mean age of oldest 57.2 53.5

Tenure type

Owner occupied 81.8 71.2

Privately rented 5.1 11.6

Local authority 6.6 8.8

Housing association
and social landlord

6.6 8.4

Dwelling type

Terraced 20.7 27.9

Semi-detached 22.4 27.8

Bungalow or detached
house

41.1 27.8

Flats 12.0 16.6

Other 1.8

Dwelling age

Pre-1919 13.1 21.1

1919^44 16.8 17.5

1945^64 23.4 19.7

1965^80 26.3 21.8

Post-1981 20.5 19.9

Total number of
households in the
survey

275 21380

Note: HRP ¼ household reference person
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distances between households described by tempera-
ture data consisting of 224 variables, i.e. 7 days by
32 measurement points. Entering each day separately
gives adequate weight to weekdays (5 days) and week-
ends (2 days) that might differ in their temperature
profile. Hierarchical clustering starts with each case
as a separate cluster and then combines the clusters
sequentially. The complete agglomerative process
results in N nested possible partitions (for details on
this clustering method, see Ward, 1963). The changes
in within-cluster variance after merging two clusters
were examined in order to decide on the numbers of
clusters, in addition to using a criterion of a
minimum cluster size of ten observations. Once
cluster membership for each home was established,
subsequent analysis was conducted using absolute
(i.e. not centralized) temperature data.

Results
Cluster analysis (CA)
Four clusters resulted from the hierarchical CA
(Ward’s method) on the centralized temperature data
for all days. Figure 1(a) shows the mean temperature
of all dwellings within each of the clusters for week-
days; Figure 1(b) for weekends.

Cluster 3 represents the largest cluster with N ¼ 110
dwellings (40.0% of the sample referred to as ‘two
peak’), and corresponded most closely to the assump-
tion of an occupancy pattern with two peaks, one in
the morning and one in the early evening. The second
most common cluster was cluster 2, which represented
30.9% of the dwellings (N ¼ 85; ‘flat line’) and
showed an almost flat temperature profile. Cluster 4
(N ¼ 38, 13.8%; ‘steep rise’) showed a decline until
early morning followed by a steep increase until
about 21.00 hours. Cluster 1 (N ¼ 42, 15.3%;
‘steady rise’) similarly showed a decrease until the
early morning hours followed by a steady increase,
although on a lesser magnitude than cluster 4. The
cluster means for weekdays and weekends are
similar, with the decrease after the first peak in
cluster 2 less pronounced than on weekdays. Whilst
this analysis does not show the occupancy schedules
assumed by BREDEM, the emergence of four distinct
clusters challenges the assumption that one occupancy
pattern adequately represents reality.

Average,minimum andmaximum temperatures in the
clusters
Table 2 shows the average daily temperature, average
maximum daily temperature and average minimum
daily temperature for each cluster. For the average
daily temperature, for each home, the temperature at
each of the 32 measurement points was averaged
(over all winter days); the resulting 32 values were

then averaged (home average daily temperature) and
then averaged across all homes in the cluster. For the
maximum (minimum) temperature for each home,
the maximum (minimum) temperature of the average
values was identified at the 32 measurement points,
then those maximum (minimum) values were averaged
across all homes in one cluster.

Levene’s F-test for equality of variances showed that
variances in all variables of the table were not equal
(i.e. were spread out differently far from the mean),
making the use of statistical procedures necessary
that do not make the assumption of variance homogen-
eity. Welch’s test was used for multiple independent
groups; and Games–Howell tests were used for post-
hoc pairwise comparisons.

Theaverage temperature on weekdays and weekends was
not significantly different in the four clusters.Considering
that the CA was carried out on the centralized values, i.e.
discounting absolute differences in temperatures, it is not
a surprising finding that the daily average temperatures
do not differ between the four clusters. It indicates
though that a specific shape is not linked to higher or
lower temperature. However, both the minimum and
maximum temperatures (weekdays and weekends) dif-
fered significantly between the four clusters (all F .

6.8; all p ≤ 0.002). Pairwise comparisons showed that
the weekday maximum temperature was significantly
lower in cluster 2 than in clusters 1 and 4 (p , 0.001
and p ¼ 0.014). For weekends, the maximum tempera-
ture in cluster 2 was lower than in all other clusters (all
p , 0.028). Regarding the minimum temperatures,
cluster 4 had a significantly lower temperature than all
other clusters on both weekdays and weekends. No
other differences were significant.

Standard deviation over the course of a day in the
different clusters
The average standard deviation over the course of the
day was calculated (Table 3). It is a way of expressing
how much the temperature at the 32 measurement
points varies around the daily mean. This was done
in order to quantify the visual descriptions in
Figures 1(a) and 1(b) of the ‘flatness’ or ‘curviness’ of
each temperature cluster. A small standard deviation
would indicate little variation around the daily mean;
a large standard deviation more variation, i.e. more
‘curving’ of the profile over the day. For each dwelling,
the standard deviation was calculated across the 32
measurement points of the temperatures averaged
over all winter days. The value was then averaged
across all the dwellings in each cluster.

A Welch test for multiple samples showed that stan-
dard deviations across the four clusters differed signifi-
cantly (for weekdays: FWelch (3, 102.95) ¼ 118.55,
p , 0.001; for weekends FWelch (3, 99.28) ¼ 110.97,

The shape of warmth

189



p , 0.001). Post-hoc pairwise Games Howell tests
showed that all differences were significant, both for
weekdays and weekends, all p ≤ 0.001.

Cluster 2 (flat line) had the lowest standard deviation,
meaning that values differed least around the mean.
The largest standard deviation was found in cluster
4 (steep rise), in line with the very pronounced
curving of the temperature line. Hence, the CA
showed four distinctively different temperature pro-
files that could reflect the preferences and needs of
occupants and/or building characteristics. The next
step explored the characteristics underlying the four
clusters.

Relationship of clusters to building- and
socio-demographic variables
Previous research, as discussed in the introduction, has
shown that a number of socio-demographic and build-
ing-demographic variables are related to energy con-
sumption and temperatures (Cayla et al., 2010; Hunt
& Gidman, 1982; Kane, Firth, Allinson, Irvine, &
Lomas, 2010; Kelly et al., 2013; Oreszczyn et al.,
2006). Hence, the need to relate variables of both
types to cluster membership. Approximately 35 vari-
ables were tested, but only those variables that were
found to be statistically significant are presented. The
list of those variables not found to be statistically signifi-
cantly are presented in Table A1 in Appendix A.

Figure 1 Average temperature pro¢les of the four cluster for weekdays (a) and weekends (b)
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The associations between the clusters and each of the
demographic and building variables were tested inde-
pendently, meaning that inter-correlations between
variables and the effect of one variable corrected for
the effect of other variables were not considered. This
approach to analysis should only be seen as a way of
describing clusters, not as indicating causation.

One-way analysis of variance (ANOVA) was used to
test for differences in continuous variables between
clusters. All post-hoc tests in the ANOVA were Bonfer-
roni corrected, i.e. the significance level for pairwise
comparisons corrected for the number of comparisons
in order to prevent problems associated with multiple
comparisons.

Chi-square tests were used for differences in categori-
cal variables. This analysis tests for the presence of a
statistically significant relationship between two vari-
ables. When the chi-square test was significant,
column properties were then compared to test which
pair of columns (i.e. which clusters) for a given
row differed significantly, again using Bonferroni
correction.

Socio-demographic factors
Table 4 summarizes the results of chi-square tests for
socio-demographic variables. Only those variables
are shown where significant differences were found.

The value in each cell indicates the proportion of
households that exhibit the respective variable as
coded. The superscript letters indicate which pro-
portions differed significantly; if two values do not
share a letter, they are significantly different from
each other, as, for example, clusters 4 and 3 in the
first variable. If they share a letter, they are not signifi-
cantly different.

To test for difference in continuous variables between
clusters, ANOVA was used. The mean value for the
respective variable in each cluster is shown in the
cells in Table 5, again with superscript letters
indicating significant differences in post-hoc pairwise
comparisons (the respective test statistics are not
shown for brevity).

The age of the oldest person and the household refer-
ence person (HRP)2 is higher in cluster 4 (steep rise)
than either clusters 2 or 3, and cluster 4 has a larger
proportion of persons over 79 than cluster 3. The
mean age of the youngest person is significantly
lower in cluster 2 (flat line) than clusters 1 or 4, and
the proportion of households with children under five
years and of socially rented accommodation is
greater than in cluster 1. For income, the gross
household equivalized income was used. Cluster 3
(two peak) is characterized by significantly fewer
households in the lower income bracket than
cluster 1 (steady rise), and significantly more house-
holds in the higher income bracket than cluster 4
(steep rise).

There were no significant differences between clusters
in the average number of bedrooms, the type of house-
hold, presence of dependent children and number of
household members.

Building variables. Table 6 presents the distribution
of building-related variables and clusters and follows
the same form as the tables above.

Table 2 Averaged daily, maximumandminimum temperatures in the four clusters

Average daily temperature
88888C (SD)

Maximumof average daily
temperature 88888C (SD)

Minimum of average
temperature 88888C (SD)

Weekday Weekends Weekday Weekends Weekday Weekends

1 (Steady rise) 19.28 (2.17) 19.47 (2.13) 21.67 (2.27) 21.74 (2.23) 17.50 (2.07) 17.50 (2.06)

2 (Flat line) 18.85 (2.98) 18.87 (2.93) 19.66 (3.05) 19.71 (3.02) 18.16 (2.94) 18.13 (2.90)

3 (Two peak) 19.00 (2.05) 19.23 (2.03) 20.63 (2.17) 20.79 (2.10) 17.52 (1.95) 17.62 (1.96)

4 (Steep rise) 18.68 (2.56) 18.81 (2.68) 21.45 (2.91) 21.51 (3.08) 16.03 (2.65) 16.03 (2.65)

Note: SD ¼ standard deviation

Table 3 Average standard deviations (SDs) for weekdays and
weekends in the four clusters

Cluster MeanSDweekday MeanSDweekend

1 (Steady rise) 1.32 1.34

2 (Flat line) 0.46 0.47

3 (Two peak) 0.94 0.97

4 (Steep rise) 1.76 1.80

The shape of warmth

191



Building type differentiated between detached, semi-
detached, terraced and flat (purpose-built and con-
verted). Five buildings were excluded from this analysis
as they were characterized as other (e.g. a caravan).
Bungalows formed part of the categories detached,
semi-detached or terraced, depending on their specifi-
cation. Cluster 2 (flat line) had significantly fewer
detached dwellings than cluster 1 (steady up), and
had significantly more flats than any other cluster.
The majority of dwellings in all clusters had gas
central heating (at least 78%), so differences in other
heating systems only represent a very small number
of dwellings. A significant finding is a larger share of
night storage heaters in cluster 2 (flat line) than in
cluster 3 (two peak) and higher electricity consumption
but not total energy consumption (not shown in detail).
No other building variables differed between clusters
(see Table A1 in Appendix A): wall type, total energy

consumed (based on meter readings), amount of
double-glazing, amount of draught-proofing of
windows, amount of roof insulation, wall U-value,
roof U-values and draught-proofing of external doors
were not significantly different across clusters. Also
variables related to the use of the thermostat and the
total energy consumption based on meter readings
for the winter monitoring period did not differ
between clusters; the latter variable had a large
number of missing data (valid N ¼ 189), which made
is less likely to find differences between groups.

Discussion and conclusions
A CA performed on a temperature data set of 275
homes in England over three winter months resulted
in four different clusters of temperature profiles. The

Table 4 Chi-squared analysis of socio-demographics variables between clusters

Variable Cluster number Test values

1 (Steady rise) 2 (Flat line) 3 (Two peak) 4 (Steep rise) x2 d.f. p

Age

Person over 79 years present 11.9%a,b 11.8%a,b 5.5%b 23.7%a 9.86 3 0.020

Person over 59 years present 57.1%a,b 37.6%a,b 42.7%b 68.4%a 12.53 3 0.006

Person under 5 years present 0.0%a 15.3%b 8.2%a,b 5.3%a,b 9.23 3 0.026

Tenure 10.40 3 0.015

Socially rented 7.1%a 22.4%b 8.2%a,b 13.5%a,b

Owner occupied 90.5%a 71.8%a 86.4%a 81.1%a

Equivalized income 13.84 6 0.032

Up to »13 999 42.1%a 27.6%a,b 19.6%b 37.5%a,b

»14 000^33 999 36.8%a 36.8%a 38.0%a 46.9%a

»34 000 or more 21.1%a,b 35.5%a,b 42.4%b 15.6%a

Notes: Superscripts indicate signi¢cant di¡erences between clusters; if two values do not share a letter, they are signi¢cantly di¡erent.
For test values: x2 speci¢es the chi-square value obtained in the respective tests, d.f. the corresponding degrees of freedom, and p the probability value.
Privately rented accommodation was omitted from the tenure analysis due to very low case numbers in all four clusters.

Table 5 Di¡erences in socio-demographic continuous variables

Variable Cluster number Test

1 (Steady rise) 2 (Flat line) 3 (Twopeak) 4 (Steep rise) F d.f. p

Age of oldest person 61.64a,b 54.52a 54.77a 65.37b 6.91 3, 271 , 0.001

Age of HRP 61.07a,b 53.64b,c 53.77c 63.55a 6.26 3, 271 , 0.001

Age of youngest person 49.76a,c,d 36.66b 40.55b,c,d 53.89a 5.23 3, 271 0.002

Note: HRP ¼ household reference person.
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clusters differ significantly in their shape, as revealed
by visual inspection, and supported by significant
differences in minimum and maximum temperatures
and standard deviations across the day. The largest
cluster showed two peaks in internal temperature,
one in the early morning and one in the evening,
most closely in line what would be expected under
standard (i.e. BREDEM) assumptions. However, the
other three clusters that make up more than half the
sample showed no such bimodal pattern, with one
flat temperature cluster profile and two steadily
increasing temperature profiles from early morning
onwards. This finding challenges the assumption that
one standard pattern fits all homes, and that the
assumed BREDEM pattern of bimodal temperature
pattern for weekdays represents how people generally
operate their home. The analysis not only challenges
the general assumption of a bimodal heating pattern
for weekdays but also the assumption of a stark differ-
ence in heating patterns between weekdays and week-
ends. The cluster profiles are very similar for weekdays
and weekends, casting doubt on the large difference of
seven hours in heating duration assumed in BREDEM
class models. It is important to keep in mind that
internal temperatures do not directly indicate the
status of the heating system but are a proxy for its
usage. This might partly explain the finding that clus-
ters did not vary significantly in their average tempera-
tures, i.e. that no particular shape is strongly linked to
a higher or lower average temperature. Data were cen-
tralized in order to detect shapes in the data; non-cen-
tralized data were also compared between clusters;
hence, a linkage between profile shape and temperature
would have been found if it existed. Had the respective
maximum temperatures in each of the clusters been the
same, say arising from a common demand temperature

across all households, then homes with flat profiles
would have been expected to have a higher internal
temperature averaged over the whole of the heating
season than homes where the hourly heating season
average temperatures vary strongly over the course of
a day (such as the two peak). In this case, the flat
profile would have had a higher average internal temp-
erature because the maximum temperature would have
been very close to the average, whereas the bimodal
pattern would have only reached temperatures close
to the maximum twice a day with much lower temp-
eratures throughout the remaining hours. However, it
was found that the flat profile had a peak temperature
that was about 18C lower than that of the two-peak
pattern, resulting in the same average daily tempera-
ture in both clusters. Hence, regarding the prediction
of energy demand for individual homes, and the
prediction of future energy demand, the temperature
profiles as shown in this analysis are of little
importance.

However, the presence of different temperature profile
clusters may have important implications for power
demand. Peak power demand for heating is becoming
a key energy infrastructure constraint in the context
of proposals for increasing electrification of domestic
heat supply through use of heat pumps and electric
resistive heating powered through a decarbonized
national electricity system. While this analysis focuses
on winter averages, further research is needed to deter-
mine whether similar clusters can be observed on data
for individual days (HM Government, 2011; Strbac
et al, 2012).

Capturing the shape of temperature patterns over the
span of a day may also aid in assessing what sectors

Table 6 Chi-squared analysis of building variables between clusters

Variable Cluster number Test

1 (Steady up) 2 (Flat line) 3 (Two peak) 4 (Steep up) x2 d.f. p

Building type 27.24 9 0.001

Detached 50.0%a 22.4%b 35.5%a,b 34.2%a,b

Semi-detached 26.2%a 29.4%a 30.9%a 28.9%a

Terraced 19.0%a 20.0%a 26.4%a 26.3%a

Flats 4.8%a 27.4%b 6.4%a 2.9%a

Main heating 20.80 9 0.014

Central heating: gas and lique¢ed petroleum gas 83.3%a,b,c 77.6%c 91.8%b 78.9%a,c

Central heating: other 11.9%a 4.7%a 4.5%a 5.3%a

Night electric storage heaters 2.4%a,b,c 9.4%c 0.0%b 5.3%a,c

Other 2.4%a 8.2%a 3.6%a 10.5%a
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of the population would be most suitable for different
heating technologies. For example, dwellings with little
variation of temperatures over the course of the day
might be more suitable for heat pumps that are most
efficient when delivering constant background heat
(Caird, Roy, & Potter, 2012). Irrespective of whether
such profiles arose from occupant preferences or
through building characteristics, the occupants would
be used to such a temperature profile and therefore
may adjust better to the flat profiles provided by heat
pumps. Similarly, identification of temperature profile
shapes aids in assessing forms of building fabric retrofit
that may be more suitable to different population seg-
ments. Population segments with flat profiles may
adjust more readily to homes with high levels of insula-
tion and mechanical ventilation, housing character-
istics that are associated with flattening of profiles. In
addition, the distinctively different shapes might
reflect different comfort requirements, the thermal per-
formance of different building forms and fabrics, or the
different characteristics of heating systems. A closer
look at the difference in building characteristics and
socio-demographics is of interest in this regard.
Cluster 4 (steep rise) has an older household member
composition; qualitative studies of elderly people find
they often report ventilating bedrooms at night (Day
& Hitchings, 2011; Wright, 2004) which could con-
tribute to the stark decline observed in the cluster
shape, assuming that either living rooms are also venti-
lated or affected by the cold air coming into the
bedroom. Cluster 2 (flat line) has more flats and
social housing tenants and a larger share of homes
with children. Cluster 3 (two peak) has rather higher
income consisting of more houses and a smaller pro-
portion of low-income households. The findings of
more flats in the flat line profile (cluster 2) makes
sense given that flats have generally less heat loss
because of a smaller external surface area (Shorrock
& Utley, 2008). The presence of more small children
in this cluster might contribute to explaining the rela-
tively higher night temperature if parents are worried
about their children getting cold at night. A higher
income and neither a particularly young nor old house-
hold as in the cluster profile 3 (two peak) could indi-
cate a household with working adults who leave the
house during the day. The relatively older cluster 4
(steep rise) might indicate the presence of retired
tenants who turn the heating off at night, and then
turn it on early and steadily as they stay at home
most of the day. However, given that capacity to
explain the differences between clusters with the avail-
able variables is limited, no discrete characterization of
each cluster is possible, and a better understanding of
what drives the apparent differences in temperature
patterns requires further research. In particular, given
that the sample was not fully representative of the
English population, it cannot claim to have detected
all typical patterns of heating and identified all lin-
kages between socio-demographic and building

variables. However, the work constitutes an important
first step in showing patterns of temporal variation
over the course of the day. The analysis showed that
one general pattern does not fit how homes are used;
homes exhibit distinctly different patterns of tempera-
ture over the course of the day. What exactly these
differences reflect needs to be addressed in further
research.
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Table A1 Variables that did not di¡er between clusters

Variable Measurement categories

Number of persons in a household aged
under18

Continuous

Number of persons in a household aged
under14

Continuous

Household size 1, 2, 3,4, 5 people or more

Household type Single, couple, dependent children, other

Number of bedrooms Continuous

Wall type Cavity wall, solid wall, other

Cavity wall insulation Yes, no

Roof insulation Yes, no

RoofU-value , 0.40,0.40, . 0.40

Windows double-glazed All, some, none

Windows draught-proofed All, some, none

External doors draught-proofed All, some, none

Times for CH regular on weekdays Yes, no

Timer or manual operation of CH Timer, manual

Ease of access to timer of the CH system Very easy, fairly easy, not easy

CH thermostat setting changes for a typical
day

0,1, 2, . 2 per day

CH time control None, timer, programmable room thermostat,
unknown or other type of thermostat or timer

CH thermostat ^ do you ever turn it up? Yes, no

CH thermostat ^ main way to turn it up? Until clicks, high to warm fast, speci¢c number, other

CH temperature control None, room stat (room thermostat),TRV (thermostatic radiator valves) only, prog stat
(programmable thermostat)

Are CH hours on weekdays and weekends
the same?

Yes, no

Gas 2007/08 kWh annualized, i.e.365 days Continuous

Gas 2007/08winter average kWh/day Continuous

Notes: There was no di¡erence in the distribution of government o⁄ce regions (GOR) across the clusters.Since external temperaturesweremeasured at the
spatial resolution ofGORs, the average winter temperature was the same for all homeswithin oneGOR.Since the distribution ofGORs did not di¡er between
clusters, also the distribution of the external winter temperature did not di¡er between clusters.However, this needs to be interpreted with caution and not in
the way that external temperatures do not exert an impact on internal temperatures.However, for an exploration of that question, a more detailed analysis
would be needed on a day-by-day basis ideally with temperature data of greater spatial accuracy.
CH ¼ central heating.
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