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Abstract

Inherited diseases and cancer are often characterized by single DNA base mutations that
can result in altered gene expression, altered mBEMNA splicing, or changes to the protein
structure. The effects of the latter category on protein function and how this is related to
disease is the easiest of these to understand. Pathogenic deviations (I"Ds) are mutations
reported to be disease-causing, while true single nuclectide polymorphisms (SMI's) are un-
derstood to have a negligible effect on phenotype. With recent developments in biotech-
nology, the most relevant being the increased reliability and speed of sequencing, a wealth
of information regarding SMFs and PDis has been acquired. Quite apart from the analyti-
cal challenge of analysing this information with a view to identifying novel therapies and
targets for disease, the challenge of simply storing, mapping, and processing these data
is significant in itself. This thesis builds on earlier work in the Martin group in which a
database (SAAPAL) was developed to map mutation data to protein structure and allow
the likely local protein structural effects of a mutation to be evaluated.

In this thesis, a general introduction to the relevant biology (Chapter 1) and bicinformatics
tools and resources (Chapter 2) is provided. In Chapter 3, the Single Amino Acid Polymor-
phism database (SAAPdb) is described and the work done to fix bugs and update the data
is outlined. Despite this work, owing to continuous maintenance problems identified when
updating the program, the Martin group has now switched to using a “pipeline’ version

that no longer relies on any pre-calculated data stored in a database.

Earlier work performed during a Masters project showed that some of the analyses were
extremely sensitive to structural details. These analyses have been updated and extended,
confirming earlier results. Consequently, some of the analyses were updated to replace
Boolean True/False (Good /Bad) assignments with energy or pseudo-energy values. A
peeudo-energy potential was developed for evaluating the effects of mutations to-proline
or from-glycine (Chapter 4) and a new full-energy method for assessing the effects of side-



chain clashes was evaluated (Chapter 5). A method using the structural analy=es data to-
gether with random forests to predict whether a mutation will be damaging was then devel-
oped (Chapter &). This method was demonstrated to be better than all competing individual
methods. A variation of this approach was used to distinguish between two phenotypes
ihypertrophic cardiomyopathy — HCM, and dilated cardiomyopathy — DEM ) caused by
mutations in the cardiac beta-myosin gene (MYHY, Chapter 7). The thesis finiches with a

general discussion and conclusions (Chapter 8).

The final SAAPpred predictor using the updated SAATdap and the improved analysis out-
performs competing methods (for mutations where a structure is available) giving an ac-
curacy of 0885 and MOCC = 073 showing that a detailed analysis of structural features is
beneficial in predicting the effect of any novel mutation. SAAPpred performed very well
when discriminating between pathogenic and neutral SMPs in MYHT having an accuracy
of 0,754 - 0927 using one PDB structures per mutation and multiple PDE structures respec-
tively. This was followed by creation of a novel predictor which attempts to distinguish
between HCM and DCM mutations using SAAF analysis, exploiting feature selection and
an additional set of features on structural clustering. This is the first prediction of detailed

phenotype and works surprisinglyv well giving an accuracy of 0.75 and MOC = 0,531
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Chapter 1

Biological Introduction

Proteins are one of the basic building blocks of the human body and are
essential for nearly everything the body does. A faulty modification of the ge-
netic material of the cell may produce a malfunctioning protein. The study and
analysis of the structure of proteins and their mutations will improve the under-
standing of mutational effects, which may lead to cures for untreated diseases.

Many mutations are related to disease and mutations of single nuclectides
may affect the structure and interactions of proteins by means of amino acid
substitutions. Recently, there has been increased research into these mutations.
In order to understand the molecular mechani=ms of disease, it is essential to
evaluate the effect of these mutations on the structure and function of proteins.

Andrew Martin's group has gathered information on mutations related
to human diseases and Single Mucleatide Polymorphism (SMF) data {which
should not be a direct cause of disease), and incorporated it into the Single
Amino Acid Polymorphism database (SAAPAb) (Hurst ef al., 2009). This is a
database of disease-causing and neutral mutations, which have been analysed
to determine what effect, if any, they may have on protein structure and
function. This PhI? is a part of the SAAF project and aims to maintain and
expand SAAPdb, introduce the SAAT Fipeline (SAAPdap) and build a SAAP
Predictor (SAAPpred). This chapter explores the biological basis of mutations
and the effects that thev can have on protein structure and function.

19
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1.1 Mutation

Mutation or genomic aberration is cne of the most important aspects of disease research. A
mutation refers to a change in genetic structure, which may ocour spontaneously, by chance,
or through darmage caused by radiation, mutagenic chemicals, or even viruses (Kothenberg
and Chapman, 1989). Mutations do not have a consistent effect on phenotype  (Mchfil-
lan, 2009), although a mutant gene may affect the normal transmission and expression of a

trait (Rothenberg and Chapman, 19689). Thus:

some have negligible or no effect on phenotype;

some introduce variation in phenotype without compromising health;
» some may offer a phenotypic advantage; and

o some result in a general phenotypic disadvantage:

— some result in increased susceptibility to disease;

— some are directly causative of a disease; and

— some are fatal.

1.1.1 Mutations within genes

A DMNA strand is a double helix structure, where the two strands run in opposite (anti-
parallel directions). Each strand consists of a sequence of nucleotides or ‘bases”: adenine
(A), gnanine (G), cytosine (C) and thymine (T) with a sugar-phosphate backbone. Com-
plementary base pairing between purine (A/G) and pyrimidine (C/T) bases (specifically
between A-T and C-G) holds the two helical strands together (Figure 1.1).

The DMA sequence of a gene is constantly undergoing transformation by mutation. Mu-
tations vary in size from a single distinct DN A nucleotide, through to a huge portion of a
chromosome or entire chromoesome (e.g. Down's syndrome). Here, the focus is on muta-
tions occurring at the gene or ‘coding” level, as mutations in coding regions are frequently

associated with the development of various genetic diseases.

Approximately 32 billion of these sequence base pairs of DMA make up the
human genome, which encodes =20,000 protein-encoding genes (International Hu-
man Genome Sequencing Consortium, 2004), which account for roughly 1.52% of the
genome (Lander of al., 2001). A codon is a unit of three nucleotides that encodes a single

amino acid. There are 61 codons that define a specitic amino acid (known as sense codons)
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plie three stop codons, which signal the end of translation of the pifIMN A message into
a protein  (Lesk, 2005). The genetic code for nuclear protein-coding genes is wniversal
(given in Table 1.1). These ‘coding' regioms of the penome are organized into ‘genes'
idistinct protein encoding wnits that define individual proteing). Any owtations in these
‘coding' regions may therefore alter the structure and for fimction of a protein, or alter
the quantities of proteins expressed. The remainder of the genome (=98%), conziste of
non-coding regions whose finctons may include providing choomosomal striactuiral
integrity and regulating where, when, and in what quantity proteines are pade.

Figure 1.1: Structure of the dowble-stranded Deor yribonwcleic acid (CMA) and baze paidng
schema.

The nucleotides are zhown hara, attached to the sugarphosphats backbona, (Owleined fronr axsp:
Sfen. wikipeoda. org Wl kd S0R wnder Creelive Comrmons licem=el,

To understand how mutations in TINA can alter the structare and for function of 2 protein
and potentially alter phenotype, the mechanizm of profein =ynthess owst fet be under-
stood. The first stage in protein synthesiz involwes the copying of one of the strands of
A intoa strand of messen ger rbonucleic acid (mlMA) in a process known as franscrip-
tion (Figure 1.35). Following transcription, ol A mowves out of the nucleus into the main
body of the cell, where protein synthesiz occurs. A rbeome combines with milRMA at
the start of translation where the codmn “AUG" is recognized by an initator transfer RIMNA
(tFA). The rboeome then assists in the elongation phase of the process. At this point, the
anti-codon on thetBEM A i= sequentally combined with the comed complementary codon in
the AN A and codes for a particular aminoacid (Strachan and Read, 2011).
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First Letter

Une by one, amino acids are covalently linked to each other leading to translation into a
polyvpeptide chain according to the sequence encoded in the DMNA via the mEMNA { Alberts,

Table 1.1: The standard 64 genetic code.

T

Second Letter

-

A

Ca

TTT (Fhe)
TTC (Phe)
TTA (Leu)
TTG (Leu)

TCT (Ser)
TCC (Ser)
TCA (Ser)
TCG (Ser)

TAT (Tvr)
TAC (Tyr)
TAA Stop
TAG Stop

TGT (Cys)
TG (Cys)
TGA Stop
TGG (Trp)

0Fn -

CTT (Leu)
CTC (Leu)
CTA (Leu)
TG (Leu)

CCT i(Pro)
CCC (Pro)
CCA (Pro)
CCG (Pro)

CAT (His)
CAC (His)
CAA (Gln)
CAG (Cln)

CLT Arg
CGC Arg
CCA Arg
CGG Arg

0 e M-
Third Letter

ATT (Tle)
ATC (Tle)
ATA (Tle)

ATG (Met)

ACT (Thr)
ACC (Thr)
ACA (Thr)
ACG (Thr)

AANT (A=n)
AAC (A=n)
AAA (Lys)
AAG (Lys)

ACT (Ser)
ACT (Ser)
AGA [Arg)
AGG (Arg)

0En -

GTT (Val)
GTC (Val)
GTA (Val)
GTG (Val)

GCT {Ala)
GOC (Ala)
GCA (Ala)
GCG (Ala)

GAT (Asp)
GAC (Asp)
CAA (Glu)
CAG (Glu)

GGT (Gly)
GGC (Gly)
GGA (Gly)
GGG (Gly)

0En -

22

2008). In order to form the amino acid monomers into a polymeric chain, amino acids are

condensed with one another through dehvdration synthesis. This reaction oocurs when

Hz is lost between the carboxylic group of one amino acid and the amino group of the

next, to form a C-MN bond. These polymerization reactions are not spontanecus; however,

they occur through the energy-driven action of the ribosome. A stop codon or nonsense

codon (UAA, UAC and UGA) will combine with a release factor at the end of the process.

This ends the translation process and causes the ribosome to release the complete polypep-
tide (Manson, 2002) (Figure 1.3).
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Figure 1.2: The twenty-one common amino acids together with the less common one (se-
lenocysteine).

The twenty-one amino acids, grouped acconding to their side chains, pEa's and charge at physiolog-
ical pH 7 4. Mote that selenocysteine it is not encoded directly in the DMA. [Tis encoded ina special
way by a UGA codon, usually a stop codon. The UGA codon encodes selenocysteine through the
presence of a SElenoCysteine [rsertion Sequence (SECIS) element in the mEMA. (Courfesy of Creafioe
Ciomnrmios),
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Figure 1.3: A broad overview of protein synthesis.

(1) The DMA double helix unwinds to expose a sequence of nitrogenous bases, (23 A copy of one of
the strands is made in a process known as transcription. The copy is made of messenger ribonuel si
acid (mEMA) which, following transcription, travels out of the nucleus into the main body of the
cell, where protein synthesis occurs. (3 The mBEMA couples with the protein synthesis apparatus
(the ribosome). Another tvpe of EMA, known as transfer BMA (HRMA), brings free amine acids to
the ribosome. (4) The anticodon present on the tRNA meognises the codon present on the mREMNA,
and the ribosome adds the amino acid o the growing chain of linked amino acids (polypeptides),
cleaving it away from the tKMA. This process is known as translation. (5] As the polypeptide chain
growes, it folds to form a protein. (Reprodueed from Human Biology aied Henlth Stadies, Thomaes Netaor, Walton-

o=-Threnes, 19960,



CHAPTER 1. BIOLOCGICAL INTRODUCTION 25

1.1.2 Mutations at the nucleotide level

Minety percent of mutations are single base changes (Collins ef al., 1998), which can be
basze substitutions, insertions or deletions. The remaining 10% are insertions or deletions of
larger DNA segments, generally as a result of recombination, or changes owing to relocation
of mobile genetic elements (Collins et al., 1998). A single base substitution, in which a single
nuclectide base is replaced by another nucleotide, is also known as a point mutation. A
“transition” happens when a purine substitutes for ancther purine, or a pyrimidine replaces
another pyrimidine. On the other hand, a “transversion’ occurs when a purine substitutes

for a pyrimidine or a pyrimidine replaces a purine (Baird et al., 1951).

Since an alteration in a single nuclectide is easily identified and more easily correlated with
its impact cn the structure and function of a protein, single base mutations are perfect for

computational analysis at both the sequence and phenotype level (Mount, 2004).

There are five types of single basze substitution mutation, as shown in Table 1.2, Figure 1.4
shows an overview of the effects of mutation on protein synthesis. There are a total of
four mutations in the DMNA indicated in purple, green, red and orange. A DNA sequence
representing a single strand also highlights these mutations using the same colours. The
light blue box at the base of the figure shows the sequence of the native protein that would
be synthesised without the presence of the mutation. In the DNA coding section, a purple
T A represents a mutation that is synonymous (silent). This mutation does not affect the
protein sequence. The green =T mutation is known as a nonsense mutation that leads to a
premature stop codon. The A>G shaded in red is a missense or non-synonymous mutation.
It substitutes the native cysteine with arginine. The crange-coloured T=C is a non-coding
mutation and takes place outside the gene.

Of these mutations, a silent mutation refers to DMNA sequence alterations that have no ef-
fect on the final protein product because the same amino acid is inserted as a result of the
degenerate nature of the genetic code. For example, when a mutation changes a codon from
LICL to UCC, it will still encode a serine residue (=ee Table 1.1}, This type of mutation can
ornly be recognised through gene sequencing and can oocur without affecting protein struc-
ture or function (Durbin, 1998). Monetheless such mutation may have an effect on splicing

or expression (see below).
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A nonsense mutation is one in which a codon for an amino acid is replaced with one that
codes for one of the stop codons (Figure 1.5a). This leads to the manufacture of prematurely
truncated protein, which may function incorrectly. This type of mutation happens in 15-
0% of all hereditary diseases including cystic fibrosis, haemophilia, retinitis pigmentosa
and Duchenne muscular dystrophy.

A missense mutation occurs when the substituted base results in a new codon, which leads
to the insertion of a different amino acid in the protein product (Figure 1.5b). The effect of
a mutation i= dependent on the type of amino acid involved, the position in the sequence
and the structural context of the alteration (Khan and Vihinen, 2007). Beyond this chapter,

this thesis will only consider single base substtution missense mutaticns.

Introns (non-coding sequences) must be spliced out of pre-mBMNA, =0 that only exons (cod-
ing sequences) remain in the mEMNA that is used during translation. Splicing must happen
in a very accurate way, which is specified through nucleotide signals that identify specific
splice locations. When a splice mutation occurs, the signals guiding the process are altered
and one or more introns are not removed correctly. If this happens, an incorrect protein will

be produced.

In addition to nucleotide substitutions, nucleotide insertions and deletions can also cocur
i Figure 1.5c and 1.5d, respectively). When this happens, the consequences are usually more
serious than with substitution mutations, because, unless a multiple of three bases is in-
serted or deleted, the whole reading frame downstream of the insertion or deletion event is
altered: a frameshift mutation (Figure | 5e). In an expression mutation, a mutation ocour
in a transcription factor binding site of a gene such as a promoter or enhancer and alters

promoter function and thereby alters gene expression levels.

1.2 The effect of mutations on protein structure

The previous sections have covered how a gene encodes a series of amino acids that make
up a protein and that this sequence of amino acids (the primary structure; Figure 1.6a) can
be changed through mutations in the DMA sequence. This section now focusses on the
wavs in which changes in the primary structure can fundamentally alter the wayv in which

a protein forms and functions.

A polypeptide chain dictates regular geometric shapes in three-dimensional (30 structures

called secondary structure (Figure 1.6b). Thesze are highly regular local substructures. One
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Figure 1.4: A broad overview of the effect of mutation on protein synthesis.

A saction of DNA is shown at the top of this Agure. Proteins ame synthesised from geres and pro-
ced as follows: (1) The double stranded helix is broken to expose a DMA template’; (2) The DMA s
transcribed (using complementary base paiting) into KMA (ribonucleic acid), specifically; (3] mIRMA
‘messenger EMAT (note that thymire has become uracil); (4] The mEMA is then translated acoord-
ing to the geretic code, where each thres letter combination of KMA bases corresponds to an amino
acid; (5] The protein is formed by forming peptide bonds between the encoded amino acids (shown
as grey circles). Pour mutatiors are marked in purple, green, red and orange in the DMNA. The re-
spective base changes, at the DMA and mEMA levels are given in the cormesponding colour. Coding
mutations ame martked with a triangle in the cormesponding colour above the appropriate nucleotide
at the single-stranded DMA level. The native protein sequence [Le, the protein that would be syn-
thesized without the mutations) is given below the mutant protein sequence in a light blue bos.
The purple T:=A mutation is same-sense/synonymous/silent, inducing no change in the protein
segpuence (both GUL and GUA encode valing]. The green G=T mutation is a norsense mutation, in-
troducing a premature stop codon (indicated with the thick vertical line). The red A =0 mutation is
a missense / non-synonymous mutation, that replaces the native cysteine residue (encoded by UGL
with an arginire (encoded by OGU) The orange T2 C mutation is non-coding as it oceurs outside of
a gene, {Adopfad from Medillae (2W09)).
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of the main conformational parameters of the amino acid structure is the value of the phi
and psi angles. These angles define the conformation of the polypeptide chain. With re-
peated special values for these angles, the main chain can adopt conformations such as
the a-helix or 3-strand (Figure 1.6b). Both of these structures owe their stability to the hy-
drogen bonds between M-H and O=C atoms. Certain combinations of secondary structure
can be observed in folded proteins, which form distinct functional domains or structural
motifs such as a helix-turn-helix, leucine zipper, EF-hand calcium binding, and zinc finger

domains. These are all referred to as supersecondary structures (Berg ef al., 2008).

An intact 3D structure of the polypeptide chain and the arrangement of amino acids so
that those far apart in the primary structure come together in space is referred to as the
tertiary structure (Figure 1.6c). The stability of this structure is determined by non-covalent
interactions and disulphide bond=. Each globular protein ultimately folds into a 31 shape
with a distinct inside and outside. The interior of a protein molecule contains a prepon-
derance of hydrophobic amino acids, which tend to cluster and exclude water. The core is
alzo stabilized by Van der Waals forces and hvdrogen bonds. In contrast, the exterior of a
protein molecule is largely composed of hydrophilic amine acids, which are charged or able
to hydrogen-bond with water allowing protein to have greater solubility (Berg ef al., 2006).

Many proteins consist of two or more polypeptide chains that are cormmonly referred to as
‘subunits”. Chuaternary structure refers to the arrangement of subunits in a multichain pro-
tein (Figure 1.6d). Protein stability i= determined by noncovalent forces such as hydrogen
and ionic bonds, Van der Waals and hydrophobic interactions. Protein chains can associate
with other chains to form dimers, trimers and other higher orders of cligomers. Generally,
multimers contain 2—-6 subunits, which may be chains with the same sequence (homomul-

timers) or different sequence (heteromultimers).

The function of a protein relies on the precise conformation of the fully folded protein
In turn, the correct folding is dictated by the sequence of amino acids that make up the
primary structure. Any change to the amino acid sequence, for example, by the ooccurrence
of a missense mutation, may result in a change in the way in which amino acids interact
with each other. Even a slight change in protein 3D structure can alter function, which
can have advantageous or deleterious phenotypic consequences. The ways in which amino

acids interact with each other i=s outlined in the next section.
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1.2.1 Forces controlling protein structure

The chemical nature of amino acids dictates the specific ways in which they interact within
a protein. The structures of the 21 amino acids and their chemical properties are given in
Figure 1.2, The following sections detail the type of bonding or interaction in which each of
these amino acid types can be involved, relating these to the possible effects of disruption

of those interactions.

1.2.1.1 Hydrogen bonds

A hydrogen bond oocurs when an electronegative atom interacts with a hydrogen atom
that is covalently bonded to another electronegative atom (Baker and Hubbard, 1954). In
proteins, this directorial interaction usually shares the hydrogen atom between oxygen and
nitrogen atoms (Baker and Hubbard, 1984). The electronegative atom without a hydrogen
bound is described as an acceptor atom and the hydrogen atom (or the atom to which it
is bound) is described as the donor. Figure 1.7 shows the hydrogen bonding capacity of

arnino acids.

The vast majority of backbone-sidechain hydrogen bonds are enclosed (inside the protein)
indicating that this type of interaction is important in maintaining the stability of the intra-
protein structure (Eswar and BEamakrishnan, 2000). Mon-local hydrogen bonds (sidechain-
sidechain) play an important part in the formation of protein tertiary structure. Although
all hydrogen bonds are essential for the proper formation and stability of protein structure,
it has been shown that the local bonds provide more stability to a protein than non-local
hvdrogen bonds (Shi ef al., 2002).

Mutation analvsis of chemotaxis protein Chey in Esdernshia coli has shown that replace-
ment of hydrophobic amino acids (valine) with ones that are capable of establishing hy dro-
gen bonds (threonine), increaszes the stability of the protein structure (Wilcock et al., 1958).
ther studies have shown that replacing threonine with residues not capable of hydrogen
bonding results in protein destabilization (Alber ef al., 1987). More recently, a method was
developed to evaluate whether hydrogen bonds can be maintained when mutations ocour
to residues involved in hydrogen bonding (Cuff ef al., 2006). Computational methods such
as this could help to identify types of mutations that affect one of the most important inter-

abomic interactions in protecmics.
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All residues are able to form backbone hydrogen bonds (although proline can only form a backbone
hydrogen bond as the hydrogen bond acceptor). Inaddition, some residues are able to form hvdo-

B mpior alon

gen bonds with their side chain, Dots directly above or below an atom indicate that it may act as

a donor (blue) or acceptor [red). The empty blue dot indicates that histidiese is able to donabe bwo
hydrogens when it is positively charged. Residue side chains may form more than one hydrogen
bond, and may act both a5 a donor and acceptor. (Adapbed from Meldillon fhesis (200900,
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(@) Fesiches Z07-290,
Secondary Sructuee

() Femiches 251274,
Secondary Sruciuee

(E) Fesidues 227290,
Backbone hydrogenbonding

(2] Femichues 251274,
Backbone hydeogenbonding

() Remichaes 277-200),

Side chain hydeogenbonding
i
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() Fesicues 251-774,
Side chain hydeogenbonding

Fgure 1.8 Badkbone hydrogen bonding generates & and § secondary structares.
[a) &n o helix (residues 277-200) and (d]) £ sheet (pmicues 251-724) [rom the seuctuse of tumone Supp i

protein 53 T35 (FDE ID 2:0). Hydeogen bonds ae indicated by thinner connections (with green indicating

backbone bondz (B and (g]) and dark bhue indicating side chainbondz (=) and ([]). Fesidues are ooloued by

Flructu e [with wellow indicating #eiouctuees and pink indicaling o Foudures),
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Hydrogen bonds can be divided into local and non-local interactions depending
on the distance in linear sequence between interacting partners. The majority of
backbone-backbone (Stickle ef al., 1992) and backbone-side chain interactions (Eswar and
Ramakrishnan, 2000} are local interactions among near-neighbour residues. a-helices are
created and maintained by local hydrogen bonding among backbone atoms (Kabsch and
Sander, 1983; Wilmot and Thomton, 1988). These make up approximately two thirds
{65%) of hydrogen bonds in the protein (Stickle ef al., 1992) (see Figure 1.5). McDonald
and Thomton, (1994) showed that almost all buried H-bond capable side chains are
involved in H-bonding. Hydrogen bonds are fundamental to the proper formation and

stability of protein structure, disruption of a buried H-bond caused by a mutation will
have destabilising effect on protein.

1.2.1.2 Covalent bonds - disulphide bridges

Covalent disulphide bonds form by oxidation of thiol groups in two cysteine
residues (Hazes and Dijkstra, 19858); present on the same or different polypeptides (Mur-
ray and Harper, 2000) (=ee Figure 1.9). Thangudu & al. (2008) showed that the majority of
those bonds are formed between cysteine residues near to each other in the polypeptide
sequence. Distant disulphide bonds (ie. between cysteine residues that are more than
eight residues apart) are less frequent, but play an important réle in the folding and
stability of native protein structures (Abkevich and Shakhnovich, 2000). It has also been
shown that the degree of the stability is dependent on (i) protein conformation and (ii)
the number of residues between linked cysteines: more residues between the disulphide

bridge result in a more stable native structure (Pace ef al., 1988).

In 1996, Jeftrey eof al.’s (1996) calculations suggested that a disulphide bond should give
rize to 2.5 - 35 keal/maol of stabilization, depending on the primary sequence separation
between the cross-links. Introduction or deletion of disulphides by site-directed mutagen-
esis has produced varying effects on stability and folding depending upon the protein and
location of disulphides in the 3-D structure (Thangudu ef al., 2008).

The importance of disulphide bonds to protein stability and function is demonstrated in
Parkinson's disease, where mutations in DJ-1 can cause an early-onset form of the dis-
ease (Canet-Aviles ef al., 2004). Many mutations have been identified, including large
deletions and missense mutations, thought to abolish cyvsteine kinase activity and disul-

phide bonding at the affected residue (Olzmann ef al., 2004; Logan ef al., 2010}, Restoration
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of a disulphide brid ge between two oppoeite subunits has been shown to stabili ze zewveral
CT-1 pnatants and increased the ability to scaven ge reactive oxygen spedes and block pro-
tein agoregation events (Logan ef al., 2010). Identitication of such destabili zing pmitations
iz inmportant for the identification of protein stabilization strategies that can be veed thera-
peuticall ¢ Conzequently, dismaption of disulphides present in a nati we stracture is likely to
hawe an important effect on protein stability

Figure 1.9: Dizulphide bonding,

Fonu disulphide bonds ape [ormed betwes n eight cysteing residues(6-127, 30-115, 7604 and &4-20]in lysozyme
(TDE ID Pyz). Cysteing meidues ae highlighted a® o-cadon in geeen, S-carbon inred and y-sulphus in blhue,
Dizutp hide bond=s are highlighted in yeliow.

L213 Thehydrophobic affect

The amino acid R group (zide chain) iz either h ydrophilic (Figure 1.2; a pdar side chain has
a tendency to interact and form hydrogen bonde with water and other polar substances) or
hydrophobic (Figure 1.2; a non-polar side chain, thie preferring other neuwtral and non-polar
molecules). H ydrophobic residues often cheter together and their R-groups tend to drive
them awa y from the exterior of proteins and into the interior where the y are buried into pro-
tein coreforming micelles (Tanford, 1980). This is considered to be the ke driving force in
protein folding, and restricts the available conformations that proteins can adopt (conpare
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Figures 1.10a and 1.10b) {Ptitsyn, 1996; Ptitsyn and Ting, 1999; Ting and Jernigan, 2002). A
tightly packed hvdrophobic core, maximizing favourable van der Waals contacts and mini-
miring cavities, is crucial for protein tertiary structure and stability of the protein (Levitt of
al., 1997; Richards, 1997; Lee ef al., 2000; Leiros ef al., 2000; Wang ef al., 2000; Morthey ef al.,
2002).

Disruption of the hydrophobic core or exposure of hydrophobic amino acids on the surface
can have profound effects on the function of a protein. For example, mutations in the prion
protein that cause an increase in exposure of hydrophobic amino acids are thought to be the
cause of prion toxicity (Corsaro ef al., 2011). Moreover, the hydrophobic core is generally
le=s tolerant of changes that distupt packing than the solvent-accessible surface (Bowie of
al., 1990). In the field of cancer research, 16 independent missense mutations have been
identitied in the BARD] protein, which is the heterodimeric partner of the ovarian can-
cer predisposition gene product BRCAL It has been suggested that mutations mapping
to the hydrophobic core forming the BARDLBRCA] interface can prevent formation of
the heterodimer and render BRCA] functionally inactive, thereby predisposing to ovarian
cancer (Morris ef al,, 2002). Consequently introduction of hydrophilic resides into the hy-
drophobic core, or introduction of hydrophobic residues on the protein surface, is likely to

have an effect on protein stability.

1.2.1.4 Van der Waals forces (dispersion forces)

‘an der Waals forces are very weak non-covalent interactions (001 - 0.2 keal /maol) and re-
sult from interactions between induced dipoles that arise from fluctuations in atomic charge
densities giving the attractive component. The repulsive component is the result of the
electron-electron repulsion that occurs as two clouds of electrons begin to overlap (Ponder
and Case, 2003). These weak interactions stabilize the protein based on the huge number
of dispersion forces that oocur in protein molecules, and these significantly contribute to

protein folding and stability (Eriksson ef al., 1992; Chen and Stites, 2001 ).

The interaction are described by the Lennard-Jones potential Equation 1.1 and Figure 1.11,
where E is the potential energy, A and /# are constant parameter adjustable based on the

interaction atoms and r is the distance between the atoms.

Epaw = =33 — (1.1)
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[a) Lyzozyme (Plyz)

(E) Lyzozyme(?lyz), sliced in hall ajong the Z-axis

Figure 1.10: The hydrophobic core.

Hydoophabicity in lysozyme (FDE ID Pyz). Bhue indicates hydeophilic wsiduwes, d indicates hrdeophobic
smjcues, [a) shows the whale poein; (E) shows the same pooein, sliced in hall along the Z-axk, 10 expoes
the patterns of hydeophobicity in the ooee of the Flnuctuee . Hydoophilic sesidues chizter on the suclace, whik
hydrophobic residuwes pradominaml y form the coes.
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Although it iz harder to attibute changes in protein fimction to specific alterations in van
der Waals forces owing to mutation, it is clear that substitution of an amine acid for cne
with atomz having different atomic numbers will increase or decreaze the stren gth of the
dipole effect. Howewer, since van der Waals forces are wer y weak but numerous, alterations
to wan der Waals forces resulting from a single point putation are unlikely to result directly
in deleterione consequences. Mutations that results in a clash betwesn atoms will result in
a ver y high van dar Waals energy and lead to distuption of the stnicture.

Fignme 111: Lennard-Jones potential.

L2115 Heaectrostatic interactions and salt bridges

Hectroetatic forces can be a chargecharge, charge-dipole, or dipole-dipole interactions. The
attraction of negatively and positivel ycharged aninoacid sde chains (Figure 1 2] can form
quite a strong electrostatic force that stabilize protein strudure, falling off as the square of
the distance between the charged atone (MMitchell of af, 1992). Interacion strength alzo
depends hea vily on thedielectric constant of the medivm in which the protein i= diszolwed.
Water and iome can shield electrostatic interactions (3= can parts of the protein itzelf), re-
ducing both their strength and the distance owver which they operate. Ionic bond formation
depends on the protonation state of the partners and hence on pH. Jonie bonds are local
electrostatic interactions of charged atome owver a distance of 44 or les. Salt bEridges are
iomic bond interactions between atone that are also hydrogen bonded [Torshin and Harri-
zom, 2001).

Hectrostatic interactions are described by Coulomb's law (Equation LX), where g; and gg
are the charges, € is the dielectric constant and + is the distance.
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[ = (12)
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Long-range electrostatic effects are important not only for stabilizing the tertiary (Here-
mans and Heremans, 1989; Torshin and Harrison, 2001) and quaternary structure, but also
for protein function {e.g. catalysis and ligand binding). A substantial component of the
energy involved in protein folding is charge-dipole interactions (Jelesarov and Karshikoff,
20093, This refers to the interaction of ionized R-groups of amino acids with the dipole of

the water molecule.

Mutation of any amino acid can affect the shape of the dielectric and the ion accessibility
surfaces of the proteins. For example, mutation of residues that are charged at phys=io-
logical pH (arginine, lysine, glutamic acid, aspartic acid and histidine) to the non-polar ala-
nine cause perturbations in the electrostatic potential distribution of proteins without larger
changes to protein structure (Gorham et al., 2011). On the other hand, in phenylketonuria
(PELT), a genetic disease caused by mutations in the human phenylalanine hydroxylase
iPAH) gene, most of the missense mutations identified result in misfolding of PAH (Pey of
al., 2007). Using the protein-design algorithm FoldX, most mutations showed a correlation
between energetic impact and residual protein activities and the patient phenotype (Pey
ef al, 2007). This analysis suggested that decreased protein stability through disruption of

electrostatic interactions was the main molecular pathogenic mechanism in FELL
1.2.1.6  Binding sites in protein structures

A protein ligand is a biomolecule, atom, or ion (e.g. substrates, inhibitors, activators, metals
and neurctransmitters ), which binds to a specific binding site on a protein and has an effect
omn its activity, function, or conformation (Figure 1.12). Consequently mutations to residues
interacting with ligands are likely to have an effect on protein function. The ligand inter-
acts with its specific protein using the three standard intermolecular forces: (i) electrostatic
forces between oppositely-charged ionic or polar groups, (i) hydrogen bonds and (iii) van
der Waals forces as well as through the hydrophobic effect.

A mutation that disrupts ligand binding has been observed in X-linked lymphoprolifer-
ative (XLT') syndrome. Missense mutations in the SH2 domain protein SH2D1A or SAF,
prevent binding to its physiclogical ligands including the signalling lymphocyte activating
molecule (SLAM) (Li ef al., 2003). It is theorized that reduced binding of SATP to SLAM
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results in activated SLAM binding to other 552 damain proteins, resulting in T cell acti-
vation and hyperproliferation of lymphocytes (IMelson and Terhorst, 2000). X1I i a rare
genetic dizorder characterized by a predilection for fatal or near-fatal Epetein-Barr vire in-
tedtion, mubsequent hypogammaglobulinenia, and a markedl y inoeased rizk of lymphoma
or other lymphoproliferative disease (Chagant of of, 2008).

Figure 1.12: Ligand bindin g,

The sructwee of a complkes between the human MUM2 poiein and a small molende inhibivos (PUE ID 216K)
which mimics the native ligand. The ligand [inhibitor) §-chioes-3-[ 14 d~chioben zyl H-p henyl-1H- imidazok
3yl |- 1IH-indole-2-catox vlic acid is shown embedded in a binding pocket, and residues within 4358 of the
ligand arz highlizhedin rad (1he 28 Of 1the poriein & shown in dack grey, with Sacondar r Aouciucal eleme ms
indicaed).

1.3 Phenotypic consequences of mutation

ilearly, an alteration in TIMNA pay change the sequence of a protein zuch that it leadstoa
partiall y or completely non-fimctional protein. Table 1 2 listed the different effects that sin-
gle baze patations may have, and all but truly silent pmitations may result indiseaze. Std-
ies on Crosophila melanogaster, show that wherea ontation has altered a protein sequence,
there iz a A% chance of the ouatation being harmful (Sawyer of of, 2007). Con versely, a=



CHAPTER 1. BIOLOCGICAL INTRODUCTION 42

described in Section 1.1.1, some mutations are known to confer a genetic advantage, while

others have no effect at all. Such mutational consequences are discussed below.

1.3.1 Mutations with phenotypic advantage

Mutations generally have a negative connotation and are assumed to provide nothing but
health complications. However, the Lawrence Berkeley MNational Laboratory at the United
States’ Department of Energy has publizhed research regarding a rare mutation in proteins
that protects humans from cardiovascular disease (Berkeley-Lab, 2002). This discovery isa
possible breakthrough in creating more effective medicines for eliminating cholesteral and
preventing its accumulation. Damage from oxidation, where free radicals remove electrons
from healthy tissues, can be a result of mutations. Diseases such as Alzheimer ‘s, csteoporo-
sis, and atherosclerosis are believed to be caused by excessive ovidation. In atherosclerosis,
free radicals tend to withdraw electrons from lipids in artery walls, resulting in plaque
formation and blockage of the arteries. However, the Berkeley study showed that the
apolipoprotein A-1 protein (apoA-I), when it undergoes a particular mutation {Argl173Cys),
keeps an antioxidant embodied in the sulphur-based residue, cysteine, that absorbs un-
paired electrons and blocks arterial inflammation (Berkeley-Lab, 2002).

The Berkeley research i= a response to a paradox that has been puzzling the world of
medicine since 1980. At this time, an [talian citizen was sent to Milan’s Lipid Centre be-
cause of his high level of blood triglyceride; one of the factors that increases the threat of
heart ailment=. Additional medical checks showed that the patient also had a very low
level of protective high-density lipoprotein (HDL), which removes unwanted cholesterol
from the coronary arteries and hinders the formation of plaques. However, the patient had
not displayed any pathological signs. This patient and others from the same region of Italy

were later identified as having a mutated form of the protein apoA-L

The mutant form known as apoA-l Milano ocours in less than | in 50 people and introduces
a free cysteine, which possesses a sulthvdryl group. In the Milano mutation, almost 70%
of the protein exists as dimers, mainly caused by an inter-chain disulphide bridge. Such
pairing prevents the accurmulation of HDOL, leading to the deficiency found in humans who
have this mutation. The remaining 3070 of Milano mutant proteins remain as monomers in
which the sulfthydryl is unoccupied and is available to perform other reactions including
acting as a strong antioxidant. Consequently the mutation has the ability to counter cardio-
vascular disease by resulting in the elimination of cholesterol, as the reactions that cause its

accumulation are prevented.
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The next step in the Berkeley project is to utilise these data to develop more effective ther-
apies, such as recent peptide-based cardiovascular disease treatments. Common therapies
targeted against apoA-I eliminate cholesterol from the arteries through HDL. However, fu-
ture treatments could link this with the antioxidant system caused by the mutation, thus

both preventing the accumulation of cholesterol and limiting oxidation.

1.3.2 Neutral mutations

Mutations that cccur naturally in DMA are normally corrected by DMA repair systems or
have no selective advantage or disadvantage (Brctic Kostic, 2005). Mutations that do not
atfect the phenctype are called neatral mutations (Sunyaev ef al., 2000). Where this kind of
substitution results in the use of a different amino acid in a protein, the replacement amino
acid usually has very similar physicochemical features which have a negligible effect on
the protein (e.g. if codon AAA is mutated to AGA, arginine would be used in the resulting

protein instead of lysine].

Astudy by Ma of al. (2002) showed that when scanning a coding region of the MLI-IF gene
iMuclear LIM Interactor-Interacting Factor), which is physically near to the tuberculosis-
associated gene MIAMPL, three SNPs [204C-A, 402T-C and 4720G-A] were identified. Mone
of these mutations in MLI-IF, showed any significant association with human tuberculosis.
According to the neutral theory of Kimura (Speicher et al, 2010), the great majority of
evolutionary changes at the molecular level are caused by selectively neutral or selectively
nearly neutral mutations. Thus, these three SMFPs were neutral variants with little or no

selective advantage or disadvantage.

1.3.3 Damaging mulations and penetrance

The term ‘penetrance’ is used in genetics to characterize the likelihood of individuals that
carry an allele or genotype, to manifest a particular phenotype. It refers to the proportion
of individuals with a disease-associated mutation showing clinical symptoms  (Brenner
and Miller, 2001}, or the chance that a person who carries a mutation will be affected by
the disease (Bretic Kostic, 2005; Liao, 2009). As low penetrance mutations rarely develop
the symptom or trait with which they have been related at a detectable level, it i= hard to

disentangle environmental and genetic factors (Brenner and Miller, 2001 ).

It is well known that defects in the cell cycle, leading to unregulated cell division can canse

cancer. For example, variations in DNA located near some genes that control growth can
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also increase the risk of skin and brain cancer. Cline (2009 published five studies that show
that changes close to the CDENZA and CDEM2ZE genes increase the likelihood of some
kinds of tumour. Previous research suggests that these genes are ‘tumour suppressors’.
Two per cent of people with melanoma also have CDEMN2ZA mutations. Complete deletion
of COENZA and CDEMNZ2E is obzerved in almost half of all tumours in the brain. These

genes have a significant réle in several of the most basic processes in cells.

Of the five studies by Cline (2009), two were concerned with gliomas, which represent
about 80% of all cancers of the brain and generally have a very poor prognosis. The other
three studies looked at skin cancers. Two of the three studies related to melanoma while the
other concerned basal cell carcinoma. Melanoma reprezents less than 5% of all skin cancers
but accounts for most deaths caused by the disease. (n the other hand, basal cell carcinoma

is not deadly, but must also be treated carefully.

Mutations close to the genes COEKN2A and CDEN2E were considered independent in the
three cancer-related studies. This mav indicate that each has its cwn impact on increasing
risk. Changes within and around COEMN2ZA and CDEMN2E may also be important in other
diseases; SMPs near those genes are associated with coronary artery ailments and type 2

diabetes (Cline, 2009).

Un the other hand, high penetrance mutations are mutations where the carrier usually
shows the etfect of the defective gene. For example, carriers of BRCA 1 and 2 mutations
have a higher than 80% chance of being afflicted with breast and,/or ovarian cancer (War-
burton, 2008).

Very high penetrance disease-causing mutations or “pathogenic deviations® (FDs) are easier
to identity and study, because the attribute created by the allele will always be apparent.
This is called Mendelian inheritance because the attribute manifests itself by genetic trans-
mission that can be accounted for by a distinct gene model (Brenner and Miller, 2001}, In

addition, Mendelian inherited FDs may demonstrate dominance and co-dominance.

A common example of a Mendelian inherited disease is sickle cell anaemia. When a nu-
clectide at the 17 position of the gene encoding the 7 chain of haemoglobin is altered,
the codon change leads to an amino acid in the 6™ position of the chain being changed
from glutamic acid to valine. This results in a change in the quaternary configuration of

haemoglobin that has a significant effect on human physiology.
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Another example is described by Karkkainen (2000}, who found that human hereditary
lymphoedema is related to FDs in the vascular endothelial growth factor receptor 3
(eGFR3).  An arginine to proline mutation in the extremely conserved structure of
the catalvtic site causes the protein kinase domain to become inactive; this restricts
angiogenesis and vasculogenesis, and eventually causes lymphoedema. Clones of cells
with different attributes within the same individual can develop owing to PDs in somatic
cells. Most of the experimental data on pathogenic single amino acid polymorphisms

relates to non-lethal Pk identified in somatic cells.

1.4 5Study aims and objectives

‘Find out the cause of this effect,
O rather say, the cause of this defect,
For this effect defective comes by cause.”

Willianr Shakespere

Variations in the human genome are a key data source for studies of disease develop-
ment, potential treatments and understanding evolutionary mechanisms (Venselaar ef al.,
2010; Studer of al, 2013). Advances in high-throughput sequencing have accelerated the
rate at which mutations are identified and exome sequencing (i.e. sequencing of the protein
coding part of the genome) is likely to become the most common tool for the identifica-
tion of Mendelian dizease genes in the coming years (Gilissen ef al., 2012). Though these
sequencing methods are becoming more commonplace, it is still very difficult to predict

whether a ST will cause a disease.

Une way to determine the effect of mutation on protein function is by experimental explo-
ration. Such experiments involve site-directed mutagenesis of different residues in different
positions, which is time consuming and costly. An alternative to this approach is 310 mod-
elling of side-chain mutations, though these models can only be predictive if they are highly
accurate. That one seemingly insignificant change in a side-chain may cause a significant
loss of protein function, while another has no effect, makes this tvpe of modelling highly
difficult to achieve (Feyfant ot al., 2007). Monetheless, the predictive power of models im-
proves as the quality of the information put into them improves and the number of train-

ing points used increases. For example, one model included molecular mechanics energy
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terms for bond distances, angles, dihedral angles, peptide bond planarity, and non-bonded
atomic contacts to predict the effect of mutation on protein structures (Feyfant of al., 2007).
A better understanding of how structural constraints affect protein evolution will help to

optimize models of sequence evolution and to determine the consequences of a mutation

event (Studer et al, 2013

Several web servers are available to help interpret mutational effects. Some methods are
for the study of very specific mechanisms (e.g. a studv of molecular mechani=m of ki-
nase activation by cancer mutations (Dixit et al, 2009), whereas others are developed to
predict whether a variation is harmful or benign (Adzhubei et al., 2010). Traditional pre-
diction methods include SIFT (Mg and Henikoft, 2001), PolvPhen (Ramensky ot al., 2002),
PolyPhen-2 (Adzhubei of al., 2010) and Panther (Thomas et al., 2003), which classify vari-
ants according to empirically derived rules (FolvyFPhen), Bayesian methods (PolyPhen), or
mathematical operations (SIFT, Panther) (Thusberg et al,, 2011). While Panther and 5IFT
are based on evolutionary information, other methods including PolyFPhen, and state of the
art prediction methods such as SMNP=&GO (Calabrese of al., 2009) and MutPred (Lieof al.,
2009 are based on a combination of protein structural and /or functional parameters and
multiple sequence alignment (M5A) derived information (Thusberg ef al., 2011). More re-
cently, lunctional analysis of Hidden Markov Models (FATHMM) has been used to capture
position-specific information within a M5A of homologous sequences (Shihab ef al., 2013).
This system has been shown to out-perform both SMNPs&GO and MutPred for the predic-
tion of functional effects of protein missense variants (Shihab of al., 2013). These methods

are described in more details in Chapter 2.

This PhID forms part of the Single Amino Acid Polymorphism (SAAF) project and aims to
maintain and expand SAAPdb, improve the analysis, introduce the SAAT database Pipeline
iSAAPdap)and build a SAAP Predictor (SAAPpred). Having collected the mutation data in
SAAPdb (Chapter 3), the database system analyses what effect, if any, mutations may have
on protein structure and therefore function. SAAPdb attempts to identify the structural
effect and therefore explain the mutation. The development of a conservative, comprehen-

sive structural analysis pipeline with which to analyze SAAPs, is one of the main aims of

the SAAF project (Hurst ef al., 2009]).

Howrever, it is important to realise that there mav be more than one structure available for
a protein containing a mutation. The protein structure may have been solved with different
mutant residues, solved at different resolutions, in different space groups, or simply be

multiple chains in a cryvstal structure. Thus, mutants may or may not be the same as the
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mutation being examined. In all of these cases, certain ‘explanatory factors” describing the

local structural effects of a mutation may or may not be present in the various structures.

Previously (in the MS5c project preceding this PhI? study) cases where two or more struc-
tures of the same protein were available were examined. This was undertaken in order to
assess the significance of structure variation on fifteen explanatory SAAPdb analyses, and
to understand why the effects differ in the alternative structures. For instance, a mutation
might introduce a charge chift in the core of the structure or may cause a clash (ie. itis
too big to fit in the space available) in one structure, but not in another (Al-Mumair, 2010).
The study showed that several of the analyses that were Boolean in nature {i.e. an effect
either was, or was not, present) were very sensitive to precise structural details. This im-
plied that such explanatory factors will be less reliable when low resolution structures or
homology models are used for analyeiz. Consequently, an important aim was to change

from a Boolean analysis to real-valued scales.

Crverall, this project started by rebuilding the entire SAAPdb, incorporating updated and
novel data sources. This was followed by re-analysing cases where multiple structures of
mutations are available, to determine the analysis sensitivity to precise structure. The find-
ings will help to assess the significance of factors by looking at the sensitivity of different
analysis to alternative structures. This understanding allows us to improve and expand the
data analysis spectrum and change the Boolean structural analyses toa continuous variable.
These analy=es can then be implemented and integrated into the SAAPAb pipeline. The
project then focuses on determining rules that will aid in the interpretation of, or making
predictions based on, the data by making a distinction between SMNPs and PDs, in terms of
their impact on protein structure. Hence, this information is useful for predicting whether
a novel mutation would result in a disease phenotype and in future for designing nowvel

disease therapies.



Chapter 2

Bioinformatics Resources and

Methods

The analysis of the structural effect of mutations requires an understanding
of a number of underlying resources and techniques described in this chapter.
The Single Amino Acid Polymorphism Database (SAAPdb) is a resource devel-
oped in the Martin group that imports mutation data from raw data sources
and analyses those data. The SAAF data analysis pipeline (SAAPdap), also re-
quires access to numerous other resources, while the SAATP prediction software
(SAAPpred) uses machine learning techniques to predict the pathogenicity (or
phenotype) of an novel SAAT The contributions of this research to the SAAT-
dap and the function of SAAPpred are described here and in chapter 3.
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2.1 Primary information resources

The first step in building SAAPdb (see Chapter 3) was to prepare and import data
from external sources. DNA data from the human genome were gathered from
GenBank (Benson of al, 2011) and the Furopean Molecular Biology Laboratory (EMA)
sequence database (Leinonen ef al, 2011). Protein sequence-based information was
downloaded from UniProtkE (Consortium, 2011); and protein structures were retrieved
from the Protein Data Bank (PDBE) (Rose of al,, 2011). Single Nucleotide Polymorphisms
(SMFs) were acquired from dbSMFP  (Sherry ef al., 2001). Pathogenic Deviation (PD)
mutation data were gathered from several resources: the majority were derived from the
Online Mendelian Inheritance in Man (OMIM) database (Amberger et al, 2011}, and
a variety of smaller locus-specific mutation databases (LSMDBs) were also used. The
PDBESWS protocol  (Martin, 2005) was used to map sequence data onto structural data.

These resources and their contents are described in more detail in this section.
21.1 GenBank, ENA and the DNA Data Bank of Japan

GenBank (Benson ef al., 20113, ENA (Flicek et al., 20113 and the DNA Databank of Japan
(DDE (Sugawara ef al., 20087 all contain publicly available nucleotide sequences along
with supporting bibliographic and biclogical annotations (Cochrane et al. 2011). Gen-
Bank is maintained by the MNational Centre for Biotechnology Information (WCEI) in the
United States. The EMA database i= produced by the European Bicinformatics Institute in
the United Kingdom. DIDE] is provided by the National Institute for Genetics in Japan. Each
database collects a portion of the total sequence data reported worldwide, and the three sve-
tems are synchronised on a daily basis through an extensive information exchange, =o that

each database contains all of the available information.
2.1.1.1 GenBank

GenBank was created in 1982 at the Los Alamos Mational Laboratory, and development
continued at Stanford University in the mid-1980s. By 1992, it had become the responsi-
bility of the NCBIL Most submissions to GenBank come from individual laboratories or via
batch submissions from large-scale sequencing projects. These sequencing projects include

whole genome, shotgun (WG5), and environmental sampling projects. Sequences are also

1 , . , Ly
http://www_nchi.nlm. nih. goe/genbank !
-

‘nttpr S wew_gbl . ac . ukSana/

“nttperSSwew_ddh].nig.ac. Jpf
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deposited in GenBank by the United States Patent Office. Almost all records enter GenBank
as direct electronic submissions. The information is first reviewed for quality assurance
after which new entries are assigned an accession code (a unique identifier — usually a com-
bination of one or more letters and numbers, such as a single letter followed by five digits
ez, UL2345) or two letters followed by six digits (e.g. AF123456)).

Each GenBank record must contain contignous sequence data from a single molecule type.
The various molecule types can include DMNA, EMNA, precursor ENA, mEMNA (cDMA), ri-
bosomal RMA, transfer RMA, small nuclear RMA and small cytoplasmic ENA. GenBank
records include fields such as: a brief description of the sequence (source organism, gene
name/ protein name, function); the accession code; a version number (which al=o includes
a Gl code in the same field an identifier for the sequence); and keywords (a word or phrase
describing the sequence). Also included are descriptions of the source crganism; literature
references (authors, titles, journal, etc.); Features {i.e. information about genes and gene
products and regions of biological significance that can include regions of the sequence that

code for proteins and RNA molecules); and a number of other features.

Release 196 (15 June 2013) of GenBank held over 165 million sequences from over 380,000
named organisms at the genus level and below. For example, there were more than 570
complete microbial genomes and more than 190 eukaryotic genome assemblies (including
the reference human genome). About 129 of GenBank sequences are from humans. In
building SAAPdb (Chapter 3), release 153 (11 April 2011) of GenBank was used which held

over 135 million sequences.

The entire GenBank dataset or subsets can be downloaded for local use by file transfer
protocol (FTF). These databank subsets include taxonomic categories such as bacteria and
viruses. Alternatively, parts of the database can be downloaded based on the sequencing
strategy used to obtain the data. These sections include expressed sequence tags (ESTs),
genome survevs, high-throughput genomics, high-throughput cDMAs and environmental

samples.

2.1.1.2 The European Nucleotide Archive (ENA)

EMNA (formerly known as EMEBL) records are similar to those held in GenBank. They pro-
vide (in addition to an identifier), an accession code, description, keywords, organism
source and classification, literature reference information, features and the sequence, and

database cross-references. Where appropriate EMA entries are cross-referenced to other
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databases such as protein sequence databases [e.g. TrEMBL (Consortium, 20115 Uni-
ProtkB /SwissProt (Consortium, 2011)], taxonomy databases [e.g. NCBI Taxonomy (Say-
ers of al., 2011}], species-specific databases [e.g. FlvBase (Tweedie ef al., 2009)] and other
specialised data collections [e.g. the Eukaryotic Promoter Database (Schmid ef al., 2006),
TRANSFAC (Matys ef al., 2006)], and the literature [e.g. FPubMed (Savers et al., 2011)].
Dewnloadable information is structured in a similar fashion to GenBank, and subsets of

reconds can be obtained according to taxonomic categories and sequencing approaches.

The latest release (118) of EMA was created on 02 June 2013 and contains over 209 mil-
lion sequence entries and over 615 million cross-references, of which over 38 million are
to UniProtkB /TrEMEL and more than 634,000 refer to structures in the PDE (Rosze of al.,
2011y ENA contains approximately 32 million records from humans, a further 46 million
from other marmmals, nearly 32 millicn metagenomics-based sequences, and 36 million in-
vertebrate sourced entries. The largest taxonomic category is plants, which contains 78
million nucleotide sequences. As the ENA is synchronised with the NCBL and the DMNA
Data Bank of Japan, these statistice will be very similar in the corresponding databanks.
Most additions to the ENA databank are made through direct submissions from individual

researchers, groups, genome sequencing projects, and patent applications.

In the version of EMA used for populating SAAPdb (Chapter 3), the databank (release 107
from March 2011) contained over 206 million sequence entries. Of these, almost 29 million

were from humans, and nearly 28 million from environmental samples.

2.1.2 The Universal Protein Resource

UniProtKB TTEMBL and UniProtKB/Swiss-Frot

The Univers=al Protein Resource (UniProt) is a collaborative project involving the European
Bioinformatics Institute, the Swiss Institute of Bicinformatics and the United States Protein
Information Resource. The aim is to provide a protein sequence and functional information
resource!  (Consortium, 2011). It has been under development since 2002 and contains a
number of related resources that are created and maintained in the context of the UniProtkB

project.

The Unil'rot Knowledgebase (UniProtKE) is a curated protein information resource that in
cludes information about function, classification and cross references. UniProtkB i=s com-

posed of two parts: Swiss-Prot and TrEMBL. TrEMBL i= an automatically annotated, un-

otep: /s wew . anliprot . orgy
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reviewed database of protein sequences. Swiss-Prot is a high-quality manually annotated
database of protein sequences that have been reviewed by UniProtER scientists. The Uni-
ProtkB Archive (UniParc) is a database used to keep track of sequences and their identifiers
reflecting the history of all protein sequences stored in the UniProtE B databases.

TrEMEL is made up of all coding regions in the GenBank /ENA /DDB] databases (TrEMEL
can be loosely thought of as translated EMA), proteins from the literature, and those that
have been submitted to UniFrotKR, but not vet entered into Swiss-Prot.  Automatic an-
notation uses InterPro (Hunter of al., 2009) classifications of predictive protein signatures.
Information is transferred from well-characterised entries in Swiss-Frot, to unannotated en-
tries in TrEMEBL. Owing to the high volume of data that are deposited in EMA, TrEMEL se-
quences are released to the public before their entry into Swiss-Prot. This is to avoid a delay
while these sequences are processed by UniProtKB staff, and enable researchers to access

the very latest information without compromising the quality of information in Swiss-Prot.

An accession number (AC) is allocated to each sequence upon its addition to Unil'rotkE.
The ACs are a string of six alphanumeric characters (starting with A, F, ) or O) and are sta-
ble between database releases and are guaranteed ahways to refer to that particular protein
{although the sequence records mayv be amended). If several UniProtKB entries are merged
into one record or deleted, the ACs of all the previous entries are retained as a secondary
ACs to the new primary AC; each record has one pringery AC and can also have secondary
ACs. In the example shown in Figure 2.1, the ID (see below) is P53_HUMAN the prisuary
AC is PM63T and the secondary ACs are: (Q15086; Q15087; Q15085; etc. (the primwary AC is
the first AC provided, see lines #1 and #2 in Figure 2.1). The primary AC should be cited if
anentry has multiple AC=. When working with UniProtKB /Swiss-Prot data, it is important
to ensure data integrity by always using primary ACs.

The 1D “Entry Mame" is another unique identifier that is part of UniProtKB records. Each
UniProtEB record is described by both an identifier D and AC. The 1D= take the format
PROTEIM_SPECIES, where FROTEIM is a string indicating what the protein is or does, and
SPECIES is a string describing the species from which the sequence has been derived. The
steadily expanding {and occasionally revised) vocabulary of species is described and made
available at http: //www.uniprot . org/taxcnomy /. IDs are nof guaranteed to remain
the same and it is sometimes necessary to change [Ds= (e.g. =o that related entries have
similar names, or if an entry is promoted from TrEMEBL to Swiss-Prot). For example, hen
egg white lysozyme changed from LY5 CHICK to LY5C_CHICK while FROC_HUMAN

used to refer to pyroline-5-carboxylate dehvdrogenase and now refers to Protein C.
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Each UniProtkB/Swiss-Prot protein is described in a separate record using start-of-line,
two-character keys to classify the fields. An example is shown in Figure 2.1, Records are
separated by a line containing only the string *//" (line #35 in Figure 2.1). A more de-
tailed description of the UniProtKE /Swiss-Frot file format can be found at http: //web.

axpasy.orgfdocs/uzerman. html.

The DI line of UniProtKB/Swiss-Frot provides cross-references between databases. For
example FA3_HUMAM is cross referenced to ENA records X02469 and CAA26306.1; PIR
records A25224 and DMNHUSS; RefSeq records NP_000537.3 and MMM _000546.4; PDE records
LAIL and other databases entries (lines #15-15 in Figure 2.1).

In Bay 2011 ithe time of the last SAAPDE build), Swiss-Frot (Release 2011_(4) contained
over 526,000 sequence entries, OFf these, more than 20,000 were human sequences, more
than 16,000 were from mice and more than 10,000 were from “Aribodspsis fhaliana’. The ma-
jority of Swiss-Frot sequences (62 ) were from bacteria, with almost a thind from eukary-
otes (32%). Most cross references were to the Gene Ontology GO ontology database (Con-
sortium, 2010}, followed by InterFro (Hunter ef al., 2009), EN A (Flicek f al, 2011} and Pfam
(Finn ef al., 2010). There were links to a total of 128 different databases.

In June 2013, at the time of writing this thesis, the number of entries in Swiss-Frot had
increased. Swiss-Frot (Release 2013 07 of 26 April 2013) contained over 540,000 sequence
entries. The representation of sequences from humans and mice were approximately the
same (20,000 and =16 ,000, respectively), but the number of entries for ‘Aribodspsis fhaliana”
had increased by 2006 (12,000 entries).

In May 2011, TrEMEL contained over 14 millicn sequences. The most frequently occurring
organism was HIV1. This had over 375,000 records listed; a legacy of the continual rese-
quencing of this intensely studied crganism. ‘Clsafiva japonica” and “feimans” were the next
most populous contributors with over 95,000 and 85,000 record s respectively. The distribu-
tion of bacteria was very similar to Unil'rotkB (647 of the total number of records). Eu-
karyotes constituted 279 of TrEMEBL entries. At that point, TTEMBL held cross-references
to 129 other databases; most of these were to [nterPro, followed by GO, ENA and Pfam.

As with Swiss-Prot, the passage of time increased the number of entries contained within
TrEMEL in 2013 to over 39 million sequences from more than 404,000 species. The muost
frequently occurring organism was still HIVL, with the number of records increasing from

75000 in 2011 to 519000 in 2013, ‘wrcelfared bacterinm” and hurmnans were the next most
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populous entries with over 185,000 and 114,000 records respectively. At this time, the occur-
rence of bacteria was slightly more than in UniProtKB (74 of the total number of records).
The contribution of eukarvotes had decreased from 279 in 2011 to 207 of TrEMBL entries
in 2013, One fewer cross-referenced database was available in 2013 compared with 2011,
but the majority were still InterPro, followed by GO, ENA and Pfam.

The UniProtKE databases can be downloaded using FTE: TrEMBL is available as data sub-

sets structured around taxonomic divisions. The entire UniProtE R database is also available

in a standard, text-based format, XML or as a FASTA sequence file.

2.1.3 The Protein Databank (FDB)

The Research Collaboratory for Structural (RCOSE) FDB contains information about experi-
mentally determined structures of proteins, nucleic acids and complexes (Rose of al., 2011}
and is the largest publicly available repository for 30 data describing biclogical macro-
molecules (Berman of al, 2000). Three groups make up the RCSE, namely the University
of California in 5an Diego (UCSDY), Rutgers University, and the University of Wisconsin-
Madison., The RCSE FDB i=s a member on the Worldwide Protein Data Bank (wwFDE)
which is an organirzation that maintains the archive of macromolecular structure and acts
as a deposition, data processing and distribution centres for PDB data. The wwFDB's mis-
sion is “to maintain a single PDB archive of macromolecular structural data that is freely

and publicly available to the global communiby™.

The wwPDE was started in 2003 by three members: RCSE FDB, the Protein Data Bank in
Europe (FDBe) and the Frotein Data Bank of [apan (FDEj). In 2006, the Biclogical Magnetic
Rezcnmance Data Bank (BMEB) joined the wwFDEB.

Each member’s site can accept structural data and process the data. The processed data are
sent to the ‘archive keeper’ at present a réle fultilled by the RCSE FDB. This ensures that
there is only one version of the data which is identical for all users. The modified database
is then made available to the other wwPDE members, each of whom makes the resulting
structure files available through their websites to the public. The member =ites are more
than just mirrors of the archive keeper, because the members offer different tools on their

websites for analysing the structures in the database.
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Figure 2.1: An example of a UniProtKB /Swiss-Prot record.

The above record is for [UnilProtKBP53_HUMAM S POM627], it has been edited to only include data that is rel-
evant b SAAPAb and FOSTA, e 10 (the identifier), AC (the acoession number), I (the date tield), DB (the
d.Hi:riF{'iun .ﬁ.-Eld],CEt'H:LE Ehgan'iim ﬁEH],DRIdahh:iE crossereberenos |:irr|.-] and FT {annotated featums), and
S0} (the Sequncoe field); necords are ferminated by a [/ line numbers are given on the left for fest neferemoes and
" are used o indicate skipped lines,
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PDE coordinate files contain plain text which describe the 3D coordinates of each atom.
Residues are described by a simple annotation of each constituent atom using the same
residue 1D, PDE files al=o provide details of the method used to solve the structure, related

literature, cross-references to other resources (e.g. UnilProtkE), specitication of ligands, etc.

Although there i= usually only one structure per file, a P'DB entry can contain more than cne
model in a single coordinate file mostly in the case of nuclear magnetic rescnance (NME)
entries. Files are structured into a number of distinct sections. The “Title" section contains
fields such as the header, title, compound (description of the macromolecular contents of an
entry), source (organism, expression system, etc.), keywords, experimental data, submitter
information, a primary literature citation and remarks (experimental details, annotations,
comments, etc.). The "Primary Structure” section contains the sequence of residues in each
chain of the macromaolecule(s) (or other consecutive chemical components covalently linked
in a linear fashion to form a polymer), and a Held for database cross-references (e.g. Gen-
Bank, UniProt). The ‘Heterogen” section contains a description of non-standarnd residues in
the entry. The "Secondary Structure” section identifies the positions of helices, sheets, and
turns found in protein and polypeptide structures. The ‘Connectivity Annotation” section
states the existence and location of disulfide bonds and other linkages. The ‘Crystallo-
graphic and Coordinate Transformation’ section describes the geometry of the crystallo-
graphic experiment and coordinate system transformations (e.g. from the database entry to
the submitted entry, transformations expressing non-crystallographic symmetry, etc.). The
‘Coordinate’ section contains the collection of atomic coordinates and model delimiters.
Within this section, the ATOM record defines the atomic coordinates for standard amino
acids and nucleotides, and the ooccupancy and temperature factors for each atom. Chain [Ds,
residue labels and residue sequence numbers are also given for each atom. Non-polymer or

other non-standard chemical coordinates (e.g. water molecules, ligands, etc.) are described

in a similar way in the ‘Coordinate’ section using HETATM (rather than ATOM) records.

The RCSB PDE website provides users with a wide range of content, including information
to supplement data provided in flat files. These include links to databases describing the
enryme classification code and associated pathways [the KEGG database (Kanehisa of al.,
2010}, catalytic sites as described in BioCyc (Caspi ef al, 2010}, ligands e.g. BindingDB
(Liu ef al, 2007) DrugBank (Knox ef al., 2011), etc.]. Additional annotations are provided
in FDB records from external resources such as CATH (Cuff of ai., 2011}, SCOP (Andreeva
ef al., 2008), Pfam (Finn et al., 2010), GO (Consortium, 2010) and the Structural Biology
Enowledge-base (Gabanyi ef al., 2011).
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The PDB allows users to find information using text-based keyword searching (such as
PDE identifiers, literature or Unilrot [Ds), chemical components, bibliographic informa-
tion, homology and browsing (ie. tree traversal). A recently implemented navigational

feature combines searching and browsing. Initial search results can be shown as subsets of
hierarchies, which can be browsed and searched again. This allows a query to be refined

iteratively, based on new information found during the search.

In May 2011 (the time of SAAPdb build) there were cver 72,000 structures in the PDB. The
vast majority (67,000) were protein structures. There were also more than 2,000 nucleic
acid structures, and over 3,000 protein/nucleic acid complexes. Most structures were from

humans (= 15,800), followed by E. coli, mice, and 5. cerevisiae.

At the time of writing, in Movember 2013, the RCSE FDOB website showed that the most
structures had been solved using X-ray crystallography (more than 75,000, representing
44 of all structures). There were also more than 8700 BMME structures and a smaller num-

ber produced by electron microscopy (approximately 500) (Rose of al., 20011).

214 The PDBSWS protocol

The PDBESWS protocol links UniProtKB to the PDE  (Martin, 2005). Reliable mapping be-
tween these databases allows the transfer of UniProtkB annotations to PDB chains and
residues. SAAPdb uses the UniProtKB-to-PDE mapping in PDBSWS to map =sequence
residues to their corresponding structural residues. This mapping is performed automati-
cally using cross-references from the PDB to UniProtKEB at the chain level (where available)
and, for historical reasons, from UniProtKE to PDE at the whole PDE file inot chain) level
where available. FDB chains that have not been assigned a UniProtKB AC and which are
not short peptides or nucleotides are searched against UniProtKB using a brute force scan
bazed on the sequence from ATOM records. Although the UniProtkE and FDB databases
provide cross-references, PDBSWS provides a more complete and accurate link between
the two, encompassing the chain and residue levels. It is regularly updated, and uses a

consistent form of link, which is not the case in the native databases.

The mapping is performed in a number of stages and is stored in a PostgreSCOL relational

database. These stages are as follows.

Stage 1 UniProtKB (UniProtkKB /Swiss-FProt and Unil'rotkB /ttEMEBL) and the PDB data-
banks are downloaded by FTF and stored locally.
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Stage 2 Unil’rot data extraction. Data are extracted from the UniProt databank to obtain
D=, sequences and modification dates. Mappings are also obtained between UniFrot
D= and ACs, between primary and secondary ACs, and mappings between ACs and

PDE IDs where available. The method relies on accurate mapping between both Uni-
ProtKB IDs and ACs, and primary and secondary ACs.

Stage 3 DB data extraction. Data are extracted from the PDB. For each chain, a FDB ID
and the sequence is collected, and any links to UniProt [D= are extracted from the
DEREF field. If no UniProtKB AC reference exists in the DEREF Feld, the rEMARE
209 field is parsed in an attempt to find UniProtKB AC references. Some FDB chains
are chimeras, i.e. they are composed of regions from two or more Unil'rot sequence

entries. These are handled correctly if they are annotated as such in DEREF records.

Stage 4 Corrections to links from the PDE. Links in the PDB to UniProt that use UniProt
D= have the UniP'rot 1D converted to a UniProt AC, using information previously
obtained from UnilProt in stage 2. Links from the FDB to obsolete UniProt [Ds, other
incorrect IDs intended to be used as links to UniProt, and deprecated UniProt acces-
sions are all identified. All of the remaining UniProt accessions that are used as links
from the PDE to UnilProt, are validated to check that they are correct primary ACs.

Stage 5 Addition of cross-links from UniProt. For historical reazoms PDB links to UniProt
take precedence over links from UniProt to PDB. Links from UniProt to PDE that were
not identified in stage 4 (i.e. not given in the PDE) are now collected. In cases where
PDE records have multiple chains, sequence alignments are used to check which of
the chains correspond to a UniProt sequence. The Unil'rotKB sequence is aligned
with each FDB chain in turn to identify which chain (or chains) are relevant. Stage
4 and 5 may yield multiple matches as a protein sequence can map to multiple PDBE

structures, and to several chains within a single FD'B structure.

Stage & Brute-force scan. A FASTA formatted databank of UniProt sequences is created.
It is scanned with the remaining unassigned FPDB chains, using the FASTA sequence
database search algorithm (Pearson, 1991) to find the remaining valid cross-database
links. The PDE sequence is reconstructed from the ATOM records rather than SE-
JRES. The best match is identified and the mapping is recorded if (i) the residue
overlap is >30 and the identity is at least 90%, {ii) the residue overlap is =15 and the
identity is at least 93%, or (iii) the entire chain is matched with 1007 identity.
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Stage 7 All the PDB chains that were found to have links are aligned against their corre-
sponding UniProt entry (or entries, in the case of a chimera) using the s==archii
program (Pearson and Lipman, 1988). The szearch23 algorithm implements the
islow but accurate) Smith Waterman sequence alignment algorithm  (Pearson and
Lipman, 1988) to generate the PDB-UniProtKB residue-fo-residue mappings. The re-
sulting alignment i= mapped onto the PDEB structure and stored.

The most recent version of PDBESWS (March, 2014) contains 260524 FPDE chains. OfF these,
243615 are protein chains (ie. excluding short peptides and DMA /ENA chains). There
are 67525 cross-links obtained from the FDOR, 1385852 cross-links obtained from SwissProt
and 26119 cross-links obtained from the brute-force scan (ie. an additional 12.15%). As
of March, 2014, 95.45% of PDB protein chains are successfully mapped to a UniProtkB

Se(]lence.

PDESWS is available on the www_bicinf.org.uk/pdbaws website. It can be queried
using FOB 1Ds {with or without a chain 1D), UniProt accession codes and SwissProt [Ds.
PDBSWS can be downloaded as a dataset at the chain level or the residue level and can be
queried using a REST interface. Mutations in PDE files with respect to the Unil'rot entries

can also be downloaded.

2.1.5 Databases of single amino acid polymorphisms

2151 dbSNP

The Single Nucleotide Polymorphism Database (db5MNF) was established in 1998, and is
hosted by the NCEI in collaboration with the National Human Genome Research Institute
(BNHGIET) in the United States (Sherry ef al., 2001). Iti=a database of genetic variations, incor-
porating information about not only single-base nucleotide substitutions (SMNPs), but also
short deletion and insertion polymorphisms, multinucleotide polymorphisms, microsatel-
lite markers or short tandem repeats, named variants, invariant regions of sequence and
heterozygous sequences. SMI's make up the vast majority of this database (=95%). It pro-
vides ‘neutral” polymorphisms, mappings to protein sequences and only a few disease-
causing clinical mutations. In the analysis of SN data, these disease-as=ociated mutations
are removed from the SNIP dataset, but retained in the disease dataset. This i= based on the
assumption that the large-scale genomic scanning technology that is used to identify SMPs,

happens to have sequenced the genome of an individual carrving a disease mutation.
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Each variation submitted to dbSNF is assigned a unique ‘submitted” SMF [D. In cases where
submitted SNFs are identical, they are compiled into one reference SNI? cluster, which con-
tains data from each. dbSMI* accepts information from other public variation databases
such as HapMap (Frazer et al., 2007), individual research laboratories, genome centres and
industry. In May 2011, the most recent version of dbSMNE was “build 1327, which had been
available since Septernber 2010, This release was based on almost 244 million submissicns,
and contained over 57 million reference SNT clusters. Over 30 million of these were human
records, with the rest coming from a diverse range of organisms including M. wrisculus, G.
gallis, A, gambige and O, sativa. Just over 29 million of the reference clusters were known to
reside within genes. Of the total number of submissions, over 74 million had a phenotype
annotation, and more than 35 million had a frequency provided.

The information in a dBSNP record includes the location of the variant, the flanking se-
quences around the polymorphism, and data on population diversity including variation
and frequency by population or individual genotype. Information about the submitter,
experimental conditions and the validation status of the variant is also provided. The val-
idation status describes the evidence that supports a variant. These categories of evidence
include multiple independent submissions, frequency or genotype data, a submitter confir-
mation, observation of all alleles in at least two chromosomes, genotyping by Hapbap, or
that the SNI* has been sequenced by the 1000 Genomes project.

db5MF links to other types of biclogical databases. These databases include GenBank, vari-
ous genome databases, the 1000 Genomes project (Durbin ef al., 2010), Ensembl ( Flicek ef al.,
2011}, RetSeq (FProitt ef al., 2009), PubMed (Mouillet, 2008), OMIM {Amberger of al., 2011),
UniGene (Schuler, 197) and dBSTS (Olson ef al., 19899,

The dbSMF database can be downloaded using FIT' and is available in multiple formats

including a flat file version of the database, a relational database dump, and FASTA, ASM.1
and XML formatted files.

21.6 OMIM and LSMDBs

Information about pathogenic deviations (FD=) in SAAPdb is obtained from a variety of
sources, of which the Online Mendelian Inheritance in Man (OMIM* database is the largest
contributor (Amberger of al., 20011). The Mendelian Inheritance in Man (MIM) catalogue de-
scribes human genetic disorders, and was initiated by D, Victor McKusick at John Hopkins

‘nttp://www_nchi.nlm.nih.gov/amim/
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University. It was first published as a book in 1966 (McKusick ef al., 1992), which in 1998
was in its 12th edition. An online version was published in 1985 and is hosted at the NCBL

The contents of the OMIM database i= based on an examination of published literature.
The contents of peer-reviewed journals are scanned to identify relevant articles. Particular
attention is paid to dizease phenobypes, genes with novel biology and genes that do not ap-
pear in OMIM. Other online genetics resources are also checked for information and articles
that may be relevant. A tearn of science writers and editors identify, discuss and write up

relevant articles, update existing MIM records and create new ones.

The OMIM database i= focused on phenctypes and the genes associated with them. In
May 2011, it contained more than 20,000 records describing either genes or phenotypes
and over 7,000 of these contained a description of a phenotype. OMIM records may in-
clude: a detailed description of the gene or phenotype, clinical information (features, synop-
sis and management), biochemistry, inheritance patterns, map locations, pathogenesis de-
scriptions, diagnosis information, genotype /phenotype correlations, population genetics,
molecular genetics, animal models, cloning information, gene names, the gene structure,
gene functions, an evolutionary background, allelic variants, polymorphisms, cytogenetic

and citations.

Every record in OMIM is assigned a six-digit MIM identifier. The first digit reprezents
the method of inheritance: 1 indicates that the trait is autosomal dominant®; 2 denotes
autosomal recessive”; 3 is X-linked loci or phenotypes; 4 is Y-linked; 5 is mitochondrial; 6 or

above is autosomal”.
Six symbols can precede the six-digit MIM number:

(#) indicates that a gene annotation may exist.

(#) indicates a descriptive entry (usually of a phenotype), which does not represent a
unique locus,

(+) indicates a gene of known sequence and a phenotype.

(%) indicates that the entry describes a confirmed Mendelian phenotype or phenotypic
locus for which the underlying molecular basis is not known.

(Mo symbol) indicates a description of a phenotype for which the suspected Mendelian
basis has not been clearly confirmed.

(") indicates the entry no longer exists.

prtries created bedore May 15, 194
*prutries created afber Belay 15, 19%4
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When the molecular basis for a phenotype is understood, allelic variants are added to the
gene entry. Each is assigned a unique four-digit number that is added to the BIM num-
ber of its parent entry, with a decimal point between the MIM number and the four-digit
number. For example, mutations in the cystic fibrosis transmembrane conductance regu-
lator gene [CFTR (MIM number 602421)] are indicated using 602421.0001 to 602421.01346.
In most cases, only certain allelic variants are included, e.g. the first mutation to be dis-
covered, distinctive phenotypes, etc. Most of the variants that are stored represent disease-
producing mutations. A few polymorphisme are also included, many of which show a
positive correlation with particular common disorders. Because not all allelic variants are
described, links to complementary resources are given, including the Human Gene Muta-
tion Database (Stenson of al., 2009), and over 1,500 locus specific mutation databases via the
Human Genome Variation Society” (Oetting, 2011). In April 2011, over 2,500 gene entries
in OMIM contained information about disease-causing mutations. In addition to providing
links to a range of external genetics databases, the OMIM database provides links to RefSeq,
GenBank, UniGene, Fubmed, and many other resources internal to the NCBL

However, given that the described mutations are derived from multiple sources and the
literature, it is not surprising that there are inconsistencies in the numbering of amino acids.
[tis important to verify that the numbering provided by the primary datasets is correct. The
Martin group automatically maintains SAAPdb using an internal version of OMIM with
corrected numbering (this will be discussed in Chapter 3}

As genomic sequencing is becoming cheaper and more reliable, the number of pathogenic
deviation identifications is increasing exponentially. Figure 2.2 shows the increase in the

content of OMIM. In ten years, the number of disease mutations increased from ~8000 in

19958 (McKusick, 1998) to almost 20,000 in 2008 (Amberger of al., 2009, Figure 2.2). OMIM
has over 18,000 allelic variants distributed among 2,494 genes and associated with 4,215

different disorders or susceptibilities (Amberger of al., 2011).

Although OMIM i= a rich source of disease-associated information, which can be used to
carry out extensive bininformatic analysis, the pathogenic deviation dataset from OMIM
is enhanced by the inclusion of eleven other specialised locus-specific mutation databases
(LSMDBs), mutation datasets that are produced and maintained by research groups inter-
ested in particular diseases. These resources potentially provide large quantities of high-
quality data (George ef al., 20068). These specialised resources often hold detailed phenotypic

information concerning aspects such as enzymatic function or prognosis. The bioinformatic

w

“http: ) fwew _hgvs.orgsd
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analysis of these data may demonstrate effects on protein function that would otherwise be
difficult to detect. While this has not been addressed in this thesis, rather than training clas-
sifiers on binary classifications (disease causing or neutral), these methods could be trained

to predict disease severity.
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A brief description of the eleven LSMDBs as= they were at the time of the SAAPdb build
{Tune 2011) i= provided below. These LSMDB= were selected and integrated into SAAPdb

bazed on the interest= of collaborating groupe.

ADAbase °
ADAbase is a mutation registry for adencsine deaminase [ADA) deficiency
(OMIN-G08958) (Piivild of af, 2008). In June 2011, it contained 72 records. It is
maintained at the University of Tampere in Finland. ADA deficiency accounts for
about half of the autosomal recessive formes of severe combined immunodeficiency
(5CI0). In addition to immunological defects, most patients with ADA deficiency

have skeletal abnormalities.

bhttp://bicinf . uts.fifADALESS/
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ALSoD1db 7

Amyotrophic lateral sclerosis (ALS, also called Lou Gehrig's dizease) is a type of mo-
tor neuron disease caused by the degeneration of motor neurons (OMIM: 1474507, Mu-
tations in the gene encoding Cu/Zn superoxide dismutase (SO0 have been identi-
fied in patients with a familial form of ALS. The ALS Online Database (ALSoDlY) was
created to store information about mutations in 50D1 (and now other ALS-related
mutations), along with ALS patient information. In May 2011, it recorded 303 mu-
tations in 74 ALS related genes (sporadic and familial) and i= maintained at King's
College London. It is a complete record of all genotype / phenotype and neutral varia-
tions and includes genetic, proteomic, and bicinformatics information associated with
the disease. It also contains detailed clinical information, neurcpathology data, litera-
ture information and data analysis of Genome Wide Association Studies (GWAS).
The FD) information extracted for SAAPAb was obtained from the S0D1 mutation
records in ALSold (Abel ef al., 2012; Wroe ef al., 2008).

GePDdb *

Glucose-6-phosphate dehvdrogenase (GaPDY) deficiency is an X-linked recessive trait
caused by abnormally low levels of GAPD (OMINM:305900) (Beutler et al., 1968). It
is characterised by the abnormal breakdown of red blood cells (haemolysis), usually
after exposure to certain medications, foods or infections. Itaffects approximately 400
million people. The G&PD Database integrates mutational and structural data from
various genetic and structural databazes (Genbank, Protein Data Bank, etc.) and in-

formation from the literature. The G6FDdb resource was developed in a collaboration

with the Martin group (Kwok of al., 2002) and contained 193 records.

ZAPTObase *

Zeta-chain-associated protein kinase 70 or ZAP-70is a Y0kDa protein-tyrosine kinase.
ZAP-70is normally expressed in T cells and natural killer cells, and is involved in T-
cell signalling, ZAP-70 deticiency (OMIM:176947) is a rare autceomal recessive form
of severe combined immunodeficiency. ZAPT0base is a mutation registry for ZAPT0
deficiency produced at the University of Tampere, Finland (by the same group that
maintains ADABasze) (Piirild ef al., 2006). In June 2011, it contained 17 records. These
included descriptions of alleles, citations, diagnosis information, patient information
and other clinical data.

‘nttprsfial=zod.iop.kcl.ac. uk/Rls/index. aspx

H:'.' gt fwew _blointf .org.-uk/gdpds

*nttp://bicint uwts.fifIRF70bases index: . html
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HADB (HAMSTeRS) !0

Haemophilia & (HA) is an X-linked hereditary disease, and is the most common
form of haemophilia. HA is caused by reduced activity or the amount of factor VI
(OMIM:306700). This protein serves as a cofactor in the coagulation cascade. De-
ficiency produces clots that take longer to coagulate and are unstable. HADB i= a
Haemophilia A Mutation Database in which HADB mutations are taken from the lit-
erature and electronic submissions. FHADB focuses on point mutations, insertions and
deleticns. It also provides predicted splicing errors and polymorphismes. In January
2007, the Imperial College-run database confained over 1,200 mutations, which had

been collated from peer-reviewed literature and electronic submissions (Kemball-
Cook ef al., 1998,

IARC TP53 1

The [ARC TF53 Mutation Database is maintained by the International Agency for Ie-
search on Cancer (IARC) in Lyon, France (Olivier ef al., 2002; Petitjean of al., 2007).
P53 regulates the cell cycle and is a tumour suppressor protein (OMIM:191170), in
humans encoded by the TP53 gene. A mutation to P53 occurs ~.5070 of all human can-
cers (Greenblatt ef al., 1994; Sidransky and Hollstein, 1996; Lane and Fischer, 2004).
The [ARC TF53 database contains all TP53 mutations published in the literature. It
includes information about the functional impact of mutations, characteristics of tu-
mours, and demographic data about patients. The initiative provides a variety of
information, including a somatic mutation dataset, a germline mutation dataset, poly-
morphisms, two function datasets, cell-line data, '53 protein structures and a dataset
on mouse-models.

The somatic mutation information contains P53 mutations associated with human
cancers. Three types of data are provided in relation to mutations: type, prevalence,
and prognostic value. In June 2011, the latest release contained over 27,000 mutaticns.
Many of these are repeats of the sarme mutation in different patients.

The germline (or inherited ) mutation information contains data on families that have
Li-Fraumeni syndrome (a rare autosomal cancer family syndrome syndrome caused
by mutations in the TP53 gene). In June 2011, it included 588 mutations affecting 554
families or individuals.

nottp://hadb.arg.uk/)

ntep: s s www—F3Z2 _darc.fr)
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KinBase 2

KinBase (Manning ef al., 2002) contains information about more than 3,000 protein ki-
nase genes from hurnans and other organisms (mouse, fly, worm, etc.). The database
is maintained by the Salk Institute in 5an Diego. This highly populated family of
proteins is involved in many crucial cellular processes such as signal transduction,
cell-cycle regulation and tumourigenesis. As a consequence of these rdles, kinases
have been reported to be associated with inherited developmental and metabolic dis-
orders (Lahiry ef al., 2010) and also many types of cancer. Due to this association, they
are considered as potential targets for therapy (lzarzugara et al., 2009).

The set of mutations in kinase domains was provided by collaborators (Izarzugaza ef
al., 2011); a &6 KinbaseDriver (protein kinase domain) of which 26 mapped to protein
structure and &6 Kinbazel*assenger (protein kinase domain) of which only 14 mapped

to protein structures.

LDLR FH Database

oTC

Familial hypercholesterdlemia (FH) is most commonly a result of variations in the
LDLE gene, which encodes the receptor for low density lipoprotein (LDL) cholesterol
particles. About 1 in 500 people are affected by pathogenic alterations in the LDLR
peptide. These cause increased athercsclercsis and a greater risk of coronary heart
disease (Leigh et al., 2008).

In June 2011, the LDLE FH Database at University College London listed 1,741 LDLE
allelic variants {1,122 of which were unique). These had been cbtained from the litera-
ture and included 1,280 DM A substitutions (73590, 75 insertions (4.3%0), 337 deletions
(19.4%), 64 duplications (3.7, 15 insertion /deletions (0.9%) and 2 inversions {0.179%).

Ornithine transcarbamylase (OTC) deficiency, is an X-linked disorder caused by mu-
tations in the OTC gene (omithine carbamoyltransferase, OMIM:30Ma1). It causes
hyperammonemia, which is an excess of ammonia in the blood (Gilbert-Thissardier
et al., 1996). Although it is a rare metabolic disorder, it is the most common inher-
ited defect in ureagenesis, affecting about 1:16000 children. The OTC dataset used in
SAAPAb (Tuchman et al., 2002; Yamaguchi ef al., 2006) is produced at the University of
Minnesota, with the last major update in 2006, This contained 341 mutations, and an
additional 29 non-disease-causing mutations and polymorphisms. Enzyme activities

and climical information are also included.

P Gneenman O et al. Patberrs of somatic mutation in human cancer senormes. Matore 2007, 46071521555

'..:'.'_:: A fwenw oacl.eac . ukyf1dlr
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PAHdbL

Deficiency of phenylalanine hydroxylase (FAH) enzyme function causes hyperpheny-
lalaninemia (HI?A) and related forms of phenylketonuria (FELU). PAHdDR is a database
of mutations in the human PAH gene, and associated phenotypes at the levels of pro-
tein, metabolites and organism. This is combined with information about associations
of mutations with populations, haplotypes and other features. PAHdAb is maintained
at MoGill University in Montreal (Scriver et al., 2003; Pey ef al., 2007).

Mutation data were collated from hoth published articles and personal communica-
tions from 52 investigators from the PAH Mutation Analysis Consortium in 32 coun-
tries. In June 2013 the PAHADB held records of 367 mutations (=60% were missense].
The alleles are annotated with information such as species, locus, gene, unique iden-

tifier number, name and source of information and are flagged as either pathogenic or

polymorphic.

S5TAT3
‘Signal transducer and activator of transcription 3 (STAT3), is a human transcrip-
tion Factor. STAT3 is essential for the differentiation of TH1Y helper T cells that hawve
been linked with a variety of autoimmune diseases. Loss-of-function mutaticns in the
STATS gene lead to hyperimmunoglobulin E syndrome. This syndrome is associated
with recurrent infections, and poor development of bones and teeth (Frank, 2007).
Forty-nine mutations in SwissProt entry “P40763" were collated from peer-reviewed

literature and electronic submissions and integrated into SAAPdb.

Other sources of mutation data have been considered including HCMD'Y and SwizsProt
Variants (SwissVar)'®. However HGMD data are only available to registered users meaning
that we have not been able to reproduce their data in our database and SwissVar is not terri-
bly reliable in annotation of disease status (For example, known PDs in G6FPD are annotated

as "Matural Variants’ of unclassified disease status).

217 FOSTA

When examining sequence conservation as indicator of the effect of a mutation, it is crucial
that the sequences that are aligned have the same function. By definition, proteins that

diverge in function will undergo change in functionally critical residues.

14

1%

notep: /s www _pahdh.mcglill . ca)
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Functional Orthologs from Swiss-FProt Text A.nﬂl_'g.rscile, FOSTA, i= a relational database of
automatically generated families of annotated functicnally-equivalent proteins (Mchillan
and Martin, 2008). FOSTA identifies a list of homologues for a given human protein, based
on a BLAST search of the database. It then carries out text analyses of the annotaticns.
First this seeks to identify a match in the protein identifier part of the entry name, then
the EC number, and finally by matching synonymes at various levels of granularity from
the description (DE) field. If a non-human homologue passes any of the three filters, it is
marked as a functionally-equivalent protein, FEP, and added to the FEF Family with the

human protein.

McMillan and Martin (2008) showed that Swiss-Prot functional annotation can produce ex-
cellent results; they also identified cases where FOSTA correctly assigned FEP's a question-
able functicnal annotation, and others where several families shared the sarme entry name
protein identifier. Examples of such inconsistencies can be found in the H0X proteins and
the PROC_HUMAN example in McMillan and Martin (2008}, FOSTA is preferred over stan-
dard lists of orthologs when highly reliable data are required. This is because when very
distant orthologs are gathered using traditional methods, they may diverge in function (e.g.

because of mutations in functional residues).

As part of this project, the existing FOSTA code was improved by removing all *hard -coded”
variables (e.g. paths or user-names) into a separate Perl module. This means that run-
ning FOSTA on a new machine (or as a new user) requires no editing of the main code, all
changes being done in this single module. A Perl script was also written to look at each of
the database’s tables and give summary counts for the tables, to make it easier to compare
different FOSTA runs. Additionally, full instructions on how to run FOSTA from scratch
were written; this document has been reviewed and tested by another person within the

group to ensure its practical usefulness.

2.1.8 Databases of single amino acid polymorphisms used for prediction work

Section 1.1 showed that there are many ways to divide mutations into types and subtypes.
This thesis focuses on protein-level variations and only considers SAAPs: substitutions of
one amino acid in the protein sequence at a ime. Depending on the effect on the phenotype,
S5AATPs can be divided into neutral and pathogenic. The main data sources of pathogenic

mutations are described in Section 2.1.6, and db5MNF has been presented as a resource that

"nttp://www_bioinf .org.nkf fosta/
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provides data on neutral or low-penetrance SAAPs in Section 2.1.5.1. These were all ac-
cessed via the SAAPADb resource described in Chapter 3.

In addition, the HumVar and HumDiv dataset v.2.1.% was used as a resource. These
datasets were developed for evaluation of PolyPhen2'. HumDiv consist of 5564 deleterious
and 7539 neutral mutations from the same set of 978 human proteins. HumVar consists of
22196 deleterious and 21119 neutral mutations in 9679 human proteins, with no restriction

on deleterious and neutral mutations coming from =ame proteins.

HumDv, was compiled from all damaging alleles with known effects on molecular
function causing human Mendelian diseases, present in the UniProtK R database. These
were grouped together, with differences between human proteins and their closely related
mammalian homologs of human proteine (== 95% sequence identity), assumed to be
non-damaging. These assumptions are questionable given the paper on (Compensated
Pathogenic Deviations) CPDs  (Baresic of al, 2010). HumVar consists of all human
disease-causing mutations (except cancer mutations) or mutations resulting in loss of
activity /function from UniProtEB. Common human nsSMPs (minor allele frequency =
1%) without annotated involvement in disease, which are treated as non-damaging are

also included.

2.2 Data handling

In a large-scale automated system (=such as SAAPDb) data integrity must be ensured by
appropriate and robust data handling. The systemn has to handle vast quantities of infor-
mation, and it must be possible quickly to retrieve and process it. This section describes
the fundamental data handling methods: relational databases (Section 2.2.1), XML (Sec-
tion 2.2.2) and an alternative XML /ASN.1-bazed representation of the FDB, XMAS (Sec-
tion 2.2.3).

221 PostgreSQL relational databases

The first relational database was developed by Edgar Codd at IEBM Almaden Research Cen-
tre (Codd, 1970). A relaticnal database simply stores information. It consists of tables (or

‘relations”) which describe the types of data. Tables in turn contain columns or ‘fields" which

hold records, ie. the actual data.

1]

ttp: f/genstics. bwh_harvard . edu/pphz/training
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The power of relational databases lies in their ability to ‘relate’ or join data held in different
tables based on a common identifier (the ‘foreign key”). This key is recorded in one table
and refers to data in other tables. This concept makes it possible to ‘normalise’ large tables

that contain many fields into smaller data structures describing individual concepts.

The first step in constructing a good relational database system is to start with a clear spec-
itication. This involves defining the problems and constraints (i.e. any issues or limitations
the system will have to handle), the objectives (what the system i= going to do and how),
and the scope and boundaries (i.e. the information that will be stored). COnce the speci-
fication is in place, logical, conceptual, and physical design steps follow. The database is
created in a databaze management system (DBEMS) and datasets are loaded. Finally, the
database is tested and evaluated against the initial specification. Maintenance and evolu-
tion are important considerations for any database. These activities fix problems with the

system or 'me]emenl' enhancerments or new requirernents.

The design phase decomposes the problem into its constituent ‘entities’, ‘relationships’ and
‘attributes” to produce a high-level model of the database structure. Entities describe dis-
tinct objects in the dataset. Combining entities using relationships creates entities that are
more abstract. Furthermore, both entities and relationships can have attributes that describe
the corresponding object. To represent high-level data models, ‘entity-relationship® (ER)
modelling diagrams clearly define the entities and relaticnships in the data to be stored.

In this section, a dummy dataset is used to illustrate the main concepts concerning a rela-
tional database. The dataset describes hospital doctors, where patients can have multiple
appointments at different hospitals with different doctors or clinics. Figure 2.3 describes the
entities, relationships and attributes in this example. There are two entities: a patient and
a hospital. These entities are joined by the relationship ‘appointment” which captures the
more abstract or ‘associative’ appointment entity. Both entities and relationships can have
attributes: a patient has a name, contact detail= and a MEN [Medical Record Number]|; a
hospital has a name, doctors and clinics; the number of appointments booked at each hos-
pital defines an appointment. In addition, each entity i= given a unique identifier (11). This
enables each individual entity (i.e. each patient or hospital) to be uniquely identified.

If attributes have multiple values, it is useful to decompose them into two or more at-
tributes. Relationships between entities are defined with respect to their ‘cardinality”. This
describes how entities are related to each other. The cardinality may be many-to-many,

one-to-many or one-to-one.
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Unece the Entity-Relationship (ER) diagram is complete, the design of the database is de-
termined by the application of various rules. The most relevant rules are: (i) each entity is
represented by a table; (ii) each many-to-many relationship is represented by a table; and
{iii) any multiple attributes that have dependencies between sub-attributes should be fac-
tored out into another table. The resulting database and its relationship to the criginal data
are shown in Figure 2.3(b ).

A fundamental concept in relational databases i= the primary and foreign kevs. Primary
keys are [Ts that allow each entry in a table to be identified uniquely. Often they are arbi-
trary numbers applied to data as they are entered into the database. However, how these
keys are allocated is debated by database designers, s=ome of whom argue for the use of
real data, particularly if the entry already has a unique identifier (such as SwissProt pri-
mary accession codes). Foreign keys are references to primary keys found in other tables.
In Figure 2.3(b) all primary keys are marked with an asterisk (*) and all foreign kevs are
annotated with a caret (7). Furthermore, all foreign keys and the data to which they refer
are highlighted with the same background colour to make it easier to identify inter-table
references. In a well-designed database the use of foreign keys improves data integritv and
facilitates administration, as changes only need to be made in one table.

Additional constraints on the contents of fields in a table can improve data integrity and
performance. For example, they can define whether a field must be unique, whether data
must exist (i.e. the field cannot be ‘null’), or the range of values the feld may take. Finally,
indexing vastly improves the performance of relational databases. Indexing leads to the
generation of a secondary table that enables rapid look-up of the original data. Any field
{or combination of fields) this is frequently used should be indexed. Both FOSTA 2.1.7 and
SAAPAb (Chapter 3), make extensive use of indexes as without them, the manipulation of

very large datasets quickly becomes impractical.

Unce the design is in place, the database is built, populated, and queried using structured
query language (S(JL). Foreign keys are implemented to retrieve related data by ‘joining’
tables based on a common term or terms. A sample query is shown in Figure 2.4, This
requests the total number appointments booked at each hospital. This query demonstrates
the basic sELECT /FROM/WHERE SL grammar. It also shows how GROUF EY and ORDER
BEY are used to aggregate and sort data, and illustrates the use of SUM (), one of the many
built-in, standard S0L functions. Postgre50L also allows the user to define new functions.
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Mormalisation is the process of efficiently managing and organizing data in a database into
smaller data structures describing individual concepts. This involves the elimination of
redundant data matches requirements for the first normal forms (INF) and ensuring that
only related data are stored together. The MFs in relational database theory are a series of
guidelines written to ensure that databases are normalized to ensure that data are logically
stored and provide criteria for determining a table’s degree of immunity against logical
inconsistencies and anomalies. The lowest form of normalization (1MF) requires that dupli-
cate columns are removed from the same table. The second normal form (2NF) continues to
address the problem of duplicated data and requires the creation of relationships between
tables containing subsets of data and their parent data tables. The third normal form (3NF)
matches requirements of (2MF) and must remove all colurmns that are not dependent on the

primary kev. Additicnal level of normalization are sometimes used.

=» EELECT h.Wmme; h.0occkar ST [ & - Bumber)
FRCHM Haspitsl h; Appointmant &
WEHERE & _Hozpitasl = hO.IC
AND h.Clinic = "cardiology clindic’
GRCUF BY h.Heme
JRCER BY h.Hema)
Hama Oockor sum

KE EBFC or dohak =

OCLH Dr. Lanura =

...... - —
CLHE Or. Tom 1

3 rows)

Tws bables (Hospical aliased to hand Azpointment aliased o ) are joined on 2 Hozpital and B 1D; the
data are corstrained b these Bospitel fn with Clinic (n.C1inic = foardiclogy clinic'); the agere-
pate function U s calculated foreach &L veme asdefined by the ZR008 2Y 0L Rame clauses; results are sorted
by h.Mame & defined by the CROZE BY n.o¥ane clause

212 XML

XML (eXtensible Markup Language) is a self-descriptive standard mark-up language used
to structure, transmit and store data. XML allows the user to define a perscnalized =et of
specific tags and document structure. A Document Type Definition (DXTD), which may be
implemented in XML-DTD or in XML schema, defines a restricted grammar consisting of
elements and attributes that the user can use to define a specialised framework for the rep-

resentation and storage of their data. The DT can be declared inline (in an XML document)
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or be provided as an external reference. XML data are stored in plain text format, which is
independent of any particular software or hardware. Consequently, it is much easier for
different applications to share data. When data are represented in a consistent XML format,

the same parser can extract specific data required for processing, database population, etc.

Figure 2.5i= an example of an XML file that illustrates its hierarchical structure. The ‘mu-
tation’ element contains two instance of the element “protein_data’ and ‘amino_acid” which
followed by multiple itemn’s that contain further subelements (‘aa_label’, ‘wildtype’, etc.).
Figure 2.6 shows how the corresponding DTD defines such a framework.

T¥xml warmion . >
3 TYrE g E¥E " E T nidb_=m E
]l nde rimma=t HF T Thetp: ¥ v nf mia my Smam_. ]

L mF BS0! mupmlammntary F 1 T LN L mbmr c ccda=l 1t
dats ac="E0S091° >
id mm AZE FROGF ypa="E' mutant=*'K" < Pel f mmino_s S
- e
i
ook st e " B30 ups-lanmntary " " Ty " ank-mc o ccda=" 1" >
Tprotmin_ds ac=EOZT 08! =
Camiic 1 ms kg FRAEET w vpa="N' mutant E" v Fel»FER  mmino_s ®
Tiprotmin_cabalr
< et >
N-Lh B0 mup=lammntary " e Ty o mmb-mr Ce cda=l 11
dat sc="EOZT0E &
id mm AZE FAOLF ypa="v" mutant o LY PelfeZllcfamino_s S
= ey
i
L=’ B0 mupsleanmntary " :F Ty " ank-mc comcocde=" 17 >
dat ac="EOZT0E! =
id kg FAIFF w vpa=' mesk mnt Fow FelerS9</ amino_s ®
i -
i
Crmak st Lo r B0 muplammntary F qr T L L mbmr c ccda=l 1Y &
< tain_ds sc="EOZT0E >
amin EY | AZE F1987 w2 ypa="GE' mutant "5l v Pel 1< amino_=s S
“iprotmin_d r ]
< J ot st r
<) lmdb

Figure 2.5: An example of XML, from storing mutation data.
S Figune 26 for the cormesponding I,
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CPELEMENT lade | mutaktiont ) >
<IATTLIST lede omre CCOARTA FREQUIRED >
<!ATTLIST lade url CoATAE IREQUIRED >

<!ELEMENT mutatisn [ dna_dsta?, protsdin_dats;, occurrmnca?,; patisnkt_dstat+; refesrsnces? § >
CIATTLIST mukstisn id COATR FREQUINED &

CIATTLIST mutaticsn susplemeotary_id COATA §IMPLIED >

CIATTLIST mutaticn arkitracy_id CORTA §BEQUIRED >

CIATTLIST mutaticn nunbar_cf_records CORTA FREQUIRED >

<!ELEMENT dra_dats [ genw?; dos_basa?; ccdon? | 2
<!ELEMENT gmna | FECORTA § *

C!ELEMENT drs hana [ $PCORTR | »

<!ATTLIST dns_bsss wildtyps COATA SREQUIRED &
C'ATTLLEST drm hasss makbsnt COATAR SIMPLIED >

! ELEMENT codon | SPCORTA § &

SIATTLIST codon wildiypa COATA IREgUIRED
C!ATTLIST codorn mutsrnt CORTR SIMELIED =

<!ELEMENT protain _dats [ smino_a=id 3 >
LIATTLIST protmin_dabts ac NMTOREN #REQUIRED >
CP!ELEMENT amino_m=id | §FCORTA |} >

CIATTLIST smino_mc-id sa_lsbel COATR FREQUIRED 5
ZIATTLIST amino_mcsid wildeypa CDATA FREQUIRED >
CPATTLIST amino_m=id ouwtant COATA IREQUINED >
CPATTLIST amino_mc-id walid {t| £|7] InEQLIRED >

<!ELEMENT occurrsnca | pravalsncm_text?, prevelsncs_ccunk?; preavelance_pearcentage? | 2
Z!ELEMENT pravalance_taxe | §PCDATR § >

<!ELEMENT preavaleance_ccumt | §PCOATR | »

<!ELEMENT pravalasnce_parcantages [ #FCOATR ]| >

<!ELEMENT patimct_dats [ sga; sa=x?; raca?;, sxternal_fsctccal; phenctypa? ] 7
C!ELEMENT ages [ #PCOATR | ¥
C!ELEMENT xmx [ #§FCDATR | »

~!ELEMENT race | FECDRTE | >
T!ELEMENT mxtarnsl_Factors | §FCOATH | >
C!ATTLIST mxtarnml_Factors detmilse | £|t | §IMLIED >

<!ELEMENT phanotbypa |[dismsss_rnsma?, sozyme_scbivity
dipmans_saverity?; dissass_class?; disssse_onsabt?; prognomiad;
delts_delts_sea?, nalting pedokt?| >

<IATTLIST phenobtypa mendelisn | dominack |recessive |paztial |oon ¢ §IMPLIED >
C!/ELEMENT dispsars_riame [ 3PCOATR | >

<!ELEMENT mrxzymm_sctivity | FPCOATR 3 >

CIATTLIST mnzynm_sctivity nunmeriz § O0|L|2[Z]4]5 § §INFLIED >
SIATTLIST mrzymm_sctivity pearcantsses COATA JIMELIED »
Z!ELEMENT delta_delts_gam { FECOATR | >

<!ELEMENT mmltimg point | FPCDRTA ) »

Z!ELEMENT dissars_savacicy | $PCOATR | =

CIATTLIST dissars_savecity oumecic § O[1[Z]1 2[4 ] FIMFLIED >
C!ELEMENT disssasrs_clsss | FPCORTR | >

C!ELEMENT dispsars_onzset | FPCDATE § >

CIATTLIST dissars_oneet rmamric [ L|2[3]|4 ] #IHFLIED >
ZIATTLIST dimsasrs_onecst sos COATE JIMELIED >

<!ELEMENT progriomnis | FECDRTA ) &

C!/ELEMENT refsrmn-as | sitstiont | >
C!ELEMENT citsticn | S$PCDRTR | »
C!ATTLIST citsticn ymar COATA SREQUIRED

Figure 2.6: An example of DTD from storing mutation data.
This I¥T12 .i]:lﬁ:l.ﬁ.ﬂ thies bormat bor :ih'.‘u.'.i.ns mutatiom data: wehich elements seith which attribubes can evisks, what
the relationship bebwesn elements is, and whether data is required or may be omitbed.
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2.2.3  An alternative format for the PDB: XMAS

XMAS files represent PDEB data using a hybrid XML/ ASM.] format (XMAS comes from the
first two letters of XML and ASN.1 and stands for eXtensible Markup with Abstract Syntax).
The XMAS format was developed by Dr Andrew Martin while working at Inpharmatica to
overcome the problem of DB files, which do not provide a standard format for adding
information (e.g. accessibility, H-bomding, secondary structure assignments etc.). FDB files
require a large amount of data cleaning and contain a lot of implicit information (e.g. H-
bonding, sequence alignment between SEQRES and ATOM records), that is not explicitly
stated and must be calculated for each individual PDE structure.

XMASfiles are automatically generated for all new or updated DB structures and are used
extensively in SAAPdb. This is because it is essential to have a standardised format, which
can be easily parsed by our structural analysis system. These files must contain all the
required PDE data and the results of other calculations. When necessary, XMAS-forma tted

structures can be easily generated for additional structures using proprietary software.

The conversion from FOEB to XMAS format is as follows. Mote that, once converted to XMMAS
format, the following steps can be preformed in any order as the format is self-describing

annotating the columnes in which the additional data are stored.

I- PDB data: Convert raw PDE data to XMAS format, preforming various data clean-up.

2- Solvent accessibility: Calculate and add atom and residue solvent accessibility statistics
using Lee and Richards" {1971) method.

3- Secondary structure: Calculate and add secondary structure assignments for each
residue using Kabsch and Sander’s {1953) method.

4- Hydrogen bonds: [dentify and add any hydrogen bonds in the structure (ie. protein-
protein, protein-ligand and ligand-ligand hydrogen bonds) using the simple Baker
and Hubbard {1954) criteria for defining a hydrogen bond.

In addition, the hydrogen bond calculation program identifies and annotates non-bonds
and pseudo-hydrogen bonds and annotates them. Non-bonds are non-consecutive residue
atom pairs 27-3.354 apart that are not covalently or hydrogen bonded, for example, elec-
trostatic interactions and Van der Waals contacts. Pseudo-hydrogen bonds are atom pairs

that satisfy the constraints described in Baker and Hubbard (1984) for hydrogen bonding

but one or both atoms do not form strict hydrogen bonds, for example, they are metal ions.
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2.3 Machine learning

2.3.1 Introduction

Machine leamning i= a sub-division of artificial intelligence and aims to train computers to
adapt to certain responses and initiate actions (Zhang and Rajapakse, 2009). Machine learn-
ing has applications that range from search engines, natural langnage processing, bioinfor-
matics, medical diagnosis and chemoinformatics to stock market analysis, game-theory and

computer vision.

The field of machine learmning has grown rapidly, requiring the development of powerful
learning algorithms for diverse applications. Machine learning has been a key technique
for data mining; the discovery of previously unknown properties in data, which has led
to the creaticn of sophisticated database interfaces. According to Witten and Frank (2005),
data mining has three purposes: to understand, explain (in human-readable terms) or pre-
dict data features. Machine leaming approaches have been used effectively to solve many

technological problems and greatly increase the knowledge-acquisition process (Frasconi
ef al., 2003).

While data are accumulating at a Faster rate than ever, data storage is becomning cheaper and
more accessible. This has made it possible for the field of knowledge acquisition to expand,
to collect data on various naturally-occurring processes and other aspects of human activity.
Howrever, vast quantities of data are not useful in their own right, they must be interpreted
and learned from to be of any use. Currently, our ability to analyse such large data sets
lage behind the rate of data accurnulation (Witten and Frank, 2005} Machine learning
addresses exactly this issue, allowing the identification of structure in unstructured data

either automatically or semi-antomatically.

Machine learning is founded on the idea of instances. Typically, each instance has a unique
identifier, supplemented by a set of measurable attributes (al=o termed features). Attributes
are assumed to contribute new knowledge to the description of the concept. Each attribute
is assigned a value, which can take two forms: it is termed numerical if it can be expressed
on a numerical scale; or categorical if it can be defined by a finite set of mutually exclusive
categories. These categories can be numerical, but not continuous (for example, binary
attributes with possible outoomes of 0 or 1), or a non-numeric description (e.g. helix, strand,

coil). These are termed nominal attributes.
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2.3.2 Machine learning approaches

Machine learning deals with programs that improve or adapt their performance over
time and can be achieved in several ways. The two approaches (learning scenarios)
to machine learning that are most frequently applied are termed ‘supervised” and

‘unsupervised’ (£hang and Rajapakse, 2009).

In a supervised learning approach, a program performs a function (e.g. classification) af-
ter training on a data set where inputs (attributes and class values) and desired outputs
are provided. This is followed by thorough testing of its accuracy and efficiency on an in-
dependent dataset of instances where the attribute values are known, but the class value
is not known. As such, the program is fed examples {input attributes) and must predict
the cutput attribute of every next instance based on pre-defined criteria before the answer
is revealed by a “teacher’. Thus, supervised approaches are often also referred to as dis-
crimination or prediction classifications. [f the output i= categorical, the process is called
classification and the attribute predicted by the model is termed the class attribute. All of
the models described in chapter & and chapter Yare based on categorical outputs. If the out-
come is continuous rather than categorical, and the model can be formalised as a numerical

function of input variables, it is called a regression model.

In unsupervised learning, the program must determine certain regularities or properties of
the instance in the absence of a teacher. Thus, unsupervised learning focuses on relation-
ships between attributes, rather than trying to predict outcomes. In contrast with super-
vised learning, there is no test dataset, the class labels of the data are unknown, and the
output of the model is trains instances that are grouped according to a similarity measure.
The main types of unsupervised learning methods are association learning and clustering.
Association rules-mining finds associations or a structure among attributes in large sets of
data items. Association rules are an essential data-mining tool for extracting knowledge
from data, made useful by the good scalability characteristics of the algorithms employed.
Clustering on the other hand, aims to generate groups (clusters) of instances without nec-
essarily identifying the underlying structure or associations of attributes within a cluster.
Clustering is one of the most utilised data mining techniques and is useful when it is neces-
sary to train a classitier with a small number of samples if the labelling of a large collection

of samples is costly.
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There are several other tvpes of machine leamning approaches. These include semi-
supervised leamning (learning based on a mixture of labelled and unlabelled instances) and
reinforcement learning (where the inputs come from an unpredictable environment, not
a training set, and positive feedback is given after a short sequence of learning steps). A
description of these methods is outside the scope of this thesis but are described in detail
by Mitchell (1997) or Alpavdin (20097

This thesis uses binary classifications (values can only be | or 0) to predict the presence
or absence of a single feature. In this case, the feature of a pathogenic deviation (I'IN) can
either exist or not exist for a given instance (i.e., is/is not a PDY). The work presented in this
thesis led to the construction of two mutation pathogenicity /phenotype classifiers, which
are described in detail in chapter & and chapter 7. This thesis uses two forms of machine
learning (neural network and random forest) which are described below.

2.3.3 Newural networks

There are two ways to understand neural networks. The first is the traditional biological
concept associated with the neural system. The second describes interconnected artificial

nebworks that are built according to the principles of biological networks.

The multilayer perceptron model is an example of an artificial neural network model that
can carry out concept classification tasks. It is a feed-forward network (ie. nodes are con-
nected in a non-circular fashion) that builds the class predichion function by training the
network on a back propagation algorithm. [t minimises learning errors by adjusting the
weight of the connections between the network’s nodes (Rumelhart of al., 1984). The model
consists of input, output and one or more intermediate lavers and explains the flow of data
from the input to the output laver. The model can be applied to various pattern ranges for

classification, prediction, recognition, and approximation.

A minimum representation of the network consists of three layers of interconnected nodes
{also termed neurons or perceptrons) with weighted connections. Figure 2.7 shows the ar-
chitecture of the model, which is divided into the input layer (one neuron for every attribute
and in the case of a neural network, these are exclusively numerical), the (usually single)
hidden layer, which consists of a user-defined number of hidden nodes, and the output
layer, which has a node for every class category. One of the drawbacks of the models is
that the data structures they learn, although efficient at prediction, cannot alwavs be easily
tranclated into human-readable terms. While it i= useful as a ‘black box” prediction model

it is not trivial to visualise (unlike rule-based trees).



CHAPTEE 2 BICINFOEMATICS RESQURECES AMD METHCDS =0

In pathematical terme, a multila yer perceptron is a function that maps input values to the
output dass value. Every node transforme input based on a non-linear activation fumction
(Equation 2.1). The model iterati vely learns the weighte that minintize the error rate on the
given instances (the training set). Theaim iz toreach a global (rather than a local) miniomam

eITor rate.

O = f(y LW [2.1)

Where [ iz aninput, ¥* iz a weight leamed during training, and £{] i= the evaltation fune-

o,

Local oinima are a problem that can be avoided through the introductiion of momentum'.
Thiz iz a small amount of random noise introduced into the system in each epoch (training
step). Finding the appropriate ratio between the leaming rate and momentum is the key to

optimizsing the model and achieving a good lewel of both generalisation and specialization.

Thestopping conditions for trainin g arespecitied by the wser, either by defining the number
of epochs, or when the error ratehas not changed for the last 2 epoche. Although in theor
there iz no limit to the number of iterations (thi= allows the model to sample error space
around the minimuni) in practice the process is uswall y stopped soon after thelearning rate
reaches a plateaw. This i= to awveid owver-fitting the model to the training data (espedally
when the training =et iz small), a process that iz alsoknown as ‘early stopping'.
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Figure 2.7 Multila yer perceptron schema.

Modes are organisad inbo three layers: input, hidden, and outpaat layer. The weights on the connac-
ton= batween the nodezare optimized. Figure obtaieed fiom http: ffan . wikipadia_ org/wiki/
Fil=:Artificial_n=ural_n=twork.swg keder Creabive Commors loense.
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2.3.4 Random forests

The classification of datasets with multiple attributes can be problematic. Typically,
a method must be applied to reduce the number of dimensions, as most models do
not perform optimally when highly interdependent or irrelevant attributes are mixed
with those that are informative. Attribute optimisation is resource-intensive and the
standard way to handle it i= to use decision trees. In a decision tree algorithm, each
iteration evaluates all possible splits of all attributes in order to determine the condition
that maximises information gain (Witten and Frank, 2005). This recursive procedure is
repeated for every node created by the split, until there is no further information gain or

the maximum tree size is reached.

Although single decision trees can perform robustly on high-dimension data, they are often
inaccurate when trained on a small dataset and various authors have suggested an obvious
improvement. This consists of constructing a set of 7' trees (usually termed a forest) rather
than a single tree. Results generally outperform the single decizion tree method (Svetnik
ef al., 2003) as the final classification is a combination of the predictions made by each tree
{often simply a majority vote). The random forest has been shown to be the most efficient
method for learning a solution to a problem and can also be used to identify interactions
between variables (Pavlow, 2000). In this caze, it learns by ‘hagging” a decision tree that
has not been modified or pruned and randomly identifies features in every split, which are
used in the construction of a group of decision trees with controlled variation. The random
forest has become a common data-exploration method that represents the combination of

individual learning decision trees.

Advantages and disadvantages

The random forest method builds an accurate learning algorithm; consequently the classi-
fier is also accurate. Moreover, it performs efficiently on very large databases and it can
handle a large number of input variables with no deletion. It is easy to estimate missing
data, and is accurate even if there is a lot of missing data. It provides an estimate of variable
tvpes that can be used in the classification and it can provide an internal indiscriminate
bound on the generalization error as the forest is built. It provides effective methods for
error balancing in unbalanced data sets. The forest can compute prototypes, which makes
the relation=hip between classification and variables easy to identify. The ability to compute

proximity between pairs of cases makes it easy to cluster and locate outliers.
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Algorithm

A random forest builds a user-specified number of trees (T). Each tree is trained and eval-
uated on a bootstrapped sample of the initial dataset (i.e. a sample n; =< n of the data
with replacement gives us (1 — 1 /¢]n of the criginal data (~63%)), while the remainder of
the data makes up the ‘out-of-bag”’ dataset. The number of trees is limited by the available
computational power; in practice, the more trees a model can produce, the better the per-
formance. Moreover, as the Law of Large Mumbers (Breiman, 2001} established that there
is an upper bound for the generalisation error, adding trees to the random forest does not
lead to over-fitting.

When the decision tree is built, node splits are based on a randomly-chosen subset of e,
attributes!" i=ometimes referred to as the random tree algorithm). [n this respect, the ran-
dom forest resembles the bagging algorithm (Breiman, 199%). A split is based on all p at-
tributes, with a clear improvement in performance when m,,, < p. The tree continues to be
built until there are no further information-gaining =plits and no pruning. Finally, the model
is applied to the set of out-of-bag instances and performance is recorded as the ‘out-of-bag”
(OOB) error (i.e. the ~-37% not in each bootstrap set).

According to Breiman (2001), a low m,, suggests low correlation between trees (i.e each
tree explores a ditferent region of feature space). At the same time, each tree provides less
information as it covers a narrower range of attributes in each split. Increasing mi.; leads to
more similar trees, but each tree provides a more accurate prediction. Consequently, opti-
mum performance results from optimizing the value of Tand m,,, (1 < my,, = p) (Sveinik

ef al., 2003,

It is only in extreme cases that the optimal number of trees in a random forest depends
on the number of predictors. Despite the otficial description of the algorithm, which states
that the random forest does not overfit and the number of trees is unimportant, at least
one author (Segal, 2004) has demonstrated that it could over-fit noisy datasets. There are
various methods to obtain the optimal number of trees. In this thesis a simple approach of
trying a range of T and m,,, was used.

I"rl.'..-,, stands for the number of randomly chosen attributes in every split; T s the number of frees
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Performance

Svetnik ef al. (2003) suggest that random forests have several advantages over single deci-

sion trees:

(i) Every tree-split uses a subset of parameters, which significantly reduces the time needed
to build the tree;

(ii} There is no need for time-consuming cross-validation, which is avoided by bootstrap-
ping and evaluating the method on the OO dataset (usually 1,3 (- 37%) of the train-
ing dataset]). It performs significantly better (in termes of spead) than bagging and
some decision trees; and

(iii) Tree-building is simplified by omitting pruning.

Mot only are random forests resource-efficient when run on large datasets with many at-
tributes, they perform as well as boosting (Mewver of al.,, 2003) and decision forests (Tong
ef al., 2003) and can outperform bagging. Finally, when used as an ‘off-the shelf’ method
with only two parameters, the method is simple to implement. In this case, the number of
attributes tested during tree-building and the number of trees can be =et as high as comput-

ing resources permmit.

The method also provides a measure of the importance of each training attribute. Cince the
tree is created, the misclassification rate for an attribute in the (OB set can be calculated by
randomising the attribute’s values (Breiman, 2001). The difference between the misclassifi-

cation rate and the OOFB error gives the raw importance of the attribute.

2.3.5 Data sampling

In data sampling, the cverall dataset (known attribute and class values) is divided into
training and test datasets. However, this has to be done with care. If too many data points
are used for training, the model may be excellent, but the test dataset might not be repre-
sentative, giving a misleading impres=icn of poor performance. In the opposite case, while
the model may not be robust owing to the lack of training data, testing will be very thor-
ough. The optimal balance is achieved by iteratively using all instances for both training
and testing in a process called cross-validation. Data are divided into N {usually 3, 5 or 10)
non-cverlapping equal subsets. N models are built, each time using a different fold {itera-
tion) for testing, and all other folds are merged for training. Cross-validation is the average

of the scores from all iteration.
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An extreme example of cross-validation is the leave-one-out process (also known as jack-
knifing). In this case, the number of iterations (folds) is equal to the number of data points.
In each step all but cne of the instances are used for model building and tested on one data
point. The drawback of this procedure is that it is very resource intensive, and therefore it
only makes sense to use it cn a very small sample taken from a small dataset used to build

something like a specific disease predictor (Chapter 7).

Both cross-validation and leave-one-out validation are examples of data sampling without
replacement. This means that once an instance sampled from the pool of instances, it is
removed, and cannot be sampled again. In contrast, data sampling with replacement, also
called bootstrapping, always leaves the instance in the original pool and simply copies it
to the test dataset. In this way, each sampled instance is chosen from the original N in-
stances, which allows repeated sampling of the same instance. Sampling with replacement
is performed M times on the dataset of N instances included in the test set. To use a simple
example, sampling without replacement would be like dividing a group of children into
two football teams, whereas sampling with replacernent would be like drawing the names
of children winning a prize from a hat, and then returning the name back into the hat, so

the same child can win more than once.

The other important classification issue is the ratio of data points in each of the classes.
This ratio has to be maintained throughout all partitions of training and testing datasets, in
order to avoid creating unbalanced models. For example, if random data partitioning ends
up with all instances with one class value in the test set, and only the other class value in

the training set, the model will simply predict the latter class value in 10009 of cases.

Finally, when the sample is small, the model should perform equally well on the entire pop-
ulation, even if some of the patterns present in the overall population are not present in the
training data. Although performance is measured during training, it is more important that
the model i= a good predictor of future data. IF the classifier is over-fitted, it will perform

misleadingly well in training, but will perform poorly on slightly different instances.

2.3.6 Missing data

It is often the case that the values for the attributes of some data points are not known. For
example, an error could have occurred in the measuring process (e.g. an instrument mal-

function), or it did not make sense to record the measurement for a certain data point (e.g.

a patient’s condition was too severe to perform an expensive test which would have not
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helped in their treatment). [n these cases, it is usually not possible to repeat the measure-

ment, and modelling must be carried out with missing values.

There are three main strategies for handling missing data: (i) removing a data point, (i) cre-
ating a new category (if the feature is nominal) or, (iii) inputting the value from data points
with known values for that attribute. More details of these three strategies can be found in
Witten and Frank (2005) or Saar-Tsechansky and Provost (2007). Removing the data point
makes sense if the dataset that remains is not so small that it seriously affects the model’s
performance. For example, Chapter 6 shows that the training dataset was big enough to
use this procedure. In the second case in Chapter 7 (when the missing attribute is nominal),
a new attribute category (“missing value®) was created. This can work in cases where signif-
icant bias is not introduced by equating all instances with the missing value. Finally, there
are several ways to predict the most likely value for the instance. For a review of missing

data imputation, see for example [erex ef al. (2010).

2.3.7 Model evaluation

The aim of classification is to use known data to build a model that is able to sort new in-
stances into the correct class. Here, we use the example of the binary classification of a data
point. By definition, the test instance has a known true class value (positive or negative),
and a predicted class value (again, positive or negative). The four possible combinations of
these values are shown in Table 2.1. An instance with a positive class value can correctly be
classified as positive (a true positive, TP), or wrongly as negative (a false negative, FIN). On
the other hand, an instance with a negative class value can correctly be classified as negative

ia true negative, TM), or be wrongly labelled as positive (a false positive, FF).

Predicted class

Fositive | Megative
Positive TP FM]
Actual class Megative FF T™

Table 2.1: Outcomes of a two-class prediction, also termed a confusion matrix.
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The ‘success" of the classification, or how ‘correct” it is, is relative and depends on the pur-
pose of the model. For example, when used as a diagnostic tool, it is very important not to
misclassify a positive as a negative (identifying true positives and avoiding false negatives).
In the case of the prediction of the structural effects of mutations on protein stability (pre-
sented in Chapter &), it is important that true positives are identified, howewver, it is accept-
able for a (=mall) proportion of true positives to be missed. This showe that there are var-
ious ways to measure model performance. The terms accuracy, precision, sensitivity, and
specificity detailed below are all useful factors cn which to measure model performance.
Table 2.2 defines a number of measures used to assess binary classification predictions and

lists the range of values each measure can take.

Accuracy is also termed the ‘overall success rate” and measures the proportion of cor-
rectly predicted cases compared to all cases. This is in contrast to the error rate, defined

as | —accuracy.

Precision indicates how many instances predicted to be positive really are. In other words,

it reflects how likely it is that the model will record a false positive.

Sensitivity indicates the fraction of actual positives identified. It is crucial to avoid low
sensitivity when using models for medical research as missing an existing disease could

have fatal consequences.

Specificity has the same meaning for true negatives as sensitivity does for true positives.

The F-measure is the harmonic mean between precision and sensitivity: it is usually calcu-
lated from the equally weighted contribution of the two. While it i= a more general measure
of accuracy than the first four measures, it does not take account of true negatives. Therefore
a more appropriate general performance indicator is the Matthews cormrelation coefficient
(MCC). This shows how well the predicted class correlates with the actual class (-1 indicates
an inverse correlation, 0 shows no comrelation, 1 indicates a positive correlation). The MCC

is the only metric that cornbines all four measures from Table 2.1 into a single value.

Model performance is generally improved by higher values of precision and accuracy and
loweer error rates. However, when the model is optimized, a performance trade-off usually
has to be made between sensitivity and error rates. This is achieved by experimenting
with various attribute combinations and adjusting the model parameters until the desired

correctness is achieved.
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There is one more performance measure available in the case where a classifier ranks the
outcome, or assigns probabilities or confidence values. This is the receiver operating charac-
teristic (ROC) curve, and the corresponding area under the curve (ALUC). If the true positive
rate is plotted against the false positive rate, the learmned model can be compared with the
performance of a random model, ie. a predictor that randomly outputs a class value, re-
gardless of the input value. As shown in Figure 2.8, a random model has AUC = 0,50 (the
area under curve “A"). A perfect predictor with a zero error rate would have AUC = 1.00
{curve I is closest to this ideal scenario), with a true positive rate of | for all false positive
values. However, researchers such as Hand have expressed doubts about comparing classi-
fiers on the basis of the AUC, as each ROC curve is the result of a different misclassification
metric (2009). Therefore a mixture of performance characteristics should be used to eval-
uate a model and particular attention should be paid to any suboptimal model behaviours
that must be tolerated when it is applied in practice.

For models such as neural networks that have numerical outputs (unlike categorical classi-

fiers such a= Random Forests), three more performance measures can be applied: root mean

square error (RMSE), and mean absolute error (MAE).

Root mean square error (also called the mean square error) is the square root of the vari-
ance of residuals. The difference between the expected and observed value for each data

point is squared, averaged and a square root is calculated.

Mean absolute error is the averaged sum of absolute errors, which are calculated as the

abzolute difference between the predicted and chserved class value for a data point.

23.8 Benchmarking

The assessment of data sampling and evaluation strategies must focus on the future perfor-
mance of the model based on training and testing on a limited set of instances. Benchmark-
ing assumes that testing i= independent and transparent. Usnally several similar models
are tested on a new dataset. Although in theory benchmarking is seen as essential (par-
ticularly when the performance of one method is tested against another) it is rare that it
happens in practice. This is because it requires a great deal of effort, computing time, and

most importantly, a dataset that is both appropriate to the task and has not vet been used.
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Figure 2.8: Receiver operating characteristic curve.
A iz a random model, B, C and D show increasing improvement over random prediction.  Figure
ohlainad from (Kabari and Mwachukwu, 20012), with minor modificetions,

2.4 Statistics and data representation

This section describes the basic statistical concepts and tests used in this thesis. It begins
by outlining log ratios, as a way to compare datasets graplically (rather than statistically).
The 3* and Fisher's exact test are used to test categorical data for differences in frequency
distributions {usually bwo datasets are tested for the presence or absence of a single feature).
A t-test is applied to two populations where features can be measured on a continuous scale;

it tests the significance of the difference in the means of the two samples.
241 Log ratios

Log ratios compare the chserved prevalence of a feature with its expected prevalence, as

shown in Equation 2.2, A value of 0 indicates that the observed and expected values are the

same. For a log, (ie. log to w), a value of 1 indicates that the observed value is # times n'
what is expected, a value of 2 indicates that the observed value is n” times what is expected,

etc. Similarly, a value of -1 indicates that the observed value is 1/n what is expected, etc.



CHAPTER 2. BIOINFORMATICS RESOURCES AND METHODS ElL

(1.2

abEerped
erpecied

fografio = log, (

Log ratios are not a statistical test (from which a p-value can be derived). Rather they are
a form of descriptive statistics that represent the difference between an cbserved value and

an expected value.
242+~ test

The Chi-squared test (y* test) (Mood ef al., 1974) is a goodness of fit test. This nonpara-
metric test is used on nominal, categorical data and compares the frequency distribution
of a sample to a theoretical distribution. It can also be used as a test of independence to
compare two samples. In this case the null hypothesis is that data are drawn from the same
frequency distribution. Data are divided into n datasets, and & outcome categories with
two constraints. First, outcome categories must be mutually exclusive and second, the fre-
quency probabilities for a given dataset, over all categories must sum to 1. On the basis of
this definition, the test has (n — 1] (& — 1] degrees of freedom and is calculated as follows:

r

o ..JI: — Ir'l. =
F=3 U . I ather end (23

R 5
o=l

Where (7, is the observed count and F; is the expected count.

The * test assumes that the sampled data conform to the y* distribution, which is a special
case of the gamma distribution. However, this assumption introduces significant errors
when expected counts of five or less appear ina 2 » 2 contingency table: it increases the 3~
value and consequently erroneously decreases the p-value. This problem can be partially
overcome by the introduction of the “Yates correction’ for continuity (Yates, 1934). This
involves subtracting 0.5 from the difference between the observed and expected value in
order to increase the p-value, but the procedure can result in an over-correction. Fisher's
exact test (described in Section 2.4.3) is the only way completely to overcome assumptions

about the distribution of the tested data, but cannot be applied to large datasets.

Where data consist of nominal counts, the +* test (Mood ef al., 1974) can be used to indicate
whether there is a difference between bwo datasets. It should be noted that where this thesis

reports ~ results with percentages, raw counts were used in the 3~ test. Equation 2.3 shows
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how 3~ statistic is calculated. Although expected values are not always available, they can
be estimated from observed data. Wherever possible, this thesis uses known, expected
values, rather than estimated values. In other words expected values are calculated From
known data rather than estimated from observed data.

Throughout this thesis, the 1* test is Yates-corrected in cases where it is carried out on a

2« 2 contingency table.

2.4.3 Fisher's exact test

The 3~ test becomes unreliable where the contingency table is sparsely populated (ie.
where any cell has value aof < §)and where counts are unevenly distributed. On the other
hand, the theory behind Fisher’s exact test makes it possible to make a robust comparison
of datasets of different =sizes and can be used to analyse contingency tables with empty
cells (Fisher, 1935),

Fisher's exact test (Fisher, 1935) is used instead of a 1~ test when counts < 5 or when empty
fields oocurina 2 = 2 contingency table. This test provides an exact p-value, and removes
the difference between the sampling and thearetical 1* distribution for small datasets. The

fisher.test provided in B was used with default parameters.

For the example, labelling the counts as shown in Table 2.3 gives the p-value:

(rg+2e)vs+well(za+va)lize + vl
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Table 2.3; Fisher's exact test.
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A significant limitation of Fisher's exact test is calculation complexity. Large datasets mean

that it soon becomes unfeasible to calculate the p-value.
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244 T-test

T-test is a statistical test that measure the significance of the difference in the means of bwo
normally-distributed populations. Although t-tests are often assumed to be synonymous
with Student’s t-test, in strict terms, Student’s t-test assumes that the variances of the two
populations are equal. However, Markowski and Markowski (1990) have shown that if two
samples are roughly the same size, Student’s t-test will still vield accurate results, regardless
of differences in the variance between samples. Finally, if the two populations differ in
terms of both variance and the size of the dataset, Welch's t-test can be used {Welch, 1947).
This calculates the t-statistic (based on the null hypothesis that the means of the two samples

are equal) as follows:

X — X,
——— (25)
/

Ein =
l'p' My I N

Where X is the mean of the sample, 5° is the sample variance and N is the number of data
points. In this case, the degrees of freedom cannot be calculated and must be approximated
using the Welch-Satterthwaite equation (Equation 28 in Welch (1947)). This approximation
of the degrees of freedom is based on the linear combination of the degrees of freed om from
each of the sample’s variances, which is not directly linked to sample size. The t.test
implemented in the B language was used, which by default i= equivalent to the two-sided
Welch's t-test.

245 R

The RB* statistic and data representation systern is a powerful programming language and
environment for statistical computing and graphics. It is licensed under the GNLU license
and provides a wide variety of statistical (linear and nonlinear modelling, classical statis-
tical tests, time-series analysis, classification, clustering, etc.) and graphical techniques.
Many support packages are also available to end users.

Throughout this thesis, B was used in combination with some additional extra packages,
e.g. gplots (Gregory et al., 2010) and plotrix (JTim et al., 2009) to create statistical plots, and

Heathaps matrix.

Al
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246 FPyMOL

PyMOL (Schradinger, LLC, 2010) is a molecular graphics program®!. It provides effective
visualisation of protein and ligand interactions and can be used to create figures via pro-
gramming scripts that can be saved in a text file. Throughout this thesis, the PyMOL pro-

gram was used to create protein structure figures.

2.5 WEKA

Waikato Environment for Knowledge Analysis (WEK A isa machine learning / data min-
ing software package developed in Java. The main features of the WEEA software are
numerous data processing tools, learning algorithms and evaluation methods such as clas-
sification and regression, clustering, association rules mining, feature selection algorithrns

and data visualization techniques.

The software is associated with an extensive Graphical User Interface (GUL) consisting of
four major WEEA applications: (i) Explorer (provides an environment to explore the data),
(ii) Experimenter (provides a platform to carry out experiments and statistical bests / analy-
sis among various learning algorithmes], (iii) Knowled geFlow (almost has the same function
as the Explorer but with a drag-and-drop interface in addition), and (iv) Simple CLI (a sim-
ple command-line interface that supports direct execution of WEKA commands). The GUIL
is the starting point to launch any of the WEKA applications and related tools.

While working with WEKA, the first tazk i= the presentation of data to the =oftware,
which is the primary step for data investigation. This step is known as the pre-processing
of data, and may be carried out under the Explorer option. In addition, the other
tasks are Pre-process (selection of data file), Classify (training/testing of data for
classification/regression algorithms), Cluster (data clustering), Associate (discovery of
association rules), Select attributes (significant features selection in the data), and Visualize
{data visualization in a 1D/2D shape).

WEEKA works with flat text files (rectangular table format) that include its own “.arff” {An-
drew’s Ridiculous File Format), C5V format and ©4.5 file formats. A URL or SOL database

can also be used as a source for reading data into WEKA.

EI"'.'_:: ry/pymol ..ocg
a]
Thttprs/www.Ccoowalkato.eac.nz/ml/wekasindex html
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WEKA contains numerous pre-processing tools known as “filters”. These filters are widely
used for discretization, normalization, transforming, attribute selection, and attribute merg-
ing, etc. ‘Classifiers” are the actual models used for prediction in WEKA. The leamning algo-
rithms used for building such models are decision trees, support vector machines, Bayes’
nets etc. Bagging, boosting, stacking, error-correcting output codes and many more are

termied as Meta-class=ifiers.

In a dataset, some features are more important than others. WEKA can use attribute selec-
tion mechanism =earches to identify those attributes/ features, which are more significant
and vital for accurate prediction. WEKA has the capability to visualize the data with any
number of attributes. To evaluate the performance of different leaming algorithms used for
classification, prediction and regression problems, exhaustive experimentation is often the
best choice. WEKA provides various evaluation options such as cross-validation, learning

curve ete.

2.6 Available computational tools to predict damaging mutations

Single nuclectide polymorphisms (SMPs) account for the majority of genetic variation in
the hurmnan population (Wang ef al., 1998). Much of this variation is benign, especially when
mutations are synonymous. However, the majority of monogenic (single gene) diseases
are mediated by single, non-synonymous base changes (Human Gene Mutation Database
(HGMD)). The availabilitv of large-scale, high-throughput SMFP genotyping is rapidly in-
creasing the amount of available SNP data. Interpretation of these data in termes of relevance
to human disease states requires the modelling of associations between SMI genotypes and
resultant phenotypes. Many research groups have developed different predictors for eval-

uation of the disease-causing potential of DMNA sequence alterations.

Many different tools currently exist that predict whether a mutation that changes an
amino acid within a protein is likely to increase disease susceptibility or is considered
benign. Such tools include Mutation Assessor, PolyFPhen (1 and 2}, SIFT, Condel, FATHMBM,
V2alignGVGD, Bongo, CanPredict, L5-5NF/FDE, MAPE nsSNF Analyzer, Panther,
Parepro, PhD-SNE, FMut, SMAT, SMNP=3D, topoSME, and others. Below, some of the most

common tools are described followed by a summary table 2.4 .
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2.6.1 MutationAssessor

MutationAssessor” is an online tool for the assessment of evolutionary conservation of
aminc-acid residues in a protein family. It uses a multiple sequence alignment (M5A) to
calculate a functional impact score using the conservation of the region in relation to pro-
tein homologues (Castellana and Mazza, 2013). This tool classifies its output into two
categories, ‘Neutral” or ‘Damaging” (Reva ef al,, 2011). The inputs to MutationAsseszor are
Uniprot and Refseq protein sequences [Ds, which allows users to input mutated sequences.
The server then defines the boundaries of the given domain together with the mutated in-
put sequence. It then builds an M5A using Uniprot sequences or those already present in
its database, and attempts to distinguish between functional and non-functional mutations

in the conserved regions.

MutationAssessor uses numerical estimates to assess the functional impact of a mutation.
The estimate is based on a statistical model that displays the similarity of the given se-
quence to a family of related proteins. The model also makes the assumption that impor-
tant resid ues are conserved in the region, which is generally the case in biologically essential
genes throughout evolutionary history (Reva ef al., 20011). All non-viable mutations are dis-
carded from the analysis. The numerical estimate of functional impact is calculated from
the ditference in the entropy caused by the occurrence of a particular mutation compared
with the entropy of the native structure. This is described using the equation below that
calculates a specificity score (5) (Reva ef al., 20011):

ASF{a — 8) — —in ”"ﬁ [:'l'] ! (2.6)

Where n;() is the number of residues of type 7 in an alignment column i; »;(n) is the

number of residues of type @ in an alignment column i.

A combinatorial score, called the Functional Impact Score (FIS), which assesses the impact
of changing an amino acid of type a to type 7 at a position ¢, is given by Equation 2.7, A=,
correspond to evolutionarily selected specificity residues, i.e. residue distributions con-

strained at the level of one or more subfamilies.

-

“http:f/muteaciones=-e==cr._.ocr3/’
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(o — 3 = [AS=(a, 3) + AS: (a, A2 (2.7)

Where ASF is the family conservation score. ASY is the specificity score that quantify the
entropy difference resulting from a mutation that atfects conserved residue patterns in pro-
tein subfamilies.

The validity of the FIS score was tested using the various ‘disease-associated’ and ‘common
polymorphism’ mutants present in the Uniprot database as a test set (Reva ef al., 2011). The

evolutionary conservation score is used to distinguizh bebween 19,179 dizease-associated

and 35,608 polymorphic mutants, thus making it possible to study the impact of mutations.
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Figure 2.9 The Functional Impact Score and its stability to separate pathogenic and poly-
morphic variants. {A) Normalized smoothed distributions of the values of the functional
impact score as computed for 19179 known ‘disease-associated” and 35608 ‘common poly-
morphism’ variants and mutations annotated in UniProt. (B) The cumulative distributions
of the score values computed for disease-associated and polymorphic variants using the

same data as in (&) (Reva et al., 20117

Figure 2.9 B shows that there is a separation (79%) between the two variant classes at a FIS
score of approximately 1.9, Around 7979 of disease-associated mutants scored higher than
this level, and around 79% of all polymorphic mutants scored lower. Further testing of the
FIS =core was carried out using TF53 mutation information contained in the IARC TP53
database. This resulted in a FIS score that was higher for both mutations that result in ‘loss
of function’ and in cases where there was a ‘gain of function’ (Reva et al., 2011).
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26.2 TPolyPhen-2 (Polymorphism Phenotyping)

PolyPhen-2* is available as a standalone and web-based tool for the prediction of the phe-
notypic consequences of mutation (Adzhubei ef al., 2010). Using naive Bayesian classifi-
cation, the tool makes use of sequence and structural conservation to model the position
of an amino acid substitution. It then calculates the nature of the substitution and assigns
it as ‘benign’ (0 < p < 0.2), ‘possibly damaging” (0.2 < p < 0.%53) or ‘probably damaging’
(025 < p < 1) depending on the probability intervals cbtained {Castellana and Mazza,
2013).

PolyPhen-2 utilizes an algorithm that automatically selects the appropriate features from
eight sequence-bazed and three structure-bazed options (Adzhubei of al., 2010). The tool
first performs a multiple sequence alignment (MSA) against proteins homologous to the
query sequence. Homologous sequences are selected for multiple sequence alignment us-
ing a clustering algorithm  (Camacho ef al,, 2009), amino acid sequences are aligned us-
ing a multiple alignment program MAFFT (Katoh eof al, 2002) and then refined using
Leon (Thompson ef al., 2004). The human alleles forming a pattern of amino-acid replace-

ments are compared to see how distant the deviant is from the wild-type.

The tool then builds a profile matris using the Position-Specific Independent Counts soft-
ware (PSIC) (Sunyaev et al., 1999), which in tumn provides profile scores, which are logarith-
mic ratios of the amino acid at that particular position (Sunyaev ef al, 1999). The difference
in the profile score between the wild and the deviant-type is then calculated. Pesitive val-
ues of high magnitude suggest that the particular amino acid substitution at that position
is rarely observed and unlikely to be stable (conserved). PolvFPhen-2 then checkes for the
structural stability of the mutation by conducting a BLAST search on the query against the
PDE database. This mapping allows the tool to determine if the substitution in question
obliterates a hydrophobic site, alters electrostatic interactions, or influences other structural

and interactive components (Adzhubei of al., 2010).

The HumVar and HumIlv datasets were used to train the naive Bayesian classification
used by PolyFhen-2. The HumDiv dataset used contained sequence information on 3,155
alleles with damaging effects on molecular functions, along with 6,321 differences between
human-origin proteins and their related non-damaging homologues (Adzhubei ef al., 2010).
All mutation data listed in HumDiv were retrieved from UniProtKB. Mutations were con-

sidered damaging if their annotations contained kevwaords (“lethal”, “complete loss of func-

T ' L 1
nttp://genetics  bwh.harvard.edn/pohl
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ti.Dl'l”, )

causes”, “abolishes", “no detectable activity™, “impairs", etc.) implving a causal
mutation-phenotype relationship. The version of HumVar used contained 13,032 human
disease-causing mutations, along with 5946 human non-synonymous nsSMNPs (neSMPs).
n=5MPs were treated as non-damaging and were compiled from differences in orthologous

protein sequences belonging to closely related mammalian species.

When applying a 207 false positive rate (FPR), PolyPhen-2 showed a true positive rate of
approximately 927 on HumDiv and 73% on HumVar, respectively (Sunvaev of al., 1959),
It i= likely that the predictive power of HumVar was lower because of the assumption that
the nsSMI's were non-damaging and the fact that HumDiv is more selective in its criteria.
PolyPhen-2 uses a 5% / 10% FPR for the HumDiv model and a 1075 /0 20% FPR for the
HumVar model as the limits for its classification into ‘benign’, “possibly damaging” and
‘probably damaging” categories (Adzhubei of al., 2010). As such, mutations with FFR= at
{or below) the lowest FIPR value are predicted to be ‘probably damaging’; mutations with
posterior probabilities related to FI'Rs at {or below) the higher FI°R value are predicted to
be ‘possibly damaging’; and mutations with estimated FFR= above the second FPR value
are classified as ‘benign’ (Sunyaev ef al., 1999).

263 The SIFT predictor

The Sorting Intolerant From Tolerant (SIFT)* tool is a sequence-based homology algorithm
that relies on the evolutionary tendency of conserved amino acid positions to be intoler-
ant to substitutions. Thus, this tool does not require structural information  (Kumar ef
al, 2009 Castellana and Mazza, 2013). Using sequence alignment, the query mutation is
aligned with orthologous sequences. The tool then creates a score matrix for each position
in the alignment and predicts if the variant is damaging or not (Figure 2.10). The score
for each possible amino acid substitution is converted to a normalized probability that the
substitution would be evolutionarily tolerated (the SIFT score) (Mg and Henikoff, 20003). A
score of 0 is considered to be highly damaging, where a score of | is neutral. If a score is
greater than 0.05, the substitution at the position will be tolerated (Kumar ef al., 2009).

To estimate the effect of the substitution, SIFT takes into account the position of the substi-
tution and the nature of the amino acid substituted. The method assumes that functionally
and chemically important amino acids are conserved and any substitution with an unre-

lated amino acid will result in a ‘loss of function” (Mg and Henikoff, 2002).

3"'"_'|'-""' Scvri.argl
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SIFT aligns the input sequence with related protein sequences using Position Specific Iter-
ated (F5I) BLAST and calculates the probability of each amino acid cocurring at a given
position, with respect to the most frequent amino acids tolerated (Mg and Henikoff, 2001).
The tool then scans each position of the sequence for the probability of occurrence for each
of the 20 amino acids. S[FT then builds a probability matrix of the probability of each amino
acid at a particular position. Based on the 5IFT =core, the tool then predicts if the occcurrence
of a particular amino acid at the given position affects function. A Shannon's entropy con-
servation value for each position is obtained, which ranges from 0 (the occurrence of all 20

amino acids) to 432 {one amino acid) (Mg and Henikoff, 2007}

The SIFT tool was tested using three human variant datasets: (i) annotated substitutions in-
volved in diseases according to SWISS-PROT /TrEMEBL; (i) ns5MNPs= detected in individuals
in studies by the Whitehead Institute; and (iii) putative ns5MNPs found in dBSMNI (Mg and
Henikoff, 2002).

Using the SWISS-FROT/TrEMBL dataszet, SIFT predicted that 69 of substitutions would
be damaging and this was found to be the lower bound of prediction accuracy (Kumar ef
al., 2009). In the data=set obtained from the Whitehead Institute, only 199 of mutations were
found to be damaging. This demonstrates that the tool can discriminate between neutral
and damaging mutations (Kumar ef al., 2009). In the third dataset obtained from dbSNE,
25% of mutations were detected as damaging. However, when false positives were ac-
counted for, this value was reduced to 19% (Kumar ef al., 2009). SIFT thus predicted changes
in amino acids at positions within conserved regions that might influence the function of
the protein itself and result in a disease (Mg and Henikoff, 2002). SIFT returned 3,084 (53790)
of the 5,780 ns5MN s present in the dbSNF dataset, and predicted that 757 of these would af-
fect protein function. This demonstrates that the accuracy of the SIFT tool depends entirely
on the availability of homologous sequences for alignment and the alignment accuracy (Ng
and Henikoff, 2001).

2.6.4 Condel

The Condel®® method (Gonzdlez-Pérez and Lépez-Bigas, 2011) combines the output of five
predictive tools for the detection and characterisation of missensze SMPs. The tools that

Condel combines into a single classification are Log & Plam E-value (Clifford ef al., 2004,
MAFF (Binkley ef al, 2010; Stone and Sidow, 2005), MutationAssessor (Reva ef al., 2011),

Eottp://bg.upt. educondel S home
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Figure 2.10: The SIFT algorithm uses a sequence query to find the probability of a structural
effect owing to a substitution at a particular location using a FSI-BLAST (Kumar ef al., 2009).
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Polyphen-2 (PPHZ2) (Adzhubei ef al., 2010), and SIFT (Kumar ef al., 2009; Mg and Henikoff,
2003). Using a weighted average of the normalized score (WAS), mutations are classified as
deleterious or neutral. The WAS weights are calculated using a complementary cumulative
distribution of the probabilities of the scores output by each method (Gonzalez-Pérez and
Lopez-Bigas, 2011). The output produced by Condel is superior to that produced by the

individual tools, since it combines all data and reports the most likely score.

The Condel authors ran each of the five tools on the HumVar and HumDiv datasets. A
complementary cumulative distribution was constructed from the scores for pathogenic
and neutral mutations produced by each tool. An internal score, which indicates the prob-

ability of an amino acid substitution at a given sequence position is also calculated for each

tool. The WASis calculated as (Gonzalez-Pérez and Lopez-Bigas, 2011):

TS W f!:',- | — Prs if €= 1

WS - =
W Iu',. | — Pp, if €, — 0.

(2.8)

Where (7 iz a binary term that takes the value 1 if the i-th tool classifies the mutation as
deleterious and 0 otherwisze; 54 is the normalized score (normalized the internal scores of
MATFFE, LogR-Pfam, and MutationAssessor to values between (0 and 1 and took the com-
plement of the SIFT probability as the normalized score of this tool); Pri and Ppi are the
probabilities of finding a neutral or deleterious mutation, respectively with a score greater
than &; in the given dataset, obtained from the complementary cumulative distribution of
the scores produced by the é-th tool.

For a given deleterious mutation, the weight is directly proportional to the score and, for a

predicted neutral mutation, the weight decreases with the score.

The WAS method was used to test the recurrence of cancer mutations using four disjointed
datasets with increasing recurrence. Mutations were obtained from the Catalogue of So-
matic Mutations in Cancer mutation (COSMIC) database (Forbes ef al, 2011). The frequency
of recurrence subsets were categorized as: (i) mutations that only appeared in a single sam-
ple, (ii) mutations that recurred in =24 samples, (iii) mutations that recurred in =59 sam-
ples, (iv) and those appearing in =10 samples (Gonzdlez-Pérez and Lopez-Bigas, 2001). Twa
WAS values were obtained using a complementary cumulative distribution of deleterious

and neutral mutations in the HumVar dataset. Mutations that recurred in =10 samples had
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an average WAS of .706, while neutral variations from HumVar had an average WAS score
of 0.236 (Gonzdlez-Pérez and Lopez-Bigas, 2011). The WAS method was then tested to de-
termine if there was a relationship between the WAS score and the biological activity of the

altered protein owing to the missense mutation.

Figure 2.11 illustrates the receiver operating characteristics (ROC) curves of the five indi-
vidual tools and four integrated scores calculated from the aforementioned dataset. The
weight average score clearly outperforms the five individual methods in the task of classi-

fying mutations as deleterious or neutral.
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Figure 2.11: ROC curve of the five individual methods and four integrated scores
(Gonzdlez-Pérez and Loper-Bigas, 2011).

2.6.5 FATHMM

Functional Analyeis Through Hidden Markov Models (FATHMM ¥ makes use of position-
specific information obtained from an M5A of homologous sequences, to find the functional
consequences of amino acid substitutions in mutant proteins (Shihab ef al., 2013). The M5A
is used to build a Hidden Markov Model (HMM) profile. The tool, which is available as a

e
“nttp:f/fathmo.bloccompgute.arg.uk/
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web-based tool and as a standalone tool uses ‘pathogenicity weights" to predict potential
deleterious functional effects. These weights are derived from the relative frequencies of
amino acid substitutions associated with disease or neutral outcormes in conserved regions

of protein structures (Shihab of al., 2013).

The FATHMM tool first searches the UniRef90 database (Apweiler of al., 2004) for homol-
ogols protein sequences to construct an initial HMM representing the MSA of the homol-
ogous sequences (Shihab ef al, 2013). When the amino acid substitution reaches a ‘match’
state in the HMM, the relevant protein domain information is extracted from the Pfam™
and SUFPERFAMILY.

P10 — P

UMWEICHTED = |
: (0 — )

(29)

Where P and Pm represent the underlying probabilities for the wild-tvpe and mutant
amino acid residues, respectively, and the pathogenicity weights, 1 d and Hn, represent
the relative frequencies of disease-associated and Functionally neutral amino acid subst-
tutions (AASs) mapping onto the relevant HMM, respectively. The pathogenicity weights

also include a pseudo-count of 1.0 to avoeid a zero divisible term.

A reduction in the probability of an amino acid occurring at a particular location indicates
a negative influence on protein function. Conversely, an increase indicates a positive sub-
stitution whereby function is improved. [ntuitively, large reductions are assumed to have
greater impact than smaller reductions (Shihab et al., 2013). The impact is calculated using
the formula below, where w i= the wild-type and wr represents the mutant probability.

(10— P W, + 1.0)

WEICHTEDR i
(10— P, )W+ 1.0)

(2.10)

FATHMM was tested using five cn-line datasets; the Human Gene Mutation Database,
UnilProt, VariBench, SwissVar, and a dataset from a review by Hicks ef al.  (2011). Using
the formulation above, substitutions were predicted to be neutral if a score of zero was ob-
served, detrimental if a negative score was observed, and favourable if a positive score was

observed.

:H:'.'_::Z f/pfem. sanger . &c.-akf

=

“http:S/supfam.cs.bris.ac.uk/EUFERFAMILY ¥
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To distinguish between disease-associated and Functionally-neutral amino acid substitu-
tions, the distribution of the SwissVar dataset was plotted (Figure 2.12). This method
showed that the majority of disease-associated substitutions (80%) fell below the thresh-
old, and majority of neutral substitutions (=80%) fell above the threshold. Further testing
with a “blind" dataset is needed to decrease any observation bias in the predictions (Shihab
ef al., 20013). One limitation of FATHMDM is that it is restricted to predicting the effect of
substitutions made in the conserved regions of protein sequences, which are present in the

FPfam and SUFERFAMILY databases.
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Figure 2.12: Disease-associated (shaded region) and functionally neutral {un-shaded re-
gion) amino acid substitutions in the SwissVar dataset using un-weighted and weighted
methods (A and B, respectively). A prediction thresholds were calculated at which both
specificity and sensitivity were maximized (-3.0 and -1.5, respectivelv) (Shihab of al., 2013).

2.6.6 Other Methods

MutationTester "' integrates information from several diverse biomedical databases and
uses established analysis tools. Analyses comprise evolutionary conservation, splice-site
changes, loss of important protein features and changes that might alter mEMA transcrip-
tion rates or stability. Test results are then evaluated by a naive Bayes classifier, which
predicts the disease potential. This system is rapid, with a typical query completed in less
than 0.3 seconds. Depending on the nature of the alteration, MutationTester chooses be-

tween three different prediction models. These are aimed at silent-synonymous or intronic

Hl
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alterations, at alterations changing a =single amino acid, or at alterations causing complex
changes in the amino acid sequence. To train the Bayes classifier, a dataset of common poly-
morphisms and known disease-causing mutations was generated using comrmon databases

and the literature. The classifier was cross-validated five times, using all three prediction

models (Schwarz ef al., 20007,

LS-SNP/PDB! is a newer web-based source for genome-wide annotation of human nsS-
MP=. LS5-5MP/PDB builds on the existing LS-5MF annotated database, which compre-
hensively maps ns5MNFs onto protein sequences  (Karchin of al., 2005). The updated L5
SMFP/TDE features fully updated pipeline software with built-in automated build and up-
date functions, and utilizes protein graphics rendered with UCSF Chimera for molecular vi-
sualization. Like its parent program, L5-5MFP/FPDEB annotates all human SMFPs that produce
an amino acid change in a protein structure in the FDB. The local structural environment,
putative binding interactions, and evolutionary conservation are all used in the annotation
function (Ryan et al., 2009). SNPs can be searched for by using [Ds for genes or proteins of
interest, or the genomic region (Chen of al., 2009).

Bongo ™ (Bonds ON Graph) is a structure-based approach used to predict both local and
global structural effects of ns5MPs. The program uses graph theoretical measures to capture
differences in residue-residue interaction networks and to identify residues that are critical
for maintaining structural stability. Substituted residues are modelled and the differences
in the interaction network are used to define the consequences of single point mutations.
Bongo needs a precise protein structure as a starting point for this analysis. Results indi-
cate that structural changes resulting from nsSMPs of key residues are closely related to

pathological disease states (Cheng eof al., 2008).

AlignGVG D is a web-based program that combines biophysical characteristics of amino
acids with protein MSAs to predict where substitutions are so-called “enriched deleterious”
or “enriched neutral’. The method uses a combination of Grantham Variation (GV), which
measures the amount of evolutionary variation at a specific position in an alignment, and
Crantham Deviation (GD) which measures the biochemical difference between the wild-
tvpe amino acid and the variant (Hicks ef al, 2011). The algorithm is very reliant on the
quality of the M5As and list of substitutions that it requires for prediction of mutation ef-
tect (Tavtigian et al., 2006; Mathe of al., 2006). The developers of this program suggest
that alignments should not be restricted to orthologs, but should also include paralogs to
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account for the phenomenon of functional diversification and increase the accuracy of the

algorithms (Tavtigian et al., 2008).

Parepro’? (Prediction of amino acid replacement probability) is based on a support vector
machine (SVM), which is employed to reduce the noise generated from large datasets. As
an input, Parepro requires the protein sequence and other protein sequences homologous
to it (Tian ef al., 2007). Parepro predicts whether genomic ns5SNPs have either deleterious
or neutral etfects, using evolutionary information and properties from the AAindex to de-
termine the differences between the wild-type and mutated amino acid. The predictive tool
was trained using the bwo datasets from the PhD-SNIP server (see below). The efficacy of
Parepro to predict amino acid variants depends on the number of homologous sequences
available, but lack of structural information can be at least partially compensated for by

inclusion of 50 different amino acid properties in the attribute list.

PhD-sNP* (Predictor of human Deleterious Single Nucleotide Polymorphisms) is based
on a combination of SVM-based learning models. As an input, it requires either the protein
sequence or the associated Swiss-Prot code, and the position of the mutation. Three slightly
different algorithms are available to use. The “sequence-based” algorithm is the first SV
that classifies mutations as disease-related or neutral, using information regarding residue
tvpe and sequence environment. The ‘profile-based’ algorithm classifies mutations based
on a vector of two elements derived from a sequence profile. Finally, the “hybrid method”
combines aspects of these algorithms (Capriotti of al., 2006).

nsSNPAnalyzer® is system used to capture the relationship between nsShPs associated
with disease and disease-causing genes. This system requires the input of protein sequences
in FASTA format and the provision of SN[ data. In addition, the user can provide their own
PDE file and chain, allowing the analysis of novel data. The method also uses a Random
Forest (Section 2.3.4) to predict the phenotypic effect of ns5MNFs. nsSNPAnalyzer calculates
three tvpes of information for the assessment of mutation effect. One type of information
describes the structural environment of the SMF, and includes solvent accessibility, environ-
mental polarity, and secondary structure. the second is the normalized probability of the
substitution in the M5A. Finally, the similarity and /or dissimilarity between the original

amino acid and mutated amino acid is calculated using a Blosum matrix  (Bao ef al., 2005).

ntep: /s /www _mabioinfocr.cn/pacapeod
hHtto:fdznoa.biofold. arofohd-sro fohd- oo . htm

nttp: /s ropanealyrer . obth=c.adns
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MAPP (Multivariate Analysis of Protein Folymorphism) like AlignGVGD combines se-
quence alignment with amino acid physicochemical characteristics to estimate substitution
effects. The difference is that MATFF calculates the physicochemical centroid of each po-
sition and the variance between each of the 20 amino acids and that centroid. The input
required for MAPFF is an alignment of the protein sequences and a tree describing the
distances between the sequences in the alignment. As an output, the user receives a mulki-
column table describing the physicochemical characteristics of each position, a listing of
neutral and deleterious amino acids, and the MAFP impact score. The score is a continuous

variable, for all 20 amino acids at each position (Stone and Sidow, 2005)

Panther® (Protein analysis through evolutionary relationships) estimates the likelihood of
a particular nsSMI inan exon causing a functional change on a protein by calculating a sub-
stitution position-specitic evolutionary conservation score (subPSEC). The subPSEC score is
anegative logarithm of the probability ratio of wild-type and mutant amino acids at a given
position. Values of zero indicate mutations that are neutral whereas those of -10 are more
likely to be deleterious. The user is required to input a protein sequence and information
about the substitution. subPSEC scores of various values have been shown to correlated

with the degree of functional impairment of the mutant protein (Thomas ef al., 2003).

SNAF" (screening for non-acceptable polymorphisms) is another neural network-based
method, which utilizes protein information derived in sifico. As input it needs a protein
sequence only, and returns the output via email. This system benefits from functional
and structural annotations, if available. SMNAP uses information about residue conser-
vation within sequence families, predicted aspects of protein structure (secondary struc-

ture, solvent accessibility), and other relevant information such as biochemical proper-

ties (Bromberg and Rost, 2007).

topoSNPY is an on-line resource that produces a topographic and interactive visualization
of disease and non-dizease associated nsSMPs. The method displavs geometric location
information using the alpha shape method from computational geometry (Stitziel of al.,
2004). Geometric locations of SN structural sites are classified into categories of geometric
locations: surface pocket or internal void; a convex region or a shallow depressed region;
or buried completely in the interior. A relative entropy calculation using a HMM is used to

assess the conservation score (Stitziel of al., 2004,

“nttpr /S mendal . stanford. eduy/Sidowlen fdownlaads fMAFF findax . html
Ftep: f /www_pantherds cogftoolsy
®nttps:/ frostlab.org/services/soap/

ottp://gila.blocangr.uic.eduy =op/caposnp)
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CanPredict!! is a computational tool for predicting cancer-associated mutations. Input data
are either a protein AC or a protein sequence together with the mutation(s) to be tested. The
impact of each change is measured using bwo methods: SIFT (as previously described ) and
the 'fam-based LogllE-value metric. A third method, the Gene Ontology Similarity Score
(GOS5), provides an indication of whether the gene resermbles other known cancer-causing
genes. Scores from these three algorithms are analysed using the Random Forest method
{Section 2.3.4) which predicts whether a change is likely to be cancer-associated (Kaminker
ef al., 2007,

PMut” combines sequence alignment/position-specific scoring  matrices  (PSSMs)
with structural factors to characterize missense substitutions. To accomplish this, the
classifier uses a feed-forward neural network using alignment alone or with structural
information. The neural network used in the analysis was trained with a large database of
disease-associated mutations (obtained from Swiss-Prot) and neutral mutations {observed
to be tolerated in human proteins with =95% sequence identity). As input, PMut needs the
protein sequence or its Swiss-Prot/trEMBL code. As output, the user receives a confidence
index and a binary prediction of ‘neutral” vs. ‘pathological’, represented by pathogenicity
index. It is also possible for the user to obtain intermediate information (alignments and
Blast i Altschul of al., 1997) and PHD outputs {Rost and Sander, 1993)) used by FMut while
generating a prediction. In addition, if the protein structure is available the Phdut server
can visually display the mutation =ite within the protein structure using colour-coding to
trace the pathogenicity associated with the mutation. This 3D visualisation is obtained as a

Rasmol script, for use with Rasmol or the Chime web-browser plug-in (Ferrer-Costa ef al.,
2005).

SMNPs3DY is an on-line tool that assigns molecular functional effects of neSMNPs bazed on
structure and sequence analysis using an SVM based algorithm. The tool was trained using
a set of disease-causing mutations and a control set of non-disease causing mutations. In
jack-knifed testing to asses multivariate data for outliers, the tool identified 74% of dizease
mutations, with a false positive rate of 15%. This tool relies on the hypothesis that loss of
protein structure is a major cansative factor in monogenic disease. The SMNP=3D website
makes the results of the analysis available via the website or gives the option of download.
The system can be queried using SN IDs, protein sequence, or genomic sequence 1D (fue
ef al., 2006]).

Yotep: f fwww_orhvd . ucsg o edu /0o
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2.7 Summary

In summary, this chapter has provided detail on the structure and information contained
within the primary information sources used to build SAAPdp, and how they have changed
since the time of the database-build. Examples of how to store, manage, and interpret these
data have al=o been given, with an emphasis on maintaining data integrity and consis-
tency. Dhifferent approaches to machine learning were discussed, all with the common aim
of knowledge attainment from large datasets that are yet to be fully characterized. A va-
riety of tools for the assesement of mutation-effect were also presented, each using differ-
ent methodology to predict the outcome of missense mutations. These were presented to
demonstrate the vast arrav of techniques that can be emploved to analyse SMNF data and to
set the scene for the developrment of SAAPpred.



Chapter 3

Single Amino Acid Polymorphism
Database (SAAPdD)

In this thesis the database of single amino acid polymorphisms (SAAT's) that
have been mapped to structure and subsequently analysed to provide hypothe-
ses as to their effectis), on protein structure was rebuilt and exploited. The re-
source, named SAAPdD, is a database of disease-causing and neutral mutations,
which have been analysed to assess what effect, if any, they may have on pro-
tein structure and therefore function. The hypothesis is that disease mutations
will more often affect protein structure, thus introducing a deleterious pheno-
type. SAAPdb attempts to identify the structural effect and therefore ‘explain”
the mutation. The development of a conservative, comprehensive structural
analysis pipeline employing several well established data resources, data han-
dling methods and data analysis methods with which to analyse SAAPs has
been one of the main aims of the SAAPAb project. In this chapter, the suite of
analyses with which SAAPdb assesses each mutation is described to provide the
context for later chapters.

Much of the work described in this chapter was developed by previous
members of the group who are identified in each section. My involvement
is also indicated. My major contributions have been: (i) to fix a number of
bugs in code to populate the database, (ii) to improve portability of the code
by removing hard-coded paths and moving them to configuration file; (iii) to
update the resource by adding a new database; (iv) to perform some analysis of

the data in SAAPdb.

111
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3.1 Introduction

SAAPAb began as a restricted study of mutations in P53 (Martin o al., 2002) and
GoPD (Ewok et al., 2002) in which seven structural effects were considered. As the project
progressed, other databases of SAAPs were combined and several additional structural

analyses were included in the analysis pipeline.

To analyse and visualise mutations and their local structural effects, a new system was in-
troduced by Hurst ef al., (2009): the Single Amino Acid Polymorphism Database (SAATdb).
This is a PostgreS)L relational database of SAAPs (an alteration of a single amino acid ina
protein sequence, as a result of a missense mutation) providing a range of likely structural
effects of SAATs on structures of human proteins, based on mappings of the mutations to
structural data. Andrew Martin's group have developed SAAPdb and its web-server with
two main functions: (i) to provide a website that can clearly and effectively display the
location of mutated residues within solved protein structures and (ii) to keep a fully auto-
mated and up-to-date structural analysis of the mutations that can be accessed through the
website! (Hurst et al., 2009,

The system begins by gathering data on single nucleotide polymorphisms (SMPs) from db-
SMF and maps the data onto the genes to determine whether each mutation is in an exon
and, if so, whether it causes a missense mutation in the protein (Cavallo and Martin, 2005).
Onee this has been determined, the location of the mutation within the protein sequence
can be established. Disease-related mutation data, or ‘pathogenic deviations® (FD=), from
OMIM as well as several locus-specific mutation databases (LSMDBs) are provided at the
protein mutation level. Once the mapping of a mutation o a protein sequence has been
achieved, if a structure exists in the Protein Databank (PDB) for the protein, the mutant is
mapped onto the protein structure and then followed by an automated structural analysis
(the SAAPdb analysis pipeline is discussed in Section 3.7). This tests whether the mutant
residues will have any local structural effects that may disrupt protein folding, hinding,
function or stability and therefore may be related to a harmftul phenotype.

3.2 Mutation Data in SAAPdD

The raw data on which SAAPdb is bazed describes bwo kinds of genomic variation and
mutation, classified according to their reported pathogenicity. One type of genomic varia-

I:'.'_::Z f/www _bloinf .org-uk/s caspsdnd
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tion is caused by SMPs, which are assumed to have a negligible effect on protein function,
and considered to be neutral. Some SNPs may have a small negative (or positive) effect on
human phenobype, but until this i= identified, we consider them to be neutral mutaticns.
The second kind of genomic variation are the PDs. These are associated with disease and
are therefore thought to have a deleterious effect on protein structure and function. In cases
where the same mutation can be found in both dataszets (P and SMPs) the mutation is
removed from the SNF dataset. Section 3.3 discusses the occurrence of FD /SNE overlap in

maore detail.

Databaszes used in this thesis to populate the latest version of SAAPdb (released on March,
2011y are shown in Table 3.1, SMNP= extracted from dBSNE are all non-synonymous (mis-
sense) mutations arising in the coding regions (exons) of the human genome. Mutation
data are stored with mappings to sequence data using db5MF, and to structural data where
structures are available. Mappings of PDs are retrieved where available, and then added,

verified and for corrected by an algorithm developed by Martin (2005).

32.01 5SNFs

The term ‘Single Mucleotide Polymorphism’ (SMF) (Consortium, 2005), is frequently used
to pertain to a mutation of any frequency. However, if strictly defined, SN FPs are allelic vari-
ants where the least common allele occurs in at least 1% of a normal population. According
to Wang (2008), a SNFP occurs approximately once every 100-300 bases in the genome, in-
troducing a subtle phenotyvpic variation without causing serious and damaging phenotypic
change. However, the reported frequency of SNFs varies as a result of sequencing different
fragments of the human genome (Collins of al., 1995; Taillon-Miller of al., 1998; Sherry of al.,
2001}). Based on the latest db5NF data, a conservative estimate of SN frequency is that cne
occurs every 300-500 base pairs (David, 2005). These mutations are unequally distributed
over different regions of the human genome and between exons and introns (Mickerson of
al., 1998). Fluctuations in the frequency or locations of SAFs are not relevant for this project

and have not been considered further.

The largest publicly available SNF database is dbSNF (Wheeler of al., 2007, Where rele-
vant, this database provides mapping to the specific residue in a human protein, as well as
native and mutated nucleotide and amino acid type. The latest available release of dbSNTE
at the time of writing (Build 139, Oct 25 2013} includes cver 505 million SNF submissicns,
over 28 million reference SMP= and over 3 million validated SNP=.

*Data available at http:/ S woeswenchinlmonihugow / projects S E/
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3.2.0.2 Pathogenic Deviations (FDs)

Pathogenic Deviations (PDs) occur with much lower frequency than SMFs and generally
create a loss-of-function mutation with a serious adverse effect on phenotype. The term

‘pathogenic deviation” is used for any single base change noted to cause a disease.

The P dataset currently available in SAAPdb is derived mostly from the Online Mendelian
Inheritance in Man (OMIM) database’ (McKusick, 20007, OMIM contains data on a broad
spectrum of pathological conditions and protein families. However, it is only a sample
of known mutations and is probably biased owing to the specitic interests of the scien-
tific community in certain diseases/proteins. Smaller Locus-Specific Mutation DataBases
(LSMDBe), are the second group of PO databases. They generally contain data on a sin-
gle protein or disease, and are maintained by different research groups. The PD dataszet is

currently augmented by a selection of LSMDBs as described in Section 2.1.6.

Table 3.1 shows the updated OMIM and L5SMDBs incorporated into SAAPdb. The PAHdb
and STAT3 mutation data are new data sources integrated into SAATdb for the first time in

this thesis.

There are two main problems with publicly available PO data. The first is the diversity
of formats of these data; the second is the absence of pathogenicity levels. The latter re-
sults in difficulty in comparing the effects on protein structure with the phenotype of the
individual. Hurst et al. {2009) have discussed the reliability of these sources stating that
over 500 LSMDBs are recorded on the Human Genome Variation Society’s website, while
SAAPdb only includes around 2% of these data. The SAAPdb systemn has been designed
and implemented to facilitate the integration of additional locus-specific data in a simple
and straightforward manner; by parsing source data into an XML format that is then loaded
into the database.

3.3 SNP/PD overlap

The size of the datasets currently used in SAAPdb and the overlap between them is dis-
played in Table 3.3. As the central and largest PD resource, as would be expected, OMIM
has at least some overlap with all of the other D datasets. OMIM is at least fourteen times
larger than the next largest, the somatic P53 dataset. Within the LSMIDBs, the only overlap

that exists is between the germline and somatic P53 datasets.

'..:'.'_::Z fiwww_nchl.nlm.nih.gowsamim/
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Table 3.2: Breakdown of the number of mutations in SAAPdb and their mapping to struc-
ture. In some cases, several hundred structures are available (e.g. haemoglobin, carbonic
anhydrasze, porthrombin, transthyretin, insulin, COK2, lysozvme) and, on average there are
approximately two copies of each chain in each PDEB file.

| Mumber of Mutations FDi= SMTPs |
Mapped to UniProtKB /Swiss-Prot 13,059 45 452
Mapped to FDE 6,527 17915
Total mapped ((to multiple FDBs) 202,566 33569
Total mapped (to multiple Chains) 405 497 45 659

Encouragingly, very few mutations are simultaneously described as disease-associated and
neutral. So far, only six mutations have been identified in PD data and al=o present in db-
SMFE Half of these are common to the dbSMF and OMIM datasets and the other half are
common to the dbSNF and P53 somatic datasets. When updating SAAPdb, these muta-
tions are rermoved Ffrom the SMIP dataset, but retained in the disea=e dataset, based on the
assumption that the large-scale genomic scanning technology by which the SMIs are iden-

tified happens to have sequenced the genome of an individual with a pathological disease.

Une important caveat is that the unique complexity of cancer (where multiple mutations
are acquired over a short period of time) introduces uncertainty regarding the potential
pathogenicity of those mutations found in both the somatic F53 dataset and the dbSNP
dataset. Some mutations may simply be “passenger’ mutations that have little or no
pathogenic effect, having ‘hitchhiked” into the cancer cell by virtue of being coincident
with a deleterious mutation (Greenman et al., 2006). However, none of the three SMIPs
also described in the P53 somatic dataset are mapped to protein structure and they are

therefore not analysed in this research.

3.4 Additional resources

Since collection of SNP and FD data i= only one function of SAAPdb, several additional re-
sources are required to process these data to determine their likely effects on protein struc-
ture and function. UniProtKR (Section 2.1.2) is required to map gene names to proteins
and identify annotated functhonal residues; EMA and Genbank (Section 2.1.1) are required
to map genomic data to protein sequences where mappings are unreliable or absent; and
PDESWS (Section 2.1.4) is used to map protein sequences to protein structures. The func-

tions of each of these rescurces are discussed more fully in their respective sections.
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Table 3.3: Data overlap in SAAPdb.

Mumbers describe hine many mutations ane common o the beo corresponding datasets; the emboldened iden-
tity numbers (e, whens a dataset is compared with itselt) show how many motations are described by that
datesat in twolal; the ST dataset (dBSME) is srparated fom the other PO datasets vsing a dowuble ruled line;
dataset names are self-explanatory (apart from P530G7 which nepresents the Germline IARC P53 Database and
IP53-5" which represents the Somatic JARC P53 Database’), and ars further descoribaesd in Sechion 32002,

ADABase 3B
GERD [} 103
HAMST=ES [l U 5265
[PER-5 i} il o a4
[E3-5 [} U o F I B
OIIMN 19 44 135 23 27 | Fl1149
oTC i} U o [N} [} 12 1448
S0D1db [l U o N} i} 7 [} a5
FAPT0 [} U o 0 [} 1 [} il 5
dbSM P [} U o 0 3 3 [} il u 34081
"]
y 3 =
= = h =
| B CAI u| B z
g m 7 % B ) 7
- [N [N wn o

& [ARC P52 Database - Somatic/ dbSKF : 3 mutabions ane commeon
1. 15DE mow 112 = 16263 J SRP id = 11540654
2. 150E mow 10 = 3610 SMEPid = rad5163653
3. 150 mow 10 = 12753 f SMP id = mA0ET

& ORIM SdBESMEP - 3 mutatiors ame common
1. 1SD0B mow 100 = 19737 J SMP id = 154001
2. 150F mow 10 = 25510 f SMP id = 13312740
3. 150F mow 10 = 22441 f SMP id = m12530350
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3.5 Materials and Methods

Two main stages of data processing are employed: (1) importing the SAATF data (PDs or
SMFP=) and (2) analysing the imported data using the SAAPAb structural analysis pipeline.
This processing structure naturally leads to a three-part data division, which applies to data
storage and data processing: (1) SNF data; (2) PD data and (3) pipeline data. These three
are described in the following sections.

As described above, several other people have contributed to the design, development and
maintenance of SAAPdD, including Jacob Hurst, Liza McMillan, James Allen, Craig Porter
and Antomio Cavallo. Where appropriate, the contribution of each individual has been
indicated in italice and marked with a ‘=" symbaol under the zection heading.

3.6 The database

3.6.1 Populating reference tables

Three tables in SAAPdb are populated from UniProtkB: Swiss-Frot TrEMBL, gene name

map and accession map databases. Theze tables contain sequence data, mappings between
gene names and protein identities and a mapping between secondary and primary acces-
sion numbers respectively. Unil'rotkB is mirrored locally. Before data processing begins,
another copy of the UniProtKB mirror is cached locally to ensure that the same version of
UnilrotEB i= used in all relevant SAATdb analy=ses (i.e. mirroring does not update the data
during processing).

SAAPb uses PDBESWS (Martin, 2005) to map those mutations identified in UniProtEB
sequences to structures described by the PDE. The mappings are obtained from http:
Afwew bioinf.org.uk/pdbews/pdbaws_res=.txt This file is parsed to populate the
sprotZpdb table.

3.6.2 Importing the dbSNF data

t= Tiis mefhod was developed by Lise McMillan.

The Entrez Programming Utilities (or eUtilsY* a set of seven server-side programs, are used
to provide a stable interface into the Entrez query and database system at the Mational Cen-

‘nttp://www_nchi.nlm.nih . gov/entrer/gueryfstetic/eutils_help.html
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tre for Biotechnology Information (NCEI) and to obtain the most recent dbSNE data. XML
records of ‘valid’, non-synonymous, human SMNPs are retrieved. “Valid” SWFs are defined as
those annotated with validation strings “by frequency”, “by Zhit 2allele™ or “by hapmap”.

All records retrieved are then combined into one XML file and parsed to populate the znp
and znoZannotated tables with dBSME data.

3.6.3 Mapping the SNPs to protein structure

t~ This mefhod was developed by Jacol Hurst.

The =protZpde table is used to map all UniProtKB records in the snpZannotated table

to protein structures. The resulting mappings are described in the szap table.

3.6.4 Importing the FDs

The task of mapping and processing the D) data is in some ways more straightforward than
that of SNF data. There are less P data, allowing processing to be sequential. Furthermore,
protein sequence mappings are usually provided, avoiding computationally demanding

mapping procedures. Instead, the challenges arise when accommodating the different file
formats of the source databases. In the following sections, the methods by which the FD

data are imported are described.

3.6.4.1 The data-specific wrapper

t= These methods were developed by James Allen and Nowf Alnwmair.

As mentioned above, PD data are amalgamated from different sources using a variety of file
formats. Thus, to permit easy integration of all the data into SAAPdb, it is necessary to rep-
resent all the data in the same format. To do this, an XML format has been developed within
the Martin group to represent mutation data and therefore process each dataset identically.
An extract from an example record is shown in Figure 3.1. This approach requires that each
dataset be accommodated by a dataset-specific “wrapper” which converts the original data
into the XML format. This process and the retrieval of the raw data files themselves, are the

only manual steps required to import the PD data.
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3.6.4.2 Verifying protein sequence numbering

t Tiis mefhod was developed by Andrewe Marfin.

The numbering of amino acids provided by the primary datasets must first be verified
for correctness. Though OMIM and ISMDBs are curated resources for disease mutation
data, the described mutations mavbe derived from multiple sources and from the litera-
ture. Thus, it is not surprising that there are sometimes inconsistencies in the numbering of

armnino acids that must be corrected.

A version of OMIM with corrected amino acid numbering is currently automatically main-
tained by the Martin group. Figure 3.2 shows how the verified OMIM map is derived for
each disease dataset. First, a partial sequence is constructed from the native residues de-
scribed in OMIM (Figure 3.2a). This partial sequence is then compared with the protein
sequence named by OMIM, by sliding it along in increments of one residue and storing
the number of residue matches for each comparison (Figure 3.2b). The alignment that best
matches the named protein sequence is used to calculate an offset value describing how the
OMIM numbering should be corrected. In the example given, the offset value is -3 {Fig-
ure 3.2c). The offset-rule is then applied to these ‘matching” residues to correct their num-
bering. If any mutations remain unmatched that would match the sequence with an off=et
of 0 {e.g., the A20L mutation in the example, highlighted in blue in Figure 3.2c), these data
are assigned an offset of 0, and flagged as ‘probably correct”. In these cases, it is assumed
that sequences werne submitted to OMIM in a separate batch where correct UniProtEB num-
bering was used. Some mutations may remain unmapped after these stages. A completed

corrected dataset is shown in Figure 3.2d.

Of 2438 OMIM mutations from 221 OMIM entries available in March 2012 (11.2% of all
cross-linked-to UniProtKE /Swise-Prot OMIM entries), 24.1% required an offset to be ap-
plied to correct the sequence numbering. These corrected OMIM data are publicly available

akt: http: /fwww . bioinf.ocrg.uk/omim/.

Corrections to amino acid sequence numbering are also applied to LSMDB datasets in an

atternpt to maximise the amount of correct data extracted.
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< kdb name="DatabaseABC url="http:/ / DatabaseABC com” =
<mutation id="701" supplementary_id="456"arbitrary_id="1" number_of necords="6"=

<dna_data=

<Zgarpre - A B e

<dna_base wildbype="T" mutant="G"> 1< fdna_base>=
<codon wildbype="ATT" mutant="AGT"=1= / codon=
< /dna data=

<protein_data ac="F0123° =
<amino_acid aa_label="1" wildtype="T mutant="8" valid="t" 1< amiro_acid =
< privtein_data=

OO LR =

<prevalence boxt=High< /prevalence bext =
<prevalence_count= 1000/ prevalence_count=
<prevalence percentage =10/ provalenoe peroentage=
< S Orcarmenoe =

<patient_data=

a2 fage s

gy Pl D S G

<race UK </ race

<phenotype mendelian="dominant’ =

<disea_names=ABC Deficiency< Sdisease_names>

<diseman class =do fdisase ol

<ol m.'l.'l:'ril:}' numéric="2"=Moderate= f disesn H.'l.'l:'ril:].'i'-
<disemmsa_onset numeric="2" age="10" = Childhood </ dissase omset =
<erwymie_activity numeric="3" percentage="6"=Severely-decreased
-::."l:'nr_g,rmt' a:'l:i'l."ir:.r}

<delta_delta_gee=-095< /delta_delta_gee -

<melting poini=d4di< Smelting poink =

progrois s 10 yoars < prognosis s

{|"'|.'||'II."'I'II::I|.'.!|I'|.'II.":'-

<external_tactors details="1">=Radiation exposare< fexiemal _factors=
< fpatient_daka=

< roberenices =
< citatiom :,.'Ml:'l‘[lﬁ’} Morther, A P (200 citation=

< el oo =

< S muba i =

< ladb=

Figure 3.1: A sample of the XML format
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(a)
88 —= 1
Ald -= R
P24 —» L e A PP
KEX2 - 8
A20 -= L
“a_f
(b) ADHASHFNTAASASVHYMYAF TRTEF LHEMAF
g & A———F E matches = 15
S Y P K matches = 05
e———— A———— A——-P—————— K malches = 05
g - A———F——m : matches = 15
- S— A R E matches = 15
(c) 5 10 15 20 25 30
| | | | | |
ATDHASHFHTAASASVHYMYAF TRTEF LHEHAF
R A————-, e K matches = 45
offget = -3
d
(d) 8 5 —= 1
All - R
F2l —= L
Y -= 5
AZD -= L

~—

Figure 3.2: {a): a partial sequence is recorstructed from the native residues describad in the ORIM
record; (bl this partial sequence is slid along the sequence bo which it is mapped in OMIM and
the number of matches for sach position is recorded (matches are shown in green, mismatches are
showen in med); e the best matching position is used tocaleulate the offset (note that the A20 recornd
(ghown in blue) could b comect with an offset of O (e the OMIM annotation is correct) as an
alanine does exist ab position 20%; (d): the offset is applied to the ‘matched” original mutations (ie.
the residues found to match in (o)) o generate a corrected numbering and all “probably comect’
mutations (those matched using an offset of ) are also included in the dataset (again, the probably
come:t” AN example is highlighted in blue). (Adapled from Lisa MeMillan's PRD fhesiz) (Mebdillan,
20097,
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3.6.4.3 Pushing the data into the database

b These methods were developed by James Allen, Lise McMillan and Nouf Alnunair.

The complete work-flow by which FD data are entered into the SAAPdb i= illustrated in
Figure 33, This includes the data-specific "wrapper” function highlighted in red. Whilst
the wrapper code to convert the raw data into XML format is only written once for each
dataset, it is not uncommen for updates to require a wrapper re-write. The pseudocode for

the wrapper scripts is shown in Figure 3.4

The systern will attempt to identify the correct AC in cases where the mutation is not already
mapped to a UniProtKB /Swiss-Prot sequence. SAAPdb does this by constructing a partial
native sequence by combining the wild-type residues from the data and representing all
other residues with an “X’. This partial sequence is then used to search the most recent
version of UnilProtkB /Swiss-Prot using szearch34  (Pearson and Lipman, 1988). The
raw data are updated accordingly so that the time consuming sequence search need not be
repeated. This step is highlighted in green in Figure 3.3.

Each XML file generated for each dataset is then converted to S{JL statements via an XSLT
specification (see Section 2.2.2) and all S0 is executed in the database. This populates the
database tables: 1sdb, 1sdb_references, ladb_infoand lzdb_info ref link (see

Figure 3.5) with the appropriate data.

Finally, the imported and verified PDs are mapped to protein structures and the
lzdb_saap table populated with the mappings (this step requires that the data described
in Section 3.6.1 be present in the database). To do this, the UniProtKB /Swiss-Prot accession
numbers to which the disease mutations are mapped are updated to their corresponding
primary accession number. Primary accession numbers are obtained from PDBSWS. Then,

the 1=db_=aap table is populated with the appropriate sequence and structural data.

Figure 3.3 describes the complete data flow for a single dataset. In reality, processing pro-
gresses through the data representations, rather than through each dataset, however, this
has been presented for simplicitv. Usnally, all XML processing is executed, all SOL is gener-
ated by applying the XSLT schema to each XML file in turn, and finally all S0L is executed.
S0L statements updating the AC numbers and the structural mappings are executed only

once all sequence data are in the database.
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Figure 3.3: Importing an LSMDE dataset.

In general terms, the work fow is as follows a wrapper script converts the raw data into valid XML, this
XKML & trarelated to appropriate S0 using X511 the single manual inbervention step, whiens the data wrapper
i wrritkon, is hi._!._;hl.'igh'l'l.-d in red; should no AC be Fl:rmrided fosr the dateset, the A0 mumber & debermined
1.|.~i'i.n;5 smavarch I:'l'L'iHh]i::'_r,]Tl:E-:I in green, tor destails, soe ot This diﬂ;;ra:rn Aescribes thie I data flonw for a ﬁnﬁl&
LEMDB dataset, from original data format b XML {via wrapper], b 8L (via XSLT); in reality, all datasets are

processed simultansously, that &, all raw data-XML processing & done, then all XML-S01 processing. XML
and S0 processing are separated by a dotted blue line.
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(a) wrapper inpuls
* data_foldex: the folder containing the raw Jata

# xml_foldex : the folder containing the xml
IF these ave not provided, the default values if *../data’ and .. xml’ respectively ave used.

(b} wrapper process
1. parse the l=db_info.txt file to find the dbname=, dburl, sprotac, rawdatafile
2. open rawdakafile Using cvs.reader () and the appropriabe delimiter
3

. check whether a corresponding XML file already exists (if so, exit cleanly without doing
anything]

4. 'i-'_'ll."nl.'il':.-' thi* =protac UElr‘lH l=db_ukils.get_ac_numb=r [] unless sprotac has
been extracted from 1sdb_info kxt

Ln

. foreach entry in rawdatafile:
[al i nomatakicon_idexists:
i. increment an arbitrary mutation [ counter
() define an appropriate 01
(el extract all the relevant information
(d)  increment the count For this particular mutation using the 01
fe]  record the basic mutation data using the 01
() record the numbering (res_num, aa_wildtype] using the 01

6. verify the numbering using lsdb_ubils.wvalidates_numb=ring):
fa)  retrieve the sequence of sprotac from the Uni ProtkB website
() identify all possible offsets for each unverified res_pum/aa_wildbype pair
el identify the most commonly found offset (most_common_cfEz=t)
(d)  ifall res_num/aa_wildtype pairs are offset by most_common_oEEsek:

i correct all values of res_num by mest_common_cff=z=t
il mark all res_num/aa_wildbype pairs as fully validated ("t
(el el=o
i if = 0% of the res_num/as_wildtype pairs have an offset of 0
Al Mark these re=_mum/ aa_wildbype pairs as fully validated ("t7)
ii. elseif = 2 of the res_num/aa_wildtype pairs have an offset of (:
Al Mark these re=_mum/ as_wildbype pairsas probable (7]

() if theve ave more r=s_num/aa_wildtype pairs bo validate:

i. repeatedly calculate offsets as described above until everything is proba-
bla or fully validated, or there are only a small number left

7. write the XML file using the validated data

Figure 3.4: The PD data wrapper: pseudocode
UI = unigque identifier; the thresholds that define what & fully, probably or not validated (in processes #60e)i)-
Fi5d Hi]] canbesstin Lede_urils  correct_residus_numbEaril; Process at line #&a metrioves I:l'll."!il:'qul."'l'l:'t'

from http: £ fus . expasy.orgfuniprac s,
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3.7 The analysis pipeline

t= These methods were originally developed by Jacob Hursf and haoe been extended by Lisa MeMillan
and Newuf Almimair

The purpose of the pipeline is to assess the likely structural effects of the mutation, utilis-
ing known structural constraints, interactions and bonding rules. Onee the SNI* and FD
data are mapped to protein structures (i.e. once the saap and lsdb saap tables have been
populated), pipeline processing can begin. Eight of the analyses require additional data
to be present in the database: hydmogen bonding (Section 3.7.2.1), clash (Section 3.7.2.4),
void (Sechon 3.7.2.5), mutations to binding residues, UniProtKB /Swiss-Prot features (Sec-
tion 3.7.2.12), sequence conservation (ImPACT) (Section 3.7.2.13), interface (Section 3.7.2.14)
and disulphide geometry (Section 3.7.2.7) analyses. Detailed information regarding these
analyses, what data are required and how they are derived is available in the respective

sections below,

Figure 3.6 illustrates how the pipeline is run and how the data are coordinated. In this
figure, the four phases of processing are delineated using dashed lines. Each of the phases
are further broken down into a number of sequential processing steps. In step 1 of phase
i A), the data from the saap and 1zdb_=aap tables are imported into the mutanalyzis
table. In step 2, the structural analys=is table is populated with data extracted and calculated
from the relevant DB files (including torsion angle data; accessibility statistics; secondary
structure, and interface and functional flage). In step 3, the link between the mutanalyzisz

and ztructural analysis tables is created.

In phase (B), all the necessary pre-processing is carried out for the eight analyses requiring
additional data described above. These form step 4, hydrogen bonding; step 5, clash; step
6, void; step 7, interface; step 8, sequence conservation /ImPACT; step 9, MMDE; step 10,
UnilProtEB features; and step 11, disulphide geometry analyses. Of these, clash, void, inter-
face and ImPACT (steps 5-8) require considerable preprocessing and as such are distributed
across the local 20-core grid. Results of all eight analyvses are written to the specialist, cor-
respondingly named tables (see Figure 3.5). The mutanalyvais table is also updated with
the results of the clash pre-processing step and therefore carries out the clash analysis. In
Figure 3.6, all processing that is distributed i= highlighted in grey.
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Figure 3.6: Pushing the SAAPs through the structural analysis pipeline.
Squans bosed indicate data processing, boxes with munded comers represent database tables and armows in-
dicate information How, In prooessing stage (A), sbeps [1-3] populate the database with all disease-associafed
SAATPS and structural informaticon about all POB structures. In processing stage (B), sheps [4-17] gemerabe mu-
fant structunes: and carry out essential pre-proossing for the hydoogen bonding, clash, void, MMDBERIMND,
Swiss-rot/ FL Inbecface, ImPACT and S5GEOM analyses. In procssing stage (C), steps [12-26] carry out the
structural analyses. In the final proossing stage (1), steps [27-29] generate summary information for each
SAAF Cached data are highlighted with ++ and all distributed grid processing is highlighted with a grey back-
wround. (Adapled from Lisa MeMillan's PhD Thesis (MoeMillan, 20097,
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The two most Hme consuming processing steps in the whole process are step [2] in phase
{A) - extracting information from the IPDB structures, and step [6] in phase (B) - calculating
the void data. To avoid unnecessary and me-consuming repeated processing, these data
are cached (in a ‘cloned’ table) before each run of SAAPdb. In the current implementation
of SAAPD, these tables are named voidz cache and ztructural_znalysis_cache
{these are shown in grey in Figure 3.6). Data from the cached tables are imported if re-

quested, while the original tables are recreated. Processing can then proceed as normal

Unee all additional data are imported into SAAPdb, the remaining analyses can be imple-
mented as S0L queries. These are carried out in phase (C) isteps [12-26]). The results
of these analyses are used to update the appropriate columns in the mutanalyzia ta-
ble. The purpose of phase (D) is to summarise the results. The first step of phase (1)
[step 27] i= to annotate each mutation described in the mutanaly=is table with an in-
dicator of whether it is predicted to have a structural effect or not. This prediction is
based on the results of steps [5,12-26]. In step [28], the disease mutation_summary and
gazp_mitation_summary tables are populated. These tables summarize the structural
analysis results for each sequence mutation of all mapped structures, as described in either
saap or ladb_=aap. Finally, any blank entries in the disea=ze _mutation_summary and

sazp_mutation summary tables are replaced by zeros (step [29]).

3.7.1 Generating mutant structures

For the void and clash analyses it is necessary to generate a mutant structure. The Mut-
Model program used to model the mutant residue into the native structure using the “min-
imum pertubation protocol” (MEPF) (Shih ef al., 1985; Snow and Amzel, 1986). MutModel is
improved and its performance analyzed and evaluated as part of this thesis and therefore
described in details in Chapter 4 - Section 4.3,

3.7.2 Existing analyses

The analyses described in this section have been previously published in Martin of
al. (2002), Cuff and Martin (2004) and Cuff ef al. (2006). These analyses have been used
elzewhere to explain disease mutations in disease-specific datasets, including P53 (Martin
ef al., 2002) and GaPD (Kwok ef al., 2002). Here, the existing analyses are described briefly
in the context of how they are integrated into the analysis pipeline, as described in Hurst ef
al. (2009).
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3721 Disruphing nzbiwve hydrogen bonding

Hydrogen bonding i=scritical tomaintainin g the native protein secondaryand tertiar ystnac-
tures. Cuff of al. (2008) vsed a grid-based approach to analyse the occurrence and ge-
ometry of hydrogen bonds in the FDB for each hydrogen bonding donor and acceptor
residwve pair. It is then possible to compare hypothetical pntant strctires with the ob-
served hydrogen bonding residwe profiles to assess whether a hydrogen bond i= possible
or not vsEing the program checkhbond. This program is available for 1ee over the web at

http: /fwww. bioinf . org. uk/hbond, .

Each oputation must be analysed by checkhbond, but the algorithm is designed to be
fazt and requires only the native structure. The ‘peevdo-energy’ score penerated by
checkhbond is extraced and stored in the 54 APdb database. The peeudo-energy score
1ees data on the likelihood that a hydrogen bond exizsts between two given residues for a
given geometry and approximates the energy for the interaction. 4 score of 0 implies that
it iz wery vmlikely that a hydrogen bond is formed. Mutations that break hydrogen bonde
fie. thoee with a prevdo-energy score of 0) are identified between backbonesidechain
and side-chain/side-chain doneor and acceptor atone. At present, this processing i= done
sequentially by one machine although this strategy i suitable for distributed processin g,

[a) Mative 2jlw B (b Mutam Y2351 2jlw B

Figure 3.7 Breakingh ydrogen bond=.

FUB I 2jlw, chain B. The hydrogen bond thal exiss betwean the Y236 and T233 is nol mainained in the
mutam Y235 D siouau 2 shown on the right (522 Secion 3.72.1). Residues 235 and 253 are highlighted inblue
in both Houctuees,
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An example is shown in Figure 3.7 the native tyrosine residue at position 236 of human
P53 forms a hydrogen bond with the threonine residue at position 253; these residues are
highlighted in blue in Figure 3.7a. This hydrogen bond is broken in the 2360 mutant
structure in Figure 3.7b, as the introduced aspartic acid side-chain is too distant to accept
the hyvdrogen donor atom from T253. Mote also that this hydrogen bond is buried, and
therefore could be critical to the scaffold of interactions that stabilise the protein structure.
In addition to breaking the hydrogen bond, this mutation is found to cause a de-stabilising

internal void.

3.7.2.2 Mutations to proline

Proline exhibits particular spatial constraints owing to the nature of its side-chain. The
cyclic nature of the proline side-chain limits the backbone conformations that the residue
can adopt. It is therefore likely that introducing a proline where the torsion angles are
unfavourable will distort the protein structure or inhibit folding entirely. X—P* mutations
likely to effect the backbone conformation were identified in SAAPdb out-with the region:
7000 € € —BOU0° and (—70.0° < ¢ € —50.0° or 11007 < o0 < 130.0°). In Figure 3.8, this

area is marked in pink.

As part of the work in this thesis, this ‘Boolean’ method with simple boundaries for allowed
conformations has been replaced with a new method introducing an energy evaluation (see

Chapter 5).

3.7.2.3 Mutations from glycine

Glycine is the opposite of proline in that is has no side-chain (The L group i= a lone hy-
drogen) and =o can adopt backbone conformations that other amino acids cannot. Ie-
placing a glyvcine with another amino acid, where the torsion angles are unfavourable,
will affect protein structure. G—X mutations that occur out-with the region { — 180.0° <

¢S — 30076007 < W = 1800°) or (—155.0° < @ = —15.0°/ — 90.0° < ¥ < 60.0°) or

<4 = 105,07

(— 18007 < g < —d5.0°) —180.0° < 4 < — 120.0°) ar (30.0° < ¢ < 90.0°/20.0
were identified by SAATPdb. In Figure 3.5, this area is coloured vellow.

Again as part of the work in this thesis, this ‘Boolean’ method using simple boundaries
for allowed conformations has been replaced with a new method introducing an energy

evaluation (see Chapter 5).

5. . . . .
X & any nom-proline amime acid.
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Alloeead torsion angles for pralgly

1&0
|

-1R0
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Figure 3.8: Allowed regions for proline and glycine.

B

132

The pink ansas mark the restricted. conformation for proline nesidoes, the hatched grey aras mark the negions

for rom-praline, ron-glycine residues, and the yellowe colour marks the rest of the conformational space, pri-

miarily eccupied by glycine roesidoes,
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3724 Niutzations thzt eause sterie clashes

Many amino acid subetitutions will rezult in steric clashes. For example, it may not be poe-
sibletoacoommodate a larger mutant residve in thenative structure withowt disnupting the
fold, and therefore potentially the function. The Muthiodel program caloulates the number
of eteric clashes caveed by introdweing a patant residue in a protein stnachure (Section 4.3).
Resides that cannot insert into the native structure without clashing with three or more
other atome are identified. The model wees the sinple assunption that two residues clash
it any atomic cen tres are within 2504 of each other.

A P53 matant is shown in Figiome 3.9, Here, the native glycine residue at position 27 i=
nutated to tryptophan, the largest amino acid. When modelling the npnatant residue into
the native structure (teing M (Shih ef al., 1985 Snow and Amael, 1986), see Section 4.73),
the best crientation of the omatant sidechain clashes with 27 other native atoms. Figure3.%a
showe that the native glycine fitz neatly inside the strnacture, while the trypiophan resid e
in Fighme 39b protmades out of the structare, inhikiting the formation of the native fold,
thie indwcing for the disease phenotype.

#e part of work in this thesis, this zimple Boolean' method counting the number of dazhes,
has been replaced with a new method wwing a modified Muthiodel progran which intro-
duces a full evaluation of van dar Waals and torsion energy (zee Chapter 4).

(2] Matiwe 2ata 8, () Mvdam CTP Zata b,

Figure 3.9 Residues found fo clash with other exiztin g residues.

TFDE ID 2ata, chain & (zhown in geey). The mutation G299 & descrbed inthe P33 somatic mudation datas.
The nativz and muianiFiouciuees are Shown aborg, on the Jelt and right respaciivaly. The modelled 1 ypiophan
mudan r2Sicue clashes with 27 cther aloms, and cannol b2 acoommodated in the naties Soucluce,
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3725 Introdncing z voidin the cora

Large to small residve omstations may create a woid in the stnactme. A woid i= defined a=
a cavity within a protein structure that i= not accessible to bulk =olwent. Woids are both
enthalpically and entropically vntavourable, thie potentially having an effect on protein
stability The AW eoftwareizs teed toidentify and measure thesizeof internal woids in pro-
tein structures (Cwff and Martin, 2004). AV allows independent probe sizes for definition
of solvent and voids with default probe radii of 144 and 0.54 1=ed respectively.

To obtain these data, all outant structunes must first be pre-processed wsing Muthiodel.
AVE ie rim on each individwal structire with a compute ime dependent on the size of the
protein chain being analysed. This can vary from a few seconds o several pintes.

While the analyzis of woids is tmchanged in the work described in this thesis, changes to
the Muthiodel program enhance the positioning of sidechains and, therefore, azsesment
of woids (see Chapter 4).

For ekample, the ontation F425 in the hupuan haemoglobin Beta chain [Uni-
PraKBI'a587 L/ HEE HUMADN] i= reported to be associated with cyancesiz, mwoderate
reticulocytosiz and mild anaenta (Stabler of al., 1994). The woid analyeiz shows that
thiz mutation introduces a woid (zee Figure 3.10h), likely to lead to some collapee of the
structure in this region.

(a) Mative 1gshl (E) Mutam 25 1gshD

Figure 3.10: Creatinga woid or crewvice.

TDEID 1qzh, chain T, Feplacing the native phenylalaning seidue ol position 42 with a secine mejcdue (28 hown
onthe right] coates an inecnal woid (for details, 222 Section 3.7.2 5] which ma v destabil iz the protein, Fesidue
&2 & highlighted in magenta and the haem ligand is highlighted in blue. This mutalion & al=o explained by
allecting tha imerface analysiz(jie. allecting binding 101he haem ligand).
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3.7.2.6 Mutations to binding residues

As a refinement to ‘interface” residues, mutations to residues that form hydrogen bonds,
{as described by Baker and Hubbard (1984)), and non-bonded interaction with a ligand
or another protein chain are identified by parsing the XMAS formatted FDB files. These
will be a subset of the ‘interface” residues identified from a change in solvent accessibility.
‘Mon-bonds are’ formed between non-consecutive, inter-residue atoms that do not meet the
criteria of Baker and Hubbard (1984) and whose centres ate within 2.7-2.35A of each other.
A= such, non-bonds include Van der Waals forces and electrostatic interactions.

The tumour suppressor protein P53 [UniProtEBP04637 /P53_HUMAMN] is mutated in half
of human cancers (Greenblatt ef al., 199%; Sidransky and Hollstein, 1996; Lane and Fischer,
204). Chain B of the 53 structure (FDB ID Itsr (Cho ef al., 1994)) is shown in complex
with DMNA in Figure 3.11 in grey; residues identified as “functional” by all of the binding,
interface and UniProtKE /Swiss-Frot FT analyses are highlighted in blue (these residues are
al=oy identified as highly conserved by ImPACT). These functional residues are clustered
around the DMA-binding site.

MMDEBIND (Salama et al., 2001)" was used in previous builds of SAAPdb and early stages
of this thesis. It has not been updated since 2010, and the amount of interfaces deposited

in it is fairly small compared with similar databases and, for that reason, this category is

considered obsolete and removed from the SAATF analysis.

3.7.2.7 Disrupting disulphide bonding

Disulphide bonds are covalent cross-links that form between cysteine residues in polypep-
tides and help to stabilise protein structure (Figure 3.12). Mutations that remove disulphide
bonding cysteines may alter protein stability and therefore compromise native protein func-

tion.

As with the incorporation of binding residue data into the pipeline, a Perl script identifies
potential disulphide bonding cysteine residues in PDB files. First, all cvsteine residues are
identitied. Secondly, each pair of cysteine residues is assessed to determine if they are in-
volved in a disulphide bond. To form a disulphide bond, residues must satisfy the following
criteria (Hazes and Dijkstra, 1958) as shown in Figure 3.12.

"RAKMDBRIMD i% an assimilation of the throedimersional strocture information. described by Entres's
IRIOE database (Wang ef @, 2007 and the mmOCIF PIE chemical cumipanent -\_1i-.'|:i|.ln..1r:.I [P et al., 2003],
and is part of the langer BIND database (Bader ef al., 2001)
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Figure 3.11: Binding resid ves in 53

TDE ID M= chain B (in gy and bhug) in comples with DMA. Binding resiches, az delined by the binding
(528 Saclion 3.7.2 8], intedace (e Section 3.7.2.14), ImPACT (high coreer vation) and TniPoMEE /5 wiss T oot FT
analysas(zee Section 3 7.2.12) ar highlizhedinbhe.

+ S-S bond length should be =2 504
+ O S-S and OS5y, bond angles should be 1047 + 109,

Standard trigonometry caloulations and methods from the [erl Math: @ Trig module are
1zed to calculate distances and angles from PTE coordinates. Each protein structure de-
scribed in 53AAPAL is analyzed to identify potential disulphide bonding cyeteine resid nes
weing isolated ['DB chains. Interchain disuvlphide bonding i= identified based on the in-
terface analysis. All candidate sulphur atome from cyeteine residwes are extracted from the
DB file and aszeszed ascandidates weing the method described abowve. Thescript then gen-
erates the comesponding 5L to record disulphide bonding cysteine residues in SAAPdb.
Multiple occupancy cyeteines are processed az any other cyeteine; that is, the atoms for
each alternative conforoation are grouped together and each alternative conformation i=
considered as a potential disulphide bonding cyeteine.

The erample in Figire 313 shows a broken disulphide bond in super-oxide disomatasze,
identified both by the UniProtkB/ Swiss-Frot FT analyeis and the geometric disvlphide
analyziz of the DB files.
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Fgure 312 A disulphide bond between Cé and CL2 of lyzozyme (Ayz), showing 55,
5'5'.:1 EIl.I:l ‘E'Sn:ﬂ

{a) Mative Lhi5T (b Mutarm C I4EF 1hI5T

Figure 3.153: Disruptingdisul phide bondin g,

TDE ID 1hE, chain I & dEulphide bond exkEs between C57 and C 6 inchainIof 1hI3, 522 native Seuctuse on
the kltand iz identilied by the SSCEOM analysks (3ee Section 3.72 7). Thiz diEwphide bond E alzo described
& Unil onFE fSwEs-Tool featuees (Section 372,12, identified by ImPACT and identilied by the dash analysis
(288 Section 3.724). & muaton replacing C 46 withan argining (522 mutam Souctuee on the cight), with the
mutam argining highlizmedin red.
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3.7..8 Mutations to cis-prolines

Chwving to the partial double bond character of the peptide bond between the carboxylate
carbon and the amine nitrogen, rotation around this bond is restricted. Energetically, this
favours conformations where the C_, O, C, N°, H', C " atoms exist in the same plane. Atorns
may be arranged in the trans conformation where w = 150" or the o= conformation where
w o= 0. The vast majority of peptide bonds are found in the trans conformation becanse
the procimity of C, and C_" makes the cis conformation less stable. However, peptide
bonds between any residue and proline (Xaa-Pro) more readily adopt the cis conformation
than other peptide bonds (Xaa-nonPro). The os conformation is more than 1000 times less
stable than the trans conformation in Xaa-nonlPro peptide bonds, while the o= conformation
is only four times less stable than the altermative trans conformation in Xaa-I'ro peptide

bonds (Branden and Tooze, 1999). Approximately 5-6.5% of Xaa-FPro bonds are ofs, and
0.02-0.05% of Xaa-nonPro are cis (Jabs ef al., 1999; Stewart ef al., 1990,

3.7.2.9 Introducing a charge shift in the core

Charged residues are often functional in protein structures as they introduce electrostatic
interactions within the protein and between protein and substrate (Torshin and Harrison,
20013 Arginine and lysine, and to a lesser extent histidine, are positively charged residues
that often form salt bridges with negatively charged groups. Conversely, aspartic acid and
glutamic acid are negatively charged residues that can form salt bridges with positively
charged groups. In the protein core, these almost invariably occur as pairs of oppositely
charged residues (Torshin and Harrison, 2001). Removing or introducing a charged residue
from or into the protein core may therefore destablize or disTupt protein conformation and

cause a deleterious phenotype.

Charged residues at the surface of a protein are solvated and therefore do not need to occur
as charge pairs. Kather than having a large structural rale, a charged residue on the surface
may interact with other molecules and therefore be critical to protein function. However,
these residues should be identified by the binding analyvses, which have been described
previously. Since charged amino acids at the core are more structurally important, the fol-

lowing section outlines how mutations affecting these are incorporated into the pipeline.

Incorporation of data regarding charged amino acid mutations does not require any addi-

tional processing; all required data are parsed from the XMAS files (see Section 2.2.3). A
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Table 3.4: Charge shift values for mutations between charged and neutral residues.
Butations bebwern residues that are identically charged do not generabe a change shift, mutations bebween
oppsitely charged residues gemerate a charge shift of £2, mutations bebwsen changed and neutral residoes
aerierate a charge shift of £1. Megative scomes indicate a movement kawards a more negative change, positive
sconess indicabe a movement towards a mome positive charge

Mative charge Muiant charge  Charge shifi

positive g ative 22
positive e tral -1
positive positive L
neutral e tral L
negative rirative 0
negative e tral 1
negative positive 2

PostgreS()L function calculates the ‘charge shift” occurring as a result of a mutation. Ta-
ble 3.4 shows the charge shift values for mutations between all possible pairs of charged
and neutral amino acids. With this Postgre50L function, it is possible to implement this
analvsis as a single SCJL query, where mutations with a non-zero charge shift ococurring in
the core (where the relative, monomer accessibility statistic is < 5%0) are easily identified as

introducing a buried, unsatisfied charge.

3.7.2.10 Introducing hydrophobic residues on the protein surface

Hydrophobic residues tend to be concentrated in the protein core, away from the solvent-
interacting surface (Branden and Tooze, 1999). Replacing a hydrophilic residue with a
hvdrophobic one (phenylalanine, isoleucine, leucine, methionine, valine and tryptophan)
at the surface could result in protein aggregation or misfolding a= well as destabilizing the

protein and therefore a deleterious phenotype (for example, the E6YV mutation that causes
sickle-cell anaemia (Moo-Penn ef al., 19777).

All data required to identify the hvdrophobic mutations on the surface, i.e. native,/mutant
amino acids and accessibility statistics are recorded in the XMAS file which is parsed to
populate the structural analysis database table. The analysis can therefore be performed by
a single 501 query. Mutations from a hydrophilic residue to a hydrophobic residue where

the relative surface accessibility in the monomer state is = 5% are identified.

An example of introducing a hydrophobic residue on the surface of the protein is shown

in Figure 3.14. The mutation seen here is the E6Y mutation that causes sickle cell anaemia,
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{a) Mative LhbkD () Mutarm E&Y 1heb:D

Figure 3.14: Introducing hydrophobic resid wes on the surface.

TDE ID 1heb, chain T & mutation [rom ghiamic acid 10 valing a1 esidue § ineoduses a Sicky” hedeophobic
remiche On the surdace of 1Heb. Fesidue 6 B highlighted in magema and the haem ligand E highlighted ined.
ThE iz 1the mutlalion thatl couses Sickle o2 ll ansamia.

where the ‘sticky' hydrophobic patch owing to the pitant valine residve causes a gerega-
tion and subsequent deformation of erythrocytes.

37211 Introducing hydrophilic residues in the protein cora

The vast majority of buried hydrogen bonding ca pableside-chaine do actually participatein
hydrogen bonding. Thus repladng a bured h ydrophobic residue with a buried hydrophilic
residve i likely to destabilize the native protein structare (MeDonald and Thomton, 1994).

The information required to identify the introdwction of a hydrophilic residue in the pro-
tein core alread y existe in S4APdE and no additional processing i= required. A= such, the
analysis can be implemented az a single 0L query identifying mutations from any hy-
drophobic resid ueto an y h ydrophilic residue wherethe relative acceszibility of the resid e

in the monomer is = 5%,

Figure 315 shows the crystal stractire of human haemoglobin (FDE ID 1l y). Here, the
nutation WD introdvces 2 buried, hydrophilic charge by replacing a hydrophobic valine
rezidve with the negatively charwged h ydrophilic aspartic acid.
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(a) Matiwz L ly:D (b) Wutarm YA D 1l D

Figure 3.15: Introducing a buried, vmeatisfied chargs.

FUB IT 1oy, chain 1. The buied chagye analysis identilies the Y340 mudation in Lily & eplacing a néwtal
valing sidue inia) with a negativel ycharged azpartic acid in (), tne ineoducing aburied weatizlied chagge,
Fesidue 3 iz hizhlighted in magentaand the haem lizand k& hizghlighted in bhee. The mutation also imeoduses
a hydeophilic sezidug in the ore,
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3.7.2.12 UniProtKB/Swiss-Prot features

UnilProtEB /Swiss-Prot annotates sequences to describe the function(s) of the protein, any
post-translational modifications, domains and sites, structural conformations, associated
diseases and sequence conflicts. The database uses a controlled vocabulary and the feature
table (FT) to annotate regions of interest in protein sequences. A small number of these
annotations are manual, however many more are transferred “by similarity” from another
annotated protein. Many of the annotations provide insight into the residues critical for

function or stability and thus indicate which mutations are likely to have adverse effects.

The UniProtkB /Swiss-I'rot tlat-file data are parsed and residues annotated with FT (fea-
ture) tags are identified. As the aim is to explain the effects of mutations, a subset of fea-

tures that have the potential to affect protein stability or function are relevant. These are

described in Table 3.5.

In Unil'rotkB /Swiss-Frot, the FT tag annotations can describe the start and end of con-
tiguous regicns of annotation, or they can describe two non-adjacent residues (see third
‘Mumbering scheme’ column of Table 3.5). When the start and end number are the same,
a single residue is being described. When parsing the UnilrotKB /Swiss-FProt data, the two
numbering schemes are dealt with accordingly, annotating all residues between the start
and end of contiguous feature regions with the corresponding feature. FI' tag numbering
that includes the non-digit characters 7, < or > is unreliable and these data are not ex-
tracted. All feature residues that have been extracted are then stored in the database. To
date (22-Jan-2014), 192 776 118 residues are annotated in 225, 339 UniProtKEB / Swiss-Prot
records. The PDESWS mapping (Martin, 2005) that is imported into SAAPdb allows these
annotations to be mapped to PDB files.

The mapping process used to populate SAATPdb requires that all mutations are mapped

initially to a residue in a UniProtkB /Swiss-Prot record. With the relevant data extracted
from the UniProtkE /Swiss-'rot data file and stored in the database, this analysis can be
implemented by a simple PostgreS0L query.

Upon closer inspection, some feature annotations appear to be unreliable.  Figure 3.16
shows the structure of human P53 (FDB 1D 1tsr) in complex with DMNA (highlighted in
red). Residues near DNA (within 10A ) are shown in yellow. The corresponding protein
record ([UniProtkB: PO4637FP53 HUMAN]) describes residues 102-292 a= DM A-hinding.

These residues are shown in dark blue and yellow in Figure 3.16, having been mapped onto
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Table 3.5 UniProtkB/Swiss-Frot beature annotations used to identify hanctional residwes
in 3AAPAE. Feature tag;: ihe UniF siFE /Swizs-Frod FT 1ag; Descriptiom: a description of ihe Jeaiues; Tham-
'be:l:i.'nE srhetie: whal 1he TniTroll B Swis=-Fod FT m-l.rnb-&l:i.nEﬁ descrbe - a a:-nﬁgu:ms .:Eﬁu:l.n Or a ]:!a.ij: ol
morradacent residues

| Peature tag Description Mumbering scheme |
AcT_=1TE  Residves involved in enzymatic activity ot guons
BIMDING A ligand or substrate binding site cont guons
Ch_EIND Residves involwed in caleivm bindin g comt gons
DHA_EBIMD A DMNA binding site cont guons
ME_EIND A mucleotide phosphate-binding region ot guons
METAL A metal binding site cont guons
LIFID Feeidves binding to a lipid substrate comt gons
CREEOHYD A glycosylation site cont guons
moD EEs  Asiteof PTM cont guons
MOTIF 4 short sequence moti f of biclogical interest  cont grous
DISULFID Location of a disulphide bond non-adjacent
CROSSLME  Croeslinks formed after FThis non-adjacent

Figure 3.16: An erample of coarse-grained UnilProtK B/ Swizss-Frot FT annotation.

The [iguee shows the seuctuee of Human P33, FDE ID s the DM 10 which P33 binds B shown in sed with
the pootein chairs shown inblue and grey: the yeliow esidues indicate those within 104 of the THA; the
bhue reEiduwes are those annolxied as DAA_EIFDING by UniPoolE B Swise-Tool; @ wan using 1he vy 2eranius
diztancs theeshodd of 104, 1the UniToodk B Swis-FodDina_E INDINg annTlalion i wery coarse-rained.
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the protein structure using PDESWS (see Section 2.1.4), and comprise most of the protein
chain. It is clear from this example that the UniProtKB /Swiss-Prot functional annotation is
too coarse-grained having annotated the whole domain and consequently many residues
remote from the DMNA (ie. distant by = I[].E';]I are annotated as DMA_BINDIng,.

3.7.2.13 Mutating conserved residues

The presence of highly conserved amino acid residues at analogous position in protein se-
quences indicates that those residues are likely to be critical for function. Where it is not
possible to identify the structural effect of a disease mutation, functionality may be inferred
from sequence conservation. Comparing the same protein in different species will highlight
which residues are conserved and therefore likely to be critical to protein function and /or
stability.

Recognition of the importance of this phencmenon led to the development of a nowvel
method (ImPPACT) for identifying highlv conserved residues, which accounts for species
diversity and protein-global conservation patterns (Mchillan, 2009).

Using the UniProtEB accession number, all functionally equivalent proteins (FEFs) ie. or-
thologous annotated in SwissProt having the same function in UniProtKB /Swiss-Prot are
identified using FOSTA (McMillan and Martin, 2008). A multiple sequence alignment
(MSA) is generated by aligning the FEP= using MUSCLE (Edgar, 2004).

Each protein can be processed independently, allowing ImPACT analyses to be distributed
across the local 20-core grid. For each MSA, the ImPACT threshold (Mcbillan, 2009), target

protein and size (i.e. number of sequences) is recorded, and for each residue in each MSA,

the position (with respect to the target protein), the species similarity conservation score

and whether or not this exceeds the ImPACT threshold for the MSA is recorded.

The original ImPACT code by Lisa McMillan has been corrected and modified, and full
instructions on how to update ImPACT s species, similarity matrix have also been written
as a part of this thesis.

3.7.2.14 Mutations at the interface

The interface can be any regions between FDB chains, or between chains and ligands.
Residues at these interface sites are critical in forming biclogically relevant multimers.

Thus, mutating these residues is likely to disrupt the native structure and may be dele-
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terious. Interface residues are identified by a = 109 AASA {accessible surface area) in the
monomer state a8 opposed tothe nultimer state. The ASA i= caleulated veing a local imple-
mentation of the Lee and Richards al gorithm  {Lee and Richards, 1971) and obtained from
the ¥hIAS files.

Fgure 317 =hows the structure of hunuan super-oxide dispmutaze [Uni-
PrakKBI044] /S00DC_HUMAR], (FTE ID 28898 (Strange of aof, 208). Mutations
to puper-oxide disnmataze have been associated with amyotrophic lateral ed erceiz or motor
neurone disease [Aguirte of al.,, 199%). Chain A i= shown in blue, chain F i= shown in red.
Hesidwes identitied by the interface analyzes are shown in darker blue and red respectively,
with their Wan der Waals sirface indicated with dote. Thiz illvetrates interface residues at
both the interchain interface and ligand binding=sites.

Figure 3.17: Residves identified at the interface.

FLVE 0 2%, chain=.A (inbue and light b, on b2 &) and F(in red and pink, onthe sight); ligands are shown
in zpacefill uging the CTE ollone scheme, Fesidues identified by the intedace anal yses (22 Section 3 7.2.14) as
shown in dacker bhue and p2d, with Van der Waals wilumes indicated. Mo that thes analyses alzo identily
r=idues near ligand binding sies, a5 well as residues at the chain imeciase.

The aszembly of multiple tertiary protein structures into biologically relevant multimers is
described as the quatemnary stricture. Residves at the quaternary interface will be critical to
the native protein fold. The ‘interface’ and binding' analyses (Sections 3.7.2.14 and 3726
respectivel ) attenpt to identify pnatations at the quaternar yinterface. Howe wver, this anal-
yEis ie based on cryetallographic umit cells oo PDE fles. These can hawe artificial orystal
contacts or niesing biologically rele vant comtacts (Janin, 1997).

The PDE provides comprehensive tertiar y structures of proteing, yet it is often misleading
in termz of quaternar y structure information. The asyometric tmit (451 is the smallest
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unique unit in a protein crystal structure to which symmetry operations can be applied;
however, it is not indicative of the biological unit, i.e. the quaternary structure of the pro-
tein as found in vivo. Although PDE files sometimes specify the biological units (BU=) pro-
vided by the researchers (in headers), this information is scarce and often experimentally

unverified.

Henrick and Thornton (1998) developed the Protein Chuaternary Structure’ (PQS) server,
an automated systermn that builds BUs from ASUs provided in FDB files. POS was used
in previous builds of SAAPdb and early stages of this thesis, given the discontinuation of
PS5 in 2010 it was replaced with, Protein Interfaces, Surfaces and Assemblies (PISAJ, de-
veloped by Krissinel and Henrick (2007) cne of the most widely used automated tool for
the prediction of quaternary structure which cutperformed POS. Based on thermodynamic
stability calculations, PISA automatically detects macromolecular assemblies in FDB en-
tries and predicts different BUs from POS for 2390 of structures, often resulting in a smaller
assembly than POS

Figure 3.18b shows the complete hypothetical quaternary structure of the human poliovirus
capsid protein (DB [D 2plv) with the original PDE structure shown in Figure 3.18a. Al-
though some of the binding contacts will be recognised by the binding and interface anal-
yses, many will be lost (compare Figures 3.18a and 3.15b with respect to the number of

interface surfaces).

3.8 Summary of SAAPdDb rebuilding

3.8.1 SAAPAD legacy and update

The last full update of SAAPdb before the current one was in January 2008, Inconsisten-
cies between data-sets were identified during an initial analysis at the outset of this project.
To remedy these inconsistencies, a rebuild of SAATPdb and other support databases (ie.
the database of functionally equivalent proteins from SwissProt (FOSTA), and the sequence
conservation scoring method that uses a species similarity matriy (ImIPACT)) was necessary.
This was a labour intensive task requiring substantial testing and rewriting of all the code
involved in data collection, database creation, and some structural analysis. Full documen-

tation on the update process were also written.

‘httpr S fwww_ebt .
5

sCc .ukyspdbe/pgss
=]

ntetpr s fwuw gDl .

c ukfm=d-scyfprot_int /pistare _htm]
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Table 3.6: SAAPdb categories.
The horizontal line separates structural categories from the sequence-basad o,

Category
P

binding®

MMDB*
sprothT®

proline”
glycine™
clash®
cisproding®
Hboneding™
vioidd

corephilic?
surfacephobic?
buriedcharges

SSpeometry?
struc_explained

Effect of mutation

Affecting residues in the interface with a different protein chain or ligansd
identified from a POS file (and therefore more likely to reflect biologically
relevant interactions) by a change in solvent-accessibility — POS replaced
with PISA in later stages.

Affecting residues involved in specific binding interactions fa hydrogen
baond, salt bridge, or packing interaction) with a different protein chain or

ligand.
Affecting residues in contact with a ligand, according to the MMDB
database.

Residues annotated inSwissProt Peature records as having a functional sig-
rificarce.

MMutations to proline where the backbone angles are restrictive.

Mutations from glycine where the backbone angles are restrictive.
Causing a clash between atomic radii of the reighbouring residues.
MMutations from a cis-proliree.

Causing the distuption of hydrogen bonds between residues,

Causing an internal void =275A% to open in the protein owing to the sub-
stitution with a smaller residue.

Introducing a hydrophilic residus in the probein core.

Introducing a hvdrophobic residue on the protein surface.

Intreducing an unsatisfied charge in the protein core owing to the substitu-
ticn with, or of, a charged residue.

Causing the distuption of a disulphide bridge.

Explaired by any of the categories listed above.

hig hoons®

explained

Affecting residue with highly conserved sequence, acoording to Im-
PACT (MeMillan, 2009)
Explaired by any of the categories listed above.

“Interface-damaging; “Functionally-impairing:; “Folding (fold-preventing); “Instability {destabiliz-

ingh; "Sequence conservation.
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(a) The TDE sructwee of Human policrine (E) The hypothetical &zembd y of Human
capsid protein Policwicus capsid pooieirs

Figure 3.18: (aternar y structure information rom PISA.
() zhowsthe FOE represe maion (FOE ID 2plw]) of 1he Human poliowvimus capsid protein which has [owe chaine.
Thebiodkogically relevam Hnuctie, a& ezembled by TISA i=shownin k).

The legacysyetem inherited for thi= project sulfered from zeveral weakneszes in ite design.
These included different zoftware conponents coded in different progranming lan ga ges
(written by different people at difterent stages of the development of 54 APdE); tmtested
and mal functioning computer code, identification of emors and subsequent fving (debug-
ging); software component version incompatibilities; and inadequate documentation of the
syetemt.

There has been consid erable effort to improve the code for updating 54 AF'db. A& svmmary
of the datasets comparing the old and new builds of the databaze was shown in Table 3.1

53.8.2 Tpdated SAATdb data analyss

The 3a4Tdb webeerver containe fourteen structiral analyses and one sequence-based
analyziz (Martin of af. [2002), Cuff and Martin (2007), shown in Table 36, all aiming to
show how 5A4APE are likel y to affect protein stmacture: in particular interfaces with other
proteinz, functional sites, folding and stakility of the nnatated protein. Each analysis is im-
plemented as a separate 2QL, Perl script or © program and will output a poeitive [ likel yto
affect") or negative [‘likely not to atbect") result for every SAAT in every category. There fore
the S4APdE result for a pntation can be viewed az a vector of binary or Boolean values (1
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for ./ and 0 for =), as shown in Figure 3.19.

Only mutations mapped to solved protein structures can be assessed, therefore it is not pos-
sible to analvse all known mutations. Of the amino acid mutations in OMIM, approximately
659 can be mapped to structure. In addition, approximately 32% of “valid” SMPs from db-
SMF that result in an amino acid change, map to structure. Consequently, the coverage of
the analysis is currently somewhat limited. However, clinically relevant proteins tend to
be key targets for structural studies, =o it is expected that these statistics will improve in
the future. In addition some proteins have several resolved structures. In these cases, the

effects of the mutations in all available structures are analvzed.

After the task of rebuilding SAAPdb was completed, analysis of the data in SAATdb shows
local structural effects for PDs more often than for SMFs, which are significantly under-
represented in all categories except ‘surphacephobic’, ‘corephillic” and “risproline’ muta-
tions that are more common in SMFs than in PDs. Figure 3.20 shows a comparison of struc-
tural effects seen for SMFPs and PDs between the previous SAAPdb build (Hurst of al., 2009)
and the current one. In the previous dataset only ‘surfacephobic® mutations were more
common in SKPs (Figure 3.20). Another notable finding is that structural effects observed
for PDs tend to be more “severe’ than those seen for SMPs.

In summary, the number of SMPs in the database has risen by 417 and the number of PDs
by 3675, This has been aided by the inclusion of two new sources of mutation data. Other
sources of mutation data have been considered including HGMD and SwissProt Variants
i SwissVar). However, HGMD data are only available to registered users meaning that the
data have not been reproduced in our database. In addition, the annotation of disease status
in SwissVar is not very reliable. For example, known PDs in GAPD are annotated as ‘Matural
Variants’ of ‘Unclassified” disease status. Other LSMBD= can be easily added (Claustres
ef al., 2002), but as explained below, the SAAPdap pipeline version of the systern is now
implemented to allow users to analyse novel mutations. SAAPdap is now regarded as our

primary resource.

3.8.3 The future of SAAPdD and
The Single Amino Acid Polymorphism Data Analysis Pipeline (SAAPdap)

SAAPAb was designed to be a regularly updated pre-calculated resource. However, the
database has proved very difficult to maintain and changes in licensing of OMIM data mean
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Figure 317 Structural effects azsigned by 5447db to a FD in human UDT- galactose 4-
epimerase.

SAAPAD http: ffbicinfE .org.uk/saap/dE/S wa= qllEI‘iEl:l for acce=sion number (14376 and
M43Z wae chosen a= a mpresentative pathogenic mutation The mutation iz mappad to zevaral
rezidues n different protein ztruc ures (only the top three am shown hera)). The analyziz summarzed
ina wector shows that thi= mutation iz lorated in a binding and intarface site pazidua, and it carriesz
a functional idenbfier.

that OMIM may no lon ger be able to beused as the primar y sowrce of PDe. Inaddition, with
the increasin g routine wse of high- throughput sequencing metheds todetedt muwtations, the
analyziz of putations iz increasingly undertaken by individuals.

Conzequentl y the value of 34 APdb has dintinished and SAAPdap (Single Amino Acid
Polymorphizm Data Analyeis Mipeline] has been implemented as a replacement. Se AT-
dap i a complete re-write of the 34 APdE pipeline by Andrew hdartin weing JavaScript
Chject Motation (J3OM) for data storage. [3OM is a text-bazed , publicly available languiape
designed for himan-readable data interchange. JSOM wees two structures, an ordered list
of wvalues, [an array or sequence) and a cdlection of valwes or pairs (an chiject or asEociative

array).
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Figure 3.20: Frofiling 54 AT with respect to local structural effects.

Table 36 explaire the individual elfects meaning (pgs. bind, mimdb pro, gly, dashcdsprobbond, woid,
oopephilic, surface phobic, budedcharze, sEgeot, highoore), ANY BINDING: the mutation & positive foc
bind andfor mmde: ANY FOLDING : ithe mudation & pogitive or pro, gy, clash andfor cis-poo; AN IN-
STABILITY: the mutation E postive for hbond, woid, coephilic, sucfaephobic, bubiedcharge and for S=geom;
EXTLAINED: the mutalion iz explained by at least ong of the abowe analyses, Dilferent 'dasses’ of 1ozl Souc-
twal ellectije. imedace, uncional, folding, irctability and ooress valion) ase =parated by pale goey wartical
lires, yellow and red bars dendte resulis foe FDE in (a) and (B) plot respectivaly, Srey bars dendie sl Jor
EMFe. FraciEs paroaniages are gimen abowe the coresponding bar. Statistically signilicant et ae denoied
with rad ars (1w whée o < 0.01and one whara g =005).
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While it is no longer being updated, SAAPdb remains the most extensive database of SAAPs
and their structural effects. A large and expanding body of literature exists in the field of
protein structure-function analysis in relation to disease phenotypes. SAAPAb contributes
to the current understanding of disease-causing mutations and ultimately the treatment of

the resulting pathological conditions.

SAAPdap uses a plugin architecture, making use of new non-Boolean analyses (described
in Chapters 4 and 5). While SAAPdap still indicates whether a mutation is likely to have
a detrimental effect on structure using cut-off values, continuous values are al=o provided
for each of the analvses. Results from the SAAPdap pipeline are presented as shown in
Figure 3.21a. Result= are summarized at the top where the effects on each structure to which
the mutation maps are shown. Below, the analyses of structural eftects on each structure are
presented and these can then be expanded to provide more detail on the analyses as shown
in Figure 3.21b. Analysis descriptions are much more comprehensive than was the case in

SAAPdE o make the results easier to understand.

A webinterface has been implemented by Andrew Martin to allow users to enter mutations
for analysis. Because some of the analyses (especially the analysis of voids) is quite time
consurming (taking several minutes), the web interface makes use of AJAX (Asynchronous
JavaScript And XML) to update the user with the progress of the analysis. The submission

page is available at http: / /www.bioinf. org.uk/saap/dap/.

384 Single Amino Acid Polymorphism prediction tool
(SAAPpred)

S5AAPdb data and 5SAAPdap analysis are used in this thesis to train machine leaming meth-
ods to predict whether a novel SAAP will disrupt the native protein structure and induce a
disease phenotype ina tool known asSingle Amino Acid Polymorphism prediction (SAAT-
pred) (=ee Chapter &)
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Chapter 4

Improvements to Clash and Void

Analysis

# Some of the work in this chapter has been published (Al-Numair NS, Marfin ACR.
2013. The SAAFP pipeline and database: tools to analyze the impact and predict He
pathogenicity of mutations. BMC Genonrics 14.3:1-11).

In the original version of SAAPdb, all assignments of structural effects are
Boolean, that is, any mutation either does, or does not, have a given effect. While
Boolean assignment is appropriate in some cases (for example, a residue either
is, or is not, annotated as a feature in UniProtkK B/ Swiss-Prot), in other cases, it
relies on some cut-off (for example, energy, void volume, hydrophobicity dif-
ference) as described previously (Hurst ef al | 2000; Cuff of af., 2006; Cuff and
Martin, 2004; Martin ef al., 2002).

In earlier work done as part of a Master’s degree, 1 showed that assigning
a mutation as either having or not having a structural effect is very sensitive to
precise structural details [ Al-Mumair, 2010) (see also Section 4.2). For example,
where multiple structures are available for the =ame protein, one structure may
indicate that a mutation has a value just below a cut-off while ancther structure
has a value just above. This will result in conflicting assessments of whether a
mutation is damaging or not. In this chapter and Chapter 5, real-number scores
or pseudo-energies are now implemented for each appropriate structural effect.
In particular, the analysis of clash and void is enhanced in this Chapter, while
pseudo-energies are defined for analysis of from-glycine and to proline muta-

tion in Chapter 5.
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4.1 Introduction

Thizs zection introdvees the defnition of clash and woid comaring in protein stractires and
the analyzsiz vsed in the 3A A anal yeis to aszese their effects.

411 DMufatdions that eause sterde clashes

When mutations cavee steric dashes in a stmacture owing to a larger mutant residwe than
in the native structire, thiz will disnupt or prewvent comrect protein folding and there fore
affect the function of the protein  (hartin of of, 2002). Figure 4.1 shows an example of
a zmall to large residue pwtation, Glyl2— Arg, in the hupan triceephoephate izomeraze
dimer structure, FDE ID IWYT (Kihtatani ef af, 2008). This putation i= known to increase
thermo-sensitivity of the human protein (Mande of of., 1974).

iCriginally, 34 APdb weed wer y simple, fived thresholds for defining potentially damaging
effects. Both 34 APdE and 5344 Pdap 1ee the Muthiodel program (artin ef af, 2002] to
calculate the steric clashes caused by introd ucing a mutant residve in a protein structure. In
SAAPdE, 2 dapaging clash was defmed as any side-chain that has at least 3 van der Waals
overlape (of any degree) with a distance between atom centres less than 254 (Mlartin ef al,
A Howe ver, 1eing such a static threshold does not ditferen tiate bet ween two atoms that
are lightly overlapping and two atoms that are largely ocoupying the same space. Using
a more informative van der Waals energy calculation would refine the clash analyeizs and
wiolld be expected to improwve predict ve ability.

Fgure 4.1: & putation causingsteric clashes and potentially atfectin e folding resid ve.
4)The porition of Glyl22 — Arg iz shown on the human triosephosphate izomemee dimer structum,
FDE ID 1WYI Thi= mutation causes aclish and introduces a bered chage, and iz know to incraasa
the thermo-zareitivity of the human protein. B) Daetailed view of the native Glyl22 and Trp@0 with
which it interactz. ) The Glyl22—Arg mutation causaz atoms to clash, a= indicated by the armow
[modallad = ruchara’).
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41.2 Introducing a voidin the com

Mutations that replace a large buried amino acid with a smaller one may introduce a woid
in the protein core. 4 woid is defined as a cawity within a protein structure that is not
access ble to bulk solvent. While a woid introduces nophyeical barrers tocomedt folding, a
woid reduces the stability of the comect]ly folded form below that of uniolded or pisfolded
states (Furst ef al,, 2009). Figure 4.2 showe an example of a large tosmall resid vue mutation
intreducing a Fhel?3—Leu woid putation in ghicose-f-phosphate dehydrogenaze. In this

instance, the woid mutation carees necnatal jaimdice.

The void caloulation method (Cuff and MMartin, 2008 caloulates the volume of woids, as-
suming that no movements oocur in the protein stractire. The AV softw are (Another YVoid
Program) is 1sed to identify and measure the size of internal voids in protein struchares.
AVP allows independent probe radii (default 1 44 and 054 for definition of sclvent and
woids respectively. Obtaining these data requires significant processing: all nmatant stnac-
tures nuet be generated 1eing the Muthiodel program before AYF i= mun on each individnal
structure. The compute ime for each strictire i dependent on the zizeof the protein chain

bein g analysed and can vary from a few seconds to several minutes.

Fgure 4.2 & putation which increaze the size of 2 woid.

4) The Phel?3 — Leumutation iz shown on the human glucoes & phorzphate dehyd mganass ztrue-
ture, FDBID 2BH?. Thi= mutation cmates a void and causas neomatal jpundice. B) The native strue-
ture shows avoid [woid2' mtmduced by a zat of dark blue spheres] near Fhel?2. ¢) After mutation
of Phal?2 — Leu, the woid woidl' iz enlarged to an extent judged to be destabilizing using the
threzhold deseribed by Cwff and bartin, (20M). The additional woid volume iz indicated by the
small dark: blue spheme in "woid2" highlightad with the arrow.

In 54 A'dh, a patation i= considered to bea damaging when it canzses the aeation of woids
of wdume = 7543 A= abovwe, it iz likely that movements of sidechainz and backbone
will occur to fill the woid (at least partially). This static threshold was zelected based on an
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analysis of FOB structures that showed that the largest void in 80% of protein structures is
< 273A7 (Cuff and Martin, 2004). However, it is likely that the threshold for deleterious
void creation is dependent on the protein structure, its size and stahbility, its environment,
and its resistance to destabilising voids. Considering each protein structure individually
and calculating the native structure of voids based on its properties may aid estimation of
the maximum void size that may be tolerated. SAAPdb maintains the same threshold for
indicating a likely-damaging mutation, but additional void information (top 10 vioid sizes)
is used for prediction in Chapter é.

4.2 Analysis of sensitivity to structural details

This analysi= began as part of a Master’s degree (Al-Mumair, 2010) and was updated as
part of this research using the latest SAAPdb version (described in Chapter 3).

All mutation data analysed in this section were obtained from the SAATdb PostgreSOIL
database using Structured Cuery Language (S0L) queries. The analvses were implemented
using several Perl scripts. First, a Perl script used in the examination of the gathered data
was written to determine the number of structures to which each mutation maps. This was
used for SNPs and FDs! across all available mutations imported from SAAPdb, across all
proteins. Another Perl script was written for counting mutations clas=ified a=s unfavourable
and mapped to at least 2 structures. The same script was used to calculate the fraction of
structures in which a mutation was classified as unfavourable out of the total number of

structures to which it maps.

(41)

Where n, is the total number of structures in which the mutation is classified as

unfavourable and & is the total number of mapped structures.

For example, if the number of structures to which a mutation maps is equal to 10 and the
number in which a mutation is classified as unfavourable is 5, then F = 0.5, The same script
analy=ed the mutations classified a= unfavourable for each individual SAAP analysis bype

where at least cne structure classified as unfavourable.

'Asin Chapter 3, the SAAPdb kerminology i wsed here - S0P ane belisved to be phenotypically neatral
wrhile I are knonwn to cause disease.
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A further enhancement to the program above was to provide an option (-nat) to incdude
no mutant structures, but only native structures from the FOB. To determine whether varia-
tion in structural classification frequencies resulted from poor resolution structures, a -resz
option was added to extract the resolution using get resol, an external program (ACRM,
unpublished). The FDE entries were restricted either into high resolution (= 2.0A when

—-res=H) or low resolution (= 204 when -rez- L).

The Analysis of sensitivity to structural details was performed on all 17 SA AP analysis types
shown in Table 3.6, where cne or more mutations are classified as unfavourable and suggest
how SAAPs might affect protein structure. In the previous work (Al-Numair, 2010), all
structures (mutant and native) were investigated. After updating the program, the analysis
repeated on native structures with high resclution to analyse the effects of mutations but

not using mutant structures for this purpoze.
4.2.1 Clash and void analysis

The distribution of fraction of structures in which SMPs and PDs are clas=ified as causing
clashes or voids (using the fived cutoff) was plotted in Figures 4.3 and 4.4 respectively. If
these measures were accurate predictors of pathogenicity, independent of precize structural
details, one would expect to see the SNIP mutation having a peak only at F = 0 {since one
would expect these mutations not to have a significant effect on protein structure) while
PD mutations would have a peak at F = 1. This is clearly not the case. SMIs causing
clashes (Figures 4.3a) show a broad distribution, but surprisingly clearly skewed towards F

1. Thi= suggests that either the fixed cutoff for clashes is incorrect (classifying too many

clashes as damaging) or that the use of a fixed cutoff is misleading or both.

An opposite surprising result is seen for PDs both causing clash and void (Figure 4.3b
and 4.4b) where the distribution is skewed toward F = 0 instead of the expected F = 1.
PDs causing clashes and SMNIPs causing voids show a much more even, broad distribution.

All four graphs show a peak around F = 0.5 (probably this is due to an artefact due to a
larger amount of entries with just 2 structures) and cases where 0.5 < F < 0,95 are likely to be
instances where the clacshes or voids have values very close to the cutotf and consequently
a given mutation in some structures is classified as likelv to be damaging while in other
structures it is not classified as having any damaging effect. This reinforces the conclusion

that a fixed cutoff is very sensitive to precise structure details.
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Figure 4.3 Boolean clash analysis

(a) The original Boolean clash method tested on 59 SMEP mutations using native structures. (b) The
original Boolean clash method tested on 453 PI mutatiors using native structure. A fraction of F

0 represents no mutations classified as unfavourable, whereas F = 1 represents mutations classified
as unfavourable. In {a) and (b), each bar less than the mext bar labe] (eg. Bar 0.25is0.25 <= F < 0.3
and bar0.95 is 095 F = 1}, the bar labelled with one represents the fraction of structures where all
are classified unfavourable.
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Figure 4.4: Boolean void analysis

(a) The original Boolean void method tested on 164 SMP mutations using native structures. (b) The
original Boolean void method tested on 1211 P mutations using native structure. A fraction of
F = 0 reprasents no mutations classified as unfavourable, wheress F = 1 mepresents all mutations
classified as unfavourable. [n (a) and (b), each bar less than the rext bar label (eg. Bar 0.25is (.25 =
F = 0.3 and bar 0.95 is 095 = F = 1}, the bar labelled with one represents the fraction of structures
where all are classified unfavourable.
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4.3 The MutModel program

MutModel i= a program written originally by Dr. Andrew Martin, which performs side-
chain replacements using the minimum perturbation protocol (MPP)  (Shih ef al., 1985).
During this calculation, side-chains are replaced and then spun around their Chil and
Chi? torsion angles to find the position that makes a minimal number of bad contacts (or
‘clashes’). For the void and clash analyses described in this chapter it is necessary to gener-
ate a mutant structure. Muthlodel implements MFPP to model a mutant resid ue into a native

structure as follows:

1. The Maximum overlap protocol (MOP) (Snow and Amzel, 1956) is used to replace the
side-chain, inheriting torsion angles from the native residue where possible;

2. Meighbouring residues within BA of the residue are identified;

3. The side-chain is rotated around vy, (Figure 4.5a) and 3. (Figure 4.5b) torsion angles
recording whether a bad contact is made or not (a bad contact is defined as two atom
centres within 2.50A of each other);

4, If the MOT conformation makes < 1 bad confacts, this conformation is accepted;

5. If a structural rotamer conformation (i.e. staggered X Xz angles) exists that makes
<. 1 bad contacts, that is selected;

6. The lowest energy conformation is selected (closest to the MO conformation if alter-

natives exist with the same energy).

e
-/ f%
S
N e
i o
[a] Beotating the mutant mesidue {shiern in magemita ) about i in 307 sheps

SRS

(k) Rotating the mutant residue (shown in magenta) about e in 300 steps

Figure 4.5: Using MutModel to model a mutant residue into an existing structure: rotation
about the y angles.
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4.4 Improving the clash analysis

The existing MutModel program recorded clashes as Boolean values; therefore, the aim was
to provide continuous (rather than Boolean) values to deal with the ‘degree of clash’. The

processes required to develop this approach are described in the following sections.

4.4.1 Linear Energy

Initially a linear energy was implemented using the equation:

J i if d = Mar
E I if f < Adin ':4_2']
1 1 — % otherwisze

The degree of clash is defined by a minimum distance jeg. Alin = 1.54) and a maximum
distance (Mar = 25A). On this basis, a distance greater than 254 gives a clash energy
equal to 0, while if the distance i= < 1.5A, the clash energy is equal to 1, with a linear
scale in-bebween. This step was preliminary experiment as a step towards the Full potential

ETNETEY.

4.4.2 Full Potential Energy

A full energy calculation to handle the amount of clash was then implemented (by ACEM),
this was achieved by incorporating a Lennard-Jones potential and a torsion potential:

(r% - ;) b kil 4+ cosiny + @] (4.3}
The Lennard Jones parameters (A and B) depend on the types of the two interacting atorns
with parameters coming from the CHARMM forcetield (Brooks ef al., 2009; Brooks of al.,
1983). The Lennard Jones potential accounts for clashes between atorns of the side-chain
being replaced and its surroundings, while the torsional term favours staggered conforma-
tions (see Figure 4.6). Then I modified the MutModel code to allow the user to select the
evaluation method. Currently the MutModel program evaluates the clash energy using one
of the four clash evaluation methods: 1: Boclean; 20 Linear clash; 2 vdW (Lennard -Jones);
4: vd W/ Torsion
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Fgure 4 &: Schematic indicating the two new terms wused in evaluation of clashes. &, g i=
the van der Waals energy evaluated wsing a standard Lennard-Jones potential while &, i=
the torsion energy.
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Figured ”: Distribution of side-chain clacsh energies calculated according to Equation 4.3 for
high resolution structures amonget CATH C-representatives.
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4.4.3 Testing the new method

After incorporating the new analyses into SAAPdap, the vdW /Torsion method was tested
on 400,000 residues from CATH O-reprezentatives (domains having no more than 657 se-
quence identity) of high resolution (= 25A). This showed that 99% of side-chains have an
energy of <= 13.4 kcal/mol (see Figure 4.7) and the highest energy value is 34.33 keal /mol
That number was used as a cut-off for defining a damaging clash. Using the new energy
evaluation, the performance of the Boolean clash method was assessed. In the Boolean
method, no account was made of the degree of dash; overlaps of 0.014 , or of 1L.OA | were

treated as the same and a mutation was classified as damaging if it made 3 or more clashes.

Figure 48 shows the energy distribution for side-chain replacements considered to make
0-5 or more clashes by the old method. Looking at side-chain replacements that made no
clashes using the old method (Figure 4.5, panel 1), we see that 997 of the data have an en-
ergy below 34.33 koal/mol using the new energy-based method. Panels 2 and 3 show cases
evaluated by the original Boolean method as making one or two clashes that would have
been classified as non-damaging using the Boolean method. Using 34.33 keal /mol as an
energy cut-off, these graphs indicate that 33.27% and 28.9% of potentially damaging clashes
ichaded regions in panels 2 and 3 respectivelv) were not detected using the old method.
Panel= 4, 5, and & show the energy distributions for side-chain replacements having 3, 4,
and 5 or more clashes by the old method, which would have been classified as damaging.
However, using the new method, 19.5%, 10.7% and 11.2% of cases (shaded regions in panels
4, 5 and 6 respectively) have energies below the threshold and are therefore unlikely to be

damaging.

Cwerall, approxvimately 329 of mutations previously classified as not clashing are now
found to clash, while approximately 15% of mutations previously classified as clashing are
now found to have only minor clashes that could be relieved by very slight movements in
the structure. This improved evaluation of side-chain clashes should improve attempts to
explain why pathogenic deviations are damaging and will also help to improve machine
learning methods for predicting the effects of mutations.

Distribution of energies calculated according to Equation 4.3 for side-chain replacements
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4.5 Improving the void analysis

The aim was not to improve the actual void analysis, but to optimize the side chain replace-

ment by the MutModel program.

Using the CATH (V 2.3) and PDE databases, we first find domains that differ from cne
another by only one residue and whose structures have been determined by X-ray crystal-
lography were identified with a resolution 53.&- A Perl program was written to create a
list of native proteins with their corresponding mutant by reading through the CATH file
and collecting all domains with the same CATH numbers into an array. It then takes each
domain in turn, checks if it is a native {ie. not described in the PDE file as a mutant), and
then checks all the other domains in its CATH =et and selects those that are mutants and
differ from it by only one residue. The list was in the form of the name of the native domain
followed by the number of related mutant. The native and mutant details are given on sub-
sequent lines (the positions of the ‘changed’ residue in both the native and mutant, and the
native and mutant residue). The file contains 2,129 native domains with their correspond-
ing mutants from which a total of 19276 native /mutant pairs were obtained. Another Perl
program takes each native-mutation pair from the list created in the previous step, perforrms
MutModel to exchange the appropriate residue, then ProFit is used to fit the new modelled
mutant domain against that of the mutant crystal-structure measuring the backbone and
side-chain Foot Mean Square Deviations (RMSDs). First the structures were compared by
fitting on Cev atoms and rejected if the Ca-KMSD was 1g 0.54 using ProFit. This was to en-
sure that there is no structural rearrangement resulted from the mutation. ProFit was then

used to calculate the backbone and side-chain EMSD for the mutated residue.

A further enhancement to the program was made to allow the user to specify the Muthodel

evaluation method and parameters used, in particular the step-size and tolerance:

1. Evaluation method (l: Booclean; 2 Linear clash; 3 vdW (Lennard-lones); 4:
vd W/ Torsion.).

2. Tolerance in energy for accepting the parent (MOF) conformation or a standard ro-
tamer position, rather than the lowest overall energy.

3. Step size of rotation (in degrees).
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The evaluation was performed using various step-sizes (1, 5, 15, 30 and &0 "), with toler-
ance of 0, 1, 2 and 3 Kcal /mol clashed for the Boolean and Simple linear scale method (see
Tables 4.1 and 4.2) and tolerances of 0, 1, 5, 50, 100, 500 and 1000 Kcal/mol for the vdW
{Lennard-Jones) and vdW /Torsion method (see Tables 4.5 and 4.4).

By running the MutModel program on modelled mutations where structures are known
with varied combinations of the three parameters and observing the average RMSD, the
parameters to be used in calculating the voids with each method were optimised. The best
combinations of these parameters is used in the new clash and void analysis integrated into
the SAAPdap pipeline. Table 4.5 shows a summary of the best step size and tolerance for
the different evaluation methods. Surprisingly all evaluation methods showed the same
lowest mean RMSD of 1.30A, with the two vdW energy methods showing a slightly better
standard deviation.

Table 4.1: Exploring different step-sizes and tolerance using Muthbodel (Method 1:
Boolean).

Stepsize  Tolerance || Sum Total Mean Standard  VYariance
(GMS B*X)  number (RMS) deviation  (Standard
deviation)
1 ] 2155919 155834 132 117 1.36
1 1 22306 57 15834 1.34 119 1.41
1 3 2179164 155834 1.31 117 1.35
1 2 2180572 155834 132 117 1.35
5 ] 2152751 15834 132 117 1.36
5 1 2al.m 155834 1.34 118 1.40
5 2 2159211 15834 132 117 1.36
5 3 2151876 155834 1.31 1.17 1.36
15 a 2190523 15834 1.32 118 1.38
15 1 22439 B3 155834 1.34 119 1.42
15 2 2193730 155834 1.31 118 1.39
15 3 2201084 155834 1.31 118 1.39
0 0 2177345 15834 1.33 117 1.35
30 1 22039 87 15834 1.33 118 1.39
30 2 21921.01 155834 1.31 118 1.35
20 3 2213571 155834 1.31 118 1.40
&0 0 | 2222208 155834 1.34 118 1.40
&0 1 22279658 15834 1.3 119 1.41
&0 2 2177401 155834 131 117 1.35
&0 3 2156775 155834 1.30 117 136
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Table 4.2: Exploring ditferent step-sires and tolerance using MutModel (Method 2: Linear).

Stepsize  Tolerance | Sum Ttal Mean Standard Variance
(EMS MK number (EMS) deviation  (Standard
deviation)
1 0 21pd5.32 15834 1.32 1.17 1.27
1 2 21990.42 15834 1.31 1.18 1.39
1 1 21929 15 1553 1.32 115 1.35
1 3 22418.77 15534 1.31 1.19 1.42
5 0 21758.05 15834 1.33 1.17 1.27
5 1 21B57.29 1583 1.22 1.17 1.35
5 2 2174595 15534 1.30 1.17 1.37
5 3 21965 69 15834 1.20 1.15 1.3
15 0 2211066 15834 1.33 1.18 1.40
15 1 22015.20 1553 1.32 115 1.2
15 2 20185.22 14887 1.32 1.15 1.40
15 3 21115.19 14913 1.32 1.19 1.42
an 0 | 2105347 14932 1.2 1.19 1.41
a0 1 2111206 14933 1.3 1.19 1.41
a0 2 2117931 14919 1.32 1.19 1.42
a0 3 2124394 14921 1.32 1.19 1.42
& 0 2125255 14731 1.2 1.20 1.44
(i} 1 2056586 14745 1.33 1.15 1.2
B 2 21755.33 15834 1.20 1.17 1.a7
i 3 2167470 15834 1.20 1.17 1.37
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Table 4.3: Exploring different step-sizes and tolerance using MutModel (Method 3: vdW

i Lennard-Jones)).

 Stepsize  Tolerance | Sum Total Mean Standard  Variance
(EMS MK  number (EMS) deviation  (Standard
deviation)
1 0 2429665 15834 152 1.24 1.53
1 1 248269 15834 147 125 1.57
1 5 22568 155834 132 119 1.42
1 10 2219203 15834 1.33 118 1.40
1 50 216343 15834 1.33 118 1.40
1 100 2239 95 15834 1.33 119 1.41
1 500 2232132 155834 132 119 1.41
1 1000 22397 68 15834 1.32 119 1.41
5 0 2431785 155834 152 1.24 1.54
5 1 24857 15834 147 125 1.57
5 5 2252497 155834 1.33 119 1.42
5 10 22443 B3 15834 1.33 119 1.42
5 50 2218018 155834 1.33 118 1.40
5 100 2230254 155834 1.33 119 1.41
5 500 22289 92 155834 132 119 1.41
5 1000 22250 155834 1.32 119 1.41
15 0 [ 2374777 15612 152 1.23 1.52
15 1 24309 42 15613 147 125 1.56
15 5 2210995 15620 1.32 119 1.42
15 10 2190162 15619 132 118 1.40
15 50 22100.04 15624 1.33 119 1.41
15 100 2252305 15830 1.33 119 1.42
15 500 2238490 15529 1.32 119 1.41
15 1000 2239270 15830 1.32 1.19 1.41
30 0 22899 8] 15831 1.50 1.20 1.45
30 1 2372377 15830 145 122 1.50
a0 5 2145978 15830 1.30 11a 136
30 10 2312180 15278 1.31 1.23 1.51
30 50 2109390 15274 1.31 118 1.35
30 100 2148575 15243 1.31 119 1.41
0 500 21452 62 15253 1.31 119 1.41
30 1000 21426 82 15266 1.31 118 1.40
6l ] 24524 14 155834 1.50 1.24 1.55
&0 1 25277 .9 15834 138 1.26 L.&0
& 5 2360170 15834 132 122 1.45
&0 10 233095 53 15834 1.33 122 1.45
&0 50 2295714 155834 132 1.20 1.45
&0 100 23120.63 15834 1.32 1.21 .46
&0 500 229E0.80 155834 132 1.20 1.45
&0 1000 2292533 155834 132 1.20 1.45
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Table 4.4: Exploring different step-sizes and tolerance using Muthbodel (Method 4:
vd W/ Torsion).

 Stepsize  Tolerance | Sum Total Mean Standard  Variance
(EMS MK  number (EMS) deviation  (Standard
deviation)

1 0 28BR323 15834 146 1.23 1.51
1 1 24301.50 15834 142 1.24 1.53
1 5 2231742 155834 132 119 1.41
1 50 21940.27 15834 1.32 118 1.39
1 10 2192305 15834 132 118 1.35
1 100 2212192 15834 132 118 1.40
1 500 2221730 155834 132 118 1.40
1 1000 22305.66 15834 1.32 119 1.41
5 0 2588162 155834 146 1.23 1.51
5 1 24246 59 15834 142 1.24 1.53
5 5 2224384 155834 132 119 1.40
5 10 2231250 15834 1.33 119 1.41
5 50 2195347 155834 132 118 1.39
5 100 22049 08 155834 132 118 1.39
5 500 217077 155834 132 118 1.40
5 1000 2213165 155834 1.32 118 1.40
15 0 | 23518.23 15834 145 122 1.45
15 1 23575 16 155834 141 122 1.45
15 5 2175046 15834 1.31 117 1.37
15 10 2173858 15834 1.31 117 1.37
15 50 2167476 15765 1.31 117 1.37
15 100 2217605 15733 132 119 1.41
15 500 2213882 15733 1.32 119 1.41
15 1000 2216427 15737 1.32 1.19 1.41
30 0 23600.11 15733 147 122 1.50
30 1 2326238 155834 1.40 121 1.47
30 5 2130622 15834 1.29 11a 1.35
30 10 2131411 155834 1.30 116 1.35

| 30 50 | 2156950 155834 1.31 117 1.36
30 100 2135210 15384 1.30 115 1.39

| 30 500 | 21450 15352 132 118 1.40
30 1000 21813.17 155834 1.30 117 1.35
6l ] 2512770 155834 146 1.26 1.59
&0 1 24842 Ba 15266 137 1.28 163
& 5 23B745] 15282 1.34 125 1.56
&0 10 2361534 15287 1.3 1.24 1.54
&0 50 2344315 155834 1.33 122 1.45
&0 100 234004 15834 1.32 122 1.45
&0 500 2522173 155834 132 121 1.47
&0 1000 2312350 155834 132 121 1.46
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Table 4.5: Summary of the best step size and tolerance for the different Mutbdodel evalua-
tion methods.

Method Step size Tolerance Average
RMSD
Boolean evaluation Gl 3 1.50
Linear evaluation 5 & 60 283 1.30
Energy evaluation vdW 30 5 1.30
Energy evaluation vdW /Torsion a0 100 & 100 & 1000 1.30

4.6 Conclusion and discussion

Clash and void analvsis in SAATPdb involved Boolean evaluation with defined cut-offs. In
analyvzing clashes, previous work defined a damaging clash as any side-chain that has at
least 3 van der Waals overlaps (of any degree) with other atoms. Similarly, voids were
considered damaging when they caused the creation of voids of volume = 2735 Ad ASSLITING,
no compensatory movement within the protein structure. By looking at the distribution of
SMF= and FDs predicted to be damaging, it was clear that the Boolean method did not
accurately describe the effect of mutations causing clashes or voids, either overestimating

or underestimating damaging effects when values were close to the cut-off.

The new Clash analyses use a continuous energy scale calculation incorporating Lennard-
Jones and torsion energies using CHARMM (Brooks ef al., 1983) parameters. An energy
cut-off representing = 6 of side-chains (ie. 4-5 structural) in high-resclution structures
was selected simply for visual indication that a mutation is likely to be damaging. The ac-
tual energy value is used in the machine learning described in Chapter 6. The Muthodel
program is used in both clash and void analysis and parameters (step-zize and tolerance)
used in searching side-chain positions were optimised by modelling known mutant struc-
tures. Consequently, the evaluation of both clash and void is optimised by using these
parameters. Mo other changes were made to the assessment of voids; the cut-off selected
previously is used as a visual indication that a void is likely to be damaging, but as with

clash energy actual void sizes are used in the machine learning described in Chapter é.



Chapter 5

Improvements to Glycine and Proline

Analysis

# Some of the work i Hus chapter fas been published in Al-Numair NS, Martin
ACR. 20153, The SAAF pipeline and dafabase: fools to analyze fhe impact and predict
the pathogenicity of mutations. BMC Genomics 14.3:111.

Glycine and proline amino acids both exhibit an unusual Ramachandran dis-
tribution. Since glycine has no side-chain, it is able to access a wider range of
phi/psi combinations than the other amino acids, while the cyclic side-chain of
proline restricts the available phi angles available to it. Consequently, backbone
conformational changes may be necessary to accommodate mutations from-
glveine or to-proline, which could disrupt protein folding and alter function.
The purpose of this chapter is to improve the SAAPdap analysis by develop-
ing a pseudo-energy potential based on Ramachandran plots to supercede the
simple =et of allowed backbone phi/psi angles used in SAATdb previously.

172
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5.1 Introducton

Eycine and praine are both vnuenal aptino acids as described in the following sections.

511 Glyeine

Glycine (Figure 5.1) is the smallest of the 20 anino acids conmonly found in proteins. As
described earlier, Glycine haz an vmwewal Famachandran distribution becaiee it has no
side-chain (ie it R group iz a hydrogen) Thie, glydne i= able to access and adopt a
wider range of phi/psi combinations than other aminoacids which are sterically hindered.
Because of thi= imique capakility, when a mutation alters any native gl yeine resid ve whose
backbone torsion angles are unfavourable for other amino acide, there will be an effect on
local protein structure and consequently a potential effect on fumction.

H,N

[a) 1))

Fgure 5.1: Glycine anino acid (Gl yor ),
(a) Glycine molecul ar formula N HoG Hp GG @ H. () Glycine structure.

1.2 Troline

Prdine (Figure 52) like glycine, is a Btructural’ amino acid ([Ericfly “imina') that has an
tmigual Ramachandran distribution. The cyclic nature of the side-chain of the amino acid
gives it more conformational rigidity compared with the other 19 amino acids conmonly
found in proteins. Thecyclic side-chain, which links back to the backbone nitrogen, restricts
the available phi angles compared with other amine adds (Figure 5.2). Therefore, just az
with mtations from glycine, it is expected that when a patation introdwces a proline at a
position where torsion an gles are unfa vourable, it will affect the local protein structure and
potentially protein folding and function.
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I Z

OH

(al )

Figure 5.2 Proline amino add (Fro or ).
(2] Proline molecular formula G Hp N 3. (B Proline structure.

The frans conformation of amino acids is foumd in the majority of peptide bonds becauze in
the iz conformation, the proximity of thechiral carbons makes thestrcture approsdmately
1000 times less stable than the frans form. How ever, o1z peptide bond s bet ween any resid ve
and proline (x-I'ro) are only 4 times lesz stable than the frans conformation (Branden and
Tooze, 1799, A study by Stewart of al., (1970) showed that onl y 0.05% of all amide bonds are
¢z, while 6 5% of x-Pro amide bonds areciz. While these values are considerably lower than
the X1% expected from the difference in energy, »Irociz amide honds are stable enough
to ooccur at a higher frequency than other ciz amide bondz. Kinetically, ciz-frans proline
iromerization i= a wery slow process, and i= considered the rate-liniting step in protein
boldin g where it ocoure (Wedemeyer of ol 2001).

A oputation from a ¢z proline to any other aptino add i= likely to dismapt the protein-fold
sigmificantly becanze an amino acid other than prolineis likely to adopt the frans conforma-
Hon. Such a change iz wer yr likely to affect hmction.

In the 5a4 AT'dE analyeis, pntation of a ciz-proline to another amino acid i= treated az a
Boolean analyzis, no change is made in this work. How ever, mutations that cause changes
either from-glydne or to-proline that involve changes in the fa woured fdisfa voured regions
of the Kamachandran plot are potentially mare subtle in nature. Freviously simple ranges
of allowed an gles were used, but these ma y be sensitive to precize structiral details making
Boolean analysis inadequate for outcome prediction.
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5.2 Analysis of sensitivity to structural details

This analysis was initiated a= part of a Masters thesis (Al-Mumair, 2000} and was updated
as part of this doctoral research using the latest SAAPdb version (Chapter 3).

As described above, originally the SAAF analvsis used a very simple set of allowed bound-
aries for backbone phi/psi angles to define a damaging mutation. These ranges were intro-
duced during analy=is of 1363 point mutations obtained from the P53 mutation databank |
Martin et al. (2002); www.bicinf.org.uk/E53/) In that work, allowed regions for pro-
line of —70.0° < ¢ < —500° and (—70.0° < b < 50007 or LIOW0T < o < 1307 were used
and a total of 50 distinct damaging mutations to proline were identitied. In Figure 5.3, the
allowed regions for proline are shown in pink within the hatched region allowed for other
amino acids. These ranges for the allowed regions are very conservative, possibly resulting
in false-positive results (ie an over-prediction of damage caused by a proline mutation).

Indeed, some of the mutations studied in P53 were borderline and may be accommodated

by a very small structural rearrangement (e.g. L137F).

In the P53 database, Martin of al. identified a total of 70 distinct mutations from a na-
tive glycine to another residue. The allowed regions of the Ramachandran plot for non-
glycine /non-proline residues were, defined as: (—180.0° < & < —30.0° /G007 = = 180,07
or (—155.0° < ¢ = —15.0°/ — SO0 < o < 60.0°) or (—180.0° < @ < —450°) — 180.0° <
WS — 1200°) or (30,00 < @ = 9007 /2000 < e < 10607 All non-glycine residues in
the P53 crystal structure fell within these limits. In Figure 5.3, the allowed areas for non-

glycine /mon-proline residues are shaded grey.

Mutation data analy=ed in this section were obtained from SAAPdb PostgreS(L database.
Glycine and proline mutation analyses were implemented using several custom Perl scripts.
The first I"erl script was used to examine the gathered data in order to determine the num-
ber of structures to which each mutation mapped. This method was used for both SMP= and
PDs across all available mutations imported from SAAPdD, and across all proteins. Another
Perl script was written for counting mutations classified as unfavourable and mapped to at
least 2 structures. The same script was used to calculate the fraction of structures in which
a particular mutation was classified as unfavourable. Mutations classified as unfavourable
for each individual SAAP analysis type, where at least one structure was classified as un-

favourable were also identified using this Perl script.
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As with analysis of clashes and voids (Chapter 4) an enhancement to the original analysis
program was made to introduce an option (—nat) to include no mutant structures, but only
native structures from the PDB. A -res option was also added to restrict the analysis to
either high resclution (< 2.04 when -reg=H) or low resclution (= 2.0A when -reg=L)
structures. The fraction of structures to which a mutation is mapped that show a structural

effect in the Boolean analysis (F) is detined as in Equation 4.1.

Allowed toreion angles for pro/gly
|
] )
E -
R

-1an
L

=182 =30 g i 153

i

Figure 5.3: Allowed regions for proline and glycine using the previous method.
The pink areas mark the restricted conformation for proline residues used in the Boolean analysis
the hatched grey avea marks the vegions for non-proling, non-glycine residues, and the yvellow colour

marks the rest of the conformational space, primarily cccupied by glycine residues.
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52.1 Glycine and proline analysis

In this section, using the old Boolean analysis, the results of mapping SMNP= and FDs to
native structures with high resclution are presented to show the need for improving the
analysis. If the distribution of the fraction of structures (F) in which from-glycine mutations
are classified as unfavourable using the rigid ¢/« cut-offs defined earlier (Figure 5.3) for
SMF= (Figure 5.4a) is compared with the equivalent analysis of to-proline mutations (Fig-
ure 5.5a), we see a similar distribution. Surprisingly the results are clearly skewed to F =1,
whereas, one would expect such mutations not to have any effect and therefore one would

expect that the graphs would be heavily skewed towards F = 0. In other words we appear to

have a large number of false positive and this clearly indicates the need for a better analysis
of theze effects.

In the case of PDs iFigure 5.4b and 5.5b), a much broader distribution is observed. In these
cases, one would hope to see distributions skewed towards F = 1. This is broadly the case for
PDe resulting from to-proline mutations with 517 of mutations having F = 0.95. However,
the situation is very different fior FDe resulting from-glycine mutations where 21% of mu-
tations have F = 095, but 237 have F < 0.1. These broad distributions indicate sensitivity
to precise structural details and it is likely that mutations with F = 1 fall well within dis-
allowed regions while other mutations with F < 1 fall on the boundaries of the disallowed
regions in the Ramachandran plot (Figure 5.3).

5.3 Calculation of Ramachandran plot pseudo-energies TDMs

This section outlines the development and implementation of a pseudo-energy potential
bazed on Ramachandran plots (Torsion Density Maps (TDMs)) to be used in the new SAATP-
dap analysis. Initially a non-redundant set {sequence identity = 25%) of high-resclution
protein domains (resolution <1.8A, R-Factor <0.3) was selected from the CATH pdhblist
(CATH v3.4.0). The number of proteins was insufficient for our requirements, so PISCES,
a Protein Sequence Culling Server (http://dunbrack. fooo. edu) was used instead to
produce the dataset. PISCES selects a subset from the PDE based on specified thresholds for
resolution, sequence identity, and Rfactor. All non-X-ray entries were excluded. FISCESde-
termines identities for PDEB sequences using the CF structural alignment and uses a #-score
of 3.5 as the threshold to accept possible evolutionary relationships (Wang and Dunbrack,
2005). Table 5.1 shows the specifications and numbers obtained from PISCES for the subset
used in these analyses.
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Figure 5.4: Boolean Glycine analysis

(aj The original Boolean glyeine method tested on 29 SMP mutation using native structures. (b) The
original Boolean glycine method tested on 177 P mutation using native structures, A fraction of
P =0 represents no mutatiors classified as unfavourable. whereas F = 1 represents all mutatiors
classified as unfavourable. [n (a) and (), each bar less than the next bar label (e.g. Bar(0.25 is 025 =
P = 0.3 and bar 095 s (.95 = I = 1], the bar labelled with one represent all the fraction equal to one
only (e all the structures are classified as unfavouralble).
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Figure 5.5: Boolean Proline analysis

(a) The original Boolean proline method tested on 24 SMNF mutation using native structures. (B The
original Boolean proline method tested on 189 P mutation using native structures, A fraction of
F =0 represents no mutatiors classified as unfavourable. whereas F = 1 represents all mutatiors
classified as unfavourable. [n (a) and (), each bar less than the next bar label (e.g. Bar(0.25 is 025 =
F = 0.3 and bar 0.95 s (.95 = [F = 1], the bar labelled with one represent all the fraction equal to one
only (e all the structures are classified as unfavouralble).
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A Perl program was written to generate Ramachandran plots or Torsion Density Maps
(TOMs) on a 1-degree grid (360x360 cell matrix) for proline, glycine and ‘other” amino
acids (non-glycine/ proline). The program then extracted the PDB [ and chain for each
entry in the dataset, and accessed a local copy of the PDB. The torsion and getchain
programs (ACEM unpublished) were used to calculate backbone torsion angles for each
chain. Phi/Psi angles were then rounded to the nearest integer and the count of Phi/Psi
combinations was accumulated in the cells of Glycine, Proline and Other TDMs.

The different datasets shown in Table 5.1 were investigated, but throughout this chapter the
dataset with 1.8A resolution is discussed only

Table 5.1: Protein dataset obtained from FPISCES.

_ Percentage [dentity Besolution  RE-value Domains  Chains

25 <1.54 0.3 111,005 1,689
25 <1.8A 0.3 111,028 3430
25 <254 0.3 111,923 6,564

53.1 Raw data and log transformation

Ramachandran plots were generated with the total count in each cell (Figures 5.6a, 5.7a
and 5.8a). To reveal more information in the plots and transtorm this to peeudo-energy, the

In {14+count) matrices were then plotted (Figure 5.6b, Figure 5.7b and Figure 5.5b).

This preliminary analysis showed that the data were not smoothly distributed implyving the

need for smoothing,
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Fgure 5.6 Glycine TTR.
ja) =lycine Rapuachandran plot generated with the total obeerved count in each cell.

(b) Glycine Famachandran plot generated with the & of total obeerved count in each cell.
(Dark-purple to dark-red heat map).
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Figure 5.7 Proline TOM.

{@) Proline Ramachandran plot generated with the total observed count in each cell.

(&) Proline FRamachandran plot generated with the total #z observed count in each cell.
(Dark-purple to dark-red heat map).
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Figure 5.8 Everything except Gly / TFro TDM.

{a) Ewerythin g except Gly/ Pro Ramachandran plot generated with the total obser ved count
in each cell. (k] Everything except Gly/F'ro Ramachandran plot generated with the total #z
obeerved coumt in each cell. (Dark-purple to dark-red heat map).
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53.2 Cell smoothing

Figures 5.6b, 55b and 55b showed that the data are not smoothly distributed and there
are many isolated points in the plot. The raw observed number of residues with a given
phi/psi combination data were smoothed by averaging the data in a cell with neighbouring
cells as shown in Equation 5.2, Values of 1, 2, 4, 6 and 8 were used for w, representing
smoothing over 3X3, 5X5, 99 13X13 and [7X17 regions respectively. An energy value was

then calculated for each cell as:

E—In (1+°b5”) (5.1)

1 +esp

Where ofs, is the smoothed observed count and ezp is the expected number calculated as

the total number of obzervations divided by the number of cells.

r= 360+ if(z < 0)
y= 360 +y ifiy=0)
S, Y e N {r— 360 if{r > 360) =2
g o= — 3060 ff |y = 360

Results of different smoothing are shown in Figures 59, 5.10 and 5.11. Of these, the w =
&, (13X13) smoothing was chosen because it showed the best smoothing while retaining all
scattered data present in the non-smoothed TDM (e.g. Figure 5.11f vs Figure 5.11e - the
17X17 smoothing loses a favoured region in the middle of the plot).
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Fgure 5.9 Glycine TOM smoothing.
(@) irlobe fexp), (B)-(f) emoothed fn(cbe/exp). (Dark-purple to dark-red heat map)
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Figure 5.10: Proline TDM smoothing,
(@) frdobe fexp), (B)-(f) smoothed falcbes/exp). (Dark-purple to dark-red heat map).
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(@) friobe fexp), (B)-(f) emoothed fn(cbe/exp). (Dark-purple to dark-red heat map).
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5.3.3 Threshold selection

The smoothed TDM (Ramachandran plot) created in the previous step was used to select
the threshold for a visnal indication of whether mutations are likely to be damaging. The
energy values are used directly in the machine leaming method (Chapter &). The thresh-
old was based on ~+1% of observations in high-quality, non-redundant structures having a
worse energy for both Proline and Mon-Gly /Fro TDMs and ~2.5% for Glveine TDM (0,35,
0.5 and L5 for Glycine, Proline and Mon-Gly / Pro TDMs (Table 5.2). Figure 5.12 shows the
final TDMs after applying the threshold cutoff.

Table 5.2: Threshold selection.
Using 3630 PDE list (Percentage Identity = 25, Resolution = 1.5A and B-value = 0.3).

Glycine Proline Mon-Gly /Pro
Energy threshold 0.35 0.5 15
Total count from all the cells A47a7 M55 BaeT 157
Expected count in each cell 042 027 506
Cut of threshold count L1239 (2.445%0) 298 (DB B3 (092670

534 Comparison between the previous and new method

Comparing Figure 5.12b (allowed regions for proline based on 1% of prolines having a
worse energy) with the pink regions in Figure 5.3, which represent the regions allowed for
proline in the old Boolean analysis (=see Figure 5.13b for comparison). The new analysis

demonstrates that in the previous method the regions were much too restrictive.

Figures 5.13a and 5.13¢ shows the same comparison between the allowed regions in the

new analysis and the previous Boolean analysis for Glycine and Mon-Gly /T'ro TDMs.
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Figure 5.12: Final TDMs after appl ying the threshold cutoff showing the allowed regions in
new analyes. [Dark-purple to dark-red heat map).
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[a) Clycing - The allowed regiors for @ wcing using (B] Froline - Fink arca® mack 1the pesiicied

the previcus method wheee non-pink area magksthe  conformation for pealing residues wsad in the Boolean
conformational Fpace, primarily oocupied b 2lycing analysiz

Esidues.

(=) Monegly fpoo-The hatched Zrey area marks the
rezions o non-peoling, non-glycing wsidues mEidues
uzed in the Bodlean anal ysis.

Figre 513 Comparizon between the allowed regions in new method and old method.
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5.4 Discussion

In summary, the glvcine and proline analvees have been improved by moving from sim-
ple Boolean decision making with rather arbitrary boundaries to an energy-evaluation ap-
proach. Figures 5.13a, b and © clearly shows that the previous allowed regions were inaccu-
rate and, in particular, the allowed regions for proline were incorrect. These analyses have
been integrated into the new SAAPdap pipeline and web interface (Chapter 3). Detailed re-
sults of these analyses were then used to build the pathogenicity predictor using a machine
learning approach (Chapter ).

While the change from Boolean decision making to pseudo-energy estimation should have
improved the analyses of glycine and proline mutations, it is recognised that limitations
remnain, which could be the subject of future improvernents. For example, the cyclic side-

chain of proline means that there is no hydrogen bond to the backbone nitrogen.

Consequently, proline cannot satisfy the backbone hydrogen bond donation requirernents
in n-helices and F-sheets other than at alternate position in the edge strands where hydro-
gen bonds are not required. This restriction is something that i= currently not accounted for

in our model, but is an important factor to consider in the future.



Chapter 6

Predicting Damaging Mutations
(SAAPpred)

# The method and results in this chapter have been published (Al-Numair N5, Mar-
fin ACE. 20113. The SAAF pipeline and database: tools foanalyze fhe impact and predict
e pathogenicity of mufations. BMC Genowrics 14.3:1-11). However some of the results

shown here are more recent after improving e methods,

The identification of the effect of missense pathogenic mutations has seen
great progress through the development of computing applications, the major
issue being to separate neutral from pathogenic mutations. Several software
tools are currently available to analyse and study these missense mutations (e.g.
MutationAssessor - Section 2.6.1, SIFT - Section 2.6.3, PolyPhen2 - Section 2.6.2,
Condel - Section 2.6.4 and most recently FATHMM - Section 2.6.5). These tools
use various methods to make predictions, such as the conservation of amino
arids in homologous sequences (Reva of al.,, 2011}, consensus deleteriousness
scores  (Gonzdlez-Pérezr and Lopez-Bigas, 2011), and position-specific scoring
matrices [Adzhubei ef al., 2010; Ferrer-Costa ef al., 2005).

This chapter describes the main motivation for the project, namely the
construction of the SAAPpred predictive tool using the updated Single Armino
Acid Polymorphism database (SAAPdb) and Single Amino Acid Polymorphism
data analyses pipeline (5SAAPdap) including the enhanced analyses described
in the previous two chapters. The next chapter (Cardiomyvopathy Mutations)
describes how the SAAPpred predictive tool was used together with the
SAAPdap pipeline on a specific disease-related dataset.

Lez
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6.1 Introduction

An analy=is of the data in the Single Amino Acid Polymorphism database (SAAPdb) (Fig-
ure 3.20) shows that there are clear ditferences in the sequence and structural characteristics
of SMFP= and pathogenic deviations (FDs): PDs have additional, and more severe, structural
effects. This is therefore a clear indicator that these analyses can be used to predict the

pathogenicity of a novel mutation.

SAAPb and SAAPdap currently provide sequence and structural analy=es of mutations
in structures, deposited in the Protein Data Bank (FDE). Several enhancements were made
to the structural analyses (described in previous Chapters 4 and 5) and implemented in
SAAPdap in order to provide further information and more detailed structural effects with
the aim of creating the SAAPpred tool to be used in predicting the pathogenicity of any

novel mutation in the FOP structure.

The following sections describe and discuss the various steps involved in the construction
of the SAAPpred tool beginning with preliminary experiments through to a general com-
parison with other available predictors.

6.2 Preliminary experiments

For this preliminary work, the data and separation of neutral and pathogenic mutation
as used by SAAPAb were emploved. Later work shows that the boundary between these
classes is different from that seen in datasets such as HumVar used in PolyPPhen-2. These
differences will be discussed in Section 6.2.3.5

6.2.1 Methods

This section will describe methods used to perform preliminary data selection and prepa-
ration, describe how these data were transformed into a machine-readable format to utilise

and optimise several machine learning methods finally used to train and build SAAFPpred.
5.2.1.1 Dataseis

The chapter describing SAAPdb (Chapter 3) describes in detail how an extensive and up-to-

date dataset was successfully rebuilt, how raw data were imported from SNF repositories
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and the various locus-specific mutation databases (LSMDBs) and how the sequence and

structural analyses were obtained including the enhanced and improved structural analyses

(Chapters 4 and 5).

In order to import and access SAMF and PD mutation data from SAAPdbD, a Perl script was
written that incorporated Structured Chiery Language (SUL) queries (Section 2.2.1). An
example PostgreSOL query that extracts SMNPs from SAAPdb shown in Figure &.1.

...... a.snp_l=id, a.sprot_lsid, &.an_wildcype
a. snp_protein_pasition, a.sllelas_motsatlons
CCURT WOISTINCT =.pdik id])
FRCHM snpZannotatad &, =map =
WHEEE znp_l=1d = s_.=op_l=1dG
GRCUF BY a.snp_l=zid;s.sprot_lsid; a.zs_wildtype,
a. snp_protein_pasition, s allsles_gpukbstions]
Figure 6.1: An example PostgreSOL query.
Twr tables (=npZanncteted alised W0 =2 and =zzap alissed o0 =) are queried with the condition
m.znp_lzid and z.ozop_iszic and the distinet FI2B id count for each mutation prinkesd  among
other informatiom &.=np_l=id, a.zprot_lsid, &. == wildtypse, & =np_protein_positicn and
m.omllelas_mutations = defimed |_'|:..' the GROUE 2Y n.onams clause all PostgreSOL commands and func-

bens are given in capitals,

The Perl script was enhanced to allow the following command-line parameters:

o —otrtype which defined the type of PDE structure and could take three values, ‘Ma-
tive', ‘Mutant’ or "All" {i.e. both Mative and Mutant);

# —restype which indicated the resolution of the structure and also ook three values:
‘High' (equivalent to < E.Eljt‘,l, ‘Low’ {(equivalent to = 2.0A) or “All".

The PDB resolution was determined from a DB file using an external programigetre=cl,
ACEM, unpublished). The aim was to divide PDEB data into either high resolution or low

resolution structures in order to determine whether high resolution structures would be

more useful with machine leamning method used in later stages.

For initial experiments, from 611,641 pathogenic deviations (FDs) and 71,409 neutral mu-
tations (SMPs) 405497 PDs (ie. identified as damaging by at least one of SAAPdap struc-
tural/sequence analyses) and 45,699 SNFs (i.e. negatively identified as damaging by at
least one of SAAPdap structural / sequence analyses) were used as described in Table 6.1
and Figure 6.2
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Table 6.1: Breakdown of the number of mutations in SAAPdb and their mapping to struc-
ture. In some cases, several hundred structures are available (e.g. haemoglobin, carbonic
anhydraze, prthrombin, transthyretin, insulin, CDE2, lvsozyme) and, on average there are
two copies of each chain in each PDB file associated to SNFPs and four copies for FDUB files
associated with PDs.

| Mumber of Mutations FDs ShI's
Mapped to UniProtKB/Swiss-Prot 13,054 45,452
Mapped to FDBE 6527 17915
Mapped to multiple FDBs 202,566 33359
Mapped to multiple Chains A1l 641 71,409

6£.2.1.2 Class value

The second step was to run the SAAPdap analyses pipeline (Section 3.5.3) for complete
structural and sequence analyses on each mutation using the PDE chain that matched a
specified UnilProt accession number (obtained from FOBSWS, (Martin, 2005), Section 2.1.4).
SAAPdap was used in place of the pre-calculated analysis in SAAPdb because the en-
hanced analyses (Chapter 4 and 5) have not vet been incorporated into SAAPdb. The
SAAPdap pipeline code calls various plugins (‘binding’, ‘buriedcharge”, ‘cispmo’, ‘clashes’,
‘corephilic’, ‘glycine’, "hbonds=", “impact’, ‘interface’, “proline’, “sprotft’, ‘segeom’, ‘surface-
phobic” and “voids") each of which implements an individual analysis. Another Perl pro-
gram runsasPdaponcrid was written to perform this step. This program processed and
batched SMI and PD mutations clean data; created the . gh file and submitted jobs to a lo-
cal computing farm (based on the Oracle Grid Engine)'; and recorded any errors. A further
enhancement to this program was to use -recordirrora which records all errors and cat-
egorizes them and re-submits failed jobs to the grid one more time before saving them as

an error to be looked at for any further action.

The output of the pipeline program (SAAPdap) is saved in a JavaScript Object Notation
(JS0OM) format file, an example of a JSON file obfained from SAAPdap is shown in Ap-
pendix [C]. Appendix [C.i] contains detailed tables that explain of the SAAPdap [SON file
output and the assigned class. At this stage another Perl program was written to parse the

"Pres iously known as Sun Grid Engine (8GE] it is an open source batch~queuing system, developed and
SuppoThd I'w.-"un Microsysbems and now by Oracle. SGE is used on a computer farm lusher and is resgporesible
i acoepting, scheduling, dispatching, and manaiging the remote and distributed execution of large numbers
of standalome, parallel or interactive user ok It also manages and schedules the allocation of distributed
resources such as processors, memory, disk space.
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[50N file, T2onzcsy, which wees several Ferl modules to extract structural and sequence
resulte obtained from 5AAPAE for each omtation and give it 2 unique ID (zee Figure 6.3)
and =zawes the data into a copma-separated walue (T35 file. T20M2CSV program will list
each otation with ite features (anal yeis results) and a class. A pntation could adopt one

of two clage values: Mewtral (=np), or pathogenic (pd). Figure 64 shows example of two
entries obtained from the T3 file.

At thie stage another Perl program was written, cevIARFF (ACHM, impublished ), to con-
wert the 5 fle obtained from the previcus step fo an AttributeRelation File Format

(A RFF) Hle to be 1eed in suteequent machine leaming experiments.

At the end of this step for the preliminary experiments a balanced =et of ontation data
from S5AAPAE was uzed that consisted of 30,500 SMM= mapped to PDB strudures and a
random selection of 30,500 Te (also napped to PUE structures). This was processed by
SAsaPdap withowut any errors o oissing stnactural or sequence analyses results. Where
zeveral etructires were available for a puitated residue, each was 1eed as an independent
data point for machinelearning. At this sta ge the analyses was restricted tohigh-resclution
PDE entries (= 2.04) (zee Figure 6.2).

Sk A ra 1T s Tt TG R T S e

nur;uni srotasines; 1Tat rivtipdboed=:cha niresnurmsmutstion =zructurstvperesolud nirfactor

1:FOG396: _231: N:D:1keq:A:204:D:crystal:1.65A:17.70

rrusater Pl ksl wm
PEPT, Smpes e . e Wl g

[T Yulcr]
LI [T RET e e znnl e

Figure 6.3 An example of a single amino acid polymorphism annotation.

Each ptation i= a unique combination of: [{) UniProthB /Swiss-Prot primary accession
number of a protein in which the mutation occurs, (i) the amino acid type found native
in disease tmattected individuals, (iii) residve position in protein sequences, as reported by
the UniProtK B,/ Swiss-Frot, and (iv) the aminoacid type foumd in the pntated genotype.
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l:Po&8256: 231 :N:D:lkcg: Az 2040 crystal: L. ESR:17.70%:

""" 1,0,0,9,3,3,0,0,3,-2.371L5539533353559, 83 74, 0. 86603723827439%, 20, EL:
1,d, E3_ 424,534 596,47.454,41.197,40.934,37.3458,3Z_5%399,30.61&, 24 .E,25_.T58, 853 _424,
24,58, 47.4534,41.137,40.8534,37. 345, 22.53393,30.6158,24.6,23.738,-3_4D,;-1 -1 SNF
2:F TEIrZ2Z:R:Cr12b31:1C:1 2 Crcrystal:z R:IZ.350%

i M ¥ ’ q,3, 0, =4.31%,1,2p0,-1_84 1 Cip 1 9%3,;BE5.731,78._993
35.625%,30_363,47.287, 33 68486, 32.125,;3 62z,2%.8z27,1 E53,83_721,76.33E, 33.B623
AD.ES3,47 . 2ET 9. 866,232,123, 3] 622,29 .E2T,-Z.BE,; -1 =143 PL

Figure 6.4: An example CSV file.

Chtained from the TS0RIZCEV program consiting of a unigque [0 (Figure 6.3) and the forty-seven features

resulting from the SAAPdap analysis

£.2.1.3 Feature encoding (Training attributes)

In addition to the class value, each mutation had forty-seven features (attributes) assigned
to it. For initial experiments, all forty-seven available features were selected as potential
predictors of pathogenicity. Table 6.2 shows the forty-seven features obtained from struc-
tural or sequence analyses in SAAPdap.

Table 6.2: The torty seven features obtained from SAAPdap.

- MNumber Attribute Variable type Value type |
1 Binding  Binding analy=es Boolean
2-14 SProtFT The 13 SwissProt features Boolean
15 Interface Interface analyses & osa
L& Relaccess The relative accessibility of this residue £osa
17 [mpact Conservation score at this position in the alignment  Score
18 HBonds HBonds Energy
19 SPhobic  Surface hydrophobicity of mutant residue Fal
20 CTPhilic  Buried hyvdrophilic Fay
21 BCharge Buried charge i
22 S5Geom  S5ieom analvses Boolean
23 WVoids Voids analyses Volume
24-33 MLargest Top 10 voids in the mutant Volume
3443 MLargest Top 10 voids in the native Volume
44 Clash Clash analy=es Energy
45 Glycine  Glycine analyses Energy
46 Proline Proline analvses Energy

47 CisPro CisPro analyses Boolean
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6.2.2 Machine learning

There are many approaches to machine leamning and many algorithms have been devel-
oped. It is often the case that a researcher needs to experiment with several different op-
tions in order to identity the technique that provides the most appropriate solution to their
particular problem. With this is mind, software such as WEEA (Hall f al., 2009) and Rapid-
Miner (Mierswa et al,, 2006) implement a wide range of tools and techniques. At the same
time, they provide a user-friendly interface for the creation, optimisation and evaluation of

machine learning experiments.

£.2.2.1 Survey of classifiers using WEKA

WEEKA (Hall ef al_, 2009 (Section 2.5) is an open-source collection of machine learning algo-
rithms written in Java. Machine learning experiments began by selecting the most appropri-
ate machine learning method. All the supervised classifiers implemented in WEKA_3.6.9
were trained on the dataset (using ALL attributes). In this step, the values of default pa-
rameters were not changed. The reason for this was to validate the choice of dataset and
attributes.

All of the methods tested had relatively high specificity (--0.9) and lower sensitivity (--0.4-
0.5). In other words, classifiers were more likely to miss a prediction of pathogenicity (a
talse negative) than report a false positive. This is a desirable result when the aim of the
classifier is to indicate mutations as damaging with high confidence. The Matthews Cor-
relation Coefficient (MCC) is the best single indicator of a model’s performance, as it takes
into account both true and false positives and negatives: T, T, FIP and FV. For more
details, see the definition of the MCC given in Section 2.3.7. Most of the methods tested had
similar, mediocre MCUC scores of ~0.4, indicating that the selected parameters had =some
{but far from perfect) predictive value, potentially to be improved once various parame-
ters combination are tested and optimized. Furthermore, performance measures indicated
that there were no clear benefits in using numerical { regression) models compared to binary

(tree and other rule-based miodel) classification.

Based on the initial survey and other previously published methods, two of the supervised
learning methods were tested in more detail using a wider range of parameters and training

data set-ups. The results of this step are presented in the next section.
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£.2.3 Results and discussion

£.2.3.1 MNeural network (NM)

The WEEA implementation of a neural network (weka.classifiera. functicons.
MultilayerFerceptron) was used. The model was trained on normalised attribute
values® using a sigmoid function, using 5 or 50 hidden nodes over 500 epochs, with all
other model variables set to WEKA's defaults. An accuracy (ACC) of 0.562 and a Matthews
Correlation Coefficient (MOC) of 0803 (based on 10-fold cross-validation and 5 hidden
nodes) were obfained. Adjusting the value of parameters clearly affect the result and
outperformed the initial test run.

£.2.3.2 Random forest (RF)

The other selected method was the RKandom Forest implemented in  the
weka.clazsifisra. tressz RandomForest method. This is based on Breiman's
Random Forest algorithm  (Breiman, 2001). This algorithm creates un-pruned random
trees, with no limit on tree depth. As this classifier i= unable to take into account missing
attribute values, they must be created: typically they are calculated either from mean
values (for continuous numerical attributes), or the most common category (for nominal
attributes). In thesze experiments, as the percentage of missing data (attributes) was very
small, it was instead decided to remove them from the training and testing datasets when

the model was built.

The balanced dataset of 30,500 5MPs 30,500 FD= mutations extracted and prepared from
SAAPAb previously were used in training and testing the model using a Random Forest
method. All results obtained from WEKA results from 10-fold cross-validation testing.

The common recommendation for the tree-number optimisation is to increase the number
of trees until the Out Of Bag (OOB) error” stops decreasing. A range from 10-2500 trees
per ensemble was tested; the WEEA implementation of the Random Forest method is very
memory-demanding and large amount of RAM must be allocated to build Random Forest
using up to 2500 trees for the training dataset. Table 6.3 shows the Random Forest's per-
formance while surveying parameter space, starting with different numbers of trees T'= 10
- 25000 T' = 1000 was selected as an optimum tree-number as increasing the number of trees
above that number did not improve the performance with an accuracy (ACC) of 09467, a
Matthews Correlation Coefficient (MOC) of 0,893 and area under the ROC curve of 0,925,

i, all attribute values ane adjusted 1o range between O and 1
*This i% the Out Of Bag error — an internal ermor estimate of a Random Forest as it is being corstruched
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Having selected the number of trees, the next step was trving different numbers of features
(attributes) m,,, ranging from 5 up to 45 (the maximum is 47). Using more features im-
proved the training process, m,,, = 40 was selected. The best performance using T'= 1000
and my =40 gave us an ACC of 0.956, MCC of 0912 and ROC of 0991 based on WEKA
10-fold cross-validation. Each run was repeated ten times and a summary of average score

in Table 6.3,

£.2.3.3 Training SAAPpred on different dataset

At that stage other datasets were evamined with the available pathogenicity predictor and
the dataset they used. Fart of our preliminary experiment was tryving to explore training
and testing on the PolyFhen dataset (HumDiv: 5564 deleterious + 7539 neutral mutations
from the same set of 978 human proteins and HumVar: 22196 deleterious + 21119 neutral
mutations in 9679 human proteins), and the separate HumDiv and HumVar datasets using
the Random Forest method with WEEA 10-fold cross-validation. Anv new dataset for train-
ing or testing using machine learning methods was prepared following the same methods
described in sections 6.2.1.2 and 6.2.1.3 first by running SAAPdap to obtain the structural
and sequence results in [SON format; convert [SOMN to CSV file then assigning the class
values (snp or pd) and then selecting the feature encoding (Training attributes) and finally
producing an ARFF file to be used for training and testing experiments.

6234 Summary of preliminary training results

Figure 6.5 shows the ROC curve of the preliminary results and Table 6.4 shows a sum-
mary of preliminary experiments performance measures. At that stage no filtering was
performed and each entry was used as an independent data point for machine learning.
PolyPhen dataset (HumVar and HumDiv) using fully and no balance (snpsgd) data ex-

tracted nor checking for missing results.

From the ROC curve presented in Figure 6.5, training on SAAT data works best presum-
ably because the data set is so large. PolyFPhen dataset does not do better than HumVar or
HumDiv, presumably because the SMF /FD boundary in HumVar and HumDiv is different,
so the training data are less clear. HumDv, was compiled from all damaging alleles with
known effects on the molecular function causing human Mendelian diseases, present in the

UnilProtEB database, together with differences between human proteins and their closely
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related manpmalian homologs, assumed to be non-damaging where i Hum'Var, consisted
of all human dizease cavsing putations from UniProtkE, together with coomion human
n=3MFe (Minor Allele Frequency = 1%) withowt annotated inwd wement in disease, which
wiere treated az non-damaging.

ROC curve {for S0APdb AF T=1000 using 40 features
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Figure 6.5: ROC curves of S4AFpred predictor training on different dataset SAAlPdhb,
FPolyphen HumVar + HumDir), HumVar and HumDiv dataset. Resulte from WERKA 10-
fold cross-validation.
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6.2.3.5 Testing SAAFPpred (trained on SAAPdb) on HumVar data

WEEA allows you to save trained models as Java binary serialized objects and use them to
obtain predictions /classifications via the command line. As mentioned before the HumVar
dataset is a popular benchmark dataset composed of pathogenic and common n=SMVs used
by PolvFhen? and COMNDEL to benchmark their prediction models for pathogenic SMPs.
To test HumVar using the best SAAPpred model built in the previous section (trained on
the SAAPdb dataset) the HumVar dataset was prepared as described above to generate an
ARFF file similar to the one used in building the classifier model. The actual class (=np or
pd) is contained in the file and the output will contain both the actual and predicted class.
An example of the output format is shown in Figure 6.6,

Sampgle oDubput

=== Pradictionz on HumWar Tast dates ===

in=t§ sctoal predicted SEIDT prediction
1 = pd 1 :a0p -323

s l:=7 1 :=m0p .8a4

E] z = pd 2 rpd 58T

3 lz=np 1 :=np -

5 2= ped 1 r=np + 683

-] l:=np ng £ e

Figure 6.6: An example predictions output file.

Using the SAAPpred models training on SAAPAb and kesting on FlumYar dataset. The output seill comtain best
instence index, actuel cles indexcactuel cl=ssz welus, predictian class indewprediction class
value, [+], proceabilicy of prediction class valoe, 1 the kst class attribubes were marked by "7, the "actual®
culumn, which can be ignored, simply stabes that that instance belongs o an unknown class, The ecpor label
will indicate "+ only for those items that wens mispredicted. The probability that an instance actually belongs
foy ther pesitive class i4 estimatbed inthe second "prediction” colummn.

Having trained on SAAPdb, testing on 1,540 SNPs and 7,152 PDs from the HumVar dataset
that mapped to structure gives an accuracy (ACC) of 0446 and MCC of 0,135, essentially
a random prediction. This appears to be because of the different definition of the "bound-
ary’ between SMNPs and D= Mutations form a spectrum from completely silent ShPs at
one end, to 10005 penetrance, Mendelianly inherited PDs at the other end. A= shown in
Figure 6.7, different datasets use different thresholds to separate the data into two sets or
may consider only the extremes. Prediction of the extremes may appear to be a trivial prob-

lemn, but this is not always the case, some damaging mutations are very hard to predict.
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HumVar 1zes a broader definition of PDe than the 54APdb data; in contrast, the 34 APdE
defmition of SMPs is rather wide (anything in dBEF not annotated as being inwelved in
dizease) while the definition in Hum Var enforces the requirement that M are present in
at least 1% of a noroal population. Table 4.5 showe a conparieon of SAAPdband Hum'ar
datazets. While there iz an owerlap of approrimatel y S0% bet ween DE in the two datazets,
there iz virtually no overlap in the 3MI* datasets.

Table 4.5 Comparizon of 534 ATdb and HumVar datasete. While there i= an overlap of

approrimately 505 between PDe in the two datasets, there iz virtnally no overlap in the
SMIF datazets.

SA AP
SMP D Mot present | Total
:5 ST 2 24 153 1,565
5 | FD 0 3,411 4 509 7 990
| Mot present | 17911 3,092 — —
Total 17915 6,507 —
Sllent

SHPs Flis

RaAPdb

]
|
rumvar | [ | | | [ —

Figure 6.7 The penetrance of a mutation lies on a scale between “True SMFE' which show
no phenot ypic effect at one extreme to Mendelianly inherited PDe with 100% penetrance
at the other In 5AAPdL, we use a very conser vative definition of 'k, but a rather wide
defmition of 3MPe. In contrast, HumYar 1ees a somewhat broader defimition of FDg, but a
ouch more conservative definition of 3MNPs and does not consider mutations that lie in the
nrddle.



CHAPTER 6. PREDICTING DAMAGING MUTATIONS 207

6.3 Main experiments

In the previous experiment, since very different definitions of SNP/PD boundaries were
used for training and testing, it is not surprising that a poor performance was obtained. As
expected from the different boundary used in SAAPdb and HumVar, SMPs are consider-
ably over-predicted, consistent with SAAPdb’s broader definition of SMFPs. Consequently,
refined models were built and tested with the HumVar dataset.

6.3.1 Data sels

HumVar (Version v2.2.2 - 2011 /12) contains 22,196 deleterious mutations and 21,151 neutral
mutations of which 7,192 and 1,540, respectively, can be mapped to structure. Consequently,
to obtain a balanced dataset, only 3,080 mutations (all 1,540 neutral and 1,540 randomly
selected deleterious) can be used (see Figure 6.5).

The strength of a model learned by a classifier, and its ability to generalise and perform on
new testing examples, is greatly influenced by the size and quality of the training dataset.
Compared with the SAAPdb dataset, HumVar is a small dataset with an even smaller subs=et
that maps to FDB structures. Consequently, it will be a less informative for a machine
learning predictor than SAAPdb. Monetheless it is necessary to use this dataset for valid
comparison with other available method. Data were prepared in ARFF format as described

previously.
6.3.2 Training and testing on HumVar data

The whole dataset was divided into 10 subsets; each of which used all 1,540 neutral mu-
tations with a random selection of 1,540 deleterious mutations from the total of 7,152, Ten
train/test runs were then preformed, each using 10-fold cross-validation and the results
from the ten runs were then averaged. Table 6.6 shows the performance of the 10 SAAT-
pred classifier tried on abalanced HumVar dataset. At this stage we used a unique mutation
level filtering, in other words the same mutation (UniprotNatMum:Mut) does not ocour
in training and testing sets (see Figure 6.9[1]). If the mutation mapped to multiple PDB
structures /chains best PDEB / chain (bazed on resolution) was chosen for each mutation. Al-
though there are no cases of the same mutation in the training and test sets, this was still
considered to be partially-cross-validated since there mav be a ‘structure overlap® between

training and testing {i.e the same FDB ID) maybe choszen for different munitions). In other
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words while there is no overlap between mutations in training and testing sets, multiple
mutations may occur at the same site in the same structure and some of these may be in the
training =et while others are in the test set. All scores were averaged over 10-folds of WEEA
cross-validation and this was repeated 10-times (using different randomly selected sets of
deletion mutations) and the results averaged for each model giving an MCC of 0,893 and
ACC of 0.944.

To avoid “structure overlap” between the training and testing data during cross-validation
preformed by WEEKA (which was present in the previous experiment), a Per]l program was
written to save all the available FPDB structures to which HumVar mutations can map; then
each unique mutation (UniProt:=Mat:MNum:Mut) was read and one FDB structure assigned
to it and taken from the list of PDB structures (=ee Figure 6.9[2]). By using this method
it was ensured that there are no cases of the same mutation nor the same site in the same
structure ‘structural overlap” between training and testing set. The values for the fully cross-
validated assessment of SAAPpred were obtained from 10-fold cross-validation performed
during the WEEA training and used all 1540 SMNI's from HumVar that mapped to structure
with a random sample of 1540 of the 7152 PDs that mapped to structure. This was repeated
10-times (using different random sample of the FDs) and the results averaged. Table 6.7
presents the performance of the Fully cross-validated classifiers ACC = 0.846 and MCC =
0.6592,
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To enhance the predictor, difterent numbers of Features [attributes) were explored vsing the
sAmedatazet ieed in Tabled?. Arange between 10 and 45 keatires was selected . Figured.10
shows the ROC curve performance of the different predictions demonstrating that veing
a rmall number of featires with the hum'ar dataset actually improves the performance.
Figure .11 shows the ROU curve performance of 10 different Models wwing vy, =40and
ancther 10 models using #y,.,, of 4 with a fix number of trees T' = 1000, The optimized and
final results are shown in Table 6.7 with an average ACC of 0555 and MCC of 0773, This
iz rather worze than training and testing with the 54 AFPdb data, sinply becauze the size
of the HumVar datazet that can be mapped to structure is much smaller than the 54 APdb
dataset.

Table 6.5 and Figure 612 show the effect of datazet size on training and testing vein g sab-
sete of the 54 AT'dbdata. The same procedure descri bed abowve was 1eed toaveid structural
overlap between training and testing sete during croes-validation. The graph clearly shows
that thesmaller datasets perform considerably worse. The Hum'var trainin g 1eed 30850 zam-
ples (LS40 FDe and 1540 5MFPe) 2oit i= expected that performance will increase smabetantially
at least until the datazet triples in =ize.
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Figure 6.10: TOC curves of SAAPpred trained on Hum Var dataset weing a 10-fold croes-
validation. The 3AAMpred bazed predictor trained 1zing T" = 1000 and difterent vy,
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Figure 6.11: TWOC curves of SAAPpred trained on Hum 'Var dataset weing a 10-fold croes-
validation. The 5AApred bazsed predictor trained 1zing T" = 1000 and #y, =4 and 40.

6.4 Comparison of performance with other predictor methods

The goal of this section i= to compare the 5AAPpred methed developed in this chapter with
alread y existing methods, in a clear and reproducible way. An independent evaluation of
methods should e performed 1eing the zame Him Var datazet 1eed in Section 6.3,

The results from 34 AP pred fully aoss-validated (ie. with no structural overlap between
test and training sets) trained and tested on a subset of HumVar onatations that map to
structune considerabl y outper form other well-know n individwal methods where there may
b overlap between testing and training data including SIFT, FolyPhen?, MaAPT (Binkley
ef al., 10) and Mutation Assessor as reported by Gonzdlez-Pérez and Lopes-Bigas (2011)
[acciracies between 0690 and 0771). Their consensie method (Condel) gives an ACC =
0852, Cur preliminary experiment [ieing the larger S3AAPdL datazet] gives an ACC
0956 and a valwe of ACT = 0944 and ACC = 0854 partially and fully aoss referenced

respectivel y (1eing the Hum'Yar dataset) iz considerably better. Howewver these results are
still not directly comparable with the other methods as those methods are evahuated on
the conmplete Hum'War dataset and it may be argued that the subest of mutations for which
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structures are available somehow outperform those for which structures are not available in
these other methods. For example, PolyFPhen2 makes limited use of structural data where
these are available, and may be unfairly penalized on the mutations for which structures are
not available. Consequently the performance of different pathogenicity predicting methods
including PolyFPhen2, SIFT, Mutaticn Assessor, Condel and FATHMM was evaluated on the
same dataset used for testing SAAT pred.

Balanced datasets (1,451 neutral mutations and ten random selections of 1,451 deleterious
mutations) were used. Mote that only 1,451 rather than 1,540 mutations could be used
since the remaining 8 FD= failed in at least one of the other predictors. In fact this gives
PolyPhen? a significant advantage since it is trained on HumVar leading to an overlap be-
tween the training data and our test set. It is not clear precisely what data are used to train
SIFT: in their latest paper, Simn ef al. (2012) state that SIFT was originally trained and tested
on Lacl, Lysozyme and HIV protease, and refer to the original SIFT papers, but they do not
state whether the training has since been modified. Mutation Assessor does not appear to

use a training set per s (Reva ef al., 20011).

Partial cross-validated results were performed by using a slightly smaller set of 1451 SMFPs
that mapped to structure and could be assessed by all the other methods together with a
random sample of 1451 PDs that could be assessed by all methods. Again this was repeated
10-times, and the results averaged. The partial-cross-validated values for SAAPpred give
the fairest comparison with the public version of Polyl’hen2 which is trained on the Hum-

Var dataset.

The results are summarized in Table 6.9 where it can be seen that the results from fully
crose-validated {ie. with no structural overlap between test and training =ets) training and
testing on HumVar mutations that map to structure considerably outperforms other well-
known individual methods where there may be overlap between testing and training data
including SIFT, PolyFPhen2, MAFP (Binkley ot al., 2010} and MutationAssessor as reported
by Gonzmilez-Pérez and Lopez-Bigas (2011) (Accuraces between 0690 and 0771 - as re-
ported by Condel and 0.676 and 0.785 from our evaluation on HumVar. Their consensus
method (Condel) gives an ACC of 0.882) while our preliminary value of ACC of 0.935 jus-
ing SAAPdb dataset) and a value of ACC of 0944 (using HumVar dataset) is considerably
better. [f we allow overlap in our own =et (the fairest comparizon) then we outperform
PolyPhen? {the best of the competing methods) by an even larger margin. The partial-
cross-validated values for SAATpred give the fairest comparison with the public version

of PolvPhen? which is trained on the HumVar dataset. Evaluation of The recent predictor
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FATHMM {Shihab of al., 2013) on the same dataset shows a performance of ACC = 0.8386,
MCC = 0.671. While approaching our cross-validated performance, it is likely that some of
the HumVar data were included in training FATHMM.

6.5 Conclusions

As previously stated, the main motivation behind this project was to build a pathogenic-
ity predictor using the SAAPdap structural analyses to give us more information about the
effects of anv novel mutation. SAAPdb was conceived for the understanding of pathogenic-
ity all along, so after redesigning the SAAL pipeline (Chapter 3) and replacing individual
Boolean analyses with real values (Chapters 4 and 5), this step was the final phase of a

project.

The values for the cross-validated assessment of SAAPpred were obtained from 10-fold
cross-validation performed during the WEEA training and used all 1540 SMFs from Hum-
War that mapped to structure with a random sample of 1540 of the 7182 FDs that mapped
to structure. This was repeated 10-times and the results averaged for both “fully cross vali-
dated’ experiments where is are no structure overlap between training and testing and ‘par-
tially cross validated” where the training and testing sets mav contain different mutation at
the same potion in the same structure. A comparison with other methods performed by us-
ing aslightly smaller set of 1451 (SMFPs that mapped to structure and could be assessed by all
the other methods) shows SAAPpred results clearly outperform other well-known individ-
ual methods including SIFT, PolylPhen2, MAPE MutationAssessor, Condel and FATHMM
giving an accuracy of 0.885 and 0.944 for fully cross validated and partially cross validated
iTable 6.9). MutationAssessor-1 was particularly bad as it over-predicts pathogenicity and
while the popular SIFT was worst in terms of sensitivity. The “partial cross validated” val-
nes for SAAPpred give the fairest comparison with the public version of PolyPhen2 which

is trained on the HumVar datas=et.

We learn from the high performance of SAAPpred that the structural information is very im-
portant in predicting the pathogenicity of any novel mutation. However predictions based
on structural information limit the range of mutations that can be covered by this predictor.
There are many reasons in many steps for a failure of structural predictor: missing PDB
structures from our database, FOB structure is available but mapping the mutation. This
will become less of an issue as protein structures become available for more proteins over

time.
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The ratio of neutral to pathogenic mutations is debatable in two aspects. First, identifying
truly negative cases can be questioned as low penetrance pathogenic effect may not have
been identified. In other words, they may not be trulv neutral, just that we are not aware
of any effects based on current annotation. Second, there are more solved PDEB structured

linked to I’Ds because protein involved in disease are a natural target for structural studies.

Using a dataset of annotated neutral mutations (such as HumVar) is bound to give a much
smaller dataset than the border definitions in SAAPdb and prediction of pathogenicity
clearly benefits from large amount of data. 5o the optimum should be to start with a large
set and carefully filter it, until a a sufficiently large experimentally-confirmed SMNF dataset
becomes available. To make use of all the available mutation information in training the
predictor, multiple predictors consisting of 10 predictors, were used followed by a jury

wote.

There are multiple ways to achieve further improved prediction performance and results:
(i) Incorporating more data in the training process, once they become available; (i) Inves-
tigate the features used in the training and select the most effective ones (to help with the
relatively small HumVar dataset size); (iii) Feature combination and construction (e.g. sub-
tracting native void sizes from mutant void sizes); (iv) Feature normalization (e.g. taking
the log of some feature values to improve the distribution of values); (v) Using the grow-
ing number of structures in the FDB that mapped to the mutations used in training our

prediction and (vi) Combining into a meta predictor,

Uther approaches include enhancing the predictor by developing methods to make more
complete use of unbalanced datasets, especially when there is a smaller dataset in the
training stage. SAAPpred only works when there i= a FDB structure, starting to com-
bine methodologically-different pathogenicity predictors in meta-predictors such as Con-
del (Gonzalez-Pérez and Lépez-Bigas, 2011) (a gatekeeper to dispatch to CONDEL if no
structure is expected to improve performance further. The field is currently saturated with
predictors of pathogenicity meta predictors are needed. Combining several good predictors
will always outperform a single predictor, it is important to choose highest performing pre-
dictors, with least overlap in attributes used to predict. Clearly from benchmarking done
in this chapter these ones should be combined with SAAPpred, potentially solving the gap

SAAPpred has for mutations where no structures are available.

In the next Chapter 7 the predictive power in discriminating between pathogenic and neu-

tral SMFPs in MYHY, then create a novel prediction which attempts to distinguish between
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HCM and DCM mutation using SAAT analysis, exploring the feature selection, construc-

tion, normalisation and an additional set of features on structural clustering,

SAAPpred is now ready to be published on the web for the public to upload any mutation
with an available PDB structure to predict its pathogenicity based on SAAT structural and

sequence analysis.



Chapter 7

Cardiomyopathy Mutations

LUnderstanding the impact of single nuclectide variations in the beta-myosin
heavy chain (MYHY - Unil'rot accession code PI2883) uncovers new genotype-
phenotype relationships in the cardiomyopathy. Unusually, mutations in car-
diac beta-mvosin heavy chain can lead to two opposite phenotypes: hyper-
trophic cardiomyopathy (HCM) where the heart wall becomes thicker and di-

lated cardiomyopathy (DCRM) where the heart wall becomes thinner.

In this chapter, the pathogenicity predictor developed in chapter & is first ap-
plied to predict effects of variants cccurring in MYH7, then a novel predictor is
created which atternpts to distinguish between HCM and DM mutations using
SAAT analysis together with an additional set of features describing structural

clustering.

222
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7.1 Introduction

Inherited heart muscle diseases are a major cause of sudden death in the voung and an
important cause of heart failure at all ages (Hughes and McKenna, 2005). A= a =et of
diseases, they are very heterogeneous in both their genotype and phenotype. For exam-
ple, over 1000 individual mutations in more than 15 genes have been implicated in hyper-
trophic cardiomyopathy (HCM) (Seidman and Seidman, 2011) and mutations in 26 genes
of 30 chromosomal loci have been identified by OMIM in autosomal dominant dilated car-
diomyopathy (DCM) (Rub Parvari, 2012). Radically different cardiomyopathy phenotypes
ie.g. dilated, non-compaction, hypertrophic) have been observed resulting from muta-
tions in the same two sarcomeric genes: beta-myosin heavy chain (MYHY) and troponin

T (TMNMNT2) (Arad et al_, 2002).

The beta-mvosin heavy chain (F12853) is part of the force-generating molecular motor of
the sarcomere (Figure 7.1). It is also the sarcomeric protein for which a larger part of the
structure has been solved. The MYHY gene encodes the beta-myosin heavy chain and is,
together with MYBEPC3 (the gene encoding myosin binding protein C), the gene where the
greatest number of mutations causing HCM have been identified. Finally, and contrary to
MYBPC3, the large majority of variants detected in MYHY are missense, which presents a
different challenge for determination of pathogenicity compared with other variants that
are expected to cause mEMNA and protein truncation (Carrier ef all, 1997; Richard et al.,
2003).

Asin the general case of understanding mutations, an important knowledge gap exists with
respect to the relationship between genotype and phenotype. Furthermore, most of the ini-
tial phenotypic associations shown for specific genes or individual mutations related to
cardiomyopathy have not been replicated in multiple studies. This challenges the effective
clinical utilization of genetic data to guide therapy, counselling, sudden death risk assess-
ment, and prognosis. It has recently been hypothesized that such genotype-phenobype vari-
ability could be explained by modifyving gene-gene interactions (involving common and /or
rare variants), gene-environment interactions, or epigenetics (Marian, 2002). Also, differ-
ent funchional consequences may depend on the specific domain/region where the variant
is localized. Mevertheless, the hypothesis that the structural impact of a missense variant

could influence phenotype, disease severity and outcome has never been directly tested.
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While programs such as PolvFPhen? {Adzhubei ef al., 20010), 5IFT (Sim eof al., 20012) and COMN-
DEL (Gonzdlez-Pérez and Lopez-Bigas, 2011) can be used to predict the effect of a missense
variant, the performance of the tools is unknown when applied to specific diseases. This
is because the programs were not designed for clinical use and have not been validated
against phenotype datasets. Morecwer, different tools frequently give opposite results that
create interpretation challenges. There is one example of a disease- (or protein-) specific
tool which is designed specifically for analysing the effect of mutation in voltage-gated
potassium channels (Stead ef al, 2011). Generally the problem with examining a particu-
lar protein is in gathering a large enough data set for training machine learning methods.
In addition available data tend to be heavily un-balanced, it being particularly difficult
to obtain reliable data on neutral mutations. As described previously, another major lim-
itation of existing prediction software is the fact that methods only make use of limited
structural information. SAAPdap and SAAPpred use a combination of rule-based struc-
tural measures to assess whether a modification is likely to alter or destroy the function
of a protein. The SAAF software has already been used to study structural differences be-
tween disease-causing mutations and neutral polymorphisms, and in particular to analyse
mutations in glucose-6-phosphate dehydrogenase (Fwok et al., 2002) and in the tumour
suppressor P53 (Martin ef al., 2002).

Here the hypothesis that the evaluation of the structural impact of missense variants, using
SAAPdap and SAAPpred, will improve the accuracy of predicting pathogenicity compared
with the most commonly used i silico prediction software (SIFT and PolvFPhen) is tested.
Further, the possibility of using the same approach to investigate genotvpe,/ phenotype re-
laticnships at a more detailed level by atternpting to distinguish mutations that cause HCM
from those that cause DCM is investigated.

7.2 Methods

7.2.1 Dataset of variants

A dataset of beta-myosin heavy chain variants detected in a cohort of consecutively eval-
uated un-related HCM patients was studied and screened!. To increase the number of
variants analysed, the data were enriched with other established disease-causing or likely
pathogenic variants in MYHY, for which phenotypic data are available in HGMD (Stenson
ef al., 2002).

The data were collected and sensened by Prot. Perry Elliott {The UCL Heart Hospital)
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Figure 7.1: Cardiac human myosin 5140, beta isoform complered with Mn-AMPFME FDB
I 1brd. [a) The structure of lbrd showing the & chains in different colours. (L) actin-
binding site (residues 655%677) coloured in ruby; the ATP-binding region (residves 17H-
185) coloured in blue; myosin light chain binding regions (residues Y58-801 and 514-827)
colowred in pellow.
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7.2.2 Prediction of in silico pathogenicity

Prediction of mutation pathogenicity was performed using Polyphen-2, SIFT, and SAAP-
pred as described in Chapter 6.

7.2.3 Manual analysis

The association bebween each of three phenotype parameters (maximum wall thickness
[MLVWT], age at presentation, and HCM vs. other phenoty pes) with SAAPdb features were
tested using a y* test. These features were a) effect of each of the SAAPdap predicted struc-
tural features; b) effect of each of the predicted SAAPdap structural feabures versus absence

of any structural effect; c) number of SAAPdap structural features affected; d) damage pre-
diction by SIFT or Polyphen2 and e) structural domain affected.

7.3 Results and discussion

7.3.1 MYH7? mutation data analysis

MYHT mutations associated with various cardiomyopathy phenotypes are shown in Ta-
ble 7.2, A total of 403 mutations were identified in the MYH7 gene. More than two-thirds
of them are previously published in the literature as being associated with disease and the
others were novel variants. Of the total mutations, 396 were unique, 235 mapped to at least
one FDB with a total of 806 mappings to (multiple) FDB structures. Table 7.1 lists five PDB
structures from which a model (PDEB 1D Lik2) was eliminated at the start. More mutations
were associated with HCM (n = 298), whereas all other phenotypes were associated with
fewer than 50 mutations each, including DM with the next highest number of mutations
in = 46). The majority of mutations in both HCM and DCM were unique (292 and 46 re-
spectivelv). Since mutations related to these phenotypes were the most abundant, further
analys=es were cond ucted, looking specifically at HCM and DXCM and grouping the remain-
ing phenotypes as ‘Others’ for most purposes.

The distribution of the variants amongst the structural and functionally-annotated domains
of the beta-myosin heavy chain protein were analysed. All of the variants were located in
the myosin globular head domain or the neck region. From all variants, 517 were located
in functionally annotated domains: 18% mapped to an actin-binding site {residues 655-
&677); 4% mapped to the ATP-binding region (residues 178-155); 3% were located in the
essential and regulatory myosin light chain binding regicns (residues 788-5801 and 814-827)
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i=ee Figure 7.1b PDE ID 4dbl); and 27 mapped to the MYBPC3 binding region (residues
B39-954, mapped to different PDB 1D 2FXM and 2FXO) ).

Table 7.1: PDE structures for Unil'rot accession code 12883,

FDEID Description

lik2 | Model
2fxm Structure of the human beta-mycsin 52 fragment
2fwo Structure of the human beta-mycsin 52 fragment
4dbl Cardiac human myosin S1DC, beta isoform complexed with Mn-AMPPNEP
3dtp Taratula heavy meromysin obtained by flexible docking to tarantula muscle

thiCk filament cryo-EM

The expected number of mutations for each residue () was calculated based on 7,

Nar w0 o /N7, where F. is the Wyr = total number of mutated residue, #. = total number
of interested amino acids of type a, and ¥y = total number of residues in the structure. The
foga( Wy, F, ) was calculated and plotted in Figure 7.2 showing that the predominantly mu-
tated amino acid was arginine (85 variants, and the expected -.23.53), followed by methion-

ine (20 variants, expected ~-10.84 J and Glycine (26 variants, expected . 14.73) (=ee Table 7.3).

Using SIFT and Folyphen2 prediction software, the 396 unique mutations were analysed
isee Table 7.2), of which 69.51"% were predicted to be damaging by SIFT, and 900 were pre-
dicted to be pathogenic by Polyphen-2. Analysing the same dataset with SAAPdap shows
that a total of 175 variants were classified a= likely to be damaging by at least one SAAPdap
analysis. For 55 variants, no significant structural effect was detected by SAAPdap analysis
and 166 failed to be analysed by SAAPdap (ie. they did not map to a PDB structure) (see
Table 7.4). The most frequent features affected were: mutation of a highly conserved residue
{impact) occurring in 138 variants; the mutation of an interface amino acid (interface) oc-
curring in 48 of the variants and those disrupting H-bonds occurring in 42 of the variants.
Ohther significant mutations effects occurred less frequently, with mutations causing voids
or disrupting disulphide bonds not ooccurring at all. A significant association was detected
between the mutation of a conserved residue detected with the (impact) analysis and the
presence of a DCM/TVNC phenotype instead of HCM using a 1~ test (90% vs. 537, p =
0.029). In addition, the number of variants with annotated features in UniProt was signifi-
cantly higher in the presence of a DCM /LVMNC phenotype versus an HCM phenotype (20
va. 0%, p = 0.020). Furthermore, an association was found between the predicted mutation
of an (interface) amino acid and the structural domain to which the residue mapped. For

example a mutation affecting interface amino acids tended to affect the MYBEPC3 binding
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region (567 in the MYBPC3 binding region vs. 09 in the actin-binding domain, p = 0.001),
this might be just because the crystal structure only has an interface in that domain or has a
large interface. Finally, a tendency was observed for an as=cciation between the mutation of
an interface amino acid or a binding amino acid and a higher MEYWT (2244 vs, 194+4mm,
p = 0051 and 2545 vs. 204+4mm, p = 0.052, respectively) using the i-test.

7.3.2 TPathogenicity prediction

Initial pathogenicity prediction was performed using the SAATPpred predictor trained on
HumVar" as described in Chapter 6. Ten pre-built models were used and the performance
results were averaged. Mote that TM and FP couldn’t be calculated since the dataset did
not include any true negatives — all mutations were damaging and consequently, the MCC
could not be calculated. Table 7.5 shows the summary of results from the initial predictive
model. Initially accuracy for all phenotypes (HCM /DCM /Other) was ~0.970 when using
one 'DB chain and was reduced to ~-0.838 when using all PDE chains. In a later stage, PDB
1D 3dtp file was identified as a human/chicken fusion protein and was removed from the
dataset. Removing the file improved prediction accuracy to 1.0 for both datasets (mapped
to cne PDB structure and mapped to multiple PDB structures).
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Figure 7.2: The log: of (expected number of mutations for each residue / total number of
mutated residue). The dark green bars shows the over-expressed residues while the gray
bars shows the under-expressed ones.

> . . . .
“Run without -norm option for normalization
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Table 7.3: Mumber of mutated amino acids from MYHY data compared with the total and
expected number of mutations at each amino acid in the protein. Expected values calcu-
Ny w B, /Wy, where E| is the NV, = total number of mutated residue, &, =
total number of interested amino acids of type a, and N7 = total number of residues in the

lated as E,

structure.

Amino Acid | Mutated

Total number in protein

Expected number of mutations

Ala
Arg
Asn
Asp
Cys
Glu
Gln
Cly
His
Ile
Leu
Lys
hvlet
Phe
Pro
Ser
Thr
Trp
Tyr
Val

uumggmqﬁgaﬁwﬁmﬁﬁ

13

1
14
21

l&as
115
Q0
104
14
254
123
72
34
o)
214
201
53
57
33
i
B5
10
40
B3

34.38
2353
1541
21.28
2156
51.95
2517
14.73
6.9
18.21
4379
41.13
1054
11.66
6.75
19.64
17.39
2
518
16.98

Table 7.4: SAAPdap Structural Analyeis for MYHT.

SAAPdap Structural Analvsis

Mumber of mutation

Failed ino PDB structure available) laa

Mo significant structural effect 55

At least one significant structural effect 175
# Hbonds 42
s Buriedcharge al
# SProtFT 2
¢ [nterface 45
# Clash 14
# ['roline 2
s [mpact 138
. E:i.Tl.d.:iJ'lg 20
® Void 0
® SurfacePhobic 15
s Glycine ]
* CisPro 1
# CorePhilic 26
® 555eom 0
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After this analysis, it was realized that the weighting was incorrect. Scaling of the input
parameters on the test sets was not the same as that used in the training and building of the
models. The CVS2RRFF program used to convert and =cale data for WEKA was modified
to introduce a —norm option to allow the scaling and normalization used to be stored and

reused in the test set.

Analyses were performed on data (excluding PDB 1D 3dpt, the chicken fusion structure)
using the fived normalization option for each model and the results were averaged. A sum-
mary of these analyses is provided in Table 7.5. In this summary table, it can be seen that
accuracy for all phenotypes was greater when using one FDB chain versus all PDB chains,
it is clear that normalization increased the SAAPpred predictor performance for DCM and
other phenotypes when using all PDFB chains, but decreased performance with all chains
and the HCM phenotype. When using one FDB chain, accuracy was comparable with and
without normalization. To compare SAATP pred performance with SIFT and Polyphen2 pre-
diction software, 235 of unique mutations that mapped to at least one FDB structure were
analy=ed (see Table 7.2), of which 92.7% were predicted to be damaging by SAAPpred,
&9.51"% were predicted to be damaging by SIFT, and 20% were predicted to be pathogenic
by Polyphen-Z.

7.3.3 A machine learning approach to predict MYH7 phenotype

As a starting point, any mutations associated with multiple phenotypes were discarded.
Perl code was written to limit the size of each class by selecting examples at random. For
example for HCM, if the HCM class size was limited to 60, the other classes are retained
but only 60 mutations were selected at random from the HCM class. Then, WEEA was
trained using the Random Forest method. This random selection process was repeated 10
times to provide a representative sample of the HCM class and the results were averaged.

Using the same class size limit, DCM phenotypes were also examined and comparisons of

phenotypes were made; HCM vs DCM vs ‘other” (ie. pooling CMDM, Ebstein and LVINC).

It was not expected that neural networks (ANNs) as the ML method would work very well
After limiting class size, approximately 150 training examples were obtained. In practice,
this was reduced owing to 10-fold cross-validation — ie. the training holds 107 of the data
back and trains on the remaining 0% and then tests on the reserved 10%.. [t does this 10
times owver rotating the test set and averages the results. This means that training actually

uses 135 examples. Mutation are represented by a total of 47 “features’ from the structural
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analysis. Of these, 13 were found to be redundant jie. they had the same value for all
examples in the dataset), thus reducing the number to 34 features. An ANMN consists of
layers of ‘perceptrons’ - an input laver (V,) in which the cbserved features are encoded; a
‘hidden layer’ (Vg ); and an output layer ( V.) that encodes the output class. Each perceptron
in the input layer is connected to all those in the hidden layer and all in the hidden layer
are connected to all in the output layer. 5o, the number of links is (W, s« V0 + (3, = V).
The ANM learns patterns by adjusting the weights on these links. Consequently, if we have
N=33, say N =10and N, =2, then we have 350 weights in the network. A good rule of
thumb is that you need 3x the number of training patterns i.e. 1050. In this training set, we

only have approximately 12% of the optimal number of examples.

7.34 HCM vs. DCM Predictor

The major problem encountered in this analysis was the unbalanced nature of the datazet;
many more mutations existed for HCM than for DCM. Because the available dataset was
limnited in size, it was desirable to use mapping to multiple structure. Thus the same muta-
tion appearing in the training and testing data cannot be avoided during, cross-validation
could not be performed by WEKA. For that a Perl program was written to split the 159
HCM and 22 DCM unique mutations with available FDB structures into 10 sets of approx-
imately the same size. Each of these 10 =ets in turn was chosen as a test set and enlarged
with all the available PDB /chain structures (see Figure 7.3). The remaining 9 sets were used
for training by randomly drawing balanced datasets of different sizes from the mutations
as mapped to protein chains (see Table 3.2.0.2). This manual cross-validation ensures that
there are no cases of the same mutation in the training and test sets but from different PDB
chains. Models were built using all DCM and 22 randomly selected HCM mutations, results
came from averaging 10 models built using different subsets of HCM and TXN"M.

7.3.5 Exploring the number of features and number of trees

The initial attempt was performed before the problems with PDB ID 3dtp were identified.
Consequently the parameter space around the best result was again explored having re-
moved PDB ID 3dtp. As shown in Table 7.6, the best results were obtained using 1000 trees
with 20 Features.
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Table 7.6: Exploring the number of features and number of trees

235

T is the number of trees; m,_ stands for the number of randomly chosen attributes in every
split. Performance measures: accuracy (ACC) and Matthew's correlation coefficient (MCC).

All scores are averaged over 10-folds of WEKA cross-validation.

Mumber of models T

mery | ACC | MCC |

Mo PDEB ID 3dtp

L0
L0
L0
10
L0
L0

10
1o
1o
1o
10
1o
1o
1o
L0
1o

1000
1000
1000
1000
1000
1000

1000
1000
1000
1000
50
120
500
1000
2000
5000

5
10
15
20
25
30

10
15
20
25
20
20
20
20
20
20

07547 | 0.2734
0.7655  0.3269
0.7654  0.3339
07649 | 02721
0.7549 | 0.2649
0.7622 | 0.2668

06229 | 0.2463
06750 0 0.3590
07000 04103
06916 | 0.3851
06833 | 0.3a8]
06916 | 03872
069537 | 0.4023
07000 04103
06612 | 03656
0.7000  0.4005

Table 7.7 3~ tests performed to investigate which features were most informative.
* 3 tests were not calculated as the Boolean SAAPdap analysis gave the same result for all
mutations analyzed and therefore was not informative.

Feature X~ Feature %
Binding 449 Buried Charge 0m25
Surface Phobic 015 Proline 0.03
Clash 059 Impact (conservation) | 199
Interface MN/AY Disulphide N/AT
Core Philic (.09 CisPro 0.e
Glycine 119 Hbonds MSAE
Relative accessibility | N /A" Vioids 0199
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7.3.6 Exploring the most informative features

A simple cut-off for each of the 14 major features was used to suggest whether they were
damaging using SAAPdap results. 3~ tests were performed to investigate which features

were most informative (Table 7.7

The highest 1~ values were obtained for highly conserved ‘impact’ mutations, followed by
mutations to glycines. These results indicate that mutation of residues affecting these fea-
tures confers a high probability of a pathogenic phenotype. Mutation of binding residues
is al=o as=ociated with pathogenicity, whereas mutations to proline and introducing by-

drophilic residues in the core confers the lowest risk.

7.3.7 Clustering features

MYHY mutations fall into two distinct regions that map to different PDB files (DCM and
HCM mutations). For the more C-terminal structure (FDB 1D 2fem) there are anly 2 DCM
mutations (compared with 35 HCM), indicating that DCM mutations are rare in this do-
main. For the N-terminal structure (FDB 1D 4dk1), there are 16 DCM and 116 HCM muta-
tions. Anecdotal evidence had suggested that HCM and DCM mutations tend to cluster in
different areas of the MYHY N-terminal domain. Consequently the addition of location into

the feature vectors was performed as follows.

For the M-terminal domain, the Ci positions of the mutated residues were clustered using
single linkage hierarchical clustering. For each of 2..10 clusters a 1 test was preformed to
see how well the clustering separated HCM from DCM mutations.

2 clusters: Significant at the 0.4354 level

3 clusters: Significant at the 0.0003755 level
4 clusters: Significant at the 0.001256 level
5 clusters: Significant at the 0.002577 level
& clusters: Significant at the 0.005057 level
7 clusters: Significant at the 0.01013 level

8 clusters: Significant at the 0.01778 level

9 clusters: Significant at the 0.03044 level
10 clusters: Significant at the 0.053116 level
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Apart fom 2 clusters, these are all clearly sigmiticant at the <005 level. Howewver, a= the
number of clusters gete larger one needs totake care with the signi ficance levels, becanzeno
more than 207 of expected should be -5 and none <1 (Fignificance will be owver-estimated
if gither of theseiztrue). For > 3 clusters the first of these fails and for 64 clusters the second
also failz. Howewver, between 3 and 6 disters the significance i= so good, that (while it will
ke over-estinated) it i= probably still better than 005 and 3 clusters i= clearly the most zig-
nificant rezult. Consequently we do seem to ha ve clusters of residwes that are over ander
populated with DO and HOW mutations conpared with what is expected.

Figure 7.4 illustrates the 3 cheters on PDE ID 4dbl, colowring the clusters red, green and
blue for HCM and orange, yellow and cyan for DCM. Mote that the clustering was done on
one chain and the results are then shown on the two chains in the 4dbl cryetal etrictire. In
particular, DTk is highly over-represented in thethird (Blue foyan) cheter. DO patations
in clusters 1 and 2 (orange and yellow] are hardly visible and therefore moetly buried. Cn
the other hand the DO mutations in cluster 3 (cyan) are largely on the surface.

To 1ee this information in machinelearning, thecentrad of each cluster was caloulated and
the feature wector for each mutation was expanded by the addition of the distances from
the C-alpha of the pntated residue to each of the three centroids.

Figure 7.4: Clusterin g MYHC pntation on PDE ID 4dbL human myesin structire. Colour-
ing the clusters red, green and blue for HCM and crange, yellow and cyan for DCR.
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7.3.8 Number of models

Previously, training used 10 models with the prediction results averaged across the 10, Us-
ing a larger number of models will allow us to exploit more of the HCM data in each model
{while maintaining balanced dataset=). Using 20 models, only one unique DCM mutation
can be held back from training for test purposes. However, the number of models is not
limited to 20 because it is possible to hold one DCM back and then build several models
using different sets of HCMs.

After determining the optimum number of features and trees, together with exploration of
the most informative feature subsets, different numbers of models were also investigated (5,
10 and 20 models). Addition of the ‘clustering” feature described above was also explored.
The different sets were defined as follows’:

‘Al

Refers to the standard set of 33 features of the 47 obtained from SAAPdap. The 13
SwissProt SwissProt features and S5Geom analyses were uninformative: (BCharge,
Binding, CPhilic, CisPro, Clash, Glycine, HBonds, Impact, Interface, MLargestl,
MLargestl0, MLargest2, MLargest3, MLargestd, MLargest5, MLargestt, MLargest?,
MLargests, MLargest9, MLargest]l, MLargestl0, MLargest2, MNLargest3, NLargest4,
MLargests, MLargestt, NLargest?, NLargests, NLargest9, Proline, Relaccess, SPhobic,
WVoids).

“Top 5 voids
Uses only the top 5 native and mutant voids instead of 10 plus the rest of features:
BCharge, Binding, CPhilic, CisPro, Clash, Glycine, HBonds, Impact, Interface,
MLargestl, MLargest2, MLargest3, MLargestd, MLargest5 MNlargestl, MLargest2,
MLargest3d, NLargestd, MLargest5, Proline, Relaccess, SPhobic, Vaids.

“Drelta Voids”
Uses the differences between mutant and native voids instead of actual values plus the
rest of the features: BCharge, Binding, CFhilic, CisPro, Clash, Glycine, HBonds, Im-
pact, Interface, Largestl, Largestl0, Largest2, Largest3, Largestd, Largests, Largesth,
LargestY, Largests, Largestd, Proline, Relaccess, SPhobic, Voids.

*Table 6.2 difined the forty seven features obtained from SAAPdap.
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‘Setl”
Uses the most informative features based on 3~ tests: Binding, Relaccess, Impact and

Glycine.

Set2”
A WEEKA randomly selected dataset: Binding, Relaccess, SPhobic, Cphil, Voids,
MLargestl, NLargestl, Clash, Proline, CisPro.

‘Set3d”
A WEEA randomly selected dataset: Binding, Interface, Relaccess, Impact, Hbonds,
Brharge, Vioids, Largest], Largest2, Largest3, Largestd, Largest5, Clazh, Glycine.

Summary results are presented in Table 7.8 showing that 11 models gave the best perfor-
mance together with *5et2” plus clustering features giving an ACC = 075 and MCC = 0.551.

Table 7.5: Summary results of machine learning performance using different features of
HCM /DM dataset.

Mumber Features used Mumber Featuresz ACC MCC

of models of trees per tree
5 All 1000 25 0.576 0.152
B All + Clustering 1000 25 0.645 0.311
5 Top 5 voids + Clustering 1000 25 0.651 0365
5 10 delta void + Clustering 1000 25 0.608 | 0205
11 All 1000 5 0.652 0.429
11 All + Clustering 1000 25 0.608 0,220
11 Top 5 voids + Clustering 1000 25 0.659 0427
11 10 delta voids + Clustering 1000 25 0.676 0521
11 Set] + Clustering 1000 5 0.625 0314
11 Set2 + Clustering 1000 5 0.750 0.531
11 Set3 + Clustering 1000 5 0.659 0.520
21 All 1000 25 0.631 | 0257
21 All + Clustering 1000 25 0.623 0.293
21 Top 5 voids + Clustering 1000 25 0.627 0.374
21 10 delta voids + Clustering 1000 25 0.560 0,133
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7.4 Conclusions

The predictive power of the SAAPpred approach was examined in discriminating between
pathogenic and neutral SMPs in MYHY, the dataset gives a final prediction results {using all
PDB structures) of All MYHY mutations: ACC = 0.7934, DCM: ACC =0.789 and HCM: ACC
=0.795]. Some of the incorrect prediction for HCM are mapped to multiple PDB chains, and
that affected the prediction result; if the best FOB structure for each mutation was chosen
the performance increased to: AN MYHY mutations: ACC = 0927, DCM: ACC = 099] and
HCM: ACC = 0914,

This test was then followed by creation of a novel predictor which atternpts to distinguish
between HCM and DCM mutations using SAAP analysis. Feature selection, construc-
tion, normalisation and an additional set of features based on structural clustering were

explored.

In conclusion, the best performance currently achieved for distinguishing HCM and DCM
mutations is an ACC = 0.75 and MCC = 0.53]. This predictive performance was achieved
by averaging 10 models using feature Set? (Binding, Relaccess, SPhobic, Cphil, Voids,
MLargest]l, NLargestl, Clash, Proline, CisPro + Clustering) and using 1000 Trees with 5
features. By removing models that perform particularly badly, we can reach ACC = 0.79
and MCC = 0.6]1. However, the reason for removal of these badly performing models must
be justified from a protein structural rather than a prediction perspective. Some of the
falsely predicted PDB structures for HCM are mapped to multiple chains, and that affected
the prediction result (i.e some structures appear to make the perfformance worse).



Chapter 8

Conclusions and Discussion

This thesis has described the SAAPdb database, a resource that collates information on
single amino acid polymorphisms (SAATPs), SAAPdap, a sequence and structural analysis
pipeline to identify the effects of disease mutations by providing hypotheses as to how they
might disrupt structure and / or function and SAAPpred, a method for predicting damaging
mutations, as well as specialized version of SAAPpred designed to distinguish phenotypes
of MYHY mutations=.

The SAAF project is a unique resource. Several other resources collate SAAPs and some
calculate SAAF effects. However, (1) there is no other resource that takes a predominantly
structural perspective of protein structure perturbation (that is, atternpts to assess the mu-
tations in terms of the effects they are likely to have on protein function, stability, folding
and interactions}; (2) SAAPdap is built to allow easy extension of processing and caches
all results; (3) although SAAPdb is no longer updated, it is still a powerful SAATP resource
which provides a straightforward but powerful graphical interface to examine SAAs in
protein structures; (4) SAAPdb and SAAPdap takes careful, conservative and sophisticated
approach to examine the likely structural effect of SAAPs. These data allowed SAAPpred
to be built. The original motivation for the SAAPdb project was the collation of SAAP
structural explanations for use in analyzing previously unseen SAAP=, Work presented in
this thesis started with rebuilding SAAPdb, improving the structural analysis, introduc-
ing SAAPdap and finally training and testing SAAPpred. The work will continue in this
direction within the Martin group.

There are numerous other ways in which the resource could be used and the data exploited.

These potential applications can be used in protein structure: where experimentalists need-
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ing to design a stable mutant protein structure for use in an experiment they will be able
to consult SAAPdap and SAAPpred to assess whether a mutation is likely to be damag-
ing; reducing the time taken to devise an appropriate experiment. On a wider and more
thecretical scale, the structural integrity of all the structures could aid in the understand-
ing of protein structure in general: currently, the precise mechanisms that are responsible
for structural stability are not well understood. These mechanisms could be examined by
considering deleterious mutations as “perturbations" of the usual structural ‘system’, much
in the same way that experimental assays are designed. SAAPdap can describe thousands
of disease-associated mutations, both with respect to sequence and structure. These data
could be exploited to examine pharmacogenomic variation within populations, specifically,
understanding the precise mechanistic reasons for variation in pharmacological response
in different populations. In addition, the SA AT analysis data could aid in understanding a
disease process. It may also be possible to characterize gain of function and loss of function
PDe ditferently with respect to their analyses, and as such devise different strategies for
their trea tment.

Chapters 1 and 2 provided details of the structure and information contained within the
primary information sources used to build SAAPdb and SAAPdap, and how they have
changed since the time of the database build. Examples of how to store, manage, and inter-
pret these data have also been given, with an emphasis on maintaining data integrity and
consistency. Different approaches to machine learning were discussed, all with the com-
mon aim of knowledge attainment from large datasets that are yet to be fully characterized.
A wvariety of tools for the assessment of mutation-effects were also presented, each using
different methodology to predict the structural effect of missense mutations. Theze were

presented to demonstrate the vast array of techniques that can be employed to analyse SNI?
data and to set the scene for the development of SAAPprad.

8.1 The analysis of disease mutations

Chapter 3 discussed SAAPAb and other support databases (ie. FOSTA, the database of
functionally equivalent proteins from SwissProt, and ImPACT, the sequence conservation
scoring method that uses a species similarity matrix), how these were rebuilt and how
this was a labour intensive task requiring substantial testing and rewriting of all the code
involved in data collection, database creation, and some structural analyses. S5NFP data
were extracted from the XML format dump of dbSNTF (Sherry et af., 2001) obtained From
the NCBL Mon-synonymous, ‘valid” human SNPs (ie. those annotated with validation
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strings ‘by frequency’, by Zhit Zallele’, or ‘by hapmap’), were extracted and combined
into a single XML file. Any mutations not annotated as having disease involvement were
assumed to be neutral. PPDs were obtained from Online Mendelian Inheritance in Man
(OMIM, http: //www.ncbi . nlm.nih . gov/omim/) and a number of locus-specific mu-
tation databases (LSMDBs), see Table 3.1. All mutations were then mapped to protein se-

quences and thence to structure.

The SAAPdb web-server contains fourteen structural analyvses and one sequence-based
analysis (Martin ef al.  (2002), Cuff and Martin (2004)), shown in Table 3.6, all aiming to
show how SAAPs are likely to affect protein structure: in particular interfaces with other
proteins, funchonal sites, folding and stability of the mutated protein. Only mutations
mapped to solved protein structures can be assessed, therefore it has not been possible to
analys=e all known mutations. Of the amino acid mutations in OMIM, approvimately 65%,
were mapped to structure. In addition, approximately 32 of “valid” SMFs from dbSME that
resultin an amino acid change, map to structure. Consequently, the coverage of the analysis
is currently sormewhat limited, but is expected to improve in the Future. After rebuilding
SAAPdb, the number of SNPs in the database has rose by 41% and the number of PDs by
369 However, SAAPdap is now regarded as our primary resource.

SAAPAb was designed to be a regularly updated pre-calculated resource. However, the
database has proved very difficult to maintain. Consequently the value of SAAPdb has di-
minished and it has been replaced with SAAPdap (Single Amino Acid Polymorphism Data
Analysis Fipeline). A large and expanding body of literature exists in the field of protein
structure-function analvsis in relation to disease phenotypes and SAAPdb and SAAPdap
contribute to the current understanding of disease-causing mutations and ultimately the

treatment of the resulting pathological conditions.

SAAPdap uses a plugin architecture implemented by Andrew Martin, making use of the
new non-Boolean analyses (described in Chapters 4 and 5). While SAAPdap still indicates
whether a mutation is likely to have a detrimental effect on structure using cut-off val-
ues, continuous values are al=o provided for each of the analyses. Because some of the
analyses (especially the analysis of voids) is quite time consuming (taking several min-
utes), the web interface makes use of AJAX (Asynchronous JavaScript And XML) to up-
date the user with the progress of the analvsis. The submission page is available at http:
Sfwew . bioinf.org.uk/szap/dap/. Results from the SAATPdap pipeline are presented
as shown in Figure 3.21.
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In conclusion, the data in SAAPdb have been updated, the analyses have been improved
i=ee the following section) and integrated into the new SAAPdap pipeline and web inter-

face.

8.2 Improving and extending the pipeline

In the original SAAPdb all assignments of structural effects are Boolean; that is, any mu-
tation either does, or does not, have a given effect. While Boolean assignment is appro-
priate in some cases (for example, a residue either is, or i= not, annotated as a feature in
UnilProtEB /Swiss-Prot), in other cases, it relies on a critical cut-off value (for example, en-
ergy, void volume, hydrophobicity difference) as described previously (Hurst ef al., 2009;
Cuff et al., 2006; Cuff and Martin, 2004; Marctin ef al., 2002). In this thesis it was found that
assigning a mutation as (not) having a structural effect is very sensitive to precise structural
detail. Wherever appropriate, real-number scores or pseudo-energies for each effect have
now been implemented. In particular, the analvsis of clashes and torsion angles has been

enhanced to provide energy values.

In analyzing clashes, previous work defined a damaging clash as any side-chain that has
at least 3 van der Waals overlaps (of any degree) with other atoms. Similarly, voids were
considered damaging when thev caused the creation of voids of volume = 275 .3;“, assLming
no compensatory movement within the protein structure. By looking at the distribution of
SMF= and FDs predicted to be damaging, it was clear that the Boolean method did not
accurately describe the effect of mutations causing clashes or voids, either overestimating

or underestimating damaging effects when values were close to the cut-off.

The new clash analyses use a continuous energy scale calculation incorporating Lennard-
Jones and torsion energies using CHARMM (Brooks of al., 1983) parameters. The actual
energy value is used in the machine learning described in Chapter 6. The MutModel pro-
gram is used in both clash and void analysis and parameters (step-size and tolerance) used
in searching side-chain positions were optimised by modelling known mutant structures.
Consequently, the evaluation of both clash and void is optimised by using these parameters.
Mo other changes were made to the assessment of voids; the cut-off =elected previously is
used as a visual indication that a void is likely to be damaging, but as with clash energy

actual void sizes are used in the machine learning described in Chapter 6.
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Glycine and proline analyses have been improved by moving from simple Boolean decision
making with rather arbitrary boundaries to an energy-evaluation approach. Figure 5.13
clearly shows that the previous allowed regions were inaccurate and, in particular, the al-
lowed regions for proline were incorrect. These analyses have been integrated into the new
SAAPdap pipeline and web interface (Chapter 3). Detailed results of these analyses were
then used to build the pathogenicity predictor SAATP pred (Chapter &).

There are many potential structural effects of SAAPs that are currently not assessed by
SAAPdap, as with the analysis of the kinase domain where oncogenic mutations are known
not only to destabilize the inactive form of B-RAF, but al=o to mimic the phosphorylated,
active form of the protein (Wan et al., 2004) thus disrupting native protein function. Data
derived from other external resources (including the Catalytic Site Atlas (Porter ef al., 2004),
PROCOGMATE (Bashton ef al., 2008) or dbI'TM (Lee ef al., 2006)) could be incorporated to
widen the focus of SAAPADb with respect to enhanced analy=is of the likely effect of muta-

tions and consequently improve predictions further.

It may also be beneficial to consider the protein in a wider context, for example its réle in
known pathways (Kanehisa et al., 2008). Consideration of genomic data is another area to
explore. The focus of SAAdap is the manifestation and effects of genomic mutations at the
protein level, primarily with respect to structure; however, there is undoubtedly more in-
formation implicit in the raw genomic data (Cargill ef al., 1999). For example, are PDs more
often transversions (where a purine base [AG) is substituted with a pyrimidine base (CT)
or vice versa) and therefore an alteration of the chemical nature of the base, and SMNPs more
often transitions (mutations between purine bases or between pyrimidine bases), where the
chemical nature of the base does not change? 1s there any bias in codons targeted by PDs or
SMF=, or is there a bias in the particular position in the codon that is mutated? At the very
least, estimates of base change substitution rates, calculated from a basic understanding
of biochemistry and mutagenesis mechanisms, could allow protein level data to be ‘nor-
malised” such that genomic effects are removed from analvsis at the protein level (e.g., Care
et al. (2007)). For example, arginine has a high rate of mutahility (due to deamination of
5-Cpl, dinucleotides in the arginine codon); such information could be used to normalise,
for example, amino acid frequencies as shown in Chapter 7 (MYHY protein) {where, indeed,
arginine is one of the most commonly mutated residues). Further, mutations may have ef-
fects in controlling expression or splicing. Such effects have been completely disregarded
in this thesis, but are being investigated by another member of the group.
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8.3 Moving onto prediction

As previously stated, the main motivation behind this project was to build the pathogenic-
ity predictor using the SAAPdap structural analyses to give us more information about the
pathogenicity of any novel mutation. SAATPdb was initially conceived for the understand-
ing of pathogenicity, so after redesigning the SAAP pipeline (Chapter 3) and improving in-
dividual binary analyses to ranged values (Chapters 4 and 5), this step was the final phase
of the project.

SAAPdb data with SAAPdap analysis were used to train machine learning methods to pre-
dict whether a novel SAAP will disrupt the native protein structure and induce a disease
phenotype in a tool known as Single Amino Acid Polymorphism prediction (SAAPpred)
isee Chapter 6). The SAAPdb database of SMNP= and PDs was later replaced with the Hum-
Var dataset for comparison with other methods. SAAPdb and SAAPdap perform fourteen
analyses, from these analyses (using software written in Perl and C); 47 features are derived

that are used for machine learning.

Application of machine learning techniques exploit the predictive power of all of these indi-
vidual features, resulting in a very sensitive and accurate method for classifying previously
unseen mutations as disease-causing or neutral. The prediction results are summarised
in Table 6.9. A comparison with other methods, performed by using a slightly smaller
set of 1451 SMFs that mapped to structure and could be assessed by all the other meth-
ods, shows SAAPpred results clearly outperform other well-known individual methods
including S51FT, PolyPhen2, MATFE, MutationAssessor, COMNDEL and FATHMM giving an
accuracy of 0885 and 0944 for “fully-cross-validated” and “partially-cross-validated” (Ta-
ble 6.9), respectively. The performance of MutationAssessor-1 was particularly bad as it
over-predicts pathogenicity and very popular 5IFT was worst in terms of sensitivity. The
fully-cross-validated reflects performance on a novel mutation/ protein for which no train-
ing have been done, partial-cross-validated is still fullv cross validated in the conventional
sense (see section 6.3.2. Performance on PolyFPhen? is not cross validated at all with a full
overlap between training and testing et trained on the HumVar dataset), for that partial-

cross-validated values for SAAP pred give the fairest comparison with PolyPhen.

We leamn from the performance of SAAPpred, that structural information is very important
in predicting the pathogenicity of any novel mutation. However predictions based on struc-

tural information limit the range of mutations that can be covered by this predictor. There
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are many reasons in many steps for a failure of a structural predictor: for example missing
PDE structures; FOB structure is available but the mutated residue is missing; additions
such as missing atoms, etc. This will become less of an issue as protein structures become

available for more proteins over time.

The ratio of neutral to pathogenic mutations is debatable in two aspects. First, identifying
truly negative cases is either questionable when we define them as mutations that merely
donot have a known pathogenic effect at the moment (the current definition in SAAPdb) as
this does not mean they are truly neutral, just that we are not aware of any effects based on
current annotation. Also, there are more solved PDB structures linked to 'Dis. But a dataset
of annotated neutral mutations (such as HumVar) is bound to be much smaller; pathogenic-
ity prediction clearly benefits from large amounts of data. 5o the optimum should be to
start with a large set and carefully filter it, until sufficient experimentally-confirmed SNE
data become available. To make use of all the available mutation information in training

the predictor, multiple predictors were used and a jury vote was taken.

8.4 Implications for disease therapies

There is much potential for SAAPdap and SAAPpred to be used in the identification of
novel drug targets. If one can characterise the specitic reason that a mutated protein is not
able to function properly, a counteractive rescue mechanism could be developed. Boeck-
ler et al.  (2008) reported the development of an in silico screened drug that was shown
to rescue the function of a P53 mutant, ¥Y220C. This mutant was known to destabilise the
protein by intreducing a crevice in the protein structure and SAAPdap successfully iden-
tifies this mutation as void-creating. Boeckler et al., used m =ilico screening and multiple
MNMR spectroscopy experiments, and identified a compound (PhiKan083) that bound to
the destabilized rmutant P53 structure, but not the native P53 structure, and is sufficiently

distant from the DMA binding region not to interfere with functionality.

Alternatively, Friedler et al. (2002} have shown that alternative pharmaceuticals could bind
to the functional native structure of F53, thus ‘chaperoning’ the correctly folded structure.
Such compounds may form the basis of future P53-deficient cancer therapies, or indeed
therapy for any disease caused by structurally-destabilising mutations. It is therefore en-
couraging to note that most disease-associated mutations in SAAPdb have been shown to

affect protein stability.
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In Chapter 7 the predictive power of the SAAPpred approach was examined in discrimi-
nating between pathogenic and neutral SMIPs in MYHY. This gave, for all MYHY mutations
an accuracy of 07934, for DCM an accuracy of 0.789 and for HCM an accuracy of 0.7951.

This test was then followed by creation a novel predictor which atternpts to distinguish
between HCM and DCM mutation using SAADP analysis, exploring the feature selection,

construction, normalisation and an additional set of features on structural clustering,

In conclusion, the best performance we can currently achieve for distinguishing HCM and
DCM mutations is an accuracy of 075 and MCC = 0.531. This predictive performance was
achieved by averaging 10 models using feature Set? (Binding, Relaccess, SP'hobic, Cphil,
Voids, MLargestl, MLargestl, Clash, Proline, CisPro) + Clustering and using 1000 Trees
with 5 features. By removing models that perform particularly badly, we can reach ACC =
0.79 and MCC = 0.6]. However, the reason for removal of these badly performing models
must be justified from a protein structural rather than a prediction perspective.

8.5 Future prospects

The Martin group has plans to improve and expand 5AAPdap including analysis of muta-
tions in non-coding regions. These features will be used to improve the machine learning

training,.

There are multiple ways to achieve further improved prediction performance and results:
(i) Incorporating more data in the training process, once they become available; (ii) Inves-
tigate the features used in the training and select the most effective ones (to help with the
relatively small HumVar dataset size); (iii) Feature combination and constructions (e.g. sub-
tracting native void sizes from mutant void sizes); (iv) Feature normalization (e.g. taking
the log of some feature values to improve the distribution of values); (vi) Using the growing
number of structures in the PDB that mapped to the mutations used in training our predic-
tion; (v) Combining SAAPpred into a meta predictor (COMNDEL-style) with other methods
such as PolyFhen? and SIFT; (vi) SA APpred only works when there is a FOB structure, start-
ing to combine methodologically-ditferent pathogenicity predictor by using a gatekeeper
to see if there is an available structure for a particular mutation and using COMDEL-style
meta-predictor (Gonzdlez-Pérez and Lapez-Bigas, 2011) which employs SAAFPpred as one
of its elements, or if there is no available structure, using normal COMNDEL for sequence

based prediction and (vii) Enhancing the predictor by developing methods to make more
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complete use of unbalanced datasets, especially with a smaller datazet in the training stage

when applied to specific problems such as phenotype prediction.

The field is currently saturated with predictors of pathogenicity, more meta-predictors are
needed. Combining several good predictors will always outperform a single predictor, it
is important to choose the highest performing predictors, with least overlap in attributes
used to predict. Clearly from benchmarking done in Chapter & these ones should be com-
bined with SAAPpred, potentially solving the gap SAAPpred has for mutations where no

structures are available.

While the coverage of the method is currently somewhat limited by the need for a structure
of the protein, investigation of the use of modelled structures is also planned. However, cur-
rently it is not known how well this will work given the detailed structural analysis (e.g. of
hvdrogen bonds) that the method performs. It is proposed that different predictors would
be trained for different sets of models having different ranges of sequences identity with
the templates used in modelling (ig. - 30%, 30-500%, 50-70% and = 705 - a gatekeeper
would then select the appropriate predictor. However clinically relevant proteins tend to
be key targets for structural studies, and as more structures become available, the number
of mutants mapped to structure will increase, improving the coverage of the method. In
addition, more structural data will allow the machine learning methods to be trained and

tested with more data. Consequently, we expect performance to increase further.

SAAPpred is now available to be published on the web for the public to upload any muta-
tion with an available PDE structure to predict its pathogenicity based on SAATF structural

and sequence analysis.

8.6 Summary

In summary, this thesis has improved the analysis of the likely structural effects of muta-
tion and has used these analysis, present in SAAPdap pipeline, to train a prediction able
to distinguish between pathogenic and neutral mutations. SAAPpred, clearly outperform
all other individual predictors and when assessed by partial cross validation (still Full cross
validation by other terminology) outperform COMDEL (Accuracy is 0.944 for SAAPpred
compared with 0852 for COMDEL). A method for distinguishing between phenotypes re-
sulbing from MYH?Y mutation has also been developed. while the performance is low com-
pared with the general pathogenicity prediction, it outperforms older method which simply
predict pathogenicity (such as Mutation Assessor).
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[A] The UniProtKB/Swiss-Prot file format description

Entry information (ID, AC and DT)
The 1D line provides the entry name. The primary AC, followed by the secondary ACs
are indicated in the AC line, and DT line provides the entry date. See line #1-8 in
Figure 2.1).

MName and origin (DE, GN AND OS5)
The description (DE) line contains the protein name, synonyms and abbreviations.
Proteins may be described using any number of synonyms. Also included in this line
is an indication of whether or not the protein is a “Fragment’, and the EC number if
relevant. The GM line gives gene and locus names. The species (05) line indicates
the species and taxonomy information. In the example, there are four synonyms:
‘Cellular tumor antigen ps3"; “Antigen MY-C0-13"; ‘Phosphoprotein p53" and Tumor
suppressor p53° (line #9-14 in Figure 2.1).

Cross references (DR)
The DR line UniProtKB /Swise-Prot provides cross-references between databases (this
data is used to construct datasets with which to benchmark FOSTA (McMillan and
Martin, 2008) against another method Inparancid). I'53_HUMAN i= cross referenced
to ENA records X02469 and CAA26306.1; PIR records A25224 and DMNHUS3; RefSeq
records WIP_0M537.3 and NM_000546.4; FDB records 1AL and other databases en-
tries (lines #1518 in Figure 2.1).

Features (FT)
Unil'rotk B/ Swiss-Prot provides more than 30 Fea ture keys (FT) that include sequence,
structural and function annotations found in the protein. These may be transferred
by homology, or there may be experimental evidence or non-experimental qualifiers
i"Potential’, Probable’” and “By similarity”) which indicate the status of the annotation
(lines #19-33 in Figure 2.1).

Sequence (S0
The sequence (S0)) line provides the sequence; total amino acid count; molecular
weight and a cyclic redundancy check (CRC) value. This is followed by a terminating
line (*/ /"), which designates the end of an entry, (lines #34-35 in Figure 2.1).
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[B] Improved MutModel Program

U=zage: muatmod=2l [-m reszpec newresa] [-e claszhMethod] [-o chitak]
[-r refcoocr] [-v] [-f conffile] [-d] [-o] [—-x%]
[-a3 stepsize] [-t toleranece] [-p paramfils]

-B

-

[-1 Lennard-Jonss-Cutoff] [infile.pdb [cutfile.pdb]

Specify a motation where resapec iz of the form [c]lnnn[i]
(where [c] i3 an opticnal chain nam=, nDnn ia a residue
manber and [1] i= an opticnal insert code).

Multiple mutaticns may be specified with mualtiple

-m option=. newres may be l-letter or 3-letter code.
Specify the clash evaluaticon method: 1: Boolean;

2: Linear claszh; 3: vdd (Lennacd-Jonez);

4: vdW/Torsion. [Default: 1]

Specify enargy paramester file. [Defawult: eparams.dat]
Specify the Chl eguiwvalents tabkle (De2fault: chitak.dat
in the current directory or SDATADIR)

Specify the reference coordinates file

(Default: coor in the current directory or SDATADIR)
Verboas mode; reportz whether the side-chain replacemesnt
waz acceptable.

Write each conformaticn to a POE format file

Debugging: Frint clazh table and choice

cnly do MOP, not MEFP

Specify asarch step =z2ize (degrees). [Default: 20.00]
Gznerate a random model for the side-chain

Specify tolerance in =2nergy for accepting the parent
conformation or & z2tandard rotamer position.

[efault: 1.0]

Specify distance cutoff for wvan der Wasls (Lennard-Jonss)
energy calculationz. Atom paira with greater separation

are ignored. [Default: B.0]



If input and cutput files are not zpecified, =standard

input/ouvtput will be uaed.

MutModel performs a wery simple =ide-chain replacement wu=ing the
minimum perturkaticon protoccl (MEP). The side-chain iz replaced
and then spun arcund it= Chil and chil tersion anglez to find a
pozition which makeszs minimal bad contacts az evaluated using one

of three clash evaluation methods {(gee -2).

Wote that using methoda 3 and 4, 1f a conformation iz written
from thi=z program and then the epsrgy iz calcoulated, it will
differ aomewhat from the energy calculated when the conformaticon
was generated. This 1=z bscause the PDE format rounds the atom
coordinate=z to 3 decimal placea. Each VDW ensrgy can then b=

out in the 5th decimal place, but thiz can acocumulate to a

surprizingly large difference in final energy.

Hote that the ideal walue for -1 i= 14.5A but this increases
the run time by ~10x. The defawlt of E.02 give=z a good
tradecff betwsen accuracy an speed — zsmaller wvalues will

spesd it up more at the sxpense of accuracy.
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[C] Predicting Damaging Mutations — JSON file

{*"sRREE" [ ®aniprots=": "ELIBE3",
*raaoum®: ZE%;
*rimtive™: "R",
"mrtank®: "SR,
pEa® [

ILETIY L

[ "File®™: "faccn/data/pdbSpdifxm.ant”;
fpcooda®: "IExm",
*ramidua®: "REET";
"mitati=ao¥: "G¥;
frtoucturatypa¥: Foryatal®,
*rasmolution®: *Z.70a";
*rfmzeor®: 34 _Z0AF,;
*ramulen®: |
FRinding®: ["Bairding-BoOL": "oE"],
*BurimdCharge®: ["AurisdChasrge-NATIVE-CHARGE®: "1%; "BurisdCharge-bRITANT-CHRMGE®: *0",
"Ruriadcharge-BoOL®: "OR%; "BuriadCharge-RELACCESS®: "S1_ESE37),
*rimFro®: [("CaisFro-ESOL®: POR®, *CiaPro-HATIVEF: Papc®, "CaisPro-OHECSAR®: ®1TH.33ER],
*Claahk": {"Claak-EnErR:y*: "0_.00%; "Clash-pooL®: "oE"}.
*roraPhilaic®: {*CorePfhilic-MUOTANT-HPHOER®: *0.16%, *Cocafhilac-moOL®: "OE®,
*"Cormfhilic-BMELRCCESS®: "7T.011%; "Corerhili--HATIVE-HERCB®: "-1_B"],;
FElysirm®™: ["Clycine-pRITANT-THRESHOLO®™: "%, Polycine-BoOLM®: "OR®;
Folycinm-HATIVE-THRESBOLO%: "0_35°,"Clycina~HATIVE-ENERGY®: "%,
Folycinm-FS5I®: *—-4E.4T73%; *"Slycina-HUTAKNT-ENERGY®: "%,
Polycinm—FHI": "-5%.0%1";, "Slycina-WATIVE-BOOL™: “CR¥,
FElycinm-BRITANT®: "GLY"™; "Glycina-HATIVE": "ARG¥|,;
*Ha-onde": [("HREonde-ERERGY": "WHULLY, *HE-ods-POO0OL": "OE®; "HAonde—-2ZVWAL"® @ "nNOLL¥;
"HAondm—ATOM® : "NULL®; "HAonds—-FRAATHER-RES"™: “"HKULLY,
*HRcads-PARTHER-ATOM® : "WULL"*},
*Irpact®: ["Inpact-BCOL¥: "AAD®, "Impact-NSEZ¥: "39%, "Inpect-THRESHOLD®: *0.BTS,
"Impect-CORSSCONE®: "1%); "Cnterfsce™: {"Interfsce-BOOL": "BAOS;
" Imtemrface-AELACCESS®: "0] _SH2Y, PIntecface—RMELARCCESS-HOL®: "7T_011%),
*rrolicm®™: [("Prolinoe-0RITANT-THRESHOLO™: "0.53%; "Prolins-BcOL®: *OK";
Prroline-KWATIVE-THRESHCLO®: *F, Pprrpoline-HWATIVE-ERERGY": ¥*%,
"rrolinm-FS51®: "*—4E.4T2"; "PFrolins-HUTART-ENERGZY": "%, "Proline-PFHI®: *-5%.0%1°,
Prroline-HRATIVE-EOSLY: "OE", *Prolice—HOTRNTY: "GLY®; "Proline-WATIVE": "ARG" |,
*EErrokFT: [P"SErotET-BOOL": "OK®, "SProtFT-FEATORES®: "O0000O0000Q00%, ®“SEr-otFT-MAMES®: ®7],
*rECaom": [("SSGmcm—BECOL®: "OE"]
*rurfacaPhoki=": |*SurfacaPhobi=—HUTAKNT-HERACE®: "0_1E"; "SurfscePh-bic-Bo0L": *OER,;
*surfacearhobi-—-RELACCESS®: "TT.011%, *Sucfacerhobic—HATIVE-HEBOBR®: "-1_H"];
Fycide™: {"Voaids-prITRNT®: [11.753,10.321,10.000,73.10E:6.356,4.%66,4.T45,3_T%2,2.3581,0].;
"Yoide-MOTANT-LARGEST™: "11.T%9000%; "woide-BOOL": "OK%; "woids—RATIVE": [11.T7%%;
10.3%1,10.000,T7.10&; E.356,4.2E6,4.745,2.T52,2.351],
"Voide—HATIVE-LARGEST™: "11.732000%}}]]
{*"sRRE"
[ "*File®™: "faccn/deta/pdbSpdiExm. ant®;
fpcooda®: "IExm",
Framidus®: "BEE?", ... 1k

Figure 1: An example of a [SON file.
UnilProt: 12883, an Arginine amino acid in postion 569 mutated to Glycine.



[C.i]

JSON file explanation

Table 1z J300 file category explanation.

Category Explanation
"Rinding": *Finding-BOL"; Ok 15 this residoe makirg an H-Fomd or VIW contact with a ligand or arother prohein chain?
"BuriedCharge:  "BuriedChang=-MNATIVE-CHARGE™ 17 Charge on the native amino acid
'Emrirq:]Ch.:qg:—HLﬂ'.ﬁ.NT—CH.ﬁFGE': o l:h:l:rge on the mutant amine acid
"Burisd Chanze-BOCL™ "OK” 1s this a buried nesidue (< 25% accessibility) where charge has changed
'Euril.'c]&.ﬂqg:—ﬂELﬁ.CfEEE': "51.582" ﬂ:t&ﬂ'ibi.hil‘_\r (ot cf 100%) \
"™ sl o= RO O Wiz this a proline with a cis peptide bond
"CisPro-RATIVE™ "ARG" The native amino acid
"CisPro-DR EG AT "L TRY %" The peptide bond dihed ral angle
"Clash™ *Clash-EMNERGY™: "0.00¢ Ervergy cakulation tor any clash - can be anything about -1000 to -+ 100000
" lash-ROOL": "OK” W define a bad clash as =24.23 (W% of clashes are less than this in native proteins)
“Corelhilic'™ *ComePhilic-BMUTAR T-HFHOB™ (168" Flutant residus |'|_1_,r\-'_‘|r|.lp|'|-::l|.'|iri|::.-'
“ComePhilic-BO00L": "0k 15 this introducing a hydrophilic in the cone where there was a hydrophobic: 001 i8 usesd @5 a
threshold for hydrophilic/ hydrophobic CorePhilic-RELACCESS: ™17
*ComePhilic-RELACCESS"™ "77 011" Relative accessibility - only calculated when the native is hydrophobic and mutant & hydrophilic l
*ComePhilic-MWATIVE-FIFHOR™: *-1.8" Mative residue hydrophobicity
"G|_'!.'|.‘.i:l'rE": 'Gl}rdnr-hm.ﬁNT-THREEHGLU': o
"Glycine-BOOL™: "OK" Wers this a native Gly with unusual backbone phi/ psi angles being mutated to something else
'Gl}rrinE-N.ﬁﬂ‘-"E-ﬂ'[REHﬂLD': .35
'Gl}n.‘inl.‘-f‘-.l.ﬁ.ﬂ"-"E—ENERGY': "

Conftmed o rext poege
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Table 1 — Confimned from previons pge

Category Explanation

'Gl}n.-in.l.-FSI.": ~dadF3T Backbone Ca |F-]'|.:|-C dihed ral an::'_r,]i.-

'Gl}n.‘inl.'—h']'Lﬂ'.ﬁ.NT—ENEEG'&"': -

"Glycine-PHI™: *-5H 1" Backbuone M-Calpha dihedral anggle

"Glycine-MNATIVE-BOOL": "R Wars this a native Gly with unusual backbone phi/ psi angles being mutated to something else
'Gl}n.‘inl.-‘-h'm.ﬁNT': LY

'Gl}n.‘inl.-'—N.ﬁ.ﬂ"-"E': ARG

e B "HBonds-EMERCY™; "MULL? Energy for the HEond with the mutant A% NULL if not formed
"HEonds-BO0L"; "ok Was this a residue involved in an HBond and the mutant can't refain the HBond ?
"HBonds-#WAL™ "MULL" Al energy for the HBond with the mutant 3A5 MULL i not formied
"HBEonds-ATOM™: "MWULL" Atom involved inan HBond
"HBonds-PARITMER-RES™ "MULL" FPartrer residue if in an HBond
"HBEonds-PARITTER-ATOM™ "MULL" Fartrer atom it in an HBond

"Impact™ “Impact-BOOL: "BAD" Wers this redid ue :iig:'li.ﬁ.c.:lnﬂ].- cunseryed
“Impact-RSEC": =9 Bumber of sequences in the alignment In this case treat results with cavtion @ we really want

==10 sequences
"Impact-THRESHOLL': L& Thresheld (-1} for significant conservation
“Impact-COMNSECORE™ "1° Corservation at this pesition in thex a|'i|'.=,'n:rn|.-:r||:

“[nberface; *Intertace-BOCIL": "RAL" W this residue in an interface? Relative accessibility changisd by »=10
“Intertace-RELACCESS" "5].54827 Relative accessibility (0-1000 of this residue |
"Interface-RELACCESS-ROL: "77.011° Relative accessibility (0-100) of this residue in a momomer

"Proline™ “Proline-MUTANT-THRESHOLT: "(053" |

“Proline-BOCL": "k
"Proline-WATIVE-THRESHOL™ ™
"Proline-WATIVE-EMNERGY": ™

Wers this a mutation ko a proline where the phi/ psi angles cant accommaodate proline

Contimed o pext poge



Table 1 — Confimned from previons pge

Category Explanation
“Proline-PS[": "-46.473" Backbone Ca|p]'|.:|-C angh.-
“Proline-MU TANT-EMERGY™:
“Proline-PHI™ "-54.087" Backbuone M-Calpha angle
"Proline-MATIVE-BOOL™ "OK”
“Proline-RLUTANT: "GLY
“Proline-MATIVE™: "ARG"
"SPtFI: RS B 01 I T ) IR ) Was this residue described in SwisaProt as a “featuns (g, active site, T, ebc)
“SProtFI-FEATURES™: "0 DKL Which leatumes wone affected
"SSPt P L= ARES" ™" Which featumes woene aftechsd - as bext
EELEm'™ “ESCem-BOCL" T ORT W this a Cysin a n:]i:i.1.|.|F-|'|i.n:]-L-'“"ﬂ.lﬂ1. FIIE fili)
"SurfacePhobic™  “SurfacePhobic-MUTANT-HFHOBE™ 016" Hydmsphobicity of mutant residue
"Surtacelhobic-BOOL" "OK” Are we replacing a hydrophilic with a hydrophobic on the surface?
"SurtacePhobic-RELACC PS8 "77.011" Relative accessibil i‘l_'!.I S LA
*surfacePhobic-MATIVE-HFPHOE"; 1.5 Hydrophobicity of native nesidoe
Wiids™s “Wonids- Bl LTTART: [11.799,10.351, . Top 10 wivicds in the mutant

“Wirid s LT AR T-LARGEST": "11. PR
“Wirid s~ RO MO

“Woid s M ATIVE™ [11.799. 100381, .|

“Woid s M ATIVE-LARGES T ™11, 799000

Largesi woid in the mutant

Are we i.1'||:n.||:|1.1|:i.r|5 a void = 27547 when thens wasn't
Torp 10 wanids in the native

Largest woid in the native




[D] MYH?

Table 2: SAAPpred performance 10 Model on (All MYHY mutation) using one PDE per variance and using multiple PED

ALL MY7H [cnelPDVE] ALL MY7H [MultiFDB]
TP FM T FP SEMS  Fl ACC TP FM ™ FrP SEMS  Fl ACC
Fun without -norm option for normalization and including FDE 1D 3dpt

SAAPpred M1 | 216 19 0 0 nele 0958 0919 | 655 150 0 0 0.s14 0589 0514
SAAPpred M2 | 222 13 0 0 0945 0972 045 | 5E9 216 0 0 0732 05845 0732
SAAPpred M3 | 235 0 0 0 Lo Lood LoD | 683 122 0 0 058 0915 0548
SAAPpred M4 230 5 0 0 0.9/ 0989 0979 | 728 i 0 0 0904 0950 0904
SAAPpred M5 | 23 1 0 0 0996 0995  0.99a | 626 179 0 0 0778 0875 0778
SAAPpred Mo | 208 27 0 0 0835 093 0835 | 720 =5 0 0 054 0944 0594
SAAPpred M7 231 4 0 0 0983 0990 0983 | &F7 128 0 0 0541 0914 0841
SAAPpred M8 = 235 0 0 0 Loon  Lood LooD | 73l 74 0 0 0908 0952 0908
SAAPpred M9 | 235 0 0 0 U T T T O T 207 0 0 0743 0552 0743
SAAPpred MIO - 235 0 0 0 Lo Lood LooD | 743 62 0 0 0923 09a0 0923

Average _ 0.971 0985 0971 | 675 130 0 0 0539 0911 0.339
[un with -norm option for normalization and excluding FOR 1D 3d pt
0902 0949 (0902 | 585 107
0.e7n 0985 0970 | A9l 101
0.932  09a85 0932 | 438 204
040 0969 0940 | 645 47
045 0972 045 | 598 a4
0928 0982 0928 | 436 206
0.974 0987 0974 | 598 af
0855 0922 (0855 | 459 233
SAAPpred M2 210 25 0ead 0944 0894 | 5e9 123
SAAPpred MIO 219 1& 0.932 0985 0932 |[471 221

045 09l 0845
0854 0921 0854
0705 0827 0705
0932 0965 0932
0864 0927 0564
0702 0825 oFo2
0864 0927 0564
0e63d 079 0663
0822 o0s902 0822
0.6s1 0810 0651

SAAPpred M1 | 212 23
SAAPpred M2 | 228 7

SAAPpred M3 | 219 16
SAAPpred M4 | 221 14
SAAPpred M5 | 222 13
SAAPpred M6 | 218 17
SAAPpred M7 | 229 @

SAAPpred M8 | 201

o O oo oo O o O o
- - I e Y e Y o e e e R

SCIocooo oo o oo
SCIocooo oo o oo

Average | 0927 0962 0927 549 143 0794 0882 0794



Table 3: SAAPpred performance 10 Model on (HCM-MYHY mutations) using one 'DB per variance and using multiple FED

MY7H-HCM [onePDE] Y TH-HCM [MultiPDE]
TP FM T FP SEMS  FL ACC TP FM T™ FrP SEMS  Fl ACC
Fun without -norm option for normalization and including FDE 1D 3dpt

SAAPpred M1 | 170 13 0 0 e 0950 0904 | 541 123 0 0 0209 05894 0509
SAAPpred M2 | 177 11 0 0 0.941 0970 0941 | 487 152 0 0 0728 0543 0728
SAAPpred M3 | 188 0 0 0 U T T O T 100 0 0 0851 0919 (0851
SAAPpred M4 183 5 0 0 0.973 0987 0973 | a4 a5 0 0 0903 0949 0903
SAAPpred M5 | 187 1 0 0 0995 0997 0995 | R22 147 0 0 0730 0877 0780
SAAPpred Mo | 162 26 0 0 0862 0926 0862 | 590 3 0 0 0532 0937 (0882
SAAPpred M7 185 3 0 0 0.9=4 0992 (0934 | 554 115 0 0 0528 0906 (0828
SAAPpred M8 183 0 0 0 Loon  Lo0d LooD | alo 59 0 0 0912 0954 0912
SAAPpred Ma | 185 0 0 0 Lo Lo0d LooD | 499 170 0 0 0746 055 0746
SAAPpred MI1O - 185 0 0 0 U T T O T O il 0 0 09l 095 096

Average _ 09e6 0983 096 5559 1101 O 0 0836 0909 0836

[lun with -norm option for normalization and excluding PDOB 1D 3d pt

SAAPpred M2 | 182
SAAPpred M2 | 181
SAAFpred M3 | 173 15
SAAPpred M4 | 175
SAAPpred M5 | 175
SAAPpred Ma | 171
SAAPpred M7 | 182
SAAPpred M8 | 155

093 0981 093 | 488 52
0963 0981 093 | 488 B2
0920 0958 0920 | 406 164
093 0967 0936 | 530 40
0931  09s4 0931 | 491 i)
090 0953 0910 | 402 165
098 0984 098 | 493 i
0,830 0907 0830 | 378 192
SAAPpred M9 | 165 0878 0935 087E | 471 e

0856 0922 (0856
0856 0922 0556
0712 0832 0712
0930 0964 0930
086l 0926 (0861
0705 0827 0705
0B65 0928 0865
0e63d 079 0663
0826 0905 0826
0esé 0814 0656

=1 Th

oo oo oo oo O o
e o e o e e N e o Y Y |

GEETOEE

S|l oo oo Qo oo
S|l oo oo Qo oo

SAAPpred MIO - 173 0920 0958 0920 | 39] 179

Average _ 0.914 0955 0914 4533 117 0795 0883 0795



Table 4: SAAPpred performance 10 Model on (DCM-MYHY mutations using one PDE per variance and using multiple PED).

MY TH-DCM [cnePDB] MYTH-DCM [MultiPDVE]
TP FM T FP SEMS  FL ACC TP FM T™ FrP SEMS  Fl ACC
Fun without -norm option for normalization and including FDE 1D 3dpt
SAAPpred M1 | 20 | 0 0 0952 097 0952 |28 a2 0 0 0467 0636 0467
SAAPpred M2 | 20 1 0 0 0.952 097 0952 |23 ary 0 0 0333 0554 0.2583
SAAPpred M3 | 21 0 0 0 Loo0  Lo0d Looo | 44 16 0 0 0733 0846 0733
SAAPpred M4 20 1 0 0 0.952 097 0952 |44 16 0 0 0733 0846 0733
SAAPpred M5 | 21 0 0 0 Lo Lo0d Lodo | 33 27 0 0 0530 0710 0550
SAAPpred Mo | 20 1 0 0 0.952 097 0952 |34 26 0 0 057 0723 0567
SAAPpred M7 20 1 0 0 0.952 097 0952 |43 17 0 0 0717 083 0717
SAAPpred M8 20 1 0 0 0.952 097 0952 |39 21 0 0 0650 07335 0650
SAAPpred M2 | 21 0 0 0 Lo Lo0d Lodo | 22 a5 0 0 037 053 0367
SAAPpred MI10 | 21 0 0 0 Loon  Lo0d LoD | 47 13 0 0 0.733% 0579 (07583
Average | 204 0.6 0 0 0972 0986 0972 | 357 243 0 0 055 07% 0595
[lun with -norm option for normalization and excluding POR 1D 3d pt
SAAPpred M1 20 1 0 0 0.952 097 0952 (45 g 0 0 0533 090m@ (0833
SAAPpred M2 | 21 0 0 0 Loon 1000 L00D | 48 B 0 0 0352 0920 0852
SAAPpred M3 | 21 0 0 0 Loon  Lood  Looo | 3F 17 0 0 0635 05813 06585
SAAFpred M4 | 21 0 0 0 Loon  Lood Looo | A4 0 0 0 1.000  L.ood  1.000
SAAPpred M5 | 21 0 0 0 Loo0  Lo0d LooO | 47 7 0 0 0870 093] 0.870
SAAPpred Ma | 21 0 0 0 oo Lood  LooD | 3F 17 0 0 0635 0813 0685
SAAPpred M7 | 21 0 0 0 Loon  Lo0d LooD | 44 10 0 0 0515 089% 0815
SAAPpred M8 = 21 0 0 0 Loon  Lood Looo | 3F 17 0 0 0685 0813 (0685
SAAPpred M9 20 1 0 0 0.952 097 0952 |42 11 0 0 079 0887 0796
SAAPpred MI10 & 21 0 0 0 Loon  Lood Looo | 36 15 0 0 O66a7 0800 (0667
' Average _ 0.991 099 0991 416 114 0 0 0739 0878 (0789



Table 5: SAAPpred performance 10 Model on {(ther=-MYH? mutations) using one PDB per varance and using multiple PBD.Others:LVNC, ASD,
Endocardial Fibroelastosis, RCM, Myopathycentral Core, Miopatoa Distal De Laing, Ebsein, Mysin Strong Miopathy and Dhistal Myopathy:

MY TH-OMhers [cnePDB] MY 7H-Others [MultiPDER]
TP FM TM FPP SEMS  FL ACC TP FM T™ EP SEMS  Fl ACC
Fun without -norm option for normalization and including FDE 1D 3dpt
SAAPpred M1 | 26 1 0 0 093 0931 093 |39 45 0 0 0464 0.6 0464
SAAPpred M2 25 2 0 0 0.926 0962 0926 |41 43 0 0 0458 0656 (0488
SAAPpred M3 27 0 0 0 Loon  Lood Looo | A4 a0 0 0 0643 0783 (0643
SAAPpred M4 | 27 0 0 0 1Loon  Lood  LooD |5l a3 0 0 0607 075 0607
SAAPpred M5 | 27 0 0 0 T U T I I 29 0 0 053 0.6% (0536
SAAPpred Ma 26 1 0 0 093 0981 093 |[5a& 25 0 0 06a7 0800 (0667
SAAPpred M7 26 1 0 0 0.963 0981 093 |55 29 0 0 0655 0791 0.655
SAAPpred MS | 27 0 0 0 oo 1o0d Lo0D | B 25 0 0 0667 0800 0667
SAAPpred Ma | 27 0 0 0 T T T T I T H 0 0 0476 0645 0476
SAAPpred MI10 & 27 0 0 0 Loon  Lood Looo | a4 20 0 0 0762 0865 0762
Average 265 0.5 0 0 0.9=2 0990 09s2 0 RO A39 0 0 057 0743 0597
Fun with -norm option for normalization and excluding FOB 1D 3d pt
SAAPpred M1 26 1 0 0 0.9:3 0981 093 |63 11 0 0 0551 0920 0851
SAAPpred M2 | 27 0 0 0 U T T T T 11 0 0 0531 0920 0851
SAAPpred M3 | 26 1 0 0 093 0981 093 |5l 23 0 0 0639  08le  (0.659
SAAPpred M4 25 2 0 0 0.926 0962 0926 |67 7 0 0 09205 0950 0905
SAAPpred M5 27 0 0 0 Loon  Lood LO0D | A& B 0 0 0292 0943 (0=92
SAAPpred Mo | 26 1 0 0 0.93 0931 093 |52 22 0 0 0703 0825 0703
SAAPpred M7 27 0 0 0 Loon  Lood LooO | aF 7 0 0 0905 0950 0905
SAAPpred M8 25 2 0 0 0.926 09682 0926 |50 24 0 0 0676 0806 (0676
SAAPpred M9 26 1 0 0 0.93 0981 093 |al 13 0 0 052 090 0524
SAAPpred MIO - 26 1 0 0 093 0981 093 |[5D 24 0 0 0676 080 0676
Average L 261 09 0 0 097 0983 097 59 15 0 0 0797 084 0797 |




