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Supplementary Figure S1. The LHCII complex of green plants contains weakly electronically coupled dimers whose energy
gaps are resonant with vibrational modes. Here we present results from the Chl(b601)-Chl(a602) pair with electronic parameters49

ε(b601) = 15764 cm−1, ε(a602) = 15103 cm−1, V = −47.1 cm−1 and resulting ∆E = 667.7 cm−1. A vibrational mode of frequency

ωvib = 742.0 cm−1 is close to this energy gap and each chromophore couples to this mode with strength g = ωvib

√
0.03942 =

147.3 cm−1, as obtained from ref. 36. The thermal background is characterized by λ = 37 cm−1, Ωc = 30 cm−1 as in ref.
36. The strength of system-bath interactions

√
λΩc is smaller than in PE545 and therefore this dimer lies closer to the regime

of coherent evolution of the exciton-vibration system, where the dissipation energy into the bath is transiently prevented.
Shown here are (a) the energy of the exciton-vibration system and (c) the Mandel Q parameter of the vibrational mode for
λ = 37 cm−1 (shaded regions denote times of non-classicality) and (c) averages over timescale τ ≈ 0.4 ps as a function of
reorganization energy.
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Supplementary Figure S2. Non-classicality and modulations of adjacent phonon number occupations The Mandel
Q parameter is a well established measure of the non-classicality of a quantized single mode bosonic field37. Its negativity (sub-
Poissonianity) necessarily implies that there is no classical description for the field statistics in terms of a positive distribution
function - for example the Glauber-Sudarshan P representation will exhibit regions of negative density. Characterising the full
phonon number distribution function P (n) is not necessary to verify the type of non-classicality exhibited by these vibrational
modes. Modulations of adjacent phonon number occupation as quantified by negative Bn = (n+ 1)P (n−1)P (n+ 1)−nP (n)2,
a criteria introduced by Klyshko48, guarantees negative regions of a quasi-probability distribution and is a potentially an
experimentally accessible quantity. The non-classicality indicated by sub-Poissonian statistics is confirmed by negative B1 =
2P (0)P (2)−P (1)2. This arises from selective population of the P (1) level of the relative displacement vibrational mode. Here
we present the Klyshko criterion B1 for (a) λ = 0 cm−1,(b) λ = 6 cm−1, (c) λ = 20 cm−1 and (d) λ = 110 cm−1. Shaded
regions denote times of non-classicality.
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Supplementary Figure S3. Damping of vibrational modes. In the main text the quantized vibrational modes are
treated as undamped because the timescale of their relaxation (∼ 1 ps) is long with respect the timescale of evolution of
the electronic system τ . Here we damp vibrational modes by coupling them to a Markovian bath to demonstrate that our
results and conclusions remain unchanged. The dissipator appearing in the hierarchical expansion is D(%) =

P
i γi(N̄ +

1)
“
bi%b

†
i − 1

2

˘
b†b, %

¯”
+ γiN̄

“
b†i%bi − 1

2

˘
bb†, %

¯”
, where N̄ = (eβω − 1)−1 is the mean thermal occupation of the mode. This

causes an otherwise isolated mode to relax towards the thermal state %th
vib =

P
n Pth(n) |n〉 〈n|, (Pth(n) = (1− e−βω)e−βωn) on

a time-scale γ−1. (a) The evolution of ρY Y (t) and (b) the Mandel parameter Q(t) when the vibrational mode is damped with
strength γ = (1 ps)−1 for λ = 6 cm−1. Shaded region denotes times of non-classicality. These should be compared with Fig.
4a and Fig. 5a in the main text. Other figures not shown here are also comparable for t <1ps. (c) shows the time integrated
averages as a function of reorganization energy which compares with Fig. 6 of the main text.
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Supplementary Figure S4. Numerical convergence. A sufficient number of tiers of the hierarchy are needed to produce
converged dynamics. Here we used N = 11 and found that the maximum differences in density matrix elements between N = 11
and 12 are at most ∼ 10−5 and generally substantially less. The Markovian truncation scheme employed in the hierarchical
expansion of exciton-vibration dynamics negates the need for low temperature correction terms (k > 0) for βΩc < 1 (for the
studied systems βΩc ≤ 0.47). Here present results in PE545 with demonstrate convergence with respect to both N and K. (a)
Maximum differences in the system density matrix for the 1 ps time interval considered against reorganization energy λ, (b)
ρY Y (t) with (solid) and without (dashed) vibrational mode for λ = 100 cm−1 and (c), the Mandel Q of the vibrational mode.
Shaded regions denote times of non-classicality. Red squares are results with a single temperature correction term included
(K = 1).
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Supplementary Note 1: Hierarchical expansion of exciton-vibration dynamics

Here we provide details of the model for a system consisting of N electronic degrees of freedom each interacting with
a quantized vibrational mode and the method used to accurately calculate the dynamics of these exciton-vibration
systems. The system Hamiltonian HS = Hex ⊗ 1vib + 1ex ⊗Hvib +Hex-vib, is defined by

Hex =
N∑
i=1

εiσ
+
i σ
−
i +

N∑
i,j≤i

Vij(σ+
i σ
−
j + σ+

j σ
−
i ) , (S1)

Hvib =
N∑
i=1

ωivibb
†
i bi (S2)

and

Hex-vib =
∑
i

giσ
+
i σ
−
i ⊗ (b†i + bi) . (S3)

Here, the operators σ±i create/annihilate electronic excitations at site i, while b†i (bi) create (annihilate) phonons
associated with the vibrational mode of site i. εi denotes the excitation energies and Vij the strength of interactions
between sites. ωivib is the frequency of the vibrational mode at site i and gi =

√
Siω

i
vib the coupling of the mode to its

site. Si is the Huang-Rhys factor or mean number of phonons in the ‘polaron cloud’ formed when the mode is fully
displaced. The the high energy modes considered here, we expand the quantized vibrational modes of the system in
the basis of single phonon (Fock) states (e.g. bi =

∑M
n (n+ 1)1/2 |n〉 〈n+ 1|) truncating at M phonons. This system

is then coupled to a continuum of bosonic modes (the thermal background) HB =
∑

k ωkb
†
kbk, with an interaction

HI =
∑
k

∑
i

gk,i(σ+
i σ
−
i ⊗ 1vib)(b†k + bk) , (S4)

such that a mode with frequency ωk is linearly coupled to the electronic excitation at site i with a strength gk,i

as specified by a spectral density Ji(ω) = π
∑

k |gk,i|2δ(ω − ωk). We assume the bath is spatially uncorrelated and
identical for each site.

An infinite hierarchy of coupled differential equations68–70 is used to express the dynamics of the exciton-vibration
system density matrix ρS(t). These read as,

∂tρ̃n(t) = −i/~[HS, ρ̃n(t)] +D(ρ̃n(t))−
N∑
i=1

K∑
k=0

nikvikρ̃n(t)

−i
N∑
i=1

( ∞∑
k=1

cik
νik
−

K∑
k=1

cik
νik

)
[Qi, [Qi, ρ̃n(t)]]

− i
N∑
i=1

K∑
k=0

√
(nik + 1)|cik|

[
Qi, ρ̃n

+
ik

]
− i

N∑
i=1

K∑
k=0

√
nik/|cik|

(
cikQiρ̃n

−
ik
− c∗ik ρ̃n

−
ik
Qi

)
. (S5)

for the case of a Drude spectral density and in a rescaled formulation70 which admits their efficient adaptive time-step
numerical integration. Operators ρ̃n are indexed by the multi-index n which has entries nik and n =

∑
ik nik. n±

ik is
n with entry njk → njk±1. The reduced density matrix of the system ρS is given by the operator ρ̃0. The coefficients
νik and cik are the Matsubara frequencies and coefficients appearing in the (truncated) exponential decomposition∑K
k=0 cike

−νikt of the bath correlation function applied in ref. 69. In the above terms k > K are truncated with a
Markovian approximation scheme69. This results in accurate dynamics for K = 0 at high temperatures (βΩc < 1). In
the present exciton-vibration case the system-bath coupling operator takes the form Qi = σ+

i σ
−
i ⊗1vib. The dissipator

D(ρ̃n(t)) can phenomenologically describe other processes such as damping of the vibrational modes.
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Supplementary Note 2: Non-classicality Quasi-probabilities for quantized vibrations

The non-classicality of a quantum state is unambiguously demonstrated by negativities in its description as a
quasi-probability distribution. Here we calculate a regularized version of the P -representation

Pw(α) =
1
π2

∫
d2ξ eαξ

∗−α∗ξχ(ξ)Ωw(ξ) , (S6)

where χ(ξ) is the characteristic function 〈eξb†−ξ∗b〉e|ξ|2/2 of the state which is reconstructed from elements of the
density matrix in the truncated Fock basis 〈m|%vib |n〉. The non-classicality filter Ωw(ξ) must satisfy the following
conditions39:

C1: Ωw(ξ)e|ξ|
2/2 is integrable for all positive w.

C2: Ωw(ξ) has non-negative Fourier transform.

C3: Ωw(0) = 1 and limw→∞ = 1 for all ξ.

Consequently, any negativities displayed by the regularized Pw(α) with finite width imply the negativity of Pw→∞(α)
(the usual P -representation) and therefore that the state is non-classical. We employ a simple a two-dimensional
triangular filter, Ωw(ξ′ + iξ′′) = tri(ξ′/w)tri(ξ′′/w) with tri(x) = 1− |x| for |x| < 1 and tri(x) = 0 otherwise. For any
given non-classicality filter Ωw(ξ) and filter width w, the regularized P -representation has the form

Pw(α) =
∑
m,n

〈m|%vib |n〉
(

1
π2

∫
d2ξ eαξ

∗−α∗ξDnm(ξ)e|ξ|
2/2Ωw(ξ)

)
, (S7)

with elements of the displacement operator in the Fock basis Dnm(ξ) = 〈n|eξb†−ξ∗b |m〉 given by

Dmn(α) =


√

n!
m! (α)m−ne−|α|

2/2Lm−nn (|α|2) m ≥ n√
m!
n! (−α∗)n−me−|α|2/2Ln−mm (|α|2) n ≥ m ,

(S8)

where Lmn (x) are the generalized Laguerre polynomials.


