UCL Electronic and Electrical Engineering

a.seeds@ucl.ac.uk http://www.ee.ucl.ac.uk

UCL Electronic and Electrical Engineering: Profile

A. J. Seeds

Information

- Information Sensing
- Information Processing
- Information Transmission
- Information **Output**

Including the Energy and Manufacturing technologies to make this possible

â |

- **UCL**
- **38 Academic Staff**, including 6 Royal Society/Royal Academy of Engineering/EPSRC Fellowship Holders
- 52 Research and Technical Staff
- 10.4 FTE Administrative Staff
- 538 Students
 - 340 Undergraduate (Intake 110 AAA min. AAA* ave.)
 - 80 MSc
 - 120 Research (MRes/PhD/EngD)

UCL

-Total Income £14.6m (15% of Faculty total)

- -Teaching £8.6m
- -Research £5.2m (Direct £4m, Indirect £1.2m)
- -Other £772k

-Expenditure £9.4m

-Staff £5.2m -Operating expenses £4.2m

-Contribution £5.2m (19% of Faculty total)

-3 EPSRC Programme Grants

- UNLocking the capacity of Optical Communications (UNLOC)- £4.8 m (PI P. Bayvel)
- Nano-electronic Based Quantum Physics- £6.6 m (PI M. Pepper)
- Coherent TeraHertz Systems (COTS)- £6.8 m (PI A. J. Seeds)
- -CDT in Photonic Systems Development- £7.1 m (PI A. J. Seeds)
- -National Dark Fibre Infrastructure Service- £2.5 m (PI A. J. Seeds)
- Other current Grants/Contracts total £15.1 m

£38.1 m of awarded Grants/Contracts (> £1 m/acad.)

Challenges

Space

- Advanced Interconnect Backplanes for Cloud Computing and Data Centres
- Passive backplane into which plugs and unplugs: Blade servers, Hard disc drive cards, Multiway switch fabrics
 Bottleneck at the backplane
- Challenge to develop low cost high speed scalable interconnect technology compatible with Printed Circuit Board design and fabrication
- Challenge to develop a low cost passively alignable pluggable optical connector

Polymer waveguides laminated in and on PCBs

Source: Exxelis Ltd

Source: Fraunhofer IZM

Source: UCL/Exxelis

Source: UCL/Exxelis

Source: Heriot Watt

8.0kV

w D 2 5

Source: Varioprint AG

Source: IBM Zürich

Photolithography, Laser Direct Write, Laser Ablation, Ink Jet Printing and Embossing Fabrication

60.0µm

×300

Source: Exxelis

Source: Heriot Watt

- Aim to establish waveguide design rules and to incorporate them into PCB layout software
- Design rules established by comparing modelled with experimental results
- Modelling: Wide angle Beam Propagation Method, Raytracing, Overlap integrals of Mode expansions
- Experimental measurements: loss, crosstalk, misalignment tolerance, near field and far field output light patterns, sidewall roughness and end facet roughness

Waveguide Layout Design Rules

Misalignment and Crosstalk Integration Design Rules

Waveguide Side and End Roughness Design Rules

- RMS side wall roughness: 9 nm to 74 nm
- RMS polished end facet roughness: 26 nm to 192 nm.

30

20

10 y(µm)

0

-10

-20

-30

-50

40 30

20

10

-10 -20 -30

y(µm) 0

End Facet roughness causes optical input and output coupling loss

40 20 20 y (µm) y (µm) 0.2 0 -0.4 -20 -20 -0.6 -40 -40 -20 -20 20 20 x (µm) x (µm

Sidewall roughness couples bound modes to each other and to radiation modes

 $x(\mu m)$

 $x(\mu m)$

4 x 4 Duplex Waveguide Interconnection Fabric

Our waveguide design rules were incorporated into Cadence PCB layout software and used to design the most complex optical and electronic multilayer PCB

Low Cost Passive Precise connector alignment

x y rate x ·

MT-holes

daughtercard

4 PD arrav

4 VCSEL array

MT-pin

Repeatable alignment accuracy socket to waveguides

- X ±3 microns
- $Y \pm 4$ microns
- $Z \pm 10$ microns

80 Gb/s Aggregate Connector Design and Performance

xyratex.

Rack based optical backplane system performance

Test data measured on 8 waveguides

- Data rate: 10.3 Gb/s
- □ Typical Pk to Pk jitter: 26 ps

BERT on all waveguides

- Measured by UCL and Xyratex on all waveguides
- □ BER less than 10⁻¹² measured

