UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Impact of epicatechin gallate on the structural integrity of the PBP2/PBP2a complex in methicillin resistant Staphylococcus aureus

Paulin, S; (2014) Impact of epicatechin gallate on the structural integrity of the PBP2/PBP2a complex in methicillin resistant Staphylococcus aureus. Doctoral thesis , UCL (University College London). Green open access

[thumbnail of Sarah Paulin_26.6.14 final-corrected.pdf]
Preview
Text
Sarah Paulin_26.6.14 final-corrected.pdf

Download (5MB) | Preview

Abstract

Introduction: The selective pressure imposed by the misuse and overuse of antibiotics has led to the emergence and dissemination of methicillin resistant Staphylococcus aureus (MRSA), forcing a re-evaluation of therapeutic approaches to the treatment of MRSA infections. Epicatechin gallate (ECg), a constituent of the tea plant Camellia sinensis, has the capacity to abrogate the resistance of MRSA to β-lactam antibiotics and may be useful as an adjunct to conventional chemotherapy. Current evidence suggests that ECg sensitises resistant strains to β-lactam agents by disruption of the penicillin binding protein (PBP) complex PBP2/PBP2a at the septal site of cell division following its intercalation into the cytoplasmic membrane (CM) bilayer. Methods: Styrene maleic acid lipid co-polymer (SMALP) was used to solubilise and extract PBP2/PBP2a membrane complexes from the CM of EMRSA-16 and ECg-exposed cells. Cell walls were partially digested and membrane proteins excised and solubilised with hydrolysed styrene maleic acid (SMA). SMALP particles were visualised by TEM and size distribution determined by dynamic light scattering. Membrane protein complexes were cross-linked within SMALPs, protein complexes recovered by co-immunoprecipitation and the constituents determined by Western blotting and flow cytometry. Results: PBP2/PBP2a complexes were identified in both ECg-exposed and control EMRSA-16 cells when SMALPs were pulled down with anti-PBP2 and anti-PBP2a antibodies. Fewer complexes were recovered from ECg exposed cells. Co-immunoprecipitation of SMALPs with antibody against the division scaffold protein FtsZ led to the identification of FtsZ/PBP2/PBP2a complexes. ECg displaced PBP2a from this complex. The PBP2/PBP4 complex was also identified, however there was no difference observed following ECg exposure. Conclusion: Intercalation of ECg into the MRSA phospholipid palisade led to partial disruption of PBP2a from PBP2/PBP2a and FtsZ/PBP2/PBP2a complexes. The data suggest that ECg-mediated conversion of MRSA to β-lactam susceptibility may in part be related to loss of functional integrity of the cellular replication machinery. The therapeutic approach with the use of antibiotic resistance modifying agent, such as ECg, in combination with a previously ineffective β-lactam antibiotic, presents a novel therapy to combat antibiotic resistance in MRSA.

Type: Thesis (Doctoral)
Title: Impact of epicatechin gallate on the structural integrity of the PBP2/PBP2a complex in methicillin resistant Staphylococcus aureus
Open access status: An open access version is available from UCL Discovery
Language: English
Keywords: MRSA, Antibiotic Resistance, PBPs, catechins
UCL classification: UCL > Provost and Vice Provost Offices
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > UCL School of Pharmacy
URI: https://discovery.ucl.ac.uk/id/eprint/1434251
Downloads since deposit
287Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item