
Around the André-Oort conjecture
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Abstract

In this thesis we study the André-Oort conjecture, which is a state-

ment regarding subvarieties of Shimura varieties that contain a Zariski

dense set of special points. In particular, we investigate two different

strategies for proving the conjecture. The first is the so-called Pila-

Zannier strategy, which is a striking application of the Pila-Wilkie

counting theorem from o-minimality and has led to a number of un-

conditional proofs in special cases. We present one such proof here,

for Hilbert modular surfaces, and also explain how the Pila-Zannier

strategy generalises to all Shimura varieties. We subsequently exhibit

a result on torsion in the class groups of algebraic tori, obtained from

an investigation into some of the relevant arithmetic.

The second strategy originated in the work of Edixhoven and ul-

timately led to a proof of the full conjecture under the generalised

Riemann hypothesis by Klingler, Ullmo and Yafaev. However, this

proof diverged from the original strategy of Edixhoven, which used

only tools from arithmetic geometry, in that it also relied on ergodic

theory. Here we explain how to eliminate ergodic theory from the

proof, first in a special case and then in general, by introducing a

new lower bound for the degrees of special subvarieties. First, how-

ever, we give an introduction to the theory of Shimura varieties for

the purposes of studying this subject.
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1 Introduction

The focus of this thesis is the following conjecture:

Conjecture 1.1. (André-Oort) Let S be a Shimura variety and let Σ be a

set of special points in S. Every irreducible component of the Zariski closure

of ∪s∈Σs is a special subvariety of S.

Shimura varieties are a distinguished class of algebraic varieties that

parametrise important objects from linear algebra called Hodge structures.

Often these Hodge structures correspond to families of Abelian varieties.

Additional structure on a Shimura variety S arises through the existence

of certain algebraic correspondences on S, or subvarieties of S × S, called

Hecke correspondences. We can think of these as one-to-many maps

T : S → S.

We endow S with a set of so-called special subvarieties, defined as the set of

all connected components of Shimura subvarieties and the irreducible com-

ponents of their images under Hecke correspondences. This is analogous to

the case of Abelian varieties (resp. algebraic tori), where special subvarieties

are the translates of Abelian subvarieties (resp. subtori) by torsion points.

A key property of special subvarieties is that connected components of their

intersections are themselves special subvarieties. Thus, any subvariety Y

of S is contained in a smallest special subvariety. If this happens to be a

connected component of S itself, then we say that Y is Hodge generic in S.

We refer to the special subvarieties of dimension zero as special points.

Special subvarieties contain a Zariski (in fact, analytically) dense set of spe-
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cial points. The André-Oort conjecture predicts that this property charac-

terises special subvarieties.

Our investigations are inspired by several different approaches to Conjec-

ture 1.1. In [KY] and [UYa], Klingler, Ullmo and Yafaev combine ergodic

theory with tools from arithmetic geometry to prove André-Oort under the

generalised Riemann hypothesis (GRH). On the other hand, in [Pil11], Pila

gives an unconditional proof via o-minimality of the conjecture for a product

of modular curves.

In this thesis, we explain how to remove the complicated theorems of

ergodic theory from the proof of Klingler, Ullmo and Yafaev, thus yielding a

new proof of the André-Oort conjecture under the GRH using only arithmetic

geometry. In order to achieve this, we present a new lower bound for the

degrees of special subvarieties. We test our strategy on a product of modular

curves.

Firstly, however, we explore the strategy employed by Pila, and eventually

obtain an unconditional proof of André-Oort for Hilbert modular surfaces

(this is a joint work with A. Yafaev). We also obtain results under the GRH

on the size of n-torsion in the class of group of an algebraic torus, which

originated from investigations into Galois orbits of special points. These

play a central role in both of the aforementioned approaches.

1.1 History

We appeal to [Pin05a]. Recall the following theorem:

Theorem 1.2. (Mordell-Weil) For any Abelian variety A over a number

field K, the group of rational points A(K) is finitely generated.
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Mordell also made the following conjecture in the case K = Q, famously

proved by Faltings in 1983:

Conjecture 1.3. (Mordell) For any irreducible smooth projective algebraic

curve Z of genus at least 2 over a number field K, the set of rational points

Z(K) is finite.

Another way of interpreting this conjecture is in terms of Abelian va-

rieties: if Z(K) is empty then there is nothing to prove. Otherwise, we

can embed Z into its Jacobian variety J such that Z(K) = J(K) ∩ Z. By

the Mordell-Weil theorem, J(K) is a finitely generated group. Thus, we

have motivated a generalisation: consider an Abelian variety A over a field

of characteristic zero; for any finitely generated subgroup Λ ⊂ A and any

irreducible curve Z ⊂ A of genus at least 2, is the intersection Z ∩ Λ finite?

This point of view signalled a further line of enquiry. In their efforts to

prove the Mordell conjecture, Manin and Mumford both raised the following

question:

Conjecture 1.4. (Manin-Mumford) Let A be an Abelian variety over C

and let Ator denote its subgroup of all torsion points. Let Z ⊂ A be an

irreducible closed algebraic subvariety such that Z ∩ Ator is Zariski dense in

Z. Then Z is a translate of an Abelian subvariety of A by a torsion point.

Now let Λ0 be a finitely generated subgroup of A. Define its division

group to be

Λ := {a ∈ A | ∃n ∈ N : na ∈ Λ0}.

Lang combined the previous conjectures into the following:
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Conjecture 1.5. (Mordell-Lang) Let A be an Abelian variety over C and

Λ the division group of a finitely generated subgroup of A. Let Z ⊂ A be an

irreducible closed algebraic subvariety such that Z ∩Λ is Zariski dense in Z.

Then Z is a translate of an Abelian subvariety of A.

Let us briefly recall the definition of a Shimura variety from [Edi01]. Let

S denote ResC/RGm,C, the algebraic group over R obtained by restriction

of scalars from C to R of the multiplicative group. A Shimura datum is a

pair (G,X), where G is a connected reductive affine algebraic group over

Q and X is a G(R)-conjugacy class in the set of morphisms of algebraic

groups Hom(S, GR), satisfying the three conditions of Deligne [Del77]. For a

Shimura datum (G,X) and a compact open subgroup K ⊂ G(Af ), we denote

by ShK(G,X)(C) the complex analytic variety G(Q)\(X×G(Af ))/K, which

by [BB66] naturally has the structure of a quasi-projective algebraic variety

over C, denoted ShK(G,X)C. The projective limit Sh(G,X)C, over all K, of

the ShK(G,X)C is a scheme (not of finite type) over C on which G(Af ) acts

continuously. A morphism of Shimura data from (G1, X1) to (G2, X2) is a

morphism G1 → G2 mapping X1 to X2 and induces a morphism

Sh(G1, X1)C → Sh(G2, X2)C.

Given a Shimura datum (G,X) and a compact open subgroup K ⊂

G(Af ), the special subvarieties of ShK(G,X)C are the irreducible compo-

nents of the images of the maps

Sh(G′, X ′)C → Sh(G,X)C
·g−→ Sh(G,X)C → ShK(G,X)C,

where g ∈ G(Af ) and (G′, X ′) is a Shimura datum such that there exists a
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morphism (G′, X ′) → (G,X). The special points are the zero-dimensional

special subvarieties.

Therefore, the André-Oort conjecture is the Manin-Mumford conjecture

written in the context of Shimura varieties. Special points take the place

of torsion points and irreducible components of Shimura subvarieties and of

their images under Hecke correspondences take the place of Abelian subva-

rieties translated by torsion points. The group structure of torsion points

is replaced by an invariance under all Hecke correspondences, whereas both

types of points carry an associated Galois action and form dense subsets

for the strong topology. These analogies prompted André [And89] and Oort

[Oor97] to independently pose special cases of the conjecture named for them

today.

Far reaching generalisations of the two conjectures have led to several new

questions in the context of mixed Shimura varieties, encapsulating André-

Oort, Manin-Mumford, Mordell-Lang and others. Such problems are widely

referred to as the Zilber-Pink conjectures (see, for example, [Pin05a], [Pin05b]

and [Zil02]).

1.2 Literature review

The André-Oort conjecture is named for Yves André and Frans Oort, both

having proposed the conjecture in lesser generality. In 1989, André [And89]

postulated that any curve in an arbitrary Shimura variety containing in-

finitely many special points was special, whereas, in 1994, Oort [Oor97] for-

mulated the conjecture as we know it today for the moduli spaces of princi-

pally polarised Abelian varieties.
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Initial progress on Oort’s question was made by Moonen [Moo98b], who

answered it affirmatively for any set of special points and a prime p such that

each point has an ordinary reduction mod p of which it is the canonical lift.

Yafaev [Yaf05] would later find a suitable generalisation of this criterion for

an arbitrary Shimura variety and prove the corresponding conjecture in that

case.

In 1998, André [And98] proved his conjecture for a product of two mod-

ular curves. Edixhoven [Edi98] obtained the same result under the GRH,

but with a method that he was later able to generalise to the case of an

arbitrary product of modular curves [Edi05]. Edixhoven [Edi01] also proved

the conjecture under the GRH for Hilbert modular surfaces.

Edixhoven and Yafaev [EY03] settled unconditionally the case of a curve

in an arbitrary Shimura variety containing an infinite set of special points

whose corresponding Q-Hodge structures lie in one isomorphism class. This

result was motivated by its applications to transcendence theory and, more

specifically, to the algebraicity of values of hypergeometric functions at alge-

braic numbers (see [CW01] and [Wol88]).

Yafaev [Yaf01] generalised Edixhoven’s strategy to the product of two

Shimura curves and later obtained under the GRH lower bounds for Galois

orbits of special points, allowing him to give a conditional proof of André’s

original conjecture [Yaf06]. Meanwhile, Clozel and Ullmo [CU05] gave an

unconditional proof of the conjecture for sets of strongly special subvarieties

using equidistribution. Collaborations between Ullmo and Yafaev [UYa] and

Klingler and Yafaev [KY] culminated in a proof of the conjecture in full gen-

erality under the GRH, which combined equidistribution with the geometric
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arguments first introduced by Edixhoven.

Hope of an unconditional proof of the conjecture has arisen via a new

strategy of Pila-Zannier [PZ08], implementing Pila’s generalisation [Pil09b]

of the so-called Pila-Wilkie counting theorem [PW06], which provides strong

bounds for the number of points of bounded degree up to a given height on

sets definable in o-minimal structures. Pila has given unconditional proofs

of the conjecture for a product of two [Pil09a] and, subsequently, arbitrarily

many [Pil11] modular curves. With Yafaev [DY11], we implemented this

method to give an unconditional proof in the case of Hilbert modular surfaces.

At this point, there were several obstructions to the development of a

proof via o-minimality in full generality. The principal obstruction, which

remains a problem today, is the lack of unconditional lower bounds for Ga-

lois orbits of special points. However, Tsimerman [Tsi12] recently obtained

unconditional bounds for the moduli spaces of principally polarised Abelian

varieties of dimension at most 6. Consequently, Pila and Tsimerman [PT13]

gave a proof of the conjecture for the moduli space of Abelian surfaces, also

exhibiting special cases of the remaining obstructions. Namely, in the case

of the moduli spaces of principally polarised Abelian varieties, they gave

upper bounds for the heights of pre-special points in fundamental domains

and, for the moduli space of Abelian surfaces they proved the so-called Ax-

Lindemann-Weierstrass criterion. Ullmo and Yafaev [UY14] later gave a

proof of this criterion in the co-compact case, which was followed by a proof

due to Pila and Tsimerman [PT14] for the moduli spaces of principally po-

larised Abelian varieties and, finally, by a proof in full generality due to Klin-

gler, Ullmo and Yafaev [KUY13]. Ullmo [Ull13] had previously explained how
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the result of Pila and Tsimerman would prove the conjecture for products of

the moduli space of principally polarised Abelian varieties of dimension at

most 6.

Finally, it also worth mentioning a few related results. Firstly, Kühne

[Küh12] has obtained an effective statement of the André-Oort conjecture

for a curve in C2. Secondly, Habegger and Pila [HP12] and Orr [Orr13] have

both implemented techniques from o-minimality to prove certain cases of the

aforementioned conjectures of Pink.

15



2 Shimura varieties

Firstly, we provide an introduction to the theory of Shimura varieties, as

formulated by Deligne in his foundational articles [Del71] and [Del77]. This

is not intended, by any means, to be a full treatment of the topic but rather a

preparatory guide. We refer the reader to [Mil04] for a comprehensive account

of Shimura varieties and for further details regarding the topics introduced

here.

We are primarily interested in the connected components of Shimura va-

rieties. These initially arise as quotients Γ\D, where D is a certain type

of complex manifold called a Hermitian symmetric domain, and Γ is a con-

gruence subgroup, acting via holomorphic automorphisms. The prototypical

example is the case of the upper half-plane

D = H := {z ∈ C : =(z) > 0}

and Γ = SL2(Z), where any element of SL2(R) acts on H by a b

c d

 · z =
az + b

cz + d
.

2.1 Hermitian symmetric domains

We refer the reader to [Mil04], §1 for a more detailed introduction to Her-

mitian symmetric domains. Unfortunately, the definition is not particularly

enlightening:

Definition 2.1. A Hermitian symmetric domain is a connected complex

manifold D such that
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• D is equipped with a Hermitian metric.

• The group Aut(D) of holomorphic isometries acts transitively on D.

• There exists a point τ ∈ D and an involution ϕ ∈ Aut(D) such that τ

is an isolated fixed point of ϕ.

• D is of non-compact type.

In fact, by [Mil04], Lemma 1.5, the neutral component Aut(D)+ acts

transitively on D and, by [Mil04], Proposition 1.6, it coincides with Hol(D)+,

where Hol(D) denotes the group of all holomorphic automorphisms. Note

that, given the transitivity of the Aut(D) action, the third condition is true

for all points.

Returning to our earlier example,

Hol(H) = SL2(R)/{±id}

and, since SL2(R) is connected, it consists only of isometries. The element

ϕ :=

 0 1

−1 0

 ∈ SL2(R)

fixes only i ∈ H, whereas ϕ2 = −id. Hence, the image of ϕ in Hol(H) is an

involution of H with an isolated fixed point.

However, from this definition follows a key property of Hermitian sym-

metric domains. By [Mil04], Theorem 1.9, if we denote by U(R) the circle

group {z ∈ C : |z| = 1}, then, for each point τ ∈ D, there exists a unique

homomorphism

uτ : U(R)→ Hol(D)+
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such that, for all z ∈ U(R),

• uτ (z)(τ) = τ .

• uτ (z) acts as multiplication by z on the tangent plane of D at τ .

For example, consider the point i ∈ H and let

h : U(R)→ SL2(R) : z = a+ ib 7→

 a b

−b a

 .

Then, for all z ∈ U(R), h(z) fixes i and

d

dz

(
az + b

−bz + a

)∣∣∣∣
i

=
a2 + b2

(a− bi)2
=
z

z̄
.

Therefore, if we define

u : U(R)→ SL2(R)/{±id} : z 7→ h(
√

z) mod± id,

which is well-defined since h(−1) = −id, then u(z) acts on the tangent plane

of H at i as multiplication by z.

Furthermore, note that, if g ∈ Hol(D)+ and τ ∈ D, the uniqueness of ugτ

implies that it must be the conjugate

guτg
−1 : z 7→ guτ (z)g−1.

Therefore, since Hol(D)+ acts transitively on D, if we fix a point τ0 ∈ D, we

have a Hol(D)+-equivariant bijection between D and the Hol(D)+-conjugacy

class of uτ0 .
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2.2 Conjugacy classes

By [Mil04], Proposition 1.7, for any Hermitian symmetric domain D, there

exists a unique semisimple algebraic group G over R of adjoint type such

that

G(R)+ = Hol(D)+.

By a linear algebraic group G over R, we simply mean a group that can be

defined as a subgroup of GLn(R) by real polynomials in the matrix coeffi-

cients. For example, U(R) is an algebraic group over R whose elements may

be realised as those  a b

c d

 ∈ SL2(R)

such that a = d, b = −c and, thus, a2+b2 = 1. However, since U(R) is defined

by polynomials, we can think of U(R) as the real points of what is usually

considered the algebraic group, which we denote U. Then, for any R-algebra

A, U(A) is simply the group of solutions in A to the above polynomials.

By a semisimple algebraic group we mean a connected (for the Zariski

topology) linear algebraic group that is isogenous to a product of almost-

simple subgroups. By a simple algebraic group we mean a connected linear

algebraic group that is not commutative and has no proper normal algebraic

subgroups other than the identity. By an almost-simple subgroup we mean a

subgroup that is a simple algebraic group modulo a finite centre. By adjoint

we are referring to a group with trivial centre and, for an algebraic group G,

we write Gad for G modulo its centre.
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As shown in [Mil04], §1, every representation

U(R)→ GLn(R)

is algebraic i.e. the image is given by polynomials in the matrix entries. In

particular, for any τ ∈ D, we may consider the homomorphism

uτ : U(R)→ G(R)+

as an algebraic morphism uτ : U→ G, yielding a morphism

uτ : U(A)→ G(A)

for any R-algebra A.

The group U is connected, commutative and consists entirely of semisim-

ple elements. We refer to an algebraic group of this sort as a torus and, for

any representation

U→ GLn,

the image of U(R) in GLn(C) can be simultaneously diagonalised by a single

element. Furthermore, the eigenvalues are given by homomorphisms UC →

Gm called characters, where we write UC for U considered as an algebraic

group over C and Gm for the algebraic group such that, for any C-algebra

A, Gm(A) = A∗. The characters are algebraic since, by definition, they are

one-dimensional representations and, in this case, each character is of the

form z 7→ zn, where n ∈ Z.

By [Mil04], Theorem 1.21, the homomorphism uτ always satisfies the

following three properties:
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• Only the characters z 7→ 1, z 7→ z and z 7→ z−1 occur in the represen-

tation of U(R) on the Lie algebra gC of GC.

• Conjugation by uτ (−1) is a Cartan involution of G.

• uτ (−1) maps to a non-trivial element in every simple factor of G.

The Lie algebra of GC is the tangent plane of G(C) at the identity. One

definition is the kernel of the map

G(C[ε])→ G(C)

induced by ε 7→ 0, where ε2 = 1. Then G(C) acts on gC by conjugation. For

the definition of a Cartan involution see [Mil04], §1.

On the other hand, if G is any semisimple algebraic group over R of

adjoint type and u : U → G is a homomorphism satisfying the above three

properties, then the G(R)+-conjugacy class of u naturally has the structure

of a Hermitian symmetric domain D, for which

G(R)+ = Hol(D)+

and u(−1) is the involution associated to u when regarded as a point of D.

2.3 The Deligne torus

Let S denote the real algebraic group such that S(R) = C∗. This is a torus,

usually referred to as the Deligne torus, and we have a short exact sequence

1→ Gm
w−→ S→ U→ 1,
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which on real points corresponds to

1→ R∗ r 7→r−1

−−−−→ C∗ z 7→z/z̄−−−−→ U(R)→ 1.

Therefore, any homomorphism u : U→ G yields a homomorphism

h : S→ G,

defined by h(z) = u(z/z̄). Furthermore, U(R) will act on gC via the char-

acters z 7→ 1, z 7→ z and z 7→ z−1 if and only if S(R) acts on gC via the

characters z 7→ 1, z 7→ z/z̄ and z 7→ z̄/z.

Conversely, let h : S → G be a homomorphism such that S acts on gC

via the characters z 7→ 1, z 7→ z/z̄ and z 7→ z̄/z. Then w(Gm(R)) acts

trivially on gC, which implies that h is trivial on w(Gm(R)), since the adjoint

representation of G on g is faithful. Thus, h arises from a homomorphism

u : U→ G.

Therefore, to give a G(R)+-conjugacy class D of homomorphisms u :

U→ G satisfying the above three properties is the same as to give a G(R)+-

conjugacy class X+ of homomorphisms h : S→ G satisfying the following:

• Only the characters z 7→ 1, z 7→ z/z̄ and z 7→ z̄/z occur in the repre-

sentation of S(R) on gC.

• Conjugation by h(i) constitutes a Cartan involution of G.

• The element h(i) maps to a non-trivial element in every simple factor

of G.
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2.4 Hodge structures

Therefore, the question should be why are we interested in such conjugacy

classes of morphisms h : S→ G? To understand this, we need the definiton

of a Hodge structure. For further details, we refer the reader to [Mil04], §2.

For a real vector space V , we define complex conjugation on

V (C) := V ⊗R C

by v ⊗ z := v ⊗ z. A Hodge decomposition of V is a decomposition

V (C) =
⊕

(p,q)∈Z×Z

V p,q

such that V p,q = V q,p. A Hodge structure is a real vector space V with a

Hodge decomposition. The set of pairs (p, q) such that V p,q 6= 0 is called

the type of the Hodge structure and we refer to a Hodge structure of type

(−1, 0), (0,−1) as a complex structure.

For each n ∈ Z, ⊕
p+q=n

V p,q

is stable under complex conjugation and equal to Vn(C) for some real sub-

space Vn of V . The decomposition V = ⊕nVn is called the weight decompo-

sition of V . If V = Vn, then V is said to have weight n. The Hodge filtration

associated with a Hodge structure V of weight n is

F := {· · · ⊃ F p ⊃ F p+1 ⊃ · · · }, F p := ⊕r≥pV r,n−r.

A Z-(resp. Q-)Hodge structure is a free Z-module (resp. Q-vector space)

V of finite rank (resp. dimension) equipped with a Hodge decomposition of

V (R) := V ⊗ R
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such that the weight decomposition is defined over Q.

We can identify S with a closed subgroup of GL2 as follows: for any

R-algebra A, we realise S(A) as those matrices of the form a b

−b a

 ∈ GL2(A).

Diagonalising, SC is isomorphic to G2
m, with complex conjugation on S(C)

corresponding to (z1, z2) 7→ (z2, z1). Therefore, the elements of S(R) map to

the elements (z, z), stable under conjugation. More generally, the characters

of SC are the homomorphisms

(z1, z2) 7→ zp1z
q
2,

for any (p, q) ∈ Z× Z, with complex conjugation acting as (p, q) 7→ (q, p).

Consequently, to give a representation of S on a real vector space V is

the same as to give a Z × Z-grading of V (C) such that V p,q = V q,p for all

p and q, which is precisely the definition of a Hodge structure on V . We

thus define morphisms, tensor products and duals of Hodge structures as

morphisms, tensor products and duals of representations of S. We normalise

the relation so that (z1, z2) acts on V p,q as z−p1 z−q2 . A complex structure on a

real vector space V is then precisely a Hodge structure S → GL(V ) coming

from a homomorphism C→ End(V ).

For n ∈ Z and R = Z, Q or R, we let R(n) be the (R-)Hodge structure

V = R, where S acts on V (R) = R by the character (zz)n and, hence,

V (C) = V−n(C).
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This is referred to as a Tate twist. For an (R-)Hodge structure V of weight

n, a Hodge tensor is a multilinear form t : V r → R such that the map

V ⊗ V ⊗ · · · ⊗ V → R(−nr/2)

is a morphism of Hodge structures.

If we denote by C := h(i) the so-called Weil operator, then a polarisation

on V is a Hodge tensor

ψ : V × V → R

such that

ψC : V (R)× V (R)→ R : (x, y) 7→ ψ(x,Cy)

is symmetric and positive definite. A polarisation on an (R-)Hodge structure

V = ⊕nVn is a system (ψn)n of polarisations on the Vn.

2.5 Abelian varieties

Consider an Abelian variety A over C of dimension g. Then A is isomorphic

to a complex torus Cg/Λ, where Λ is the Z-module generated by an R-basis

for Cg. The isomorphism Λ⊗ R ∼= Cg defines a complex structure on Λ⊗ R

and there exists an alternating form

ψ : Λ× Λ→ Z

such that ψR(x,Cy) is symmetric and positive definite and

ψR(Cx,Cy) = ψR(x, y),
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for all x, y ∈ Λ⊗R. In other words, Λ ∼= H1(A,Z) is a Z-Hodge structure of

weight −1 equipped with a polarisation. In fact, by [Mil04], Theorem 6.8, the

functor A 7→ H1(A,Z) is an equivalence from the category of Abelian varieties

over C to the category of polarised Z-hodge structures of type (−1, 0), (0,−1).

Therefore, the answer to the question of the previous section is that one

can study the problem of parametrising Abelian varieties in terms of Hodge

structures.

Consider the case of Abelian varieties of dimension one, otherwise known

as elliptic curves. An elliptic curve over C is the quotient of C by a free

Z-module Λ of rank 2. Two elliptic curves C/Λ and C/Λ′ are isomorphic if

and only if Λ′ = αΛ for some α ∈ C∗. We recall the exposition found in

[Har13].

Often, when considering elliptic curves, we fix C and vary Λ. Instead,

however, we may fix Λ := Z2 and vary the complex structure on Z2⊗R = R2

i.e. we vary the morphism

h : C∗ → GL2(R),

coming from a homomorphism C → M2(R) of R-algebras. Given such a

morphism, we obtain an isomorphism of complex vector spaces ih : R2 → C

defined by

i−1
h (z) = h(z) · i−1

h (1) := h(z) · e0,

where we choose e0 = (1, 0) ∈ R2. The quotient C/ih(Z2) is an elliptic curve.

Therefore, let

h0 : C∗ → GL2(R) : a+ ib 7→

 a b

−b a


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and let h := γh0γ
−1, where

γ =

 x y

w z

 ∈ GL2(R)+.

Note that, for any such h, the standard symplectic form given by

(u, v) 7→ ut

 0 −1

1 0

 v

is a polarisation for the corresponding Z-Hodge structure.

For h0(z), the z-eigenspace in R2 ⊗C is the complex subspace generated

by (−i, 1). The z-eigenspace is its complex conjugate, generated by (i, 1).

Therefore, for h(z), the z-eigenspace is generated by x y

w z

 −i
1

 =

 −xi+ y

−wi+ z


or, equivalently, (τh, 1), where τh := xi + y/wi + z, and the z-eigenspace is

generated by (τh, 1). Note that this latter subspace is precisely the middle

term in the filtration associated to the Z-Hodge structure given by h.

Now, ih extends C-linearly to a map

ih,C : R2 ⊗ C = C ·

 τh

1

⊕ C ·

 τh

1

→ C

and, since it commutes with the action of C on both sides, we deduce that

ih,C is the quotient of R2⊗C by the z-eigenspace. Therefore, since ih(e0) = 1

and ih((0, 1)) = ih(−τhe0 + (τh, 1)) = −τh,

ih(Z2) = Z⊕ Zτh.
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We conclude that C/ih(Z2) varies over all isomorphism classes of elliptic

curves as h varies over the GL2(R)+-conjugacy class of h0. The map h 7→ τh

is a GL2(R)+-equivariant bijection between this conjugacy class and H.

For Abelian varieties of dimension g, the situation is similar. We replace

Z2 by Z2g and fix the standard symplectic form given by

−J :=

 0 −id

id 0

 .

We let

h0 : C∗ → GL2g(R) : a+ bi 7→ a+ bJ,

which factors through the group

GSp2g(R) = {g ∈ GL2g(R) : gtJg = det(g)J}.

Then the GSp2g(R)+-conjugacy class of h0 corresponds to the set of Z-Hodge

structures on Z2g having type (−1, 0), (0,−1) for which J induces a polarisa-

tion. Using the description of the Hodge filtration, as in the case of elliptic

curves, one can identify this set in a GSp2g(R)+-equivariant manner with a

Hermitian symmetric domain

Hg := {Z = X + iY ∈Mg×g(C) : Z = Zt, Y > 0}

called the Siegel upper half-space of genus g.

2.6 The Siegel upper half-space

Having fixed a g ∈ N, we denote the Hodge structure corresponding to a

point τ ∈ Hg by Vτ and we denote the corresponding Hodge filtration by Fτ .
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For any given (p, q) ∈ Z × Z, the dimension d(p, q) of V p,q
τ is constant as τ

varies over Hg and we have a continuous map

τ 7→ [V p,q
τ ] : Hg → Gd(p,q)(V (C)),

from Hg to the complex projective variety of d(p, q)-dimensional subspaces

of V (C).

Furthermore, the subspace dimensions of Fτ are also constant as τ varies

over Hg and, if we denote by Fd(V (C)) the complex projective variety parametris-

ing such filtrations of V (C), then the map

f : τ 7→ [Fτ ] : Hg → Fd(V (C))

is holomorphic. In light of these properties, we refer to the set of Hodge

structures corresponding to the points of Hg as a holomorphic family of

Hodge structures.

Finally, the differential of f at τ is a C-linear map

dfτ : TτHg → T[Fτ ]Fd(V (C))

from the tangent plane of Hg at τ to the tangent plane of Fd(V (C)) at [Fτ ].

By [Mil04], (17), T[Fτ ]Fd(V (C)) is a subset of⊕
p

Hom(F p
τ , V (C)/F p

τ )

but, in this case, the image of dfτ is actually contained in the space⊕
p

Hom(F p
τ , F

p−1
τ /F p

τ )

and we say that this holomorphic family of Hodge structures is a variation

of Hodge structures.
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2.7 Families of Hodge structures

We abstract the above situation as follows: let V be a finite dimensional

R-vector space and let T be a finite set of tensors on V , including a nonde-

generate bilinear form t0. Fix an n ∈ N and let

d : Z× Z→ N

be a symmetric function such that d(p, q) = 0 for almost all (p, q), including

every (p, q) such that p+ q 6= n.

Consider the set S(d, T ) of Hodge structures on V such that, for all

(p, q) ∈ Z× Z,

dimV p,q = d(p, q),

every t ∈ T is a Hodge tensor and t0 is a polarisation. This is naturally a

subspace of ∏
(p,q):d(p,q)6=0

Gd(p,q)(V (C))

and so S(d, T ) can be given the subspace topology and, by [Mil04], Theorem

2.14, (assuming it is non-empty) any connected component has a unique com-

plex structure such that the corresponding set of Hodge structures constitute

a holomorphic family. Furthermore, if such a family is actually a variation

of Hodge structures, then the corresponding connected component S+ has

the structure of a Hermitian symmetric domain. In fact, every Hermitian

symmetric domain is of the form S+ for a suitable V , T and d.
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2.8 The algebraic group

Recall the topological space S(d, T ) from the previous section and let S+

be a connected component. Fix a point h0 ∈ S+ and let G be the smallest

algebraic subgroup of GL(V ) such that

h : S→ GL(V )

factors through G for every h ∈ S+ i.e. the intersection of all subgroups

having this property. As in the proof of [Mil04], Theorem 2.14 (a), for any

g ∈ G(R)+, gh0g
−1 ∈ S+ and, in fact, the map

g 7→ gh0g
−1 : G(R)+ → S+

is surjective. In other words, S+ is the G(R)+-conjugacy class of h0.

2.9 Shimura data

Motivated by our example of Abelian varieties, we want to consider Z-(or

Q)-Hodge structures. This will be achieved by choosing an algebraic group

G defined over Q and embedding this into GL(V ) for some Q-vector space

V . The Z-structure will come from the choice of a lattice in V .

Definition 2.2. A Shimura datum is a pair (G,X), where G is a reductive

group over Q and X is a G(R)-conjugacy class of morphisms h : S → GR

such that, for one (or, equivalently, all) h ∈ X,

• Only the characters z 7→ 1, z 7→ z/z̄ and z 7→ z̄/z occur in the repre-

sentation of S on the Lie algebra gad
C of Gad

C .

• Conjugation by h(i) is a Cartan involution of Gad.
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• For every simple factor H of Gad, the map S→ HR is not trivial.

By a reductive algebraic group we refer to a connected linear algebraic

group with trivial unipotent radical. The unipotent radical of an algebraic

group is the unipotent part of its radical, which is the neutral component

of its maximal normal, solvable subgroup. The semisimple groups are those

algebraic groups with trivial radical. In particular, they are reductive.

Now let (G,X) be a Shimura datum. By the first of the axioms above,

Gm(R) = R∗, which is naturally a subgroup of S(R) = C∗, acts trivially on

gad
C . As the action of G on gad factors through Gad and the action of Gad is

faithful, the image of R∗ in G(R) must belong to the centre. In particular,

the restriction of any h ∈ X to Gm is independent of h and we refer to

its reciprocal w as the weight homomorphism since, for any representation

ρ : GR → GL(V ), ρ ◦ w defines the weight decomposition of the Hodge

structure given by ρ ◦ h on V .

Now let ρ : GR → GL(V ) be a faithful representation. By [Mil04], Propo-

sition 5.9, X has a unique structure of a complex manifold such that the

family of Hodge structures induced on V by ρ ◦ h as h varies over X is

holomorphic. In fact, the first axiom implies that it is a variation of Hodge

structures. Therefore, from our earlier discussion of families of Hodge struc-

tures, X is a finite disjoint union of Hermitian symmetric domains.

Alternatively, consider a connected component X+ of X. By [Mil04],

Proposition 5.7 (a), we may consider X+ as a Gad(R)+-conjugacy class of

morphisms S → Gad
R . Let h ∈ X+ and decompose Gad

R into a product of

simple factors Hi (over R) so that h = (hi)i, where hi is the projection of h

to Hi. By [Mil04], Lemma 4.7, if Hi(R) is compact then hi is trivial. Other-
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wise, given the conditions satisfied by h, there exists a Hermitian symmetric

domain Di such that Hi(R)+ coincides with Hol(Di)
+ and Di is in natural

one-to-one correspondence with the Hi(R)+-conjugacy class X+
i of hi. There-

fore, the product D of the Di is a Hermitian symmetric domain on which

Gad(R)+ acts via a surjective homomorphism Gad(R)+ → Hol(D)+ with com-

pact kernel and there is a natural identification of D with X+ =
∏

iX
+
i .

Definition 2.3. A morphism of Shimura data

(G1, X1)→ (G2, X2)

is a morphism φ : G1 → G2 such that, for every h ∈ X1, φ ◦ h ∈ X2. If φ is

a closed immersion, we refer to (G1, X1) as a Shimura subdatum.

Definition 2.4. Let (G,X) be a Shimura datum. Let Xad be the Gad(R)-

conjugacy class of morphisms S → Gad
R containing the image of X. Then

(Gad, Xad) is a Shimura datum called the adjoint Shimura datum and

(G,X)→ (Gad, Xad)

is a morphism of Shimura data.

2.10 Congruence subgroups

Let G be a reductive subgroup of GLn defined over Q. We denote by G(Z)

the group G(Q) ∩ GLn(Z). Recall the following definition, independent of

the embedding of G in GLn:

Definition 2.5. A subgroup Γ of G(Q) is arithmetic if Γ ∩ G(Z) has finite

index in Γ and G(Z) i.e. Γ and G(Z) are commensurable.
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Now suppose that (G,X) is a Shimura datum. We would like to consider

the corresponding Hodge structures up to isomorphism and this is the role

of the group Γ. We may also wish to distinguish additional structure to

that already encoded in the group G. The most obvious such structure is

distinguished by the following class of arithmetic subgroups:

Definition 2.6. The principal congruence subgroup of level N is defined as

the group

Γ(N) := {g ∈ G(Z) : g ≡ id mod N},

where the congruence relation is entry-wise.

In the case of Abelian varieties, where G = GSp2g and we consider the Z-

Hodge structure on Λ = H1(A,Z), the group Γ(N) also distinguishes between

different bases for the N -torsion subgroup 1
N

Λ/Λ, rather than simply the

isomorphism class of Λ along with its polarisation.

Of course, the definition of the principal congruence subgroup depends on

the embedding of G in GLn. Therefore, we define a congruence subgroup of

G(Q) to be a subgroup containing some Γ(N) as a subgroup of finite index.

This notion does not depend on the embedding.

2.11 Adéles

The ring of finite (rational) adèles Af comprises the elements

α = (αp) ∈
∏
p

Qp

such that, for almost all primes p, αp ∈ Zp. It is endowed with the topology

for which a basis of open sets are those of the form
∏

p Up, where Up is open
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in Qp, and Up = Zp for almost all p. Similarly, for an algebraic group G,

defined over Q, one can choose an embedding into GLn and define G(Af ) as

those elements

g = (gp)p ∈
∏
p

G(Qp)

such that gp ∈ GLn(Zp) for almost all p. However, this definition of G(Af )

is independent of the embedding into GLn and so is the basis of open sets,

defined analogously to the above.

By [Mil04], Proposition 4.1, for any compact open subgroup K of G(Af ),

K ∩ G(Q) is a congruence subgroup Γ of G(Q) and every congruence sub-

group arises this way. Loosely speaking, considering the congruence relation

defining Γ prime-by-prime gives rise to K, and vice-versa.

Later, we will also need the more general definition of AE,f , the finite

adèles over a number field E, which we define as Af ⊗E or, equivalently, as

the ring of elements

α = (αυ) ∈
∏
υ

Eυ,

over all finite places υ of E, such that, for almost all υ, αυ ∈ OEυ . The adèle

ring AE arises when we include factors for the infinite places of E. Therefore,

any α ∈ AE can be written as a pair (α∞, αf ), where αf ∈ AE,f .

2.12 Neatness

Let G be an algebraic subgroup of GLn defined over Q. The following defi-

nition is independent of the embedding into GLn:
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Definition 2.7. An element g ∈ G(Q) is neat if the subgroup of Q∗ generated

by its eigenvalues is torsion free.

One says that a congruence subgroup Γ is neat if all of its elements are

neat. There is also a notion of neatness for compact open subgroups of

G(Af ), for which we refer the reader to [KY], 4.1.4. In particular, if K is

neat then so is the congruence subgroup G(Q) ∩ gKg−1, for any g ∈ G(Af ).

Every compact open subgroup K of G(Af ) contains a neat compact open

subgroup K ′ of finite index in K.

2.13 Shimura varieties

Finally, we give the definition of a Shimura variety:

Definition 2.8. Let (G,X) be a Shimura datum and let K be a compact

open subgroup of G(Af ). The Shimura variety attached to (G,X) and K is

the double coset space

ShK(G,X)(C) := G(Q)\X × (G(Af )/K).

This definition invariably seems abstruse at first. However, it is a simple

calculation to see that

ShK(G,X)(C) =
∐
g∈C

Γ′g\X,

where C is a set of representatives for the double coset space G(Q)\G(Af )/K

and Γ′g := G(Q) ∩ gKg−1 is a congruence subgroup. Note that, by [PR91],

Theorem 5.1, C is a finite set. However, since we are interested in connected
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components, choose a connected component X+ of X and denote by G(Q)+

its stabiliser in G(Q). Then

ShK(G,X)(C) =
∐
g∈C+

Γg\X+,

where C+ is a set of representatives for the double coset spaceG(Q)+\G(Af )/K

and Γg := G(Q)+ ∩ gKg−1. By [Mil04], Lemma 5.12, C+ is also a finite set.

2.14 Complex structure

Any arithmetic subgroup Γ of G(Q) acts on X through Gad(Q) and, by

[Mil04], Proposition 3.2, its image is also arithmetic. For any arithmetic

subgroup Γ of G(Q), the intersection Γ ∩ G(Q)+ acts on X+. We say that

its image under the map Gad(R)+ → Hol(X+)+ is an arithmetic subgroup of

Hol(X+)+.

If Γ is neat then the image of Γ ∩ G(Q)+ in Hol(X+)+ is neat and, in

particular, torsion free. By [Mil04], Proposition 3.1, such an arithmetic sub-

group of Hol(X+)+ acts freely on X+ and the corresponding quotient has a

unique complex structure such that the quotient map is a local isomorphism.

In general then, Γ\X+ has the structure of a (possibly singular) complex

analytic variety.

2.15 Algebraic structure

The fundamental result of Baily and Borel [BB66] states that the quotient

of X+ by any torsion free, arithmetic subgroup of Hol(X+)+ has a canonical

realisation as a complex quasi-projective algebraic variety. In particular, if
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K is neat, ShK(G,X)(C) is the analytification of a quasi-projective variety

ShK(G,X)C.

A further theorem of Borel [Bor72] states that, for any smooth quasi-

projective variety V over C, any holomorphic map from V (C) to ShK(G,X)(C)

is regular. For example, given any inclusion K1 ⊂ K2 of neat compact open

subgroups of G(Af ), we have a natural morphism of algebraic varieties

ShK1(G,X)C → ShK2(G,X)C.

Therefore, varying K, we get an inverse system of algebraic varieties

(ShK(G,X)C)K

and we write the scheme-theoretic limit of this system as Sh(G,X)C. On the

system there is a natural action of G(Af ) given by

·g : ShK(G,X)(C)→ Shg−1Kg(G,X)(C) : [x, a]K 7→ [x, ag]g−1Kg,

where we use [·, ·]K to denote a double coset belonging to ShK(G,X)(C).

By the theorem of Borel, this action is algebraic. Therefore, for any given

g ∈ G(Af ), it induces an algebraic correspondence

ShK(G,X)C ← ShK∩gKg−1(G,X)C
·g−→ Shg−1Kg∩K(G,X)C → ShK(G,X)C,

where the outer maps are the natural projections. We refer to this corre-

spondence as a Hecke correspondence.

Finally, if we have a morphism

f : (G1, X1)→ (G2, X2)
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of Shimura data and two compact open subgroups K1 ⊂ G1(Af ) and K2 ⊂

G2(Af ) such that f(K1) ⊂ K2, then we obtain a morphism

ShK1(G1, X1)(C)→ ShK2(G2, X2)(C),

which, again by the theorem of Borel is a regular map

ShK1(G1, X1)C → ShK2(G2, X2)C.

We refer to the images of such maps as Shimura subvarieties. We also obtain

an induced morphism

Sh(G1, X1)C → Sh(G2, X2)C

of the limits, by which we mean an inverse system of regular maps, compatible

with the action of G(Af ).

2.16 Special subvarieties

Special subvarieties constitute the smallest class of irreducible algebraic sub-

varieties containing the connected components of Shimura subvarieties and

the irreducible components of their images under Hecke correspondences.

The precise definition is the following:

Definition 2.9. Let ShK(G,X)C be a Shimura variety. A closed irreducible

subvariety Z is called special if there exists a morphism of Shimura data

(G′, X ′)→ (G,X)

and g ∈ G(Af ) such that Z is an irreducible component of the image of

Sh(G′, X ′)C → Sh(G,X)C
·g−→ Sh(G,X)C → ShK(G,X)C.
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The situation is analogous to the case of Abelian varieties, where the

special subvarieties are the Abelian subvarieties and their translates under

torsion points.

By definition, if we let K ′ ⊂ G(Af ) be a compact open subgroup con-

tained in K and consider the natural morphism of Shimura varieties

π : ShK′(G,X)C → ShK(G,X)C

• If Z is a special subvariety of ShK′(G,X)C, then π(Z) is a special

subvariety of ShK(G,X)C.

• If Z is a special subvariety of ShK(G,X)C, then any irreducible com-

ponent of π−1Z is a special subvariety of ShK′(G,X)C.

2.17 Special points

The natural definition of a special point is the following:

Definition 2.10. A special point in ShK(G,X)C is a special subvariety of

dimension zero.

However, we can characterise special points in a more concrete manner:

consider a special point [h, g]K ∈ ShK(G,X)(C). Let M := MT(h) be the

Mumford-Tate group of h i.e. the smallest algebraic subgroupH ofG (defined

over Q) such that h : S → GR factors through HR and let XM denote the

orbit M(R) · h inside X. Then (M,XM) is a Shimura subdatum of (G,X)

and, if we let X+
M be the connected component M(R)+ · h of XM , then the

image of X+
M × {g} in ShK(G,X)(C) defines the smallest special subvariety

containing [h, g]K . Therefore, XM must be zero dimensional and so M must
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be commutative. It is a general fact that any subgroup of G defined over Q

and containing h(S) is reductive. Therefore, M is a torus.

On the other hand if T is a torus in G and h ∈ X factors through TR

then [h, g]K ∈ ShK(G,X)(C) is clearly a special point for any g ∈ G(Af ).

Therefore, we may define a special point as any point [h, g]K ∈ ShK(G,X)(C)

such that MT(h) is a torus. Of course, the choice of h is only well-defined up

to conjugation by an element of G(Q), but this doesn’t affect the property

of MT(h) being a torus.

2.18 Canonical model

Now we would like to define a model for ShK(G,X)C that is canonical in a

sense we will make precise. As we have seen, ShK(G,X)(C) is often a moduli

space for Abelian varieties and the main theorem of complex multiplication

gives us a description of how Galois groups act on sets of CM-Abelian vari-

eties. Therefore, we would like the Galois action on ShK(G,X)(C) to agree

with this description, whenever it applies. In order to achieve this, the canon-

ical model will satisfy a generalised version of this description given in terms

of Deligne’s group-theoretic (G,X) language.

Recall that a model over a number field E for a complex algebraic variety

V is a variety V0 defined over E with an isomorphism φ : V0,C → V , though

we will follow convention and omit any mention of this isomorphism. First

we define the field of definition E := E(G,X) of the canonical model. It is

referred to as the reflex field and, as we will see, it does not depend on K.

This independence is one reason for having several connected components in

the definition of a Shimura variety. We refer the reader to [Mil04], §12.
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For a subfield k of C, we write C(k) for the set of G(k)-conjugacy classes

of cocharacters of Gk defined over k i.e.

C(k) = G(k)\Hom(Gm,k, Gk).

Any homomorphism k → k′ induces a map C(k)→ C(k′), so Aut(k′/k) acts

on C(k′).

For h ∈ X, we obtain a cocharacter

µh : Gm,C
z 7→(z,1)−−−−→ G2

m,C
∼= SC

hC−→ GC

of GC and so the G(R)-conjugacy class X of h maps to an element c(X) ∈

C(C). The reflex field E is then the fixed field of the stabiliser of c(X) in

Aut(C). By what follows, we will see that E is a number field.

Suppose that

[h, g]K ∈ ShK(G,X)(C)

is a special point i.e. M := MT(h) is a torus. Therefore, since all cocharacters

of M are defined over Q and µh factors through MC, µh is defined over a finite

extension Eh of Q. Note that Eh does not depend on the choice of h. By

[Mil04], Remark 12.3 (b), E is contained in Eh.

For any t ∈M(Eh), the element∏
σ:Eh→Q

σ(t)

is stable under Gal(Q/Q) and so belongs to M(Q). The so-called reciprocity

morphism is defined by

rh : A∗Eh,f →M(Af ) : a 7→
∏

σ:Eh→Q

σ(µh(a)).
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Finally, recall the (surjective) Artin map

ArtEh : A∗Eh → Gal(Eab
h /Eh)

from class field theory and let Art−1
Eh

denote its reciprocal.

Definition 2.11. We say that a model of ShK(G,X)C over E is canonical

if every special point [h, g]K in ShK(G,X)(C) has coordinates in Eab
h and

σ[h, g]K = [h, rh(sf )g]K ,

for any σ ∈ Gal(Eab
h /Eh) and s = (s∞, sf ) ∈ A∗Eh such that Art−1

Eh
(s) = σ.

By [Mil04], Theorem 13.7, if a canonical model exists, it is unique up to

unique isomorphism. The difficult theorem is that canonical models actually

exist. For a discussion, see [Mil04], §14.

A model of Sh(G,X)C over E is an inverse system of varieties over E, en-

dowed with a right action of G(Af ), which over C is isomorphic to Sh(G,X)C

with its G(Af ) action. Such a system is canonical if each component is canon-

ical in the previous sense.

By [Mil04], Theorem 13.7 (b), if for all compact open subgroups K of

G(Af ), ShK(G,X)C has a canonical model, then so does Sh(G,X)C and it is

unique up to unique isomorphism. In particular, by [Mil04], Theorem 13.6,

the action of G(Af ) is defined over E. By [Mil04], Remark 13.8, if (G′, X ′)→

(G,X) is a morphism of Shimura data and Sh(G′, X ′)C and Sh(G,X)C have

canonical models, then the induced morphism

Sh(G′, X ′)C → Sh(G,X)C

is defined over E(G′, X ′) · E(G,X).
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3 The Pila-Zannier strategy

A connected component of a Shimura variety arises as a quotient Γ\D, where

D is a certain type of complex manifold called a Hermitian symmetric do-

main, and Γ is a certain type of discrete subgroup of Hol(D)+ called a con-

gruence subgroup.

Let S denote such a component. By [KUY13], §3, there exists a semi-

algebraic fundamental domain F ⊂ D for the action of Γ. By [KUY13],

Theorem 1.2, when the uniformisation map

π : D → S

is restricted to F , one obtains a function definable in the o-minimal struc-

ture Ran,exp. From these observations, the André-Oort conjecture becomes

amenable to tools from o-minimality.

The purpose of this section is to explain the so-called Pila-Zannier strat-

egy for proving the André-Oort conjecture. This strategy first arose in a

proof of the Manin-Mumford conjecture [PZ08] and was first adapted to

Shimura varieties by Pila [Pil09a]. We will follow the outline given by Ullmo

[Ull13] for Ar6, where Ag is the moduli space for principally polarised Abelian

varieties of dimension g.

The first step is to show that, if Y is an irreducible Hodge generic sub-

variety of S, then the union of all positive-dimensional special subvarieties

contained in Y is not Zariski dense in Y . The second step is to show that

all but finitely many special points in Y lie on a positive-dimensional special

subvariety contained in Y .

Both steps require the hyperbolic Ax-Lindemann-Weierstrass conjecture,
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a geometric statement, itself amenable to proof via o-minimality, which was

first proven in the cocompact case by Ullmo and Yafaev [UY14], by Pila and

Tsimerman for Ag [PT14], and finally by Klingler, Ullmo and Yafaev in the

general case [KUY13].

Ullmo demonstrates the first step in his article [Ull13]. Therefore, we

focus on the second step. The strategy will be to compare lower bounds

for the size of Galois orbits of special points with upper bounds for the

heights of their pre-images in the fundamental domain. One concludes by

applying the Pila-Wilkie counting theorem [PW06], which states that the

number of algebraic points of degree at most k and height at most T , in the

complement of all connected positive-dimensional semi-algebraic subsets of

a set X, definable in an o-minimal structure, is �ε,k,X T ε.

3.1 Reductions

Let (G,X) be a Shimura datum and let K be a compact open subgroup of

G(Af ). Let Σ be a set of special points in ShK(G,X)(C) and let Y denote

an irreducible component of the Zariski closure of ∪s∈Σs in ShK(G,X)C.

Let [h, g]K ∈ Y denote a point such that M := MT(h) is maximal among

such groups. Note that the maximality is independent of the choice of h. We

say that such a point is Hodge generic in Y . Let XM := M(R) · h. Then, by

[EY03], Proposition 2.1, Y is contained in the image of the morphisms

ShKM (M,XM)C → ShgKg−1(G,X)C
·g−→ ShK(G,X)C,

where KM := M(Af ) ∩ gKg−1. Denote by f their composition and let

YM be an irreducible component of f−1Y . Then Y is a special subvariety
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of ShK(G,X)C if and only if YM is a special subvariety of ShKM (M,XM)C.

Furthermore, YM is Hodge generic in ShKM (M,XM)C. Therefore, we may

assume that Y is Hodge generic in ShK(G,X)C.

Let (Gad, Xad) be the adjoint Shimura datum associated to (G,X) and

let Kad be a compact open subgroup of Gad(Af ) containing the image of K.

Then Y is a special subvariety of ShK(G,X)C if and only if its image Y ad in

ShKad(Gad, Xad)C is a special subvariety. Furthermore, if Y is Hodge generic

in ShK(G,X)C, then Y ad is Hodge generic in ShKad(Gad, Xad)C. Therefore,

we may assume that G is semisimple of adjoint type.

Recall that the irreducible components of the image of a special subvariety

under a Hecke correspondence are again special subvarieties. Therefore, if

we fix a connected component X+ of X, we may assume that Y is contained

in the image S := Γ\X+ of X+×{1} in ShK(G,X)C, where Γ := G(Q)+∩K

and G(Q)+ is the stabiliser of X+ in G(Q). We denote a point in S as [h]

for some h ∈ X+.

3.2 Galois orbits

The first ingredient is a lower bound for the size of the Galois orbit of a

special point. By the definition of special subvarieties, the choice of K is

irrelevant in the André-Oort conjecture. Thus, we may assume that K is

neat and a product of compact open subgroups Kp in G(Qp).

Now let [h] ∈ S be a special point. Recall that M := MT(h) is a torus

and let L denote its splitting field, by which we mean the smallest field over

which M becomes isomorphic to a product of the multiplicative group. Note

that this is a finite Galois extension of Q containing Eh and is independent
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of the choice of h.

Let KM denote the compact open subgroup M(Af )∩K of M(Af ), which

is equal to the product of the M(Qp)∩Kp. Let Km
M be the maximal compact

open subgroup of M(Af ), which is unique since M is a torus, and equal

to the product of the maximal compact open subgroups Km
M,p of M(Qp).

Note that KM,p = Km
M,p for almost all primes p. The following is a natural

generalisation of [EMO01], Problem 14, posed by Edixhoven for Ag:

Conjecture 3.1. There exist positive constants c1, B1 and µ1 such that, for

any special point [h] ∈ S,

|Gal(Q/L) · [h]| > c1B
i(M)
1 [Km

M : KM ]∆µ1

L ,

where i(M) is the number of places such that KM,p 6= Km
M,p and ∆L is the

absolute value of the discriminant of L.

Note that, although the groups Km
H and KM depend on the choice of h,

they are well-defined up to conjugation by an element of Γ and, hence, the

index [Km
M : KM ] is well-defined. By [UYb], Théorème 6.1, this bound is

known to hold under the GRH for CM fields and, by [Tsi12], Theorem 1.1,

it holds unconditionally in the case of Ag, for g at most 6.

3.3 Realisations

We refer to a point h ∈ X+ as a pre-special point if [h] ∈ S is a special point.

The second ingredient in the Pila-Zannier strategy is an upper bound for the

height of a pre-special point in a fundamental domain F of X+ with respect

to Γ. As opposed to the case of an Abelian variety, this is a non-trivial issue.
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For a sensible notion of height, we must first choose a realisation X of

X+. By this we mean an analytic subset of a complex quasi-projective variety

X̃ , with a transitive holomorphic action of G(R)+ on X such that, for any

x0 ∈ X , the orbit map

G(R)+ → X : g 7→ g · x0

is semi-algebraic and identifies X with G(R)+/K∞, where K∞ is a maximal

compact subgroup of G(R)+ (recall that G is semisimple and adjoint). A

morphism of realisations is then a G(R)+-equivariant biholomorphism. By

[Ull13], Lemme 2.1, any realisation has a canonical semi-algebraic structure

and any morphism of realisations is semi-algebraic. Therefore, X+ has a

canonical semi-algebraic structure.

A subset Z ⊂ X is called an irreducible algebraic subvariety of X if Z is

an irreducible component of the analytic set X ∩ Z̃, where Z̃ is an algebraic

subset of X̃ . By [Ull13], Lemme 2.1, X ∩ Z̃ has finitely many analytic com-

ponents and they are semi-algebraic. Also note that, by [KUY13], Corollary

B.1, this notion is independent of our choice of X . In particular, we have a

well defined notion of an irreducible algebraic subvariety of X+.

3.4 Heights

For the remainder of this article, we will fix as our realisation the so-called

Borel embedding of X+ in its compact dual X∨. We refer to [UY11], 3.3 for

the following definitions:

For a point h ∈ X+, let

µh : Gm,C
z 7→(z,1)−−−−→ G2

m,C
∼= SC

hC−→ GC
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be the corresponding cocharacter and let MX be the G(C)-conjugacy class of

µh. Let V be a faithful representation of G on a finite dimensional Q-vector

space so that, for each point h ∈ X+, we obtain a Hodge structure Vh and a

Hodge filtration

Fh := {· · · ⊃ F p
h ⊃ F p+1

h ⊃ · · · }, F p
h := ⊕r≥pV r,s

h .

Fix a point h0 ∈ X+ and let P be the parabolic subgroup of G(C) sta-

bilising Fh0 . We define X∨ to be the complex projective variety G(C)/P ,

which is naturally a subvariety of the flag variety ΘC := GL(VC)/Q, where

Q is the parabolic subgroup of GL(VC) stabilising Fh0 . Therefore, we have a

surjective map from MX to X∨ sending µh to Fh.

The Borel embeddingX ↪→ X∨ is the map h 7→ Fh. It is injective since, by

[Mil04], §2, (18), the Hodge filtration determines the Hodge decomposition.

In other words, the maximal compact subgroup K∞ of G(R)+ constituting

the stabiliser of h0 is equal to G(R)+ ∩ P .

However, ΘC has a natural model Θ over Q such that, for any extension L

of Q, a point of Θ(L) corresponds to a filtration defined over L. By definition,

X∨ is defined over the reflex field E := E(G,X) and a special point h ∈ X+

is defined over the field of definition Eh of µh.

Therefore, since a pre-special point h ∈ X+ has algebraic coordinates,

we are allowed to talk about its (multiplicative) height H(h), as defined in

[BG06], Definition 1.5.4. The following is a natural generalisation of [PT13],

Theorem 3.1, due to Tsimerman:

Conjecture 3.2. There exist positive constants c2, B2, µ2 and µ3 such that,
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for any pre-special point h ∈ F ,

H(h) < c2B
i(M)
2 [Km

M : KM ]µ2∆µ3

L .

Remark 3.3. Let h ∈ X+ be a pre-special point and let L be the splitting

field of M := MT(h). The dimension d of M is at most the dimension of

a maximal torus of G and the Galois action on the character group of M is

given by a homomorphism

Gal(L/Q) ↪→ GLd(Z).

Since, by a classical result of Minkowski, the number of isomorphism classes

of finite groups contained in GLd(Z) is finite, the degree of L (and therefore

Eh) is bounded by a positive constant depending only on G.

3.5 Definability

In order to apply the Pila-Wilkie counting theorem, one requires the following

theorem:

Theorem 3.4. The restriction π|F of the uniformisation map

π : X+ → S

is definable in Ran,exp.

This theorem was first proved for restricted theta functions by Peterzil

and Starchenko [PS13]. In particular, this addressed the case of Ag. It is

known for general Shimura varieties due to the work of Klingler, Ullmo and

Yafaev [KUY13].
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3.6 Ax-Lindemann-Weierstrass

The final ingredient is the hyperbolic Ax-Lindemann-Weierstrass conjecture.

In order to state the conjecture, we require the notion of a weakly special

subvariety:

Definition 3.5. A variety V in S is weakly special if the (analytic) connected

components of π−1V are algebraic in X+.

This definition is actually the characterisation [UY11], Theorem 1.2 of the

original definition [UY11], Definition 2.1. However, given some familiarity

with Shimura varieties, the proof is fairly straightforward and this character-

isation is precisely what we need. The term weakly special is motivated by

the fact that all special subvarieties are weakly special whereas, as explained

in [Moo98a], weakly special subvarieties are special subvarieties if and only

if they contain a special point.

Theorem 3.6. Let Z be an algebraic subvariety of S. Maximal, irreducible,

algebraic subvarieties of π−1Z are precisely the irreducible components of the

preimages of maximal, weakly special subvarieties contained in Z.

This theorem is due to Klingler, Ullmo and Yafaev [KUY13]. It was first

proven for compact Shimura varieties by Ullmo and Yafaev [UY14] and for

Ag by Pila and Tsimerman [PT14].

3.7 Pila-Wilkie

Let A ⊂ Rm be a definable set in an o-minimal structure and let Aalg be the

union of all connected positive dimensional semi-algebraic subsets contained
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in A. Recall the Pila-Wilkie counting theorem, first proved for rational points

in [PW06] and later for algebraic points in [Pil09b]:

Theorem 3.7. For every ε > 0 and k ∈ N, there exists a positive constant

c, depending only on A, k and ε, such that, for any real number T ≥ 1, the

number of points lying on A \Aalg, whose coordinates in Rm are algebraic of

degree at most k and of multiplicative height at most T , is at most cT ε.

In this thesis, the o-minimal structure will be Ran,exp and definable will

always mean definable in Ran,exp.

3.8 Final reduction

The final reduction is the following result due to Ullmo, appearing as Theo-

rem 4.1 in [Ull13]:

Theorem 3.8. Let Z be a Hodge generic subvariety of ShK(G,X)C, strictly

contained in S. Suppose that, if S is a product S1 × S2 of connected compo-

nents of Shimura varieties, then Z is not of the form S1×Z ′, for a subvariety

Z ′ of S2. Then the union of all positive-dimensional weakly special subvari-

eties of ShK(G,X)C contained in Z is not Zariski dense in Z.

We apply the theorem to Y noting that the assumption in the theorem

is no loss of generality: if necessary, we simply replace S by S2 and Y by

Y ′. Thus, we may assume that the union of all positive-dimensional special

subvarieties of ShK(G,X)C contained in Y is not Zariski dense in Y .

Therefore, if we are able to show that all but a finite number of special

points in Y lie on a positive-dimensional special subvariety of ShK(G,X)C

contained in Y , then the theorem implies that Y = S.
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3.9 Implementation

By Theorem 3.4, π|F is definable and so

Ỹ := π−1Y ∩ F

is a definable set. By assumption, Y contains a dense set of special points

and so is defined over a finite extension F of E.

Consider a pre-special point h ∈ Ỹ and let L denote the splitting field

of M := MT(h). The Galois orbit Gal(Q/LF ) · [h] is contained in Y and, if

Conjecture 3.1 holds, then

|Gal(Q/LF ) · [h]| > c′1B
i(M)
1 [Km

M : KM ]∆µ1

L ,

where c′1 := c1/[F : E]. On the other hand, let

[h,m]K ∈ ShK(G,X)(C)

denote an element of Gal(Q/LF ) · [h], where m ∈ M(Af ) is given by the

explicit description of the Galois action. Since [h,m]K ∈ S, m is equal to

qk, for some q ∈ G(Q)+ and k ∈ K. Denote by h′ the point of Ỹ such that

[h′] = [h,m]K . Then, up to conjugation by an element of Γ,

M ′ := MT(q−1 · h) = q−1Mq

is equal to MT(h′) and

Km
M ′/KM ′ = q−1Km

Mq/q
−1M(Af )q ∩K.

Conjugation by q yields a bijection between this quotient and

Km
M/M(Af ) ∩ qKq−1,
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which has cardinality [Km
M : KM ] since q = mk−1.

Hence, if Conjecture 3.2 holds, then

H(h′) < c2B
i(M)
2 [Km

M : KM ]µ2∆µ3

L .

Therefore, since by Remark 3.3 all pre-special points in X+ have algebraic

co-ordinates of bounded degree, Theorem 3.7 implies that, for any ε > 0,

there exists a constant c, depending only on Ỹ and ε, such that there are at

most

c(B
i(M)
2 [Km

M : KM ]∆L)ε

pre-special points on Ỹ \ Ỹ alg belonging to Gal(Q/LF ) · [h].

Consequently, we may choose ε sufficiently small such that, if either

B
i(M)
2 [Km

M : KM ] or ∆L is large enough, then there exists a point in Gal(Q/LF )·

[h] such that the corresponding point h′ ∈ Ỹ belongs to a connected positive-

dimensional semi-algebraic set contained in Ỹ . Therefore, by [KUY13],

Lemma B.2, h′ belongs to an irreducible algebraic subvariety of X+ con-

tained in Ỹ and so, by Theorem 3.6, there exists a weakly special subvariety

V contained in Y such that [h′] ∈ V . Therefore, V is a special subvariety of

positive dimension and [h] belongs to a special subvariety contained in Y .

Therefore, on Y, in the complement of all positive-dimensional special

subvarieties contained in Y , the quantities B
i(M)
2 [Km

M : KM ] and ∆L corre-

sponding to special points are bounded. By [UYa], Proposition 3.21, the

set of tori equal to the Mumford-Tate group of a pre-special point such that

[Km
M : KM ] and ∆L are bounded lie in only finitely many Γ-conjugacy classes.

In particular, such pre-special points lie above only finitely many points in

S.
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4 Hilbert modular surfaces

The purpose of this section is to prove the following special case of the André-

Oort conjecture via the Pila-Zannier strategy. This represents joint work

with Andrei Yafaev. For background on Hilbert modular surfaces we refer

to [Edi01] and [vdG87].

Theorem 4.1. Let S be a Hilbert modular surface and let C ⊂ S be an

irreducible algebraic curve containing an infinite set of special points. Then

C is a special subvariety of S.

Let F be a real quadratic field, OF its ring of integers and Γ := SL2(OF ).

By a Hilbert modular surface we mean S := Γ\H2. This is a connected com-

ponent of the Shimura variety ShK(G,X)C defined by the Shimura datum

(G,X) := (ResF/QGL2,F ,H±2) and K = GL2(ÔF ). One can also consider

quotients of H×H by other congruence subgroups of SL2(OF ). However, the

André-Oort conjecture for such quotients is equivalent to the one for S. Fur-

thermore, since a subvariety is special if and only if irreducible components

of its images by Hecke correspondences are special, the statement holds for

a curve contained in any component of ShK(G,X)C.

The Shimura variety ShK(G,X)C is a coarse moduli space for pairs (A, i)

where A is an Abelian surface and i : OF → End(A) is a homomorphism.

It admits a canonical model over Q and S is defined over a certain explicit

Abelian extension. Let π : H2 −→ S be the uniformisation map. We choose

a certain fundamental set F ⊂ H2 (actually a certain part thereof) for the

action of Γ.

Let C be a curve in S containing an infinite set of special points. In
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particular, C is defined over a number field. We let Z := π−1C ∩ F and

we denote by Zalg the algebraic part of Z i.e. the union of all connected

positive-dimensional semi-algebraic subsets contained in Z, where H × H is

viewed as a subset of R4.

Suppose that C is not special. The theorem of Peterzil and Starchenko

[PS13] shows that Z is definable in the o-minimal structure Ran,exp whereas,

as explained in Section 4.2, Zalg contains no pre-special points. Therefore,

by the Pila-Wilkie counting theorem, the number of pre-special points on Z

up to a height T is �ε T
ε for any ε > 0.

For a special point x of S, we let (Ax, ix) be the corresponding pair as

above. The ring EndOF (Ax) of endomorphisms commuting with the action

of OF is an order in a totally imaginary quadratic extension of F . We

let dx := |disc(EndOF (Ax))|. In Section 4.1 we show that the height of a

pre-special point in F is bounded by a power of its discriminant. Hence,

Pila-Wilkie implies that the size of the Galois orbit of the special point x is

�ε d
ε
x where ε > 0 can be chosen arbitrary small. This contradicts a result

of Edixhoven who showed that the size of the Galois orbit is � d
1/8
x . It

seems very likely that the methods of this section generalise to the mixed

case i.e. the analogue of the André-Oort conjecture for the universal Abelian

scheme over a Hilbert modular surface. To generalise the result to the case of

Hilbert modular varieties of higher dimension, one needs unconditional lower

bounds for the Galois orbits of special points in terms of a positive power of

the discriminant.
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4.1 Bounds on the heights of special points

In this section, we give upper bounds on the heights of coordinates of pre-

special points contained in a certain fundamental set in terms of their dis-

criminant. For an element α of F , we denote by α′ the image of α by the

non-trivial automorphism of F . Recall, a point z = (z1, z2) of H2 is called

pre-special if π(z) is a special point of S.

Let z = (z1, z2) be a pre-special point in H2. Then z is fixed by a certain

semisimple element of SL2(F ). From this it immediately follows that z1

satisfies an equation az2
1 + bz1 + c = 0 with a, b, c ∈ OF and z2 satisfies

a′z2
2 + b′z2 + c′ = 0. The field K = F (z1) is an imaginary quadratic extension

of F .

We follow [vdGU82], Section 1.1. Consider the embedding Lz : F×F −→

C2 sending (α, β) to (αz1 +β, α′z2 +β′) and giving rise to the complex torus

Az = C2/Lz(OF ⊕ I),

where I is an invertible rank one OF -module contained in O∨F , the Z-dual

of OF with respect to the trace. The action of OF on Az is given by

m(a) : (ζ1, ζ2) −→ (aζ1, a
′ζ2). In [vdGU82], Section 1.1, it is shown that

Az is a polarised Abelian variety. By [vdG87], Section I.7, Corollary 7.3, the

Abelian variety corresponding to a point x of S is Az = C2/Lz(OF ⊕ OF ),

where z ∈ π−1(x). Denoting Λz := Lz(OF ⊕OF ), we have

EndOF (Az) = {k ∈ K : kΛz ⊂ Λz}

The ring EndOF (Az) is an order in K containing OF .
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Lemma 4.2. The relative discriminant ideal

discK/F (EndOF (Az))

is generated by the b2 − 4ac (with a, b, c ∈ OF ) such that az2
1 + bz1 + c = 0.

Proof. Let R be EndOF (Az) and let I be the ideal in OF generated by the

b2−4ac (with a, b, c ∈ OF ) such that az2
1 +bz1+c = 0. For any such equation,

R contains az1 and hence discK/F (R) contains I.

To prove the other inclusion, fix a prime ideal P of OF and let OFP be

the completion of OF at P . We let M be a maximal ideal of OK above P

and KM the completion of K with respect to the corresponding valuation.

Let az2
1 + bz1 + c = 0 be an equation satisfied by z1 with vP (abc) minimal

where vP denotes the P -adic valuation. It follows, in particular, that a, b and

c are relatively prime in the ring OFP . Then, the proof of [Cox89], Lemma

7.5 goes through and shows that the local order

{k ∈ KM : k(Λz ⊗OFP ) ⊂ Λz ⊗OFP }

is OFP [az1]. It follows that discK/F (R)OFP is generated by b2 − 4ac and is

therefore contained in IOFP . As this holds for all primes P , we conclude that

discK/F (R) = I

We write zi = xi + iyi and we redefine

H(z) := max(H(x1), H(x2), H(y1), H(y2)).

Our aim is to give an upper bound for H(z) in terms of a power of dz :=

|disc(EndOF (Az))|, whenever z is in a fundamental set for Γ. Therefore,
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choose an equation az2
1 + bz1 + c = 0 where a, b, c are such that the norm

|NF/Q(b2 − 4ac)| is minimal. The above discussion shows that

|NF/Q(discK/F (EndOF (Az)))| = |NF/Q(b2 − 4ac)|.

In [Fre90], Chapter I, Proposition 2.11, it is proved that there exists a

fundamental set (by which we are referring to a set containing a fundamental

domain) for the action of Γ = SL2(OF ) of the form

K ∪ V1 ∪ · · · ∪ Vh,

where h is the class number of F , K is compact and the Vi are the so-called

cusp sectors. Here V1 is the cusp sector at infinity ∞. By definition, there is

a constant C > 0 and T > 0 such that

V1 = {(z1, z2) ∈ H×H : y1y2 > C, |x1| ≤ T, |x2| ≤ T}

Noticing that, on K, yi is bounded below and |xi| is bounded, we may

and do (after possibly altering C and T ), assume that K ⊂ V1. Further-

more, for ε ∈ O∗F , the transformation (z1, z2) 7→ (ε2z1, ε
−2z2) is in Γ. We

can therefore assume that (y1, y2) is in the fundamental set for the action

(y1, y2) 7→ (ε2y1, ε
−2y2). We therefore have the inequalities

A−1 ≤ y2
i

y1y2

≤ A,

where A is a constant depending only on F . For reasons explained in Section

4.4, it is enough to consider the pre-special points in K ∪ V1. Therefore, we

consider pre-special points in the set

F := {(z1, z2) ∈ H2 : y1y2 > C,A−1 ≤ y2
i

y1y2

≤ A, |x1| ≤ T, |x2| ≤ T}.
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Theorem 4.3. There exists a real c1 > 0 such that for any pre-special point

z = (z1, z2) ∈ F we have,

H(z) ≤ c1dz
1/2.

Remark 4.4. The proof below generalises to the case of Hilbert modular

varieties of arbitrary dimension.

Proof. Let D1 = |b2 − 4ac| and D2 = |b′2 − 4a′c′|. Therefore, we have

|NF/Q(discK/F (EndOF (Az)))| = D1D2

and dz = D1D2∆2
F , where ∆F = |disc(OF )|.

Note that we have

|b| = 2|a||x1| ≤ 2T |a|, |b′| = 2|a′||x2| ≤ 2T |a′|.

Secondly, since D1 = 4a2y2
1 and D2 = 4a′2y2

2, we have

|a| ≤
√
D1

4U
, |a′| ≤

√
D2

4U
,

where U := A−1C.

We calculate the heights using [BG06], 1.6.5 and 1.6.6. We first examine

the degree two case. If |x1| ≥ 1,

H(x1) = |2a b
2a
| = |b| ≤ 2T |a| ≤ T√

U

√
D1,

otherwise

H(x1) = |2a| ≤ 1√
U

√
D1.
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If |y1| ≥ 1,

H(y1)2 ≤ 4a2 D1

4a2
= D1,

whereas, if |y1| < 1,

H(y1)2 ≤ 4a2 ≤ D1

U
.

The arguments for z2 proceed identically.

Next we examine the degree four case, where we use the fact that if we

have a minimal polynomial f over OF , the minimal polynomial over Z will

be the product of f and σf , where σ acts on the coefficients of f .

We have

H(x1)2 ≤ |4aa′ bb
′

4aa′
| = |bb′| ≤ 4T 2|aa′| ≤ T 2

√
D1D2

U
,

or

H(x1)2 ≤ |4aa′| ≤
√
D1D2

U
.

Finally,

H(y1)4 ≤ 16a2a′2 ≤ D1D2

U2
,

or

H(y1)4 ≤ 16a2a′2
D1

4a2
= 4a′2D1 ≤

D1D2

U
,

or

H(y1)4 ≤ 16a2a′2
D2

4a′2
= 4a2D2 ≤

D1D2

U
,
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or

H(y1)4 =≤ 16a2a′2
D1D2

16a2a′2
= D1D2.

The arguments for z2 proceed identically.

4.2 Characterisation of special subvarieties

Let C be an irreducible algebraic curve in S and let Z := π−1C. Let (z1, z2)

be a point of H2. Writing z1 = x + iy and z2 = u + iv, we can view H2

as a subset of R4. A semi-algebraic subset of H2 ⊂ R4 is, by definition,

the intersection of a semi-algebraic subset of R4 with H2. Following Pila,

we define Zalg to be the union of all connected positive-dimensional semi-

algebraic subsets of Z. We also define Zca to be the union of all connected

components Y of W ∩ H2 such that Y is contained in Z, for any positive-

dimensional irreducible complex algebraic subset W contained in C2. The

argument of the proof of [Pil09a], Proposition 2.2 shows that

Zalg = Zca.

Theorem 4.5. If C is not special then Zalg contains no special points.

Proof. We consider Zca = Zalg instead. Suppose that Zca is not empty

(otherwise there is nothing to prove). Let Z ′ be an analytic component of

Zca. As the dimension of Z is one, π(Z ′) = π(Z) = C. In particular π(Z ′)

is an algebraic subvariety of S. By [UY11], Theorem 1.2, π(Z ′) = C is a

weakly special subvariety of S. By [Moo98a], Theorem 4.3, a weakly special

subvariety (or totally geodesic in Moonen’s terminology) of a Shimura variety
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is special (or Hodge type) if and only if it contains a special point. Therefore,

Z and, hence, Zalg contains no pre-special points.

4.3 Definability

We refer to Section 3 of [Pil09a] and references contained therein for notions

of o-minimal structures and definability. We just mention here that an o-

minimal structure (over R) is a sequence, over n ∈ N, of collections of subsets

of Rn which contain all semi-algebraic subsets, stable under the natural set-

theoretic operations and satisfying certain geometric finiteness properties.

In what follows we consider the o-minimal structure Ran,exp which is gen-

erated by Ran and Rexp. Here Ran is the structure afforded by the so-called

globally subanalytic sets and Rexp is the structure consisting of the sets de-

fined by the exponential. In this thesis, we use definable to mean definable

in Ran,exp. A function from A ⊂ Rn to B ⊂ Rm is said to be definable if its

graph in A×B ⊂ Rn+m is definable.

We will use the theorem of Peterzil-Starchenko [PS13], which we now

describe in greater detail. We follow [PS13], Section 6.3. Let Sp2g be the

algebraic group (over Q) of symplectic 2g×2g matrices with determinant one.

The group Sp2g(Z) acts on the Siegel upper half-space Hg. There exists a

semi-algebraic subset Fg ⊂ Hg, which contains finitely many representatives

for each orbit of Sp2g(Z) (hence Fg contains a fundamental domain). For

a, b ∈ Rg, let ϑ(a,b)(z, τ) be the corresponding theta function, where τ ∈ Hg

and z is in the fundamental domain of Cg with respect to the lattice defined

by τ . A special case of the result of Peterzil and Starchenko (Theorem 6.5

of [PS13]) is the following:
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Theorem 4.6. For all a, b ∈ Rg, ϑa,b(0, τ) restricted to Fg is definable.

As in the previous section, for a subset Z ⊂ Rn, the algebraic part Zalg

is defined as the union of all connected positive-dimensional semi-algebraic

subsets of Z. Following Pila, for k ∈ N and T ≥ 1, we also denote

Z(k, T ) := {x = (x1, ..., xn) ∈ Z : [Q(xi) : Q] ≤ k,max
i
H(xi) ≤ T}

and Nk(Z, T ) := |Z(k, T )|. Therefore, the Pila-Wilkie counting theorem

becomes the following:

Theorem 4.7. Let Z ⊂ Rn be a set definable in an o-minimal structure over

R, let k ∈ N and let ε > 0. There exists c(Z, k, ε) such that

Nk(Z\Zalg, T ) ≤ c(Z, k, ε)T ε.

The consequence of these results is the following:

Theorem 4.8. Let C be an irreducible algebraic curve contained in S. Let F

be the set defined in Section 4.1 and suppose that Z := π−1C ∩ F is positive

dimensional. Then, for k ∈ N and ε > 0, there exists c(Z, k, ε) such that

Nk(Z\Zalg, T ) ≤ c(Z, k, ε)T ε.

Proof. Let

S = Γ\H2 −→ Sp2g(Z)\H2

be the modular embedding (see [vdG87], Chapter IX, §1). This embedding

is induced by an equivariant embedding φ : H2 −→ H2. After, if necessary,

replacing the set Fg by a finite union of its translations by some γ ∈ Sp2g(Z)
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(this does not affect the conclusion of the Peterzil-Starchenko theorem), we

assume that φ(F) ⊂ Fg. The set F is definable since it is semi-algebraic.

The functions ϑa,b(0, τ) restricted to H2 induce a Γ-equivariant holomor-

phic embedding of S into PN(C) for some N ∈ N. As C is an algebraic curve,

its image in PN(C) is given by a collection of polynomial equations in the

ϑ(a,b)(0, τ) restricted to φ(F). It follows from the theorem of Peterzil and

Starchenko that the set Z is definable. The conclusion now follows from the

Pila-Wilkie counting theorem.

4.4 Proof of the main result

Let C be a curve in S containing an infinite set Σ of special points. Suppose

that the closure of C in the Baily-Borel compactification S of S contains a

cusp P . After, if necessary, replacing C by a component of its image under

a suitable Hecke correspondence (which does not affect the property of C

being special), we assume that P =∞.

Let F be the subset of H × H as in Section 4.1. Our assumption that

P = ∞ implies that, after possibly replacing Σ by an infinite subset, the

preimages of the points in Σ lie in F .

Suppose that C is not special. Let Zalg be the algebraic part (as defined

in Section 4.2) of Z := F ∩ π−1C. Then Zalg contains no pre-special points

of H×H by Theorem 4.5.

Let z be a point in F such that x := π(z) ∈ Σ. We write dx for the

discriminant dz and Ax for the isomorphism class of the Abelian variety Az

as in Section 4.1. Note that dx and Ax depend only on x and not on the

choice of z.
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As special points are Q-valued, C is defined over Q and we can choose a

number field L such that C is defined and geometrically irreducible over L

Hence for all x ∈ Σ, Gal(Q/L) · x is contained in C.

Let x be a point in Σ. By [Edi01], Theorem 6.2,

|Gal(Q/L) · x| ≥ c2d
1/8
x ,

for some absolute constant c2 > 0. Furthermore, as the points of Gal(Q/L)·x

have the same discriminant dx, for any z ∈ Z such that π(z) ∈ Gal(Q/L) ·x,

we have

H(z) ≤ c1d
1/2
x ,

by Theorem 4.3. On the other hand, consider the number of pre-special

points on Z whose coordinates in R4 have height at most c1d
1/2
x . This is

bounded above by N4(Z\Zalg, c1d
1/2
x ), which by Theorem 4.8 is at most

cεc
ε
1d
ε/2
x for any ε > 0, where cε depends only on Z and ε. It follows that

d
2ε−1

8
x ≤ cεc

ε
1

c2

Notice, however, that dx must tend to infinity as x ranges through Σ:

indeed there are only finitely many orders of degree two over OF with a

given discriminant and for such an order R there are only finitely many

special points x such that EndOF (Ax) = R.

Therefore, choose any 0 < ε < 1
2
. Then the left hand side of the previous

inequality goes to infinity as x ranges through Σ while the right hand side

remains bounded, which is a contradiction. We conclude that C is a special

subvariety.
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5 Torsion in class groups of CM tori

Let T be an algebraic torus over Q such that T (R) is compact. In this

section, we give a lower bound under the GRH for the size of the class group

of T modulo its n-torsion in terms of a small power of the discriminant of

the splitting field of T . As a corollary, we obtain an upper bound on the

n-torsion in that class group, generalising known results on the structure of

class groups of CM fields.

This work is partly motivated by Zhang’s “ε-conjecture” [Zha05], propos-

ing that the size of n-torsion in the class groups of CM fields of fixed degree

grows slower than any positive power of the discriminant:

Conjecture 5.1. Fix a totally real number field F , a positive integer n and

a positive number ε. Then, for any quadratic CM-extension L, and any order

O of L containing the ring of integers of F , the n-torsion of the class group

of O has the following bound:

#Pic(O)[n] ≤ C(ε)disc(O)ε,

where C(ε) is a positive constant depending only on ε.

Recent results on torsion in the class groups of number fields, due to

Ellenberg and Venkatesh, can be found in [EV07].

By CM tori we refer to the Mumford-Tate groups of pre-special points.

Understanding n-torsion in the class groups of CM tori arises as a natural

problem in not only the Pila-Zannier strategy for proving the André-Oort

conjecture, but also in the methods of Klingler, Ullmo and Yafaev.

As we have seen, the Galois action on special points of Shimura varieties

is given by the so-called reciprocity morphisms of CM tori. To give a lower
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bound for the size of Galois orbits, one needs to bound from below the size

of the images of the induced maps on class groups. Lower bounds for the

size of class groups modulo n-torsion yield estimates on these quantities (see

[Tsi12] and [UYb] for further details). Our results are primarily of this form.

Note that the Mumford-Tate group of a pre-special point is an algebraic

torus over Q whose real points are compact. Its splitting field is a CM field.

Let Af denote the finite adèles over Q. For an arbitrary algebraic torus

M over Q, we denote by Km
M the maximal compact open subgroup of M(Af ).

For any such torus we denote by hM its class group i.e.

hM = M(Q)\M(Af )/K
m
M .

Given any n ∈ N we denote by hM [n] the n-torsion. For an arbitrary number

field F , we denote by ∆F the absolute value of the discriminant of F . We

obtain the following bound:

Theorem 5.2. Assume the GRH for CM fields. Let T be an algebraic torus

over Q of dimension d such that T (R) is compact and denote by L its splitting

field. Then

|hT/hT [n]| �ε,d ∆
c

2n
+ε

L ,

for all ε > 0, where c is a positive constant depending only on d.

By its splitting field we refer to the smallest field over which T becomes

isomorphic to a product of copies of Gm. Our method relies on the fact that

T is isogenous to a product T1 × · · · × Ts of simple tori. We fix surjective

maps with connected kernels from R := ResL/QGm,L to each of the Ti and

take r to be their product composed with an isogeny to T . For a prime p
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splitting in L, R(Qp) is isomorphic to the cocharacter group of R tensored

with Q∗p. We use the GRH to find ‘small’ split primes and take an arbitrary

product of powers of uniformisers lying over these primes. We embed this

element in Rs(Af ) and assume that it lies in the kernel of the map induced

by r on class groups i.e. the image under r is an element πk ∈ T (Q)Km
T . The

element π gives us elements πi in the Ti(Q) and we show that L is generated

over Q by the images of the πi under a set of characters forming a basis for

the character groups of the Ti. Scaling by the previous primes p raised to the

absolute values of the aforementioned exponents, we may assume that the

images of the πi belong to OL. Hence, we may take a basis for L over Q in

terms of these elements, whose Z-span is an order in OL, yielding a relation

between ∆L and their absolute values. However, these absolute values are

controlled by the primes found under the GRH, a uniform bound on the

coordinates of characters, and the exponents. Since these primes are ‘small’

compared to ∆L, we are able to bound the exponents from below. A group

theoretic argument converts this into a lower bound for the size of the class

group modulo n-torsion.

Our method relies crucially on the assumption that T (R) is compact.

However, note that, while the class group of a CM field L is the class group

of the torus RL := ResL/QGm whose real points are not compact, this torus

lies in an exact sequence

1→M → RL → Gm → 1,

where M is a torus over Q whose real points are compact (its Q-points are

precisely the elements of L of norm 1). This exact sequence of tori induces
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a morphism of class groups

hM → hRL

whose kernel, by the proof of [Tsi12], Theorem 5.1, has order r bounded in

terms of d only. It follows that the kernel of the map

hM → hRL/hRL [n]

is contained in hM [nr] and so the statement of Theorem 5.2 also applies

to CM fields and, indeed, to the extension of any torus by one as in the

statement of Theorem 5.2.

5.1 Corollary on n-torsion.

Before proceeding to the proof of Theorem 5.2 we obtain an upper bound

on the size of n-torsion. All that is required is a simple upper bound on the

class group of T . We have the following theorem.

Theorem 5.3. Let T be an algebraic torus over Q with dimension d and

splitting field L. Then, for all ε > 0,

|hT | �ε,d ∆
s
2

+ε

L ,

where s is the number of simple subtori of T .

Proof. The statement of [PR91], Proposition 2.1 is that T lies in an exact

sequence

1→ T → Rs
L →M → 1,
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where M is a Q-torus. As before, the proof of [Tsi12], Theorem 5.1. explains

that the induced map on class groups

hT → hRs

has kernel of size bounded in terms of d only. Note that the class group hRs is

simply the s-fold direct product of the class group Cl(L) of L. By [DKM10],

(1), we have

|Cl(L)| �ε,nL ∆
1
2

+ε

L ,

where nL is the degree of L over Q.

The combination of Theorems 5.3 and 5.2 yield the following bound on

the size of n-torsion in the class group:

Theorem 5.4. Assume the GRH for CM fields. Let T be an algebraic torus

over Q of dimension d with splitting field L such that T (R) is compact. Then,

for all ε > 0,

|hT [n]| �ε,d ∆
s
2
− c

2n
+ε

L ,

where c is a positive constant depending only on d and s is the number of

simple subtori of T .

5.2 A group theoretic argument.

The proof of Theorem 5.2 will combine ideas of the two papers [AD03] and

[Yaf06]. Following [AD03], for an arbitrary Abelian group G and l ∈ N, let

MG(l) be the smallest integer A such that, for any l elements g1, ..., gl ∈
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G, not necessarily distinct, there exist a1, ..., al ∈ Z, not all zero, with∑l
i=1 |ai| ≤ A, such that

ga1
1 · · · g

al
l = 1.

In what follows we will demonstrate that

MhT (l) >
c log ∆L

log(l) + log log ∆L

, (1)

for any l ∈ N, provided ∆L is greater than a constant depending only on d.

Here we prove that inequality (1) implies Theorem 5.2.

Proof. We follow the proof of [AD03], Lemma 5.1. Let G be a finite Abelian

group, set l = |G|, and take g1, ..., gl ∈ G. If gi = 1 for some i ∈ {1, ..., l},

then we clearly have a non-trivial relation between the gi and A = 1, A

defined as above. Otherwise, an element of G appears twice amongst our gi

and there exist i and j such that i 6= j and gig
−1
j = 1. Either way, we have

a non-trivial relation with A ≤ 2. Hence, we have shown that

MG(|G|) ≤ 2.

Henceforth, let G = hT/hT [n]. Then, by [AD03], Lemma 5.1. (iii), we

have

MhT (|G|) ≤ nMG(|G|)

and, therefore, by the preceding argument,

MhT (|G|) ≤ 2n.
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Substituting MhT (|G|) into (1), we obtain the desired result

l = |hT/hT [n]| > ∆
c

2n
L

log ∆L

,

provided ∆L > 2.

The remainder of this section is devoted to the proof of (1).

5.3 Covering T .

For an arbitrary algebraic torus M over Q, we denote by X∗(M) its character

group i.e. the free Z-module Hom(MQ,Gm,Q) with the natural Galois action.

The corresponding representation

ρ : Gal(Q/Q)→ GL(X∗(M)),

has kernel Gal(Q/F ) for some finite Galois extension F , which we refer to

as the splitting field of M .

We denote by X∗(M) the group of cocharacters of M , by which we refer

to the Z-module Hom(Gm,Q,MQ), again assuming the natural Gal(Q/Q)-

action, also factoring through Gal(F/Q). There is a natural bilinear map

X∗(M)×X∗(M)→ Z,

identifying X∗(M) with the dual Z[Gal(F/Q)]-module of X∗(M).

Recall that we have a semisimple category whose objects are algebraic

tori and whose morphisms are the usual homomorphisms of algebraic tori

(which form an Abelian group) tensored with Q. Therefore, T is isogenous

to a product of tori T1×· · ·×Ts, where the Ti are simple i.e. they contain no
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proper subtori. Each Ti splits over a Galois extension Li and the compositum

of these fields is L. Two algebraic tori are isogenous precisely when their

character groups become isomorphic when tensored with Q.

Consider the torus ResF/QGm,F , derived from the multiplicative group

Gm,F over a number field F by restriction of scalars to Q. Tori of this form,

along with their finite direct products, are often called quasi-split. They are

characterised by the property that their character groups are permutation

modules with respect to their Galois action. For example, the character

group of RL is Z[Gal(L/Q)]. In this regard, these tori are the easiest to

study. We will make use of their tractability via the following lemma:

Lemma 5.5. Let M be a simple algebraic torus over Q, split over a Galois

field F . Then M can be covered by the quasi-split torus

RF := ResF/QGm,F .

That is, M can be put into an exact sequence

1→ N → RF →M → 1,

where N is a Q-torus.

Proof. The fact that M may be covered by some finite product Rs
F is [PR91],

Proposition 2.2. However, since the Hom functor commutes with products,

an element of

Hom(Rs
F ,M)

is a product of morphisms into M , each of which has an image constituting a

subtorus of M . Since M is simple, we may assume that all but one of these

images is trivial i.e. we may assume s = 1.
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In light of this, each Ti may be covered by a copy of RL. Any such

morphism of tori is equivalent to an injection of character groups

ξ : X∗(Ti) ↪→ X∗(RL).

We have proved the existence of such embeddings, but have not specified

one precisely. We identify X∗(RL) with Z[Gal(L/Q)] and choose a basis by

enumerating the elements of the Galois group. We denote this basis

{ψ1, ..., ψnL}.

We define an inner product on Z[Gal(L/Q)] by letting

〈ψi, ψj〉 =

 1 if i = j

0 if i 6= j,

and extending Z-bilinearly.

Consider one of the Ti. For a fixed embedding

ξ : X∗(Ti) ↪→ X∗(RL),

and a chosen basis

{χ1, ..., χdi}

of X∗(Ti), where di denotes the dimension of Ti, let mξ denote

max{|〈χj, ψk〉|} ∈ N,

for j = 1, ..., di and k = 1, ..., nL. For each Ti we choose an embedding of

X∗(Ti) into X∗(RL) and a basis such that mξ is minimal i.e. the coordinates
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of this basis have the smallest upper bound on their absolute values among

all possible choices.

Thus, we have a collection of surjective maps of tori

RL → Ti.

We consider their direct product, yielding another surjection

Rs
L → T1 × · · · × Ts.

Now, since T is isogenous to T1 × · · · × Ts, we may choose a surjection

λ : T1 × · · · × Ts → T,

with kernel of smallest degree, which we will denote by nλ.

We denote the composition of our product map with λ as

r : Rs
L → T.

Lemma 5.6. Consider the morphism

f : Rs
L → T1 × · · · × Ts,

the direct product of the previously defined surjections of R on to the Ti,

followed by raising to the power nλ. Then there exists a unique morphism,

g : T → T1 × · · · × Ts,

such that f = g ◦ r.

Proof. Let S be the kernel of r. By the universal property of quotients, any

morphism from Rs
L vanishing on S factors uniquely through r.
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5.4 Uniform boundedness.

Firstly, we recall a standard property of integral matrix groups due to Minkowski.

Theorem 5.7. For any d ∈ N, the number of isomorphism classes of finite

groups contained in GLd(Z) is finite.

We have fixed an algebraic torus T over Q of dimension d with splitting

field L. In other words, for any choice of basis, we have a faithful represen-

tation

ρ : Gal(L/Q) ↪→ GLd(Z).

Therefore, by the previous theorem, nL = |Gal(L/Q)| is bounded in terms

of d only.

Secondly, we refer to a standard result from the theory of integral repre-

sentations of finite groups (see [Tsi12], Theorem 2.1).

Theorem 5.8. Let H be a finite group and let d ∈ N. Then the number of

isomorphism classes of integral representations of H of dimension d is finite.

Recall that we chose a surjection

λ : T1 × · · · × Ts → T,

with kernel of smallest degree nλ. Tori over Q of dimension d with splitting

field L induce d-dimensional representations of the Galois group of L. By

Theorem 5.7, there are only finitely many choices for this group. Therefore,

by Theorem 5.8, only finitely many isomorphism classes of such tori exist.

Therefore, nλ is bounded in terms of d only.
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Recall that we also constructed

f : Rs
L → T1 × · · · × Ts,

via the composition of our original direct product of surjections with raising

to the power nλ. This corresponds to embeddings

X∗(Ti) ↪→ X∗(RL),

for each i. We have chosen a canonical basis for X∗(RL) and we choose the

bases for the X∗(Ti) to be the bases chosen in the previous section multiplied

by nλ. The previously stated results yield the following:

Lemma 5.9. The coordinates of these bases for the X∗(Ti), with respect to

the chosen bases of the X∗(RL), are bounded in terms of d only.

5.5 Uniformisers.

We have identified X∗(RL) with Z[Gal(L/Q)] and chosen a canonical basis

{ψ1, ..., ψnL} by enumerating the elements of the Galois group. The inner

product on X∗(RL) satisfies the invariance property

〈σψ, ψ′〉 = 〈ψ, σ−1ψ′〉,

for any σ ∈ Gal(L/Q) and ψ, ψ′ ∈ X∗(RL). Now, X∗(RL) is naturally

isomorphic to its dual Z[Gal(L/Q)]-module Hom(X∗(RL),Z), sending ψi to

〈ψi,−〉, which we denote ϕi, and extending Z-linearly. Via our perfect pairing

X∗(RL)×X∗(RL)→ Z,
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we have an isomorphism of X∗(RL) with the dual of X∗(RL). We identify ϕi

with its image in X∗(RL). Thus, we obtain a basis

{ϕ1, ..., ϕnL}

of X∗(RL), which is that obtained by an enumeration of the elements of

Gal(L/Q).

Let p be a rational prime, completely split in L. The basis

{ψ1, ..., ψnL}

induces an isomorphism of RL(Qp) with∏
Q∗p = X∗(RL)⊗Q∗p.

Let P be the element of RL(Qp) such that χ1(P ) = p and χi(P ) = 1 for

i = 2, ..., nL. In fact, P is a uniformiser corresponding to a place lying above

p and the Galois orbit of its image under the above isomorphism corresponds

to a complete set of uniformisers at the places lying above p.

Applying the valuation map

υp : Q∗p → Z

to each factor, we have a morphism from X∗(RL) ⊗ Q∗p to X∗(RL). Under

this morphism, P is sent to the basis element ϕ1 and the Galois orbit of P

yields the complete set of basis elements.

Now let l be a natural number and let p1, ..., pl be rational primes com-

pletely split in L. For each pi, let Pi be the element of RL(Qpi) associated to

pi via the above construction. We embed each RL(Qpi) into

RL(Af ) = (Af ⊗ L)∗
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in the natural way. For integers a1, ..., al, we consider the element

I = P a1
1 · · ·P

al
l

belonging to RL(Af ).

Recall that we have a surjective map of Q-tori,

r : Rs
L → T.

Following [UYb], we have an induced map on the corresponding class groups,

which we denote

rh : hRsL → hT .

Let H = hRsL/ ker rh. We will show that

MH(l) >
c log ∆L

log(l) + log log ∆L

,

for any l ∈ N, provided ∆L is greater than a uniform constant. Since H

injects into hT , it is an easy observation that MhT (l) ≥ MH(l), for any

l ∈ N, thus yielding (1).

Henceforth, let Ii denote the embedding of I into the ith factor of Rs
L(Af ).

We denote by I the product of the Ii i.e. I embedded diagonally into Rs
L(Af ).

Recall that, by Lemma 5.6, we have the following commutative diagram:

Rs
L(Af ) > T1(Af )× · · · × Ts(Af ) > T (Af )

f

>

T1(Af )× · · · × Ts(Af )

g

<

with r being the composite homomorphism from Rs
L(Af ) to T (Af ).
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Assume that I belongs to the kernel of rh i.e.

r(I) = πk ∈ T (Q)Km
T ,

where this product is unique up to an element of T (Q)∩Km
T , which by [Yaf06],

Theorem 2.5 is a finite group of order bounded in terms of the dimension of

T only. Now, f(I) = g(πk), but f is a product of morphisms from RL(Af )

into the Ti(Af ), so we write f(I) as

(f1(I), ..., fs(I)).

As g is a morphism into T1(Af )× · · · × Ts(Af ), we write g(πk) as

(g1(πk), ..., gs(πk)).

Therefore, we have

fi(I) = πiki ∈ Ti(Q)Km
Ti
,

for i = 1, ..., s, where πi = gi(π) and ki = gi(k).

Now, recall the bases for the X∗(Ti) embedded in X∗(RL) via the maps

induced by the fi. We denote their elements as χi,j, where i = 1, ..., s and

j = 1, ..., di. Furthermore, let

πi,j = χi,j(πi).

The following lemma is a generalisation of [Yaf06], Lemma 2.13:

Lemma 5.10. The field L′ generated over Q by the πi,j is L.

Proof. Clearly L′ ⊆ L, so let σ ∈ Gal(L/Q) and assume that σ acts trivially

on L′. We need to show that σ is trivial. We have a faithful representation
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of Gal(L/Q) on the product of the X∗(Ti) and, thus, it is equivalent to show

that σ acts trivially on each X∗(Ti)⊗Q.

Recall our surjective maps of tori from RL to the Ti, which we denoted

fi. After tensoring our cocharacter modules with Q we retrieve short exact

sequences

0→ Q⊗∆i → Q⊗ Γ→ Q⊗X∗(Ti)→ 0,

where Γ = Z[Gal(L/Q)] and the ∆i are Γ-submodules of X∗(RL) = Γ. The

∆i correspond to the kernels of our surjections, which we denote Ni. We will

show that σ acts trivially on the

Q⊗ (X∗(RL)/X∗(Ni)).

We will consider in turn the elements Ii. Since f is a product of the

maps fi, we will consider the Ii as belonging to RL(Af ) mapping to Ti(Af ).

The elements under scrutiny here are the πi ∈ Ti(Q), which are diagonally

embedded in Ti(Af ). Therefore, we relabel p1, P1 and a1 as p, P and a,

respectively, and project from RL(Af ) to RL(Qp) i.e. we turn our attention

from Ii to its image P a ∈ R(Qp), mapping under fi to πiki,p, where ki,p is

the p-component of ki.

Since p splits each Ti, we also have

Ti(Qp) = X∗(Ti)⊗Q∗p,

sending x ∈ Ti(Qp) to

(χi,1(x), ..., χi,di(x)),
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where we tacitly assume a choice

{µi,1, ..., µi,di}

of the natural dual basis to our character basis already chosen, as described

earlier for RL. The valuation υp : Q∗p → Z evaluates each factor, inducing an

isomorphism between Ti(Qp)/K
m
Ti,p

and X∗(Ti), where Km
Ti,p

is the maximal

compact open subgroup of Ti(Qp).

We have the following commutative diagrams

RL(Qp) −−−→ X∗(RL)y y
Ti(Qp)/K

m
Ti,p
−−−→ X∗(Ti),

where the bottom arrow is the isomorphism just mentioned and the top arrow

is the corresponding surjection for RL(Qp) described earlier. The righthand

arrow is the map of cocharacters induced by fi and the left arrow is fi

composed with factoring out by Km
T,p.

The element P a is mapped to the class of πi in Ti(Qp)/K
m
Ti,p

, which is

mapped to

(υp(χi,1(πi)), ..., υp(χi,di(πi))) ∈ X∗(Ti).

On the other hand, P a is mapped to

(υp(ψ1(P a)), ..., υp(ψnL(P a))) ∈ X∗(RL),

which is aϕ1. In this form, the action of a τ ∈ Gal(L/Q) is clear, sending

this image to

(υp((τ
−1ψ1)(P a)), ..., υp((τ

−1ψnL)(P a))).
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Note that, since Gal(L/Q) permutes the characters, the Galois orbit of the

image of P a comprises precisely the elements aϕi, which constitute a basis

for X∗(RL)⊗Q.

We claim that the image of this orbit in X∗(Ti) consists of the elements

(υp((τ
−1χi,1)(πi)), ..., υp((τ

−1χi,di)(πi))) ∈ X∗(Ti). (2)

To see this, let τµi,j be denoted by

di∑
k=1

ni,τj,kµi,k.

Thus, the image of

di∑
j=1

χi,j(πi)µi,j ∈ X∗(Ti)⊗Q∗p

under τ ∈ Gal(L/Q) will be

di∑
k=1

di∑
j=1

ni,τj,kχi,j(πi)µi,k.

The kth coefficient here is equal to (τ−1χi,k)(πi) if we have ni,τ
−1

k,j = ni,τj,k for all

j, k = 1, ..., di, but this is simply the Galois invariance of the inner product

we previously placed on X∗(RL).

Now, since σ fixes each πi,j and the characters χi,j are a basis, σ clearly

fixes each of the elements of X∗(Ti) depicted in (2). Thus, by our exact

sequence, σ fixes the Galois orbit of the image of P a in

Q⊗ (X∗(RL)/X∗(Ni)).

Since these elements span the above space, the claim follows.
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Remark 5.11. It is worth noting that any element in Rs
L(Af ) with a nonzero

valuation at a place lying above a split prime in each of the s factors produces

generators for L via this argument.

5.6 Small split primes.

The remainder of the proof follows the concluding pages of [UYb].

We have I = P a1
1 · · ·P

al
l ∈ RL(Af ) embedded diagonally into Rs

L(Af ).

We denote this element I. The image of I in T1(Af )× · · · × Ts(Af ) under f

is

f(I) = (π1k1, ..., πsks) ∈ T1(Q)Km
T1
× · · · × Ts(Q)Km

Ts .

We consider the images πi,j of the πi under the elements χi,j of the char-

acter bases. Due to Lemma 5.9, we have a bound B, say, on the absolute

values of the coordinates of these basis elements with respect to the chosen

basis for X∗(RL). This bound depends only on d. We replace the πi,j by

(p
|a1|
1 · · · p|al|l )Bπi,j, which therefore belong to OL.

By virtue of Lemma 5.10, we may form a primitive element

α =
∑
i,j

ai,jπi,j

for the field L, where the ai,j are integers with absolute value bounded by

some constantB′ depending only on d. We take the Q-basis {1, α, α2, ..., αnL−1}

for L. Consequently, Z[1, α, α2, ..., αnL−1] is an order in OL. We denote the

absolute value of its discriminant as ∆′L. Therefore,

∆′L ≥ ∆L.
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On the other hand, ∆′L is the square of the determinant of the matrix

(τi(α
j))i,j,

where the τi range over the elements of Gal(L/Q) and 0 ≤ j ≤ nL − 1. An

inequality of Hadamard then states that, given an upper bound C on the

values of

|τi(αj)|,

we have

∆′L ≤ nnLL C2nL ≤ c1C
2nL ,

where c1 > 0 is a constant depending only on d.

The splitting field L of T is a Galois CM-field. For a character χ, we

denote by χ the image of χ under the automorphism of L induced by complex

conjugation on C. It is at this point that we use the fact that T (R) is compact

and is, therefore, a product of circles (see [Vos98], Section 10.1). This implies

that χi,jχi,j is the trivial character for every i and j (writing the group law

multiplicatively).

Thus, for each τ ∈ Gal(L/Q),

|τ(πi,j)| = (p
|a1|
1 · · · p|al|l )B

and, therefore, by the preceding discussion,

|τi(αj)| ≤ (dB′(p
|a1|
1 · · · p|al|l ))B(nL−1).

Hence, our calculation yields

c−1
1 ∆L ≤ (dB′(p

|a1|
1 · · · p|al|l ))2BnL(nL−1).
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It remains to find the pi for any given l. We require the following corollary

of a special case of the effective Chebotarev Density Theorem, a proof of

which can be found in [AD03].

Theorem 5.12. Let F be any number field. Assume the GRH holds for

the Dedekind zeta function of F . Let πF (x) denote the number of rational

primes p completely split in F such that p ≤ x. There exist positive ab-

solute constants c2 and c3 that are effectively calculable such that, for all

x ≥ c2(log ∆F )2(log log ∆F )4,

πF (x) ≥ c3
x

log x
.

We assume the GRH for CM fields. Let l be any natural number. We

require at least l primes completely split in L, so let

x = c4l log l + c1(log ∆L)2(log log ∆L)4 > 1,

where c4 is a positive absolute constant, such that

c3
x

log x
≥ l.

It is uniform since

x

log x
≥ c4l log l

log c4 + 2 log l
,

and so our requirement is satisfied when, for example, c3c4
log c4+2

≥ 1.

Thus, by Theorem 5.12, we are able to find l primes p1, ..., pl completely

split in L such that pi ≤ x. Subsequently, we return to our inequality

c−1
1 ∆L ≤ (dB′(p

|a1|
1 · · · p|al|l ))2BnL(nL−1),
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taking the pi to be those just found. As before, we let

A =
l∑

i=1

|ai|,

yielding

log(D−1∆L) ≤ 2ABnL(nL − 1) log x,

provided ∆L > D, where D = c1(dB′)2BnL(nL−1). Now, there exists a positive

absolute constant c5 such that

log x ≤ c5(log l + log log ∆L),

provided ∆L exceeds a positive absolute constant. Combining these two

inequalities yields a lower bound for A, which implies (1).

�

Remark 5.13. The constant c given in the statement of Theorem 5.2 can

be taken to be 1−ε
2BnL(nL−1)

for any 0 < ε < 1.
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6 André-Oort for a product of modular curves

We now turn our attention towards the strategy of Edixhoven, which was

eventually generalised by Klingler, Ullmo and Yafaev to a full proof of the

André-Oort conjecture under the GRH for CM fields.

In this section, we give a short proof under the GRH of the André-Oort

conjecture for products of modular curves, using only simple Galois-theoretic

and geometric arguments. This will serve as a prototype for our strategy to

prove the full conjecture under the GRH without using ergodic theory. We

also demonstrate a short proof of the Manin-Mumford conjecture for Abelian

varieties using similar arguments.

Therefore, we will prove the following theorem:

Theorem 6.1. Assume the GRH for imaginary quadratic fields. Let S be

a product of modular curves and let Σ be a set of special points in S. Ev-

ery irreducible component of the Zariski closure of ∪s∈Σs in S is a special

subvariety.

Note that S always admits a morphism π to the Shimura variety arising as

the quotient SLn2 (Z)\Hn and an irreducible subvariety Z of S is special if and

only if π(Z) is special. Therefore, we will assume S is the Shimura variety

arising from SLn2 (Z)\Hn, which we identify with Cn. Special subvarieties of

Cn have the following description (see [UY09], Definition 2.1):

Definition 6.2. Let I = {1, ..., n}. A closed irreducible subvariety Z of Cn

is called special (of type Ω = ΩZ) if I has a partition Ω = (I1, ..., It), with

|Ii| = ni, such that Z is a product of subvarieties Zi of Cni, each of one of

the following forms:
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• Ii is a one element set and Zi is a CM point.

• Zi is the image of H in Cni under the map sending τ in H to the image

of (gs · τ)s∈Ii in Cni for elements gs ∈ GL2(Q)+.

Given a special subvariety Z of type Ω, we define c(Ω) to be the number

of CM factors. A special subvariety Z is called strongly special if c(Ω) = 0.

The strategy of this paper will be to consider an irreducible subvariety

X in Cn containing a Zariski dense set Σ of special subvarieties. After, if

necessary, replacing Σ by a Zariski dense subset, we may assume that c(ΩZ)

is constant as Z ranges through Σ. Hence, we denote its value c(Σ). Under

the GRH, using Galois-theoretic and geometric arguments, Ullmo and Yafaev

show in [UY09] that, if c(Σ) > 0, then X contains a Zariski dense set Σ′ with

c(Σ′) = 0. Therefore, we consider sets of strongly special subvarieties. These

are dealt with in [CU05] via ergodic theory. In this section, we show that

the irreducible components of the Zariski closure of a set of strongly special

subvarieties are special using only simple geometric arguments.

The André-Oort conjecture for products of modular curves was also tack-

led via relatively elementary methods by Edixhoven in [Edi05]. However, his

method relied intrinsically on the properties of products of modular curves.

The motivation for this work was to develop a strategy that would apply to

a general Shimura variety and, furthermore, to support the exposition of this

strategy.

Given a set of strongly special subvarieties Σ, we consider an irreducible

component X of the Zariski closure of ∪Z∈ΣZ. The idea of the proof is

to intersect X with its image under a suitable Hecke correspondence and

90



reiterate this procedure, each time with an irreducible component of the

previous intersection. By comparing lower bounds for the degrees of strongly

special subvarieties with the degrees of Hecke correspondences, we arrive at a

nonproper intersection. For each Z in Σ, we produce a Z ′ strictly containing

Z and repeat the argument.

6.1 Degrees of strongly special subvarieties

For some n ∈ N, consider the image of H in Cn under the map described in

Definition 6.2 for some g1, ..., gn ∈ GL2(Q)+. For simplicity we may assume

that g1 is the identity. This image is the modular curve Γ′\H embedded in

Cn, with Γ′ := Γ ∩ g−1
2 Γg2 ∩ ... ∩ g−1

n Γgn, where Γ := SL2(Z).

By [KY], Proposition 5.3.2., the projection

π : Γ′\H→ Γ\H,

extends to a morphism

π : Γ′\H→ Γ\H

of the Baily-Borel compactifications, such that the inverse image π∗LΓ of the

Baily-Borel line bundle on Γ\H is LΓ′ , the Baily-Borel line bundle on Γ′\H,

which is the restriction of the Baily-Borel line bundle on (P1
C)n. Therefore,

by the projection formula (see citeKY, §1), we have

degL
(P1

C)n
Γ′\H = deg π · degLΓ

Γ\H,

which is bounded below by the index [Γ : Γ′] multiplied by an absolute

positive constant.
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Consider the closures Γ = SL2(Ẑ) and Γ′ of Γ and Γ′ in SL2(Ẑ), respec-

tively. We have [Γ : Γ′] ≥ [Γ : Γ′], which is equal to∏
p

[
SL2(Zp) : (SL2(Zp) ∩ g−1

2 SL2(Zp)g2 ∩ ... ∩ g−1
n SL2(Zp)gn)

]
,

noting that, for almost all p, gi ∈ GL2(Zp) for all i = 2, ..., n i.e. the above

indices at these primes are equal to one. Now suppose that gi /∈ GL2(Zp)

for some i ∈ {2, ..., n} and a prime p. Considering Smith normal forms, it

is possible to write gi = γDγ′, where γ, γ′ ∈ GL2(Zp) and D is a diagonal

matrix of the form diag(pn, p−n), for some n ∈ N. Then

SL2(Zp) ∩ g−1
2 SL2(Zp)g2 ∩ ... ∩ g−1

n SL2(Zp)gn

is contained in the subgroup of SL2(Zp) whose lower left entry belongs to

pZp. The index of this subgroup can be calculated as in [Mil12], p81 and is

bounded below by p.

Therefore, from the above remarks, we conclude that the degree of Γ′\H

with respect to the Baily-Borel line bundle on (P1
C)n is bounded below by

the product of primes p such that gi /∈ GL2(Zp) for some i ∈ {2, ..., n}.

Henceforth, when we refer to the degree of a subvariety of Cn, we will

omit reference to the Baily-Borel line bundle.

6.2 Choosing a suitable Hecke correspondence

We are considering the Shimura variety ShK(G,X)C defined by the Shimura

datum

(G,X) := (GLn2 , (H±)n)
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and K := GLn2 (Ẑ), a compact open subgroup of GLn2 (Af ). Consider GL2

embedded into GLn2 via the map

ϕ : x 7→ (x, g2xg
−1
2 , ..., gnxg

−1
n ),

for g2, ..., gn ∈ GL2(Q)+. We denote its image by H and we write X+
H for its

connected component H(R)+ · (i, g2i, ..., gni) ⊂ Hn. Let Z be the image of

X+
H × {1} in ShK(G,X)C. This is the image of H described in the previous

section.

Lemma 6.3. For any α ∈ H(Af ), Z is contained in its image under the

Hecke correspondence Tα2.

Proof. Let (x, 1) ∈ Z i.e. x ∈ X+
H . Let τ ∈ GL2(Af ) be such that α = ϕ(τ).

A point (h, g) ∈ ShK(G,X)C depends only on g modulo (A∗f )n = (Q∗ · Ẑ∗)n

since these factors are killed in the double coset defining the Shimura variety.

Hence, we consider the image of τ 2 under the natural map

π : GL2 → PGL2,

which is surjective on adélic points since the kernel Gm is connected. Consider

the simply connected covering

ρ : SL2 → PGL2.

Its kernel is isomorphic to µ2. Therefore, there exists a υ ∈ SL2(Af ) such

that ρ(υ) = π(τ 2). By strong approximation applied to SL2, υ = qk, with

q ∈ SL2(Q) and k belonging to the compact open subgroup

n⋂
i=1

g−1
i SL2(Ẑ)gi ⊂ SL2(Af ),
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where we define g1 := id. Note that π restricted to SL2 coincides with

ρ, since ρ is the universal cover. Now, ϕ(q) belongs to H(Q)+. Hence,

ϕ(q) · x belongs to X+
H . Therefore, consider (ϕ(q) · x, ϕ(τ 2)) ∈ Tα2(Z). By

the previous discussion, this equals (ϕ(q) · x, ϕ(qk)) = (x, ϕ(k)). However,

since ϕ(k) ∈ GLn2 (Ẑ), this point is (x, 1).

Choose a prime p such that gi ∈ GL2(Zp) for all i = 2, ..., n and consider

the element

P :=

 1 0

0 p−2

 ∈ GL2(Q)+

Let α ∈ H(Qp) be the image of P in GLn2 (Qp) under ϕ. Since the gi belong

to GL2(Zp) for all i = 2, ..., n, the double coset KαK equals KβK, where β

is P diagonally embedded into GLn2 (Qp).

Recall that, by [EY03], Theorem 6.1, the connected components of the

correspondence Tβ on Cn are the Tβi induced by GLn2 (Q)+ acting on Hn such

that

GLn2 (Q)+ ∩KβK =
∐
i

Γnβ−1
i Γn.

Note, however, that GLn2 (Q)+ ∩KβK = ΓnβΓn. Hence, the correspondence

Tβ is irreducible and equal to the standard Hecke correspondence Tp2 on Cn.

Combining this observation with Lemma 6.3, we obtain the following result:

Lemma 6.4. Let Z be the image of H in Cn as defined above. Choose a

prime p such that gi ∈ GL2(Zp) for all i = 2, ..., n. Then Z is contained in

its image under the Hecke correspondence Tp2 on Cn given by P−1.
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6.3 Proof of the main result

Recall the situation in the statement of Theorem 6.1. By [UY09] we may

assume that c(Σ) = 0 i.e. Σ is a set of strongly special subvarieties. The

GRH will not be used in this case. Using [EY03], Proposition 2.1, we may

assume that S arises as the product of n copies of SL2(Z)\H.

Denote by X an irreducible component of the Zariski closure of ∪s∈Σs

in S. Consider a special subvariety Z ⊂ X ⊂ Cn. Given our description

of strongly special subvarieties we write Z = Z1 × · · · × Zt, where each Zi

is the image of H in Cni given by some gi2 , ..., gini ∈ GL2(Q)+. Therefore,

by the arguments in Section 6.1, the degree of Z is bounded below by the

product of all primes p such that not all gij ∈ GL2(Zp) for i = 1, ..., t and

j = 2, ..., ni. We denote this product MZ ∈ N. By Lemma 6.4, for any prime

p not dividing MZ , we have Z ⊂ Tp2(Z),

By [Edi05], Section 3, we may assume that X is a hypersurface all of

whose projections to any n − 1 factors of Cn are dominant. Under this

assumption, by [UY09], Proposition 3.1, if n ≥ 3, Tp2(X) is irreducible for

any p greater than degX and 13. If n = 2, Z is either a modular curve or

C2, in which case X is a modular curve or C2 and we are done.

Consider first the case that X contains a Zariski dense subset Σ′ such

that MZ is bounded for all Z in Σ′ i.e. the elements gij defining a given Z

must belong to GL2(Zp) for all but a fixed and finite set of primes whose

product we denote M . For any prime p not dividing M , every Z in Σ′ is

contained in its image under Tp2 . Hence, Σ′ belongs to X ∩ Tp2(X). This

is a closed set and so X ⊂ Tp2(X). However, since Tp2(X) is irreducible

(provided p is larger than degX and 13), we must have equality. By [Edi05],
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Lemma 4.4, for any point z ∈ Cn, the Tp2-orbit ∪i≥0T
i
p2(z) is dense in Cn for

the archimedean topology. Thus, X = Cn and we are done.

Therefore, we assume that X contains no such Zariski dense subset.

Hence, we may assume that MZ is larger than any predetermined constant

for all Z in Σ. We consider an arbitrary Z. By a theorem of Chebyshev,

there exist positive absolute constants c1 and c2 such that the number of

primes π(x) less than a given real number x ≥ 2 is bounded below by c1
x

log x

and above by c2
x

log x
. Therefore, for any fixed 0 < δ1 < 1 and ε > 0,

π
(
M δ1

Z

)
� M δ1

Z

logM δ1
Z

�M δ1−ε
Z .

It is an obvious fact that the number of primes ω(MZ) dividing MZ satisfies

ω(MZ) ≤ logMZ

log 2
�M ε

Z .

Therefore, for MZ larger than a constant depending only on X, we

can find a prime p1 not dividing MZ , smaller than M δ1
Z and larger than

max{13, degX}. The last condition implies that Tp2
1
(X) is irreducible. There-

fore, the intersection of X and Tp2
1
(X) is either proper or X = Tp2

1
(X). If

X = Tp2
1
(X) then we are done, as explained above.

Therefore, we assume that the intersection is proper. For the prime p1,

Z ⊂ Tp2
1
(Z), which implies Z ⊂ X ∩ Tp2

1
(X). We relabel X as X1 and let X2

be an irreducible component of the intersection containing Z. Notice that,

by Bezout’s theorem ([RU09], Lemme 3.4), the degree of X2 ⊂ X1 ∩ Tp2
1
(X1)

is bounded above by (degX1)2 · deg Tp2
1
, where

deg Tp2
1

= |Γ : Γ0(p2
1)|n = pn1 (p1 + 1)n � p2n

1 ,

i.e. degX2 � p2+2n
1 �M

(2+2n)δ1
Z .
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So long as δ1 and ε are small enough, we can fix 0 < δ2 < 1 such that

(2 + 2n)δ1 + 2ε < δ2. We have

π
(
M

(2+2n)δ1
Z

)
� M

(2+2n)δ1
Z

logM
(2+2n)δ1
Z

�M
(2+2n)δ1+ε
Z

and

π
(
M δ2

Z

)
� M δ2

Z

logM δ2
Z

�M δ2−ε
Z .

Therefore, forMZ larger than a constant depending only onX, we can a find a

prime p2 not dividing MZ , smaller than M δ2
Z and larger than max{3, degX2}.

The first condition implies that Z ⊂ X2∩Tp2
2
(X2). The last condition implies

that if this intersection is not proper i.e. X2 ⊂ Tp2
2
(X2), then X2 is special by

[Edi05], Theorem 4.1. It can only be strongly special since it contains Z. It

is also of higher dimension than Z by comparing degrees. Hence, we replace

Z in Σ with X2.

Therefore, assume that the intersection is proper. We perform the above

construction recursively, with suitable δk, assuming MZ is large enough, thus

obtaining subvarieties Xk and primes pk. If at some point we have Xk ⊂

Tp2
k
(Xk), Xk is a strongly special subvariety containing Z. If this inclusion

does not occur at any of the previous stages, after a finite number of steps

bounded by dimX1, we end up in the following situation:

• dim(Xk) = dim(Z) + 1

• deg(Xk)�M
(2+2n)δk−1

Z

• degZ > MZ

• Z ⊂ Xk
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• pk < M δk
Z

• pk not divinding MZ

• pk > deg(Xk)

Therefore, we have Z ⊂ Xk ∩ Tp2
k
(Xk). By comparing the degrees of Z

and Xk∩Tp2
k
(Xk), the intersection cannot be proper. Hence, Xk is contained

in Tp2
k
(Xk) and is therefore strongly special.

We perform this procedure on all of the Z, replacing them in Σ by strongly

special subvarieties of higher dimension. Reiterating the above argument, we

eventually conclude that X must be special.

6.4 Manin-Mumford

We conclude this section by remarking that the techniques exhibited above

apply, in a simpler way, to the Manin-Mumford conjecture for Abelian vari-

eties.

Theorem 6.5. (Manin-Mumford) Let K be a number field, A/K an

Abelian variety over K and V/K a geometrically irreducible subvariety of

A. If V (K) contains a Zariski dense set of torsion points then V is the

translate of an Abelian subvariety by a torsion point.

Many proofs of this theorem exist. Ratazzi and Ullmo have recently

given a proof combining Galois-theoretic and ergodic methods. We refer to

their paper [RU09] for more details. Here we replace the ergodic theory in

their proof with an elementary geometric argument. In this setting, special

subvarieties are the translates of Abelian subvarieties by torsion points.
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Proof. Let (Σn)n∈N be a sequence of special subvarieties, the union of which

is Zariski dense in V . For each n ∈ N we choose a representation

Σn = An + ξn,

where An ⊂ A is an Abelian subvariety and ξn is a torsion point in the

Abelian subvariety A′n such that A = An + A′n and An ∩ A′n is finite of

uniformly bounded order (see [RU09], Proposition 2.1). Let dn denote the

order of the torsion point ξn.

Whether or not the sequence (dn)n∈N is bounded is independent of the

choice of the ξn ([RU09], Remarque 3.1). In the case that the sequence

(dn)n∈N is unbounded, Section 3.2 of [RU09] demonstrates that each Σn is

contained in a special subvariety Σ′n of higher dimension (the arguments here

are Galois-theoretic, similar to the Shimura case, but are not dependent on

the GRH). Therefore, we replace (Σn)n∈N with (Σ′n)n∈N and reiterate this

argument unless, at some point, we obtain a sequence (Σn)n∈N with (dn)n∈N

bounded.

In this case, since the set of torsion points of bounded order is finite, we

may suppose that each Σn is of the form An + ξ, for a fixed torsion point ξ.

However, since V is special if and only if V − ξ is special, we may assume

that Σn = An for all n ∈ N.

We denote by [m] the multiplication by m ∈ N map on A and choose

one of the An. Consider the intersection V ∩ [m]V . Either it is proper or

[m]V = V , in which case V is special by [RU09], Lemme 3.2. Notice that, by

Bezout’s theorem, the degree of V ∩[m]V is bounded above by deg V ·deg[m]V
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where, by [RU09], Lemme 3.1,

deg[m]V ≤ m2 dimV · deg V.

It is a classical fact that an Abelian variety contains only finitely many

Abelian subvarieties of bounded degree. Therefore, we may assume that the

An have degree exceeding any uniform constant. Therefore, by comparing

degrees, if dimV = dimAn + 1 and degAn > m2 dimV · (deg V )2, we must

have V = [m]V .

If the intersection is proper we choose an irreducible component W of the

intersection containing An. Therefore, An is contained in the intersection

W ∩ [m]W . Either this intersection is proper or W = [m]W and W is

special, in which case we replace An in (Σn)n∈N by W , a special subvariety

of higher dimension. Again, comparing degrees, if dimW = dimAn + 1 and

degAn > m8 dimV · (deg V )4, we must have W = [m]W .

Otherwise, if W ∩ [m]W is a proper intersection, we take an irreducible

component containing An and repeat the argument in the previous para-

graph. After a finite number of steps, bounded by dimV , we will have found

a special subvariety strictly containing An. We perform this procedure on all

of the An, replacing them by special subvarieties of V of higher dimension.

Reiterating the above arguments at most dimV − 1 times, we conclude that

V must be special.
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7 Degrees of strongly special subvarieties

In this final section we generalise the strategy of the previous section to

give a new proof under the GRH of the André-Oort conjecture. That is, we

generalise the strategy pioneered by Edixhoven, and implemented by Klingler

and Yafaev, to all special subvarieties. Thus, we remove ergodic theory

from the proof of Klingler, Ullmo and Yafaev and replace it with tools from

algebraic geometry. Our key ingredient is a lower bound for the degrees

of strongly special subvarieties coming from Prasad’s volume formula for S-

arithmetic quotients of semisimple groups. For ease of notation we make the

following convention:

Definition 7.1. Given a set Σ of special subvarieties of a Shimura variety

S, we denote by Σ the subset ∪V ∈ΣV of S.

Recall the André-Oort conjecture:

Conjecture 7.2. (André-Oort) Let S be a Shimura variety and let Σ be a

set of special points in S. Every irreducible component of the Zariski closure

of Σ in S is a special subvariety.

As indicated, this work is complementary to the article [KY], in which

Klingler and Yafaev consider the above conjecture with Σ replaced by a set of

special subvarieties, rather than just points. Via extra machinery developed

by Ullmo and Yafaev [UYa], the authors prove the conjecture, assuming the

GRH, by repeatedly replacing the elements of Σ with higher dimensional

special subvarieties. They rely on a lower bound, obtained by Ullmo and

Yafaev, on the degree of the Galois orbit of a special subvariety. As one
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ranges through the elements of Σ, this bound is either bounded from above

or tends to infinity. In the case that it tends to infinity, the authors are able

to proceed using their generalisation of a method pioneered by Edixhoven

that compares Galois orbits and Hecke correspondences. Though technical,

the proof relies on the simple geometric idea exhibited above.

In the case that the lower bound is bounded for all elements in Σ, Klingler

and Yafaev appeal to a result by Ullmo and Yafaev [UYa], generalising the

equidistribution of strongly special subvarieties demonstrated by Clozel and

Ullmo [CU05]. Our motivation was to remove this element of the proof, thus

eliminating the dependency on the extremely deep and complicated theorems

of Ratner. In this section, we achieve this aim, thus reproving the following

theorem of Clozel and Ullmo:

Theorem 7.3. Let Z be a subvariety of a Shimura variety S. There exists a

finite set {V1, ..., Vk} of positive-dimensional strongly special subvarieties Vi ⊂

Z such that, if V ⊂ Z is a positive-dimensional strongly special subvariety,

then V ⊂ Vi for some i ∈ {1, ..., k}.

Therefore, under the GRH, we are able to prove the André-Oort conjec-

ture solely via the geometric strategy of Edixhoven. In fact, the case dealt

with here is less technical and does not depend on the GRH. We employ sim-

ilar tools from algebraic geometry and the theory of reductive groups over

local fields. The main ingredient is the following lower bound for the degrees

of strongly special subvarieties. We refer the reader to Section 7.1, 7.2, 7.3

and 7.5 for the relevant definitions and explanations.

Theorem 7.4. Let (G,X) be a Shimura datum such that G = Gad and fix a
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connected component X+ of X. Fix a faithful representation

ρ : G ↪→ GLn

and let K be a neat compact open subgroup of G(Af ) such that K is the prod-

uct of compact open subgroups Kp ⊂ G(Qp). There exist positive constants c

and δ such that, if V is a strongly special subvariety of SK(G,X), defined by

(H,XH), then

degLK V > c · Π(H,KH)δ.

This bound replaces the lower bound on the degrees of Galois orbits

used in [KY]. Otherwise, the strategy is largely similar, though somewhat

simplified in this case since we will not need an analogue of [KY], Lemma

9.2.3. Given a strongly special subvariety V , contained in an irreducible

subvariety Z, one obtains a lower bound for the degree of V in terms of a

product of ‘bad’ primes (see Theorem 7.4). One then obtains a ‘good’ prime

p, small compared to the degree of V , such that there exists a ‘suitable’

Hecke correspondence T at p satisfying V ⊂ T (V ). Thus, V is contained in

Z ∩T (Z). However, if the dimension of Z is only one greater than that of V ,

comparing their degrees leads one to realise that the intersection Z ∩ T (Z)

cannot be proper. Therefore, since Z is irreducible, it must be contained

in T (Z). In this case, a geometric argument implies that there exists a

strongly special subvariety V ′ ⊂ Z such that V ( V ′. On the other hand,

if the intersection Z ∩ T (Z) is proper, one chooses an irreducible component

containing V and repeats the above procedure.

This result represents the full generalisation of the strategy tested in the

previous section for removing ergodic theory from the proof of the André-
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Oort conjecture. However, we also hope that the bounds presented here will

lead to useful developments in the wider world of the Zilber-Pink conjectures.

7.1 Generalities

Unless stated otherwise, all varieties (except for linear algebraic groups) will

be defined over C and identified with their set of C-points. We will denote

by Af the ring of finite (rational) adéles and by Ẑ the product of Zp over all

primes p.

For any algebraic group G, we will denote by Gad the quotient of G by

its centre. If G is defined over Qp and ρ is a faithful representation, we will

consider G as a subgroup of GLn,Qp . For such a subgroup, we will denote

by GZp the Zariski closure of G in GLn,Zp . We will say that G is unramified

if it is quasi-split and splits over an unramified extension of Qp. If G and

ρ are defined over Q, then the previous definitions make sense for GQp and

ρQp for any prime p. A subgroup Kp ⊂ G(Qp) is called hyperspecial if there

exists a smooth reductive group scheme G over Zp such that GQp = GQp

and G(Zp) = Kp (see [BT84], 4.6). By a reductive group scheme, we mean

a group scheme with reductive fibres.

Given an algebraic torus T over a field k and a representation

ρ : T ↪→ GLn,k,

let l/k be a Galois extension such that Tl splits. One obtains a decomposition

ln = ⊕χVχ, summing over characters χ : Tl → Gm,l of T , where Vχ is the

l-subspace on which Tl acts via χ. We refer to those characters χ such that

Vχ 6= {0} as the characters intervening in ln. The characters of T form a
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free Z-module X∗(T ) equipped with an action of Gal(l/k). After choosing a

basis for X∗(T ), one may refer to the coordinates of a character χ ∈ X∗(T ).

Let X be a complete irreducible variety and let L be a line bundle on X

with topological first Chern class

c1(L) ∈ H2(X,Z).

Given an irreducible subvariety V of X, we define the degree of V with

respect to L, as in [KY], 5.1, by

degL V := c1(L)dimV ∩ [V ] ∈ H0(X,Z) = Z,

where [V ] ∈ H2 dimV (X,Z) denotes the fundamental class of V and ∩ denotes

the cap product between H2 dimV (X,Z) and H2 dimV (X,Z). We will also put∫
V

c1(L)dimV := degL V.

When the variety X is a disjoint union of irreducible components Xi, the

function degL is defined as the sum
∑

i degL|Xi .

7.2 Reductions

Consider a Shimura datum (G,X), a connected component X+ of X, and

a compact open subgroup K of G(Af ). From now on, we will simply write

ShK(G,X) for the corresponding Shimura variety and its C-points. We will

denote by SK(G,X) the image of X+ × {1} in ShK(G,X). Recall that the

André-Oort conjecture is equivalent for all choices of K. We may also assume

that G = Gad.

We will write ShK(G,X) for the Baily-Borel compactification of ShK(G,X)

(as defined in [KY], Proposition 5.3.1) and LK for the corresponding ample
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line bundle (as defined in [KY] Proposition 5.3.2). For an irreducible sub-

variety V of ShK(G,X) we will denote by V the Zariski closure of V in

ShK(G,X). We will write degLK V for degLK V .

Let α ∈ G(Af ) and let Tα be the associated Hecke correspondence on

ShK(G,X). Recall that, by the definition of a special subvariety, V is special

if and only if one (or, equivalently, all) of the irreducible components of Tα(V )

is (are) special. In particular, in order to prove the André-Oort conjecture, it

suffices to consider sets of special subvarieties Σ such that the Zariski closure

of Σ in ShK(G,X) is irreducible and contained in SK(G,X).

We will often have an inclusion of Shimura data (G1, X1) ⊂ (G2, X2) and

a compact open subgroup K1 := K2 ∩ G1(Af ) of G1(Af ), where K2 is a

compact open subgroup of G2(Af ). We obtain a morphism

φ : ShK1(G1, X1)→ ShK2(G2, X2)

and, by [UYa], Lemma 2.2, if K2 is neat, φ is generically injective. In this

case, we will use the same symbol for a subvariety of ShK1(G1, X1) and its

image in ShK2(G2, X2).

7.3 Choosing a measure

Consider a special subvariety V of SK(G,X). By [UYa], Lemma 2.1, there

exists a Shimura subdatum (H,XH) of (G,X) and a connected component

X+
H of XH contained in X+ such that H is the generic Mumford-Tate group

on XH and V is the image of X+
H×{1} in ShK(G,X). We will denote by KH

the intersection K ∩H(Af ) and by ΓH the intersection H(Q)+ ∩KH , where

H(Q)+ is the stabiliser of X+
H in H(Q). Thus, V is the image of ΓH\X+

H in
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ShK(G,X). We refer to (H,XH) as the Shimura datum defining V and we

say that V is strongly special if the image of H in Gad is semisimple.

The space X+
H is isomorphic to Had(R)+/K∞, where K∞ is a maximal

compact subgroup of Had(R)+. Let h denote the Lie algebra of Had(R)+ and

let h∗ denote the dual of h. Any real non-zero left-invariant differential form

ω of maximal degree r on Had(R)+ corresponds to an element of
∧r h∗.

Since h admits a Cartan decomposition k⊕ p, where k is the Lie algebra

of K∞ and p is the tangent space of X+
H at the point K∞, we can write

ω = ωk ∧ ωp, where ωk and ωp correspond to real multilinear forms on k and

p, respectively. In this paper, we will always choose ωk so that, with respect

to the measure it determines, the volume of K∞ is one.

Consider the unique (up to isomorphism) R-anisotropic form Hc of Had

i.e. the real algebraic group Hc isomorphic to Had over C such that Hc(R) is

compact. Then Hc(R) is a connected maximal compact subgroup of Hc(C)

containing a copy of K∞ and the quotient X̌H := Hc(R)/K∞ is called the

compact dual of X+
H . It contains X+

H as an open subset.

Considering multilinear forms on the complexification hC := h ⊗ C, ω

extends C-linearly to a complex, left-invariant differential form ωC onHad(C).

As in [Mum77], Proportionality Theorem 3.2, the Lie algebra of Hc(R) inside

hC is equal to k ⊕ ip. We will always choose ωp so that, with respect to

the measure determined by ωC, the volume of Hc(R) or, equivalently, any

maximal compact subgroup of Had(C), is one. Therefore, the volume of X̌H

is also one.

We will denote by µ the Haar measure on Had(R)+ determined by ω. We

will also denote by µ the volume measure on X+
H determined by ωp. When
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we consider the volume measures induced on arithmetic quotients of either

Had(R)+ or X+
H we will again use µ.

7.4 Degrees of strongly special subvarieties

In order to prove Theorem 7.4, we will need the following theorem, relating

the degree of a special subvariety to its volume:

Theorem 7.5. Let (G,X) be a Shimura datum, X+ a connected component

of X, and K a neat compact open subgroup of G(Af ). There exists a constant

c1 such that, if V is a special subvariety of SK(G,X), defined by (H,XH),

then

degLK V > c1 · µ(ΓH\X+
H).

By a constant we will always mean a positive real number.

Proof. By [KY], Corollary 5.3.10,

degLK V ≥ degLKH
V

and, for the remainder of this proof, V will refer to the connected component

ΓH\X+
H of ShKH (H,XH).

Consider a smooth compactification V
sm

of V , thus providing a canonical

birational map

π : V
sm → V ,

as in the proof of [Mum77], Proposition 3.4 (b). By [KY], Proposition 5.3.2

(1), the exterior product ΩdimXH of the cotangent bundle Ω on XH descends
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to ShKH (H,XH) and extends uniquely to an ample line bundle on V (this

is the restriction of LKH ). By [Mum77], Proposition 3.4 (b), the pullback

π∗LKH of LKH to V
sm

is the unique extension E of [Mum77], Main Theorem

3.1. Of course, ΩdimXH is the restriction of the exterior product Ω̌dimXH of the

cotangent bundle Ω̌ on the compact dual X̌H . By [Mum77], Proportionality

Theorem 3.2, we have

degπ∗LKH
V

sm
= (−1)dimXH · µ(ΓH\X+

H) ·
∫
X̌H

c1(Ω̌dimXH )dimXH .

However, since π is birational, the projection formula (see [KY], 5.1) implies

that

degπ∗LKH
V

sm
= degLKH

V.

Furthermore, up to isomorphism, the number of Hermitian symmetric spaces

corresponding to Shimura subdata of (G,X) is finite. Therefore,

(−1)dimXH ·
∫
X̌+
H

c1(Ω̌dimXH )dimXH ,

may assume only finitely many positive values.

7.5 Volumes of strongly special subvarieties

Now we prove a lower bound for the volume of a strongly special subvariety,

concluding the proof of Theorem 7.4. First, however, suppose that G is a

reductive group over Q and L is a finite Galois extension over which G is

split. Since almost all places of L are unramified over Q, it follows that GQp

is split over an unramified extension for almost all primes p. Furthermore, by
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[Spr79], Lemma 4.9 (ii), GQp is quasi-split for almost all primes p. Therefore,

we let Σ(G) denote the finite set of primes p such that GQp is not unramified.

Now suppose that K is a compact open subgroup of G(Af ), equal to a

product of compact open subgroups Kp ⊂ G(Qp), and fix a faithful repre-

sentation G ↪→ GLn. By [KY], 4.1.5, Kp = GZp(Zp) for almost all primes p.

Thus, by [Tit79], 3.9.1, Kp is hyperspecial for almost all p. Therefore, we

let Σ(K) denote the finite set of primes p such that Kp is not hyperspecial.

Finally, we let Σ(G,K) denote the set of primes belonging to either Σ(G) or

Σ(K) and we let Π(G,K) denote their product.

Theorem 7.6. Let (G,X) be a Shimura datum such that G = Gad and let X+

be a connected component of X. Fix a faithful representation ρ : G ↪→ GLn

and let K be a neat compact open subgroup of G(Af ), equal to a product

of compact open subgroups Kp ⊂ G(Qp). There exist positive constants c2

and δ such that, if V is a strongly special subvariety of SK(G,X), defined by

(H,XH), then

µ(ΓH\X+
H) > c2 · Π(H,KH)δ.

In the situation described in the theorem, we will use the term uniform

to mean depending only on (G,X), K and ρ.

Note that, since KH is neat, ΓH injects into Had(R)+ and so acts freely

on X+
H . Let ad : H → Had denote the natural map. Since K∞ has volume

one with respect to the measure determined by ωk, we have

µ(ΓH\X+
H) = µ(ad(ΓH)\Had(R)+).

Since H is semisimple, we have a central isogeny π : H̃ → H, where H̃

is simply connected and whose centre we denote ZH̃ . We denote by Z ⊂ ZH̃
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the kernel of π. Note that, by [Mar91], Proposition 1.4.5, the maximal split

tori (resp. parabolic subgroups) of H̃ are in bijection via this morphism

with the maximal split tori (resp. parabolic subgroups) of H. Therefore,

Σ(H̃) = Σ(H).

Since π is finite, and therefore proper, K̃H := π−1
Af (KH) is a compact open

subgroup of H̃(Af ) and we let Γ̃H := H̃(Q)∩K̃H , which is equal to π−1(ΓH).

Since KH is necessarily a product of compact open subgroups KH,p ⊂ H(Qp),

K̃H is also a product of compact open subgroups K̃H,p ⊂ H̃(Qp). Let Km
H̃

be

a maximal compact open subgroup of H̃(Af ) containing K̃H and let Γm
H̃

:=

H̃(Q) ∩ Km
H̃

. Again Km
H̃

is a product of maximal compact open subgroups

Km
H̃,p
⊂ H̃(Qp).

By [Mil04], Theorem 5.2, H̃(R) is connected and so acts on Had(R)+

through ad ◦ π. Therefore, we have two finite projections

ad(ΓH)\Had(R)+ ← ad ◦ π(Γ̃H)\Had(R)+ → ad ◦ π(Γm
H̃

)\Had(R)+

yielding the equality

µ(ad(ΓH)\Had(R)+) =
[ad ◦ π(Γm

H̃
) : ad ◦ π(Γ̃H)]

[ad(ΓH) : ad ◦ π(Γ̃H)]
· µ(ad ◦ π(Γm

H̃
)\Had(R)+).

Lemma 7.7. There exists a uniform constant c3 such that the index

[ad ◦ π(Γm
H̃

) : ad ◦ π(Γ̃H)]

is greater than c3[Km
H̃

: K̃H ].

Proof. Consider the surjective map

Γm
H̃
→ ad ◦ π(Γm

H̃
)/ad ◦ π(Γ̃H).
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Since Γ̃H = π−1(ΓH), the kernel is equal to

(ad ◦ π)−1(ad ◦ π(π−1(ΓH))) ∩ Γm
H̃
,

which is readily seen to be ZH̃(Q)·π−1(ΓH). Since the order of ZH̃ is uniformly

bounded by the proof of [UYa], Lemma 2.4, we turn our attention to the index

[Γm
H̃

: Γ̃H ]. Write

Km
H̃

=
n∐
i=1

kiK̃H ,

where ki ∈ Km
H̃

. By strong approximation (as in [Mil04], Theorem 4.16),

applied to H̃, each ki can be written as qik
′
i, where qi ∈ H̃(Q) and k′i ∈ K̃H .

Therefore, in the above, we may replace ki with qi. Intersecting both sides

with H̃(Q) we obtain

Γm
H̃

=
n∐
i=1

qiΓ̃H ,

and so qi ∈ Γm
H̃

.

Lemma 7.8. There exist uniform constants c4 and C such that

[ad(ΓH) : ad ◦ π(Γ̃H)] < c4C
|Σ(H,KH)|.

Proof. Consider the surjective map

ΓH → ad(ΓH)/ad ◦ π(Γ̃H).

The kernel is equal to

ad−1(ad ◦ π(Γ̃H)) ∩ ΓH ,
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which is readily seen to be

(π(Γ̃H) · ZH(Q)) ∩ ΓH = π(Γ̃H) · (ZH(Q) ∩ ΓH) = π(Γ̃H),

where ZH is the centre of H (using the fact that ΓH is neat). Therefore, we

turn our attention to the index [ΓH : π(Γ̃H)].

Recall that Galois cohomology yields an exact sequence

H̃(Q)→ H(Q)→ H1(Gal(Q/Q), Z(Q)).

Therefore, the quotient π(Γ̃H)\ΓH embeds as a subgroup of the Abelian

group H1(Gal(Q/Q), Z(Q)). On the other hand, π(Γ̃H)\ΓH embeds into

π(K̃H)\KH =
∏
p

π(K̃H,p)\KH,p

and, again, Galois cohomology tells us that

π(K̃H,p)\KH,p ↪→ H1(Gal(Qp/Qp), Z(Qp)).

However, now consider a prime p such that HQp is unramified and KH,p is

hyperspecial. Since H̃Qp is also unramified, H̃(Qp) also possesses hyperspecial

subgroups by [Tit79], 3.8.2. Therefore, by [Tit79], 3.8.1, there exist smooth

reductive group schemes H̃ and H over Zp, the generic fibres of which are

H̃Qp and HQp , such that KH,p = H(Zp) and H̃(Zp) is a hyperspecial subgroup

of H̃(Qp). By [Vas12], Lemma 2.3.1, the central isogeny πQp extends uniquely

to a central isogeny πZp : H̃ → H. Therefore, the kernel Z of πZp is a finite

group scheme of multiplicative type such that ZQp = ZQp . Over a finite

Galois extension F of Q, ZF is isomorphic to a product of roots of unity,

whose orders we denote n1, ..., nr. Therefore, by [DG63], Exposé X, Lemme

4.1, if p is coprime to the ni, ZFp is smooth.
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Therefore, by [PR91], Lemma 6.5, for any prime p /∈ Σ(H,KH) and

coprime to the ni, we have an exact sequence

H̃(Zp)→ H(Zp)→ H1(Gal(Qun
p /Qp),Z(Zun

p )),

where Qun
p is the maximal unramified extension of Qp and Zun

p is its ring of

integers. However, since K̃H,p clearly contains H̃(Zp) and, by [Tit79], 3.8.2,

H̃(Zp) is maximal among compact subgroups of H̃(Qp), we have H̃(Zp) =

K̃H,p.

The degree [F : Q] is bounded by the degree of the splitting field of

any torus containing Z, which we have seen is uniformly bounded. By the

proof of [UYa], Lemma 2.4, the order of Z is also bounded by a uniform

constant and so the same can be said of |H1(Gal(F/Q), Z(F ))|. Therefore,

we may consider the image of π(Γ̃H)\ΓH in H1(Gal(Q/F ), Z(Q)), whose

image in H1(Gal(Qp/Fυ), Z(Qp)) is contained in H1(Gal(Qun
p /Fυ),Z(Zun

p ))

for all places υ of F lying above a prime p /∈ Σ(H,KH) coprime to the ni.

We identify the three previous cohomology groups with the groups

r∏
i=1

(F ∗)ni\F ∗,
r∏
i=1

(F ∗υ )ni\F ∗υ and
r∏
i=1

(O∗Fυ)ni\O∗Fυ

and choose a uniformiser ξυ ∈ F at each place υ lying above a prime p ∈

Σ(H,KH) or dividing one of the ni. Therefore, the image of

π(Γ̃H)\ΓH →
r∏
i=1

(F ∗)ni\F ∗

is contained in the subgroup generated by O∗F and the ξυ. Now, O∗F is a

finitely generated Abelian group whose rank and torsion subgroup are uni-

formly bounded and, since the ni are bounded by the order of Z, we are

done.
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We now appeal to Prasad’s formula.

Lemma 7.9. There exist uniform constants c5 and δ1 such that

µ(ad ◦ π(Γm
H̃

)\Had(R)+) > c5 · Π(H̃,Km
H̃

)δ1 .

Proof. Let ω̃ := 1
|Z
H̃
|ω
∗, where ω∗ is the pullback of ω to H̃(R). Denote by

µ̃ the measure determined by ω̃ on H̃(R) and its arithmetic quotients. By

[Mil04], Proposition 5.1, H̃(R)→ Had(R)+ is surjective. On the other hand,

the kernel of the map

Γm
H̃
\H̃(R)→ ad ◦ π(Γm

H̃
)\Had(R)+

is Γm
H̃
∩ ZH̃(R)\ZH̃(R). It follows from the proof of [UYa], Lemma 2.4 that

µ(ad ◦ π(Γm
H̃

)\Had(R)+)

µ̃(Γm
H̃
\H̃(R))

is greater than a uniform constant.

Since H̃ is simply connected, it is a direct product H1 × · · · × Hs of

quasi-simple, simply connected subgroups. We can write ω̃ = ω1 ∧ · · · ∧ ωs,

where ωi is a real non-zero left-invariant differential form of maximal degree

on Hi(R). Since ad ◦ π is surjective, degree |ZH̃ | and proper, the preimage

of a maximal compact subgroup of Had(C) is a maximal compact subgroup

of H̃(C), whose volume with respect to the measure determined by ω̃C is

one. The ωi are, therefore, determined up to multiplication by a non-zero

multiplicative constant. We choose this constant so that the volume of any

maximal compact subgroup of Hi(C) is also one. We denote the measures
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determined on the Hi(R) by µi. Since Km
H̃

is maximal, it is a product of

maximal compact open subgroups Km
Hi
⊂ Hi(Af ), each a product of maximal

compact open subgroups Km
Hi,p
⊂ Hi(Qp). Hence,

µ̃(Γm
H̃
\H̃(R)) =

s∏
i=1

µi(Γ
m
Hi
\Hi(R)),

where ΓmHi := Hi(Q) ∩Km
Hi

.

By [Vas07], 3.3, each Hi is of the form ResKi/QH
′
i, where Ki is a totally

real number field and H ′i is a simply connected absolutely quasi-simple group.

Now,

Hi(Qp) = ResKi/QH
′
i(Qp) = H ′i(Ki ⊗Q Qp) =

∏
υ|p

H ′i(Ki,υ),

where the product runs over the places υ of Ki lying above p and Ki,υ is the

completion of Ki with respect to the valuation determined by υ. Thus, Km
Hi,p

is a product of maximal compact open subgroups Km
H′i,υ
⊂ H ′i(Ki,υ).

Since Hi(R) =
∏

υ|∞H
′
i(Ki,υ), we can write ωi = ∧υ|∞ωi,υ, where ωi,υ is a

real non-zero left-invariant differential form of maximal degree on H ′i(Ki,υ).

We choose the ωi,υ so that the volume of any maximal compact subgroup of

H ′i(C) is one. Note that, by [Pra89], 3.5, for each archimedean place υ of Ki,

the Haar measure µi,υ determined by ωi,υ on H ′i(R) is precisely that defined

in loc. cit. 3.6. Therefore, by loc. cit. Theorem 3.7, µi(Γ
m
Hi
\Hi(R)) is equal

to

D
1
2

dimH′i
Ki

· |NKi/Q(∆Li/Ki)|
si
2 ·

(
ri∏
j=1

mi,j!

(2π)mi,j+1

)[Ki:Q]

· τKi(H ′i) · ξi,

where

• DKi is the absolute value of disc(Ki).
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• Li is the splitting field of the quasi-split inner form Hi of H ′i.

• NKi/Q is the norm on Ki.

• ∆Li/Ki is the relative discriminant of Li over Ki.

• si is the integer defined in [Pra89], 0.4.

• ri is the absolute rank of Hi.

• The mi,j are the exponents of the simple, simply connected, compact,

real-analytic Lie group of the same type as Hi.

• τKi(H ′i) = 1 is the Tamagawa number of H ′i (see [Pra89], 3.3).

• ξi is the product, over all finite places υ of Ki, of local factors ξi,υ.

Note first that dimH ′i, si, ri, the mi,j and [Ki : Q] are all positive integers,

with the possible exception of si when Li = Ki, in which case it becomes

irrelevant. It is also worth noting that they are all uniformly bounded.

Recall that ∆Li/Ki is an ideal in OKi with the property that the prime

ideals dividing it are precisely those that ramify in OLi i.e. those places υ of

Ki such that Hi,Ki,υ does not split over an unramified extension of Ki,υ. Its

norm NKi/Q(∆Li/Ki) is divisible by precisely those primes p such that there

exists υ lying above p and dividing ∆Li/Ki .

By [Pra89], 2.10, ξi,υ > 1 for all non-archimedean places υ of Ki. Fur-

thermore, if H ′i,Ki,υ is not quasi-split, Km
H′i,υ

is not special, or H ′i,Ki,υ splits

over an unramified extension of Ki,υ and Km
H′i,υ

is not hyperspecial, then

ξi,υ ≥ q
ri,υ+1
i,υ · (qi,υ + 1)−1,
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where qi,υ is the cardinality of the residue field ki,υ of Ki,υ and ri,υ ≥ 1 is

the rank of Hi,Ki,υ over the maximal unramified extension of Ki,υ. Therefore,

let Σi be the set of primes p such that, for some place υ of Ki lying above

p, either H ′i,Ki,υ is not quasi-split, H ′i,Ki,υ does not split over an unramified

extension of Ki,υ, or Km
H′i,υ

is not a hyperspecial subgroup of H ′i(Ki,υ). Then

there exist uniform constants c6 and δ2 such that

µi(Γ
m
Hi
\Hi(R)) > c6D

1
2

dimH′i
Ki

·
∏
p∈Σi

pδ2 .

However, recall that

Hi,Qp =
∏
υ|p

ResKi,υ/QpH
′
i,Ki,υ

.

Therefore, by [BT65], 6.19, the set Σ(Hi) is contained in the union of Σi and

the set of primes p dividing DKi . On the other hand, suppose that Km
H′i,υ

is a hyperspecial subgroup of H ′i(Ki,υ) for each place υ of Ki lying above

a prime p. For each such subgroup, there exists a smooth group scheme

H′i,OKi,υ
over OKi,υ , with generic fibre H ′i,Ki,υ , such that H′i,ki,υ is reductive

and H′i,Oki,υ
(OKi,υ) is equal to Km

H′i,υ
. Let

Hi,Zp :=
∏
υ|p

ResOKi,υ/ZpH
′
i,OKi,υ

.

Then, the generic fibre of Hi,Zp is Hi,Qp and Hi,Zp(Zp) = Km
Hi,p

. Furthermore,

if p does not divide DKi , then

Hi,Fp =
∏
υ|p

ResOKi,υ⊗ZpFp/FpH
′
i,OKi,υ⊗ZpFp =

∏
υ|p

Reski,υ/FpH
′
i,ki,υ

is a reductive group over Fp. Therefore, the set Σ(Km
Hi

) is also contained in

the union of Σi and the set of primes p dividing DKi , from which we conclude
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there exists a uniform constant δ3 such that

µi(Γ
m
Hi
\Hi(R)) > c6 · Π(Hi, K

m
Hi

)δ3 .

However, the union of the Σ(Hi) is equal to Σ(H) and the union of the

Σ(Km
Hi

) is equal to Σ(Km
H̃

).

We will require the following lemma in the proof of Lemma 7.11 and also

to obtain suitable Hecke correspondences:

Lemma 7.10. Let T be a maximal torus of HQp. There exists a basis of

X∗(T ) such that the coordinates of the characters of T intervening in Qn

p are

bounded in absolute value by a uniform constant.

Proof. By [CU06], Proposition 2.1, since H is the generic Mumford-Tate

group on XH , there exists a dense set of special points X ′H in XH such that,

for x ∈ X ′H , the Mumford-Tate group MT(x) of x is a maximal torus in H.

Choose an x ∈ X ′H and let M := MT(x). Denote by L the splitting field of

M and by RL the torus ResL/QGm,L.

The reciprocity morphism rx : RL → M corresponding to x is surjective

and induces an embedding

X∗(M) ↪→ X∗(RL).

Enumerate the elements σ ∈ Gal(L/Q), thereby producing a basis B := {bσ}

of X∗(RL). By [Yaf06], Section 2, with respect to this basis, the characters

of M intervening in Qn
have coordinates bounded in absolute value by a

uniform constant.
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Since any two maximal tori of HQp are conjugate by an element of H(Qp),

we may conjugate rx,Qp by an element of H(Qp) to obtain a surjective mor-

phism r′
x,Qp

: RL,Qp → TQp . Thus, we obtain an embedding

X∗(TQp) ↪→ X∗(RL,Qp)

such that, with respect to the basis B, the coordinates of the characters of

T intervening in Qn

p are uniformly bounded in absolute value. Since our

representation was faithful, these characters generate X∗(TQp) and so there

are only finitely many possibilities for this submodule of X∗(RL,Qp). For each

such possibility, choose a basis for X∗(TQp) and consider the maximum of the

absolute values of the coordinates of the characters intervening in Qn

p with

respect to these bases.

Lemma 7.11. There exist uniform constants c7 and c8 such that, for any

p /∈ Σ(H̃,Km
H̃

) greater than c7, such that K̃H,p ( Km
H̃,p

,

[Km
H̃,p

: K̃H,p] > c8p.

Proof. We will imitate the proof of [UYa], Proposition 3.15. Since Km
H̃,p

is hyperspecial and HQp is unramified, there exist smooth reductive group

schemes H̃ and H over Zp, the generic fibres of which are H̃Qp and HQp ,

such that Km
H̃,p

= H̃(Zp). By [Vas12], Lemma 2.3.1, the central isogeny πQp

extends uniquely to a central isogeny πZp : H̃→ H and we denote the kernel

Z.

The map

K̃H,p\H̃(Zp)→ KH,p\H(Zp)
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is injective. However, recall from the proof of Lemma 7.8 that the cokernel is

no larger than H1(Gal(Qun
p /Qp),Z(Zun

p )). Furthermore, if F is the splitting

field of Z and υ is a place of F lying above p, the kernel of the restriction

map to H1(Gal(Qun
p /Fυ),Z(Zun

p )) is uniformly bounded. However, as we

have seen, H1(Gal(Qun
p /Fυ),Z(Zun

p )) is itself uniformly bounded. Therefore,

it suffices to show there exist uniform constants c7 and c8 such that [H(Zp) :

KH,p] > c8p, whenever p > c7.

Let T be a maximal torus of H. The group (KH,p ∩ T(Zp))\T(Zp) is a

subset of KH,p\H(Zp) and so a lower bound for the size of this group would

suffice. Let T denote the generic fibre of T and note that, by [Tit79], 3.8.2,

the hyperspecial subgroup T(Zp) is the maximal compact subgroup of T (Qp).

Therefore, if Kp = GZp(Zp), a condition satisfied for all primes p greater than

a uniform constant, TZp is only a torus if

KT,p := GLn(Zp) ∩ T (Qp) = KH,p ∩ T (Qp) = KH,p ∩T(Zp)

is equal to T(Zp).

We claim that it is possible to choose T such that TZp is not a torus. In

particular, since, by [DG63], Exposé XXII, Section 8, every semisimple ele-

ment of H is contained in a maximal torus, we are claiming that H(Zp)\KH,p

contains a semisimple element. To see this, note that, by [DG63], Exposé

XXII, Corollaire 1.10, the functor of maximal tori of H is representable by

H/N, where N is the normaliser of a maximal torus in H. By the paragraph

following [DG63], Exposé XXII, Lemme 4.5, and by [DG63], Exposé XXI,

Proposition 5.9, the universal maximal torus T of H (see [DG63], Exposé

XXII, Section 8) has the same dimension as H. However, the morphism

u : T → H is quasi-finite. Hence, by [DG63], Exposé XXII, Proposition
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8.1, the semisimple elements of H constitute a constructible set of dimen-

sion dim H, which therefore contains a Zariski open set. On the other hand,

H(Zp) \ KH,p is open in H(Zp) for the p-adic topology and so the claim

follows.

By [PR91], 3.3, p134, every maximal compact subgroup of GLn(Qp) is

conjugate to GLn(Zp) by an element of GLn(Qp). Hence, there exists a

g ∈ GLn(Qp) such that

T(Zp) = gGLn(Zp)g−1 ∩ T (Qp).

We let T0 denote g−1Tg. Hence, GLn(Zp)∩T0(Qp) is a maximal compact open

subgroup Km
T0,p

of T0(Qp) and, since KT,p = GLn(Zp) ∩ T (Qp), conjugation

by g−1 establishes a bijection

KT,p\T(Zp)↔ (g−1GLn(Zp)g ∩ T0(Qp))\Km
T0,p

.

The latter index is the size of the orbit Km
T0,p
· g−1Znp in the space of lattices

of Qn
p . Note that Km

T0,p
= T0,Zp(Zp). Since T splits over an unramified exten-

sion of Qp, so too does T0 and so, by [Tit79], 3.8.2, Km
T0,p

is a hyperspecial

subgroup. Therefore, T0,Zp is a torus.

By [DG63], Exposé X, Lemme 4.1, there is a canonical isomorphism

X∗(T0,Qp)
∼= X∗(T0,Fp)

identifying the characters intervening in Qn

p and Fnp . Thus, with respect to

the image of the basis obtained using Lemma 7.10, the coordinates of the

characters of T0,Fp intervening in Fnp are bounded in absolute value by a

uniform constant.
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Therefore, by [EY03], Lemma 4.4.1, for all subspaces W of Fnp , the group

of connected components of the stabiliser of W in T0,Fp is of order bounded

by a uniform constant. Since TZp is not a torus, T0,Zp does not fix the lattice

g−1Znp in the sense of [EY03], Section 3.3. Therefore, [EY03], Proposition

4.3.9 implies that there exists a uniform constant c8 such that the size of the

orbit T0,Zp(Zp) · g−1Znp is greater than c8p.

Lemma 7.12. There exists a uniform constant c9 such that, if p /∈ Σ(H̃, K̃H)

is a prime greater than c9, then p /∈ Σ(H,KH).

Proof. Since HQp is unramified and K̃H,p is hyperspecial, there exist smooth

reductive group schemes H̃ and H over Zp, the generic fibres of which are

H̃Qp and HQp , such that K̃H,p = H̃(Zp). By [Vas12], Lemma 2.3.1, the central

isogeny πQp extends uniquely to a central isogeny πZp : H̃→ H.

Let Km
H,p be a maximal compact open subgroup containing KH,p. There-

fore, Km
H,p contains the image of K̃H,p. Since, by [Tit79], 3.8.2, K̃H,p is max-

imal, [Oh01], Proposition 3.3 implies that Km
H,p = H(Zp).

Since K̃H,p = H̃(Zp), the map

H̃(Zp)→ KH,p\H(Zp)

is trivial and we have seen that the cokernel is uniformly bounded. On

the other hand, the proof of Lemma 7.11 shows that, if p is greater than

a uniform constant and KH,p ( H(Zp), then [H(Zp) : KH,p] is at least a

uniform constant times p.
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Proof. (Theorem 7.6) Recall that

µ(ΓH\X+
H) =

[ad ◦ π(Γm
H̃

) : ad ◦ π(Γ̃H)]

[ad(ΓH) : ad ◦ π(Γ̃H)]
· µ(ad ◦ π(Γm

H̃
)\Had(R)+).

Therefore, by Lemma 7.7 and 7.8, we have

µ(ΓH\X+
H) > c3c

−1
4 C−|Σ(H,KH)| · [Km

H̃
: K̃H ] · µ(ad ◦ π(Γm

H̃
)\Had(R)+),

so, by Lemma 7.9,

µ(Γ\X+
H) > c3c

−1
4 c5C

−|Σ(H,KH)| · [Km
H̃

: K̃H ] · Π(H̃,Km
H̃

)δ1 .

Lemma 7.11 implies that there exist uniform constants c10 and δ4 such that

µ(Γ\X+
H) > c10C

−|Σ(H,KH)| · Π(H̃, K̃H)δ4 .

Therefore, the result follows from Lemma 7.12.

Proof. (Theorem 7.4) Follows from Theorem 7.5 and Theorem 7.6.

7.6 Choosing a suitable Hecke correspondence

In this section, we prove an analogue of [KY], Theorem 8.1, demonstrating

the existence of suitable Hecke correspondences. Recall that, if (G,X) is a

Shimura datum, Gad decomposes into a product of simple factors, which we

denote Gi. Thus, Xad decomposes into a product of factors Xi and, if X+ is

a connected component of X, then it decomposes into a product of factors

X+
i . If the image Kad of K in Gad(Af ) is equal to a product of compact

open subgroups Ki ⊂ Gi(Af ), then SKad(Gad, Xad) is equal to the product of

the SKi(Gi, Xi). If K is a compact open subgroup of G(Af ) we will use the

notation Kp to denote the product
∏

l 6=pKl.
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Theorem 7.13. Let (G′, X ′) be a Shimura datum such that G′ = G′ad, let

K ′ be a neat compact open subgroup of G′(Af ), equal to a product of compact

open subgroups K ′p ⊂ G′(Qp), and fix a faithful representation

ρ : G′ ↪→ GLn.

There exist positive integers k and f such that, if V is a strongly special

subvariety of SK′(G
′, X ′), defined by (H,XH), p /∈ Σ(H,KH) is a prime such

that K ′p = G′Zp(Zp) and (G,X) is a Shimura subdatum of (G′, X ′) such that

V is contained in SK(G,X), where K := K ′ ∩ G(Af ), then there exist a

compact open subgroup

Ip ⊂ Kp := K ′p ∩G(Qp)

and an element α ∈ G(Qp) such that

• [Kp : Ip] ≤ pf .

• If I ⊂ K is the compact open subgroup KpIp ⊂ G(Af ),

τ : ShI(G,X)→ ShK(G,X)

is the natural morphism, and Ṽ ⊂ SI(G,X)C is an irreducible compo-

nent of τ−1(V ), then Ṽ ⊂ Tα(Ṽ ).

• For every k1, k2 ∈ Ip, the image of k1αk2 generates an unbounded sub-

group of Gi(Qp) for each i.

• [Ip : Ip ∩ αIpα−1] < pk.
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In the situation described in the theorem, we will use the term uniform

to mean depending only on (G′, X ′), K ′ and ρ. Firstly, we will deal with the

matter of including a strongly special subvariety in its image under a Hecke

correspondence:

Lemma 7.14. There exists a uniform integer A such that, for any α ∈

H(Af ),

V ⊂ TαA(V ).

Proof. By definition, V is the image of X+
H × {1} in ShK(G,X). Thus,

consider a point (x, 1) ∈ V with x ∈ X+
H . Let

π : H̃ → H

be the simply connected covering, whose degree we denote d, and consider an

α ∈ H(Af ). Therefore, for any positive integer A divisible by d, there exists

a β ∈ H̃(Af ) such that π(β) = αA. By strong approximation applied to H̃,

β = qk, where q ∈ H̃(Q) and k ∈ π−1(K). Note that, since π is proper,

π−1(K) is a compact open subgroup of H̃(Af ). Since H̃(R) is connected,

π(q) ∈ H(R)+ and π(q) · x ∈ X+
H .

Thus, consider the point

(π(q) · x, π(β)) ∈ TαA(V ).

By the previous discussion, this is equal to (x, 1). Since, by [UYa], Lemma

2.4, d is bounded by a uniform integer D, setting A = D! finishes the proof.

In order to find suitable Hecke correspondences, we will also need the

following two results on maximal split tori:
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Lemma 7.15. Let p /∈ Σ(H,KH) be a prime such that K ′p = G′Zp(Zp). Then

there exists a maximal split torus S ⊂ HQp such that SZp is a torus.

Proof. Since p /∈ Σ(H,KH), there exists a smooth reductive group scheme

H over Zp such that HQp = HQp and H(Zp) = KH,p. Let S be a maximal

split torus of H and let S denote its generic fibre. By [Tit79], 3.8.1, SZp is a

torus if and only if

SZp(Zp) := GLn(Zp) ∩ S(Qp) = KH,p ∩ S(Qp)

is equal to S(Zp). However, since KH,p = H(Zp), SZp(Zp) contains S(Zp) and

so, by [Tit79], 3.8.2., they are equal.

Lemma 7.16. Assume HQp is quasi-split and let S ⊂ HQp be a maximal

split torus. There exists a basis of X∗(S) such that the coordinates of the

characters of S that intervene in Qn
p are uniformly bounded in absolute value.

Proof. Let T ⊂ HQp be the centraliser of S in HQp . Since HQp is quasi-

split, T is a maximal torus of HQp . By [Wat79], 7.4, there exists an isogeny

T → S × A, where A is the maximal anisotropic subtorus of T , and the

degree d of this isogeny is bounded by [LT : Q]dimT , where LT is the splitting

field of T. Note that dimT is bounded by the absolute rank of G and, as we

have seen, [LT : Q] is bounded in terms of the dimension of T .

Consider the map of characters

ϕ : χ 7→ χS + χA : X∗(T )→ X∗(S)⊕X∗(A)

induced by the inclusions S ⊂ T and A ⊂ T . The characters of S intervening

in Qn
p are precisely the χS such that χ ∈ X∗(T ) intervenes in Qn

p .
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Now consider the embedding

φ : X∗(S)⊕X∗(A) ↪→ X∗(T )

induced by the above isogeny. By Lemma 7.10 there exists a basis {e1, ...er}

of X∗(T ) such that the coordinates of the characters of T intervening in Qn

p

are bounded in absolute value by a uniform constant B′. Given a character

of T , its coordinates increase in absolute value by at most a factor of d under

φ ◦ ϕ.

Thus, let {χi} be the characters of T intervening in Qn

p and let {χi,S+χi,A}

be their images in X∗(S)⊕X∗(A). Write the image of χi,S +χi,A under φ as

r∑
j=1

ni,jej.

Hence, |ni,j| < B := dB′ for all i and j and ni,j = ni,S,j + ni,A,j, where

r∑
j=1

ni,S,jej and
r∑
j=1

ni,A,jej

are the images of the χi,S and χi,A under φ, respectively. Therefore, either

|ni,S,j| < B for all i and j, or there exist i and j such that |ni,S,j| ≥ B, in

which case ni,S,j and ni,A,j are of opposite signs.

Assume the latter, letting χi denote the corresponding character and

letting ni,S,j denote the coefficient with absolute value at least B. Since

our representation of T was defined over Qp, for each τ ∈ Gal(Qp/Qp), τχi

also intervenes. Since S is split, τχi,S = χi,S for every τ ∈ Gal(Qp/Qp).

Therefore, the image of τχi in X∗(S) ⊕X∗(A) varies over χi,S + τχi,A and,

since A is anisotropic, ∑
τ∈Gal(Qp/Qp)

τχi,A = 0.
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Thus, there exists a τ ∈ Gal(Qp/Qp) such that the coefficient of ej corre-

sponding to the image of τχi,A under φ is of the opposite sign to ni,A,j. But

then this coefficient is of the same sign as ni,S,j, which implies that the sum

of these two coefficients has absolute value greater than or equal to B, which

is a contradiction.

Therefore, with respect to the basis {e1, ..., er} of X∗(T ), the coordinates

of the characters of S intervening in Qn
p are bounded in absolute value by B.

Since our representation is faithful, these characters generate X∗(S) and so,

as a submodule of X∗(T ), there are only finitely many possibilities for X∗(S).

For each such possibility, choose a basis and consider the maximum of the

absolute values of the coordinates of the characters intervening in Qn
p .

Proof. (Theorem 7.13)

By Lemma 7.15, since p /∈ Σ(H,KH), we can find a non-trivial, maximal,

split torus S ⊂ HQp such that SZp is a torus. Furthermore, by Lemma 7.16,

there exists a basis of X∗(S) such that the coordinates of the characters

intervening in Qn
p are uniformly bounded in absolute value. Let πi : G→ Gi

denote the natural morphisms.

Lemma 7.17. The images πi(S) are non-trivial split tori.

Proof. Let π : H̃ → H denote the simply connected cover and let S̃ denote a

maximal split torus of H̃Qp such that π(S̃) = S. We can write S̃ as a product

of maximal split tori Sj in the quasi-simple factors Hj of H̃Qp . The map πQp

composed with the inclusion of HQp in the product of the πi(H)Qp is given

by maps fi each a product of morphisms gi,j : Hj → πi(H)Qp .

By [Mil04], SV3, πi(H) is non-trivial. Therefore, for each i, one of the
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gi,j is non-trivial. Since Hj is quasi-simple, ker gi,j is finite and, therefore,

gi,j(Sj) is non-trivial.

As K ′p = G′Zp(Zp), the compact open subgroup Kp := K ′p ∩ G(Qp) of

G(Qp) is equal to GZp(Zp) and, for any α ∈ S(Qp),

[Kp : Kp ∩ αKpα
−1] = [Kp : Kp ∩ αGZp(Zp)α−1].

By [EY03], Lemma 7.4.3, for qi = πi|S and e = A (the positive integer given

by Lemma 7.14), there exist a uniform constant k′ and an element α ∈ S(Qp)

such that no πi(α) lies in a compact subgroup of Si(Qp) and

[Kp : Kp ∩ αAGZp(Zp)α−A] < pk
′
.

Next we define Ip following [KY], 8.3.2. Since S is a split torus and SZp

is a torus, GZp(Zp) = Kp is in good position with respect to S (using the

terminology of [KY], 4.1.6).

Let f be the constant, defined in [KY], Lemma 8.1.6 (b), for the group

G′. We claim that there exists an Iwahori subgroup I1
p of G(Qp) such that

[Kp : Kp ∩ I1
p ] < pf .

To see this we let K1
p be any maximal compact subgroup of G(Qp) containing

Kp. Since Kp is in good position with respect to S, so too is K1
p . Thus, by

[KY], Lemma 8.1.6 (b)(i), there exists an Iwahori subgroup I1
p ⊂ K1

p in good

position with respect to S satisfying [K1
p : I1

p ] < pf . Thus,

[Kp : Kp ∩ I1
p ] < pf .

Let S ′ be a maximal split torus of GQp containing S such that I1
p is in

good position with respect to S ′. Let M be the centraliser of S ′ in GQp . Let
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B be the (extended) Bruhat-Tits building of GQp and A ⊂ B the apartment

of B associated to S ′.

The group M(Qp) acts on A as follows: we denote by

ordM : M(Qp)→ X∗(M)Qp

the homomorphism characterised by

〈ordM(m), χ〉 = ordp(χ(m))

for all χ ∈ X∗(M)Qp , where ordp is the normalised additive valuation on

Q∗p and X∗(M)Qp (resp. X∗(M)Qp) denotes the group of cocharacters (resp.

characters) of M defined over Qp. Let Λ ⊂ X∗(M)Qp be the free Z-module

ordM(M(Qp)). Then M(Qp) acts on A via Λ-translations.

Let Km
p be a special compact subgroup containing I1

p and let x ∈ A be

the unique special vertex fixed by Km
p . Recall the element α ∈ S(Qp) chosen

above. The vector ordM(α) ∈ Λ is non-trivial. Let C be the chamber of A

fixed pointwise by I1
p (it contains x in its closure). Consider the chamber

C ′ = C + ordM(α). Let C ⊂ A be the unique Weyl chamber with apex x

containing C ′. Finally, let I2
p be the Iwahori subgroup of G(Qp) fixing the

unique chamber of C containing x in its closure.

Define Ip as the intersection Kp ∩ I1
p ∩ I2

p . Since I2
p stabilises a chamber

in A it is also in good position with respect to S ′ and, therefore, S. Thus,

Ip is in good position with respect to S. It follows from [KY], Lemma 8.1.6

(b)(ii) that

[Kp : Ip] = [Kp : Kp ∩ I1
p ∩ I2

p ] ≤ [K1
p : I1

p ∩ I2
p ] < pf ,
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which is the first condition of Theorem 7.13. By Lemma 7.14, we have

Ṽ ⊂ TαA(Ṽ ), which is the second condition of Theorem 7.13.

Let S ′i := πi(S
′) and denote by Mi := πi(M) its centraliser. Let Ci be

the unique chamber of the Bruhat-Tits building Bi of Gi,Qp fixed by the

Iwahori subgroup πi(I
2
p ) and let xi be the vertex in the closure of Ci fixed

by πi(K
m
p ). Finally, let Ci be the unique Weyl chamber of the apartment Ai

corresponding to S ′i with apex xi and containing Ci.

For Mi we have a homomorphism

ordMi
: Mi(Qp)→ X∗(Mi)Qp ,

defined analogously to ordM . We denote the image ordMi
(Mi(Qp) by Λi.

Thus, Mi(Qp) acts on Ai by Λi-translations. We denote by Λ+
i ⊂ Λi the

positive cone stabilising Ci. By virtue of our choice of I2
p , since πi(α) does

not lie in a compact subgroup of Si(Qp), ordMi
(π(α)) lies in Λ+

i \{0}. Hence,

ordMi
(πi(α

A)) must also belong to Λ+
i \{0}. Thus, by [KY], Proposition 8.1.4,

for any k1, k2 ∈ I2
p (in particular for any k1, k2 ∈ Ip), πi(k1α

Ak2) generates

an unbounded subgroup of Gi(Qp). This is the third condition of Theorem

7.13.

Finally, from the previous discussion we have

[Ip : Ip ∩ αAIpα−A]

= [Ip : Ip ∩ αAKpα
−A] · [Ip ∩ αAKpα

−A : Ip ∩ αAIpα−A]

≤ [Kp : Kp ∩ αAKpα
−A] · [Kp : Ip]

≤ [Kp : Kp ∩ αAGZp(Zp)α−A] · [Kp : Ip] ≤ pk
′+f := pk.

This is the fourth condition of Theorem 7.13.
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7.7 The geometric criterion

Next we explain the procedure via which we replace strongly special subvari-

eties with higher-dimensional strongly special subvarieties given the existence

of suitable Hecke correspondences:

Theorem 7.18. Let (G,X) be a Shimura datum and let K ⊂ G(Af ) be a neat

compact open subgroup, the product of compact open subgroups Kp ⊂ G(Qp).

Let X+ be a connected component of X and let V be a special subvariety

of SK(G,X). Suppose that V is properly contained in a Hodge generic irre-

ducible subvariety Z of SK(G,X) and assume that there exist a prime p and

an α ∈ G(Qp) such that

• Z ⊂ Tα(Z).

• For every k1, k2 ∈ Kp, the element k1αk2 generates an unbounded sub-

group of Gi(Qp) for each i.

Then Z contains a special subvariety V ′ containing V properly. Moreover, if

V is strongly special then V ′ is strongly special.

This theorem is very similar to [KY], Theorem 7.2.1 and the proof here

is nearly a carbon copy of the proof found there. Our situation is slightly

simplified by the fact that Z is geometrically irreducible. Ensuring that V ′

properly contains V is where we require the stronger condition on α.

Lemma 7.19. If the conclusion of Theorem 7.18 holds for all Shimura data

(G,X) with G semisimple of adjoint type, then it holds for all Shimura data.
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Proof. Consider the situation in Theorem 7.18. We have a finite morphism

of Shimura varieties

f : ShK(G,X)→ ShKad(Gad, Xad).

Let Zad be the image of Z under this morphism. Similarly, let V ad be the

image of V . Thus, V ad is a special subvariety of SKad(Gad, Xad).

Let αad denote the image of α in Gad(Qp). The inclusion Z ⊂ Tα(Z) im-

plies that Zad ⊂ Tαad(Zad). As Kad is a product of compact open subgroups

Kad
p ⊂ Gad(Qp), the second condition of Theorem 7.18 implies the analogous

condition for αad and Kad
p .

As irreducible components of the preimage of a special subvariety by a

finite morphism of Shimura varieties are special, it is enough to show that

Zad contains a special subvariety V ′ad containing V ad properly.

Therefore, we henceforth assume that G is semisimple of adjoint type.

We fix a Z-structure on G by choosing a finitely generated free Z-module W ,

choosing a faithful representation

ξ : G ↪→ GL(WQ)

and taking the Zariski closure of G in GL(W ). We may choose ξ in such a

way that K is contained in GL(WẐ). This canonically induces a Z-variation

of Hodge structures F on ShK(G,X) and, in particular, on SK(G,X) (see

[EY03], 3.2).

Let z be a Hodge generic point of the smooth locus Zsm of Z. Let

π1(Zsm, z) be the topological fundamental group of Zsm at the point z. We

choose a point x ∈ X lying above z. This choice canonically identifies the
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fibre at z of the locally constant sheaf underlying F with the Z-module W .

The action of π1(Zsm, z) on this fibre is described by the monodromy repre-

sentation

ρ : π1(Zsm, z)→ π1(SK(G,X), z) = G(Q)+ ∩K ↪→ GL(W ).

Since Z is Hodge generic in ShK(G,X), the Mumford-Tate group of F|Zsm

at z is G. Thus, by [Moo98a], 1.4, given that the group G is adjoint, the

group ρ(π1(Zsm, z)) is Zariski dense in G. Having fixed a prime p (as in

Theorem 7.18), [KY], Proposition 4.2.1, implies that the p-adic closure of

ρ(π1(Zsm, z)) in G(Zp) is a compact open subgroup K ′p ⊂ Kp.

We have a Galois, pro-étale cover

πKp : ShKp(G,X)→ ShK(G,X),

with group Kp, as defined in [KY], Section 4.1.3. Let Z̃ be an irreducible

component of the preimage of Z in ShKp(G,X) and let Ṽ be an irreducible

component of the preimage of V in Z̃. By [KY], Lemma 7.2.3, we have

Lemma 7.20. The variety Z̃ is stabilised by the group K ′p and the set of

irreducible components of π−1
Kp

(Z) is naturally identified with the finite set

Kp/K
′
p.

The inclusion Z ⊂ Tα(Z) implies that Z̃ is an irreducible component

of π−1
Kp

(Tα(Z)). However, these components are of the form Z̃ · k1αk2 for

k1, k2 ∈ Kp. Therefore, there exist k1, k2 ∈ Kp such that Z̃ = Z̃ · k1αk2.

Corollary 7.21. Let Up be the group generated by K ′p and k1αk2. The variety

Z̃ is stabilised by the group Up.
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We now conclude the proof of Theorem 7.18. Again, let πi : G→ Gi de-

note the natural morphisms. By the condition placed on α, the group πi(Up)

is unbounded in Gi(Qp) for all i. Let G1,Qp =
∏

iHi be the decomposition

of G1,Qp into simple factors. Up to renumbering, we can assume that the

projection of Up to H1(Qp) is unbounded in H1(Qp). Let

τ : H̃1 → H1

be the universal cover of H1. We have [KY], Lemma 7.2.6:

Lemma 7.22. The group Up ∩ H1(Qp) contains the group τ(H̃1(Qp)) with

finite index.

Let Kp,1 be the compact open subgroup π1(Kp) of G1,Qp and let Kp,>1 be

the projection of K to G>1,Qp :=
∏

i>1Gi,Qp . As Up is an open subgroup of

G(Qp), it contains a compact open subgroup of G1,Qp and, in particular, a

compact open subgroup Up,1 of Kp,1 ∩
∏

i>1Hi(Qp). Similarly, Up contains a

compact open subgroup Up,>1 of Kp,>1. By the previous lemma, Up contains

the unbounded subgroup τ(H̃1(Qp)) · Up,1 · Up,>1. We make the definition

[KY], Definition 7.2.7:

Definition 7.23. We replace Up by its subgroup τ(H̃1(Qp)) ·Up,1 ·Up,>1. We

denote by V ′ the Zariski closure of πKp(Ṽ · Up).

Since, Z̃ is stabilised by Up, the variety V ′ is a subvariety of Z. Therefore,

let Ki := πi(K) and let K be the neat compact open subgroup
∏

iKi. We

have the natural finite morphism

f : ShK(G,X)→ ShK(G,X)
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of Shimura varieties and we let V ′ := f(V ′) and V := f(V ). The proof of

[KY], Lemma 7.2.8 demonstrates that

V ′ = SK1(G1, X1)× V ′>1,

where V ′>1 is the special subvariety of
∏

i>1 SKi(Gi, Xi) given by the pro-

jection of V ′. Hence, V ′ is a strongly special subvariety of SK(G,X) and,

therefore, since f is a finite morphism of Shimura varieties, V ′ is a strongly

special subvariety of SK(G,X). Furthermore, after possibly renumbering the

Gi (which we are free to do due to the condition placed on α), we may assume

that V ′ properly contains V . Therefore, V is properly contained in V ′, which

concludes the proof of Theorem 7.18.

7.8 Proof of main result

Finally, we prove Theorem 7.3. In fact, we will prove the following, equivalent

statement:

Theorem 7.24. Let S be a Shimura variety and let Σ be a set of strongly

special subvarieties contained in S. Let Z be an irreducible component of the

Zariski closure of Σ in S. Then Z is a strongly special subvariety of S.

Lemma 7.25. Theorem 7.24 is equivalent to Theorem 7.3.

Proof. Consider the situation described in Theorem 7.24. If we assume that

Theorem 7.3 holds then there exists a finite set {V1, ..., Vk} of strongly special

subvarieties contained in Z such that, for every V ∈ Σ, V is contained in

one of the Vi. Therefore, Σ is contained in the union of the Vi, which is itself
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contained in Z. Since Z is an irreducible component of the Zariski closure of

Σ, it must be equal to one of the Vi, proving Theorem 7.24.

Now consider the situation described in Theorem 7.3 and consider the

set Σ of all strongly special subvarieties of S contained in Z. If we assume

that Theorem 7.24 holds, the Zariski closure of Σ is a union of finitely many

strongly special subvarieties V1, ..., Vk. Thus, any strongly special subvariety

contained in Z is contained in one of the Vi, proving Theorem 7.3.

Note that, in order to prove Theorem 7.24, we may assume that the

elements of Σ are of equal dimension. We first prove the following Theorem,

following the proof of [KY], Theorem 9.2.1:

Theorem 7.26. Let (G′, X ′) be a Shimura datum such that G′ = G′ad and

fix a faithful representation

ρ : G′ ↪→ GLn.

Let K ′ be a neat compact open subgroup of G′(Af ), equal to a product of

compact open subgroups K ′p ⊂ G′(Qp), such that K ′ ⊂ GLn(Ẑ). Let k and f

be the positive integers given by Theorem 7.13.

Let Σ be a set of strongly special subvarieties contained in SK′(G
′, X ′).

Assume that the elements of Σ are of equal dimension d and that the Zariski

closure Z of Σ is irreducible. For each V ∈ Σ, let (HV , XV ) be the Shimura

subdatum defining V and put ΠV := Π(HV , KH).

Let (G,X) be a Shimura subdatum of (G′, X ′) such that Z is contained and

Hodge generic in SK(G,X), where K := K ′∩G(Af ). Let r := dimZ−d > 0

and make ONE of the following assumptions:

• The ΠV are bounded as V ranges through Σ.
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• For each V ∈ Σ, there exists a prime p not dividing ΠV such that

K ′p = G′Zp(Zp) and

p(k+2f)·2r · (degLK Z)2r < c · Πδ
V .

Then, for each V ∈ Σ, Z contains a strongly special subvariety of SK′(G
′, X ′)

containing V properly.

In the situation described in the theorem, we will use the term uniform

to mean depending only on (G′, X ′), K ′ and ρ.

Proof. Firstly, we consider the case that, as V ranges through Σ, ΠV is

bounded. That is to say, the primes dividing any given ΠV belong to a fixed,

finite set, whose product we denote Π.

By Theorem 7.13, for any prime p not dividing Π such that K ′p = G′Zp(Zp),

there exists a compact open subgroup

Ip ⊂ Kp := K ′p ∩G(Qp) = GZp(Zp)

and an element α ∈ G(Qp) satisfying the four requirements of Theorem 7.13,

for each V ∈ Σ. However, in this case we will choose these objects slightly

more precisely: recall that, by Lemma 7.15, for each V ∈ Σ, there exists a

non-trivial maximal split torus SV ⊂ HV,Qp such that SV,Zp is a torus. Since

SV is split, it is conjugate via an element of GLn(Qp) to a subtorus of the

diagonal matrices. By Lemma 7.16, after possibly replacing Σ by a Zariski

dense subset, we may assume that this torus is fixed i.e. that the SV are all

conjugate by elements of GLn(Qp) to a fixed torus S := SV0 for some V0 ∈ Σ.

Let Ip ⊂ Kp and α ∈ G(Qp) be the objects given by Theorem 7.13 applied

to V0.
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Now consider another V ∈ Σ and let g ∈ GLn(Qp) be such that gSV g
−1 =

S. Since SV,Zp is a torus, S stabilises the lattice gZnp . Therefore, by [EY03],

Lemma 3.3.1, since SZp is a torus, there exists an element c ∈ ZG(S)(Qp)

such that gZnp = cZnp , where ZG(S) is the centraliser of S in G. Therefore,

there exists k ∈ GLn(Zp) such that g = ck and so the SV are all conjugate

by elements of GLn(Zp). If we further assume that p is a prime such that

GFp is smooth, the final paragraph of the proof of [EY03], Proposition 7.3.1,

explains that, again, after possibly replacing Σ by a Zariski dense subset, we

may assume that the SV are all conjugate by elements of Kp and, therefore,

by elements of Ip.

Therefore, for each V ∈ Σ, we let gV ∈ Ip be such that SV = gV Sg
−1
V .

It follows that Ip and αV := gV αg
−1
V satisfy the requirements of Theorem

7.13 applied to V . Furthermore, if we let I ⊂ K be the compact open

subgroup KpIp ⊂ G(Af ), then the Hecke correspondences TαV on ShI(G,X)

all coincide with Tα.

Let

τ : ShI(G,X)→ ShK(G,X)

be the induced morphism of Shimura varieties and let Z̃ be an irreducible

component of the preimage τ−1(Z). For each V ∈ Σ, let Ṽ ⊂ SI(G,X) be

an irreducible component of the preimage τ−1(V ) contained in Z̃. Each Ṽ is

a strongly special subvariety of SI(G,X) defined by the Shimura subdatum

(HV , XV ). Denote the set of the Ṽ by Σ̃. By the second requirement of

Theorem 7.13, we have Ṽ ⊂ Tα(Ṽ ) for every Ṽ ∈ Σ̃. Hence, Σ̃ is contained

in Z̃ ∩ Tα(Z̃) and, therefore, Z̃ ⊂ Tα(Z̃).

As α satisfies the third requirement of Theorem 7.13, we can apply The-
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orem 7.18 to this α and conclude that, for each Ṽ ∈ Σ̃, there exists a special

subvariety Ṽ ′ ⊂ Z̃ containing Ṽ properly whose image in ShK′(G
′, X ′) is

strongly special. As τ preserves the property of being special, exhibiting a

special subvariety V ′ ⊂ Z containing V properly is equivalent to exhibiting

a special subvariety Ṽ ′ ⊂ Z̃ containing Ṽ properly.

Thus, we consider the case that ΠV is unbounded as V ranges through

Σ. Hence, we may assume that ΠV is larger than any uniform constant. We

proceed by induction on r. Consider first the case r = 1 and let V ∈ Σ.

By the second assumption of Theorem 7.26, there exists a compact open

subgroup Ip ⊂ Kp and an element α ∈ G(Qp) satisfying the four requirements

of Theorem 7.13 applied to V . Let I ⊂ K be the compact open subgroup

KpIp ⊂ G(Af ) and let

τ : ShI(G,X)→ ShK(G,X)

be the induced morphism of Shimura varieties. It follows from the first

requirement of Theorem 7.13 that the degree of τ is bounded above by pf .

Let Ṽ ⊂ SI(G,X) be an irreducible component of the preimage τ−1(V ).

It is a strongly special subvariety of SI(G,X) defined by the Shimura subda-

tum (HV , XV ) of (G,X). By the projection formula (see [KY], Proposition

5.3.2 (1)) and Theorem 7.4,

degLI Ṽ ≥ degLK V > c · Πδ
V .

Let Z̃ be an irreducible component of the preimage τ−1(Z) containing Ṽ .

Thus, Z̃ is Hodge generic in ShI(G,X) and

degLI Z̃ ≤ pf · dZ .
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As τ preserves the property of being special, exhibiting a special sub-

variety V ′ ⊂ Z containing V properly is equivalent to exhibiting a special

subvariety Ṽ ′ ⊂ Z̃ containing Ṽ properly.

By the second requirement of Theorem 7.13, we have Ṽ ⊂ Tα(Ṽ ). Hence,

Ṽ ⊂ Z̃ ∩ Tα(Z̃). Given their dimensions, if Z̃ and Tα(Z̃) intersect properly

then Ṽ is an irreducible component of the intersection. Thus,

c · Πδ
V < degLI Ṽ ≤ degLI (Z̃ ∩ Tα(Z̃))

≤ (degLI Z̃)2 · [Ip : Ip ∩ αIpα−1] < pk+2f · d2
Z ,

contradicting the second assumption of the theorem. Therefore, the inter-

section cannot be proper. Thus, Z̃ ⊂ Tα(Z̃) and, since α satisfies the second

condition of Theorem 7.18, there exists a special subvariety Ṽ ′ ⊂ Z̃ contain-

ing Ṽ properly whose image in ShK′(G
′, X ′) is strongly special.

Therefore, we consider the case r > 1. Suppose that the conclusion of

Theorem 7.26 holds for all subvarieties V and Z of ShK(G,X) as in the

statement of Theorem 7.26 such that 0 < dimZ − d < r and consider the

case that dimZ = d + r. We have Ṽ , Z̃, a compact open subgroup I ⊂ K

and an α ∈ G(Qp), constructed as in the case r = 1, where

degLI Ṽ > c · Πδ
V

and degLI Z̃ ≤ pf · dZ .

Suppose that Z̃ ⊂ Tα(Z̃). In this case we can apply Theorem 7.18 to

deduce that there exists a special subvariety Ṽ ′ ⊂ Z̃ containing Ṽ properly

whose image in ShK′(G
′, X ′) is strongly special.

Therefore, suppose that the intersection Z̃ ∩ Tα(Z̃) is proper. By the

second requirement of Theorem 7.13, Ṽ ⊂ Z̃ ∩ Tα(Z̃). Choose an irreducible
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component Ỹ ⊂ SI(G,X) of Z̃ ∩Tα(Z̃) containing Ṽ and denote its image in

ShK(G,X) by Y . Thus, Y is irreducible and satisfies rY := dimY −d < r. To

show that rY > 0 it suffices to check that Ṽ is not a component of Z̃∩Tα(Z̃).

However, if this were true we would have

c · Πδ
V < pk+2f · d2

Z ,

as in the case r = 1, contradicting the second assumption of Theorem 7.26.

Let (P,XP ) be a Shimura datum of (G,X), defining the smallest special

subvariety of SI(G,X) containing Ỹ . Let X+
P ⊂ X+ be the corresponding

connected component of XP . Define KP := K ∩P (AF ) and IP := I ∩P (Af ).

We have the following commutative diagram:

ShIP (P,XP )
q−−−→ ShI(G,X)yτ yτ

ShKP (P,XP )
q−−−→ ShK(G,X).

Let ṼP be an irreducible component of q−1(Ṽ ) contained in SIP (P,XP ) and

let VP := τ(ṼP ).

Let ỸP ⊂ SIP (P,XP ) be an irreducible component of q−1(Ỹ ) containing

ṼP . In particular, ỸP is a Hodge generic subvariety of SIP (P,XP ). Define

YP := τ(ỸP ), a Hodge generic subvariety of SKP (P,XP ).

We have

degLKP
YP ≤ degLIP

ỸP ≤ degLI Ỹ ≤ degLI (Z̃ ∩ Tα(Z̃)) < pk+2f · d2
Z ,

where the first inequality comes from the projection formula, the second

comes from [KY], Proposition 5.3.10, the third is due to the fact that Ỹ is an

irreducible component of Z̃∩Tα(Z̃), and the last inequality was demonstrated

previously.
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Lemma 7.27. The data P,XP , X
+
P , KP , VP and YP satisfy the conditions of

Theorem 7.26 (in place of G,X,X+, K, V and Z, respectively).

Proof. Firstly, note that the image of VP in ShK′(G
′, X ′) is strongly special

since it is still defined by the Shimura datum (HV , XV ). Let rP := dimYP −

dimVP . Thus, rP = rY > 0. We must verify that P,XP , X
+
P , KP , VP and YP

satisfy the second condition of Theorem 7.26 for the same prime p.

From the above inequalities we have

p(k+2f)·2rP · (degLKP
YP )2rP ≤ p(k+2f)·2rP+1 · d2rP+1

Z

and, as rP + 1 ≤ r, we deduce from the second assumption of Theorem 7.26

that

p(k+2f)·2rP · (degLKP
YP )2rP < c · Πδ

V .

As rP < r, by the induction hypothesis, we can apply Theorem 7.26

to P,XP , X
+
P , KP , VP and YP . Thus YP contains a special subvariety V ′P ,

which contains VP properly and whose image in ShK′(G
′, X ′) is strongly

special. This implies that Z contains a special subvariety V ′, which contains

V properly and whose image in ShK′(G
′, X ′) is strongly special.

Therefore, in order to prove Theorem 7.24, it suffices to prove the follow-

ing lemma:

Lemma 7.28. Let V ∈ Σ. There exists a uniform constant c11 such that, if

ΠV > c11, then there exists a prime p not dividing ΠV such that K ′p = G′Zp(Zp)
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and

p(k+2f)·2r · (degLK Z)2r < c · Πδ
V .

Proof. By a theorem of Chebyshev, there exist absolute positive constants

c12 and c13 such that the number of primes π(x) less than a given real number

x ≥ 2 is bounded below by c12
x

log x
and above by c13

x
log x

. Therefore, for any

fixed γ > ε > 0,

π(Πγ
V )� Πγ

V

log Πγ
V

� Πγ−ε
V .

If we denote by ω(ΠV ) the number of primes dividing ΠV , we have the

trivial estimate

ω(ΠV ) ≤ log ΠV

log 2
� Πε

V .

Note that K ′p = G′Zp(Zp) holds for all primes p greater than a uniform

constant. Therefore, if we set γ = δ
(k+2f)2r

−ε > 2ε > 0, provided ΠV is larger

than a uniform constant, we can find a prime p satisfying the requirements

of the lemma.

7.9 The André-Oort conjecture

We will prove the following theorem, which appears as [KY], Theorem 1.2.2.

The difference between our proof and the one appearing there is that ours

does not depend on any results from ergodic theory.

Theorem 7.29. Let (G,X) be a Shimura datum and let K be a compact open

subgroup of G(Af ). Let Σ be a set of special subvarieties in ShK(G,X) and
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let Z be an irreducible component of the Zariski closure of Σ in ShK(G,X).

We make ONE of the following assumptions:

• Assume the generalised Riemann hypothesis for CM fields.

• Assume that there exists a faithful representation G ↪→ GLn such that,

with respect to this representation, the generic Mumford-Tate groups

MTV of the V ∈ Σ lie in one GLn(Q)-conjugacy class.

Then Z is a special subvariety of ShK(G,X).

Proof. Fix a connected component X+ of X. We may assume that Z lies in

the connected component SK(G,X). Now, [KY], Theorem 2.5.3, produces

a dichotomy: either the subvarieties V have Galois orbits whose degrees are

bounded from below by an invariant unbounded as we range through Σ or

there exists a finite set {T1, ..., Tr} of subtori of G, anisotropic over R, such

that each V ∈ Σ is Ti-special for some i ∈ {1, ..., r} (see [UYa], Definition

3.1 and Definition 3.2 for the definition of T -special).

If the former occurs then [KY], Theorem 3.2.1, implies Theorem 7.29.

Otherwise, we may assume that every V ∈ Σ is T -special for some fixed

subtorus T of G such that TR is anisotropic. Thus, by [UYa], Lemma 3.3 and

Lemma 3.5, there exist q ∈ G(Q), θ ∈ G(Af ) and, for each V ∈ Σ, a qTq−1-

Shimura subdatum (HV , XV ) of (G,X), where HV is the generic Mumford-

Tate group of XV , such that V is the image of X+
V × {θ} in SK(G,X) (see

[UYa], Definition 3.1 for the definition of a T -Shimura subdatum). Hence,

after replacing Z by an irreducible component of its image under a suitable

Hecke correspondence, we may assume that each V is a standard T -special

subvariety of SK(G,X), associated to a T -Shimura subdatum (HV , XV ), with
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H = MT(XV ) (see [UYa] Definition 3.2 for the definition of a standard T -

special subvariety).

Thus, by [UYa], Lemma 3.6 and Lemma 3.7, for every V ∈ Σ, (HV , XV ) is

a Shimura subdatum of a fixed T -Shimura subdatum (L,XL). Therefore, we

may assume that Σ is contained in SL(Af )∩K(L,XL). Let (Lad, Xad
L ) be the

adjoint Shimura datum and let KL be a compact open subgroup of Lad(Af )

containing the image of L(Af ) ∩K. Thus, we have an induced morphism of

Shimura varieties

f : ShL(Af )∩K(L,XL)→ ShKL(Lad, Xad
L ).

Let V ad be the image of V under f . Since T is the connected centre of HV

and T is contained in the centre of L, V ad is defined by a Shimura subdatum

(H ′V , X
′
V ) of (Lad, XLad) such that H ′V is semisimple. Since Z is special if

and only if its image under f is special, we have reduced Theorem 7.29 to

Theorem 7.3.
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