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ABSTRACT

The simultaneous and/or quantitative recovery of optical absorption and scattering coefficients in ultrasound-
modulated optical tomography requires the use of a model-based inversion procedure. In this work we employ
a linearised forward model as part of a non-linear image reconstruction process, recovering parameters with an
error of less than +3% from simulated measurements with 1% Gaussian noise and initial conditions differing by
10% from the actual background.
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1. INTRODUCTION

Ultrasound modulated optical tomography (UOT) is a hybrid imaging technique which combines the spatial
resolution of ultrasound fields and the optical contrast of near infra-red light in biological media. A principle
goal of this developing technology is the reconstruction of clinically relevant quantitative images of the absorption
and scattering coeflicients in biological media, with a spatial resolution exceeding that of purely optical techniques
such as diffuse optical tomography (DOT).!

Much effort has been expended in advancing the experimental technique in UOT. The problem of detecting
the small ultrasound-modulated optical flux against the large unmodulated background has received significant
attention. This problem is particularly challenging since the requisite use of a coherent source generates a
spatially incoherent speckle pattern on the boundary of the domain. The flux of individual coherence areas
must therefore be collected in parallel,>™* or manipulated such that their contributions can be measured in
summation.? 3

Less attention has been paid to the fundamental problem that hybrid techniques such as UOT are only capable
of producing quantitative images under some form of model-based reconstruction procedure. This was succinctly
demonstrated by the images produced by Lev and Sfez” 19 where it was demonstrated that a UOT measurement
is akin to a scaled sample of the optical absorption sensitivity function!! for a given domain. Bratchenia et al.
previously developed a non-linear reconstruction algorithm capable of recovering the optical absorption coefficient
from a UOT experiment.'?> We previously demonstrated the recovery of the optical absorption coefficient in a
linear inversion, and investigated the form of the UOT absorption sensitivity functions.'3

The more subtle problem of non-uniqueness in the simultaneous recovery of both the optical absorption and
scattering coefficients has not been tackled for coherent ultrasound-modulated optical tomography, though the
theoretical basis has been tackled for an alternative incoherent formulation by Bal et al. (see 14,15 and related
publications). The key idea is that the recovery of 2N unknowns (the two coefficients) requires at least two sets
of internal data. In this work we develop a non-linear reconstruction technique which employs multiple optical
source-detector pairs to restore uniqueness and thus permit the simultaneous, quantitative recovery of both the
optical absorption and scattering coefficients.
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2. THEORY

We describe our reconstruction procedure in two parts. First, we define a forward model describing the generation
and propagation of our modulated optical field. Second, we define an optimisation procedure to recover the
pertinent coefficients from measurements of this field made on the boundary of the domain.

2.1 Forward model

A coherent optical field is modulated by a quasi-monochromatic acoustic field distribution. We take the modu-
lated component of the optical fluence in the domain, ¢,(r), to be given by,

[=V D)V + pa(r)] ga(r) = ga(r), r e, (1)

where D(r) = 1/(3pl(r)) is the diffusion coefficient, u,(r) is the absorption coefficient, and ¢,(r) is the UOT
‘virtual source’. This source term is given by,

qa(r) = 1a(r)do(r), (2)

where 7n,(r) is the acousto-optic modulation efficiency, ¢o(r) is the solution to the standard diffusion approxi-
mation in DOT,
[V - D(r)V + pa(r)] do(r) = go(r), r€Q, (3)

and go(r) is an isotropic source of coherent light. A coherent collimated source is approximated by the placement
of an isotropic source at a distance of 1/p(r) below and normal to the surface upon which the collimated source
is incident. Each diffusion equation is equipped with a Robin (impedance) style boundary condition,'®

¢z(r)+24An - D(r)Ve,(r) =0, r € 0N, (4)

where A relates to the index of refraction mismatch between the domain and that by which it is surrounded, n
is the unit outward normal to the boundary, and ¢, (r) may be either ¢o(r) or ¢, (r).

Our measurement is that of the modulated flux across the boundary of the domain. Under the assumption
of a matched index of refraction (A = 1) this is given by y = ¢,(r)/2, r € 99; this quantity may be measured
directly or inferred from data collected by many of the detection mechanisms featured in the literature. In the
case of a finite detection aperture the flux may be integrated over the area of the detector.

Our model was presented in different forms by both Allmaras and Bangerth,'” and Bratchenia et al.'> The
former work provides a reasoned derivation based upon a path integral formulation, the nature of those paths
then being formalised in the diffusion framework. This model can be also be derived from the time (lag) domain
correlation diffusion approximation presented by by Sakadzi¢ and Wang,'®

[~V - D(x)V + pa(r) + a(r) (1 — cos(w,7))] d(r, 7) = qo(r), r € Q, (5)

where ¢(r, 7) is the temporal field autocorrelation function, and a(r) is dependent upon the square of the acoustic
pressure amplitude, and the optical and acoustic properties of the domain. By linearising this expression in the
small parameter «, and taking the Fourier transform of the resulting expressions at the acoustic frequency, we
arrive at equations 1 to 3 where a(r) is subsumed into the modulation efficiency term 7, (r) (this linearisation
can be seen in a different setting in the work of Varma et al.'%). We now see that our measurement in the
prescribed model is the power-spectral density of the coherent flux emanating from the sample at the acoustic
frequency.

For the case of continuous wave (CW) acoustic modulation with a focused field, we may manipulate a(r) (as
given by Sakadzi¢ and Wang'®) to approximate the expected acousto-optic modulation efficiency. If we assume,
in addition to the standard assumptions made in the diffusion approximation, that k.lt, > 1, where k, is the
acoustic wavenumber, and Iy, = 1/(pa(r) + pi(r)), we find n,(r) ~ B(r)Pi(r). The term §(r) is principally
dependent upon the wavelength of illumination and insonification, the refractive index of the domain, and the
acousto-optic coefficient; in the prescribed conditions, the weak dependence upon the optical properties of the
domain are neglected.
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2.2 Reconstruction procedure

In UOT we take a number of measurements y,, . indexed over c different acoustic field distributions, and optical
source/detector locations. Here, the continuous wave formulation implies the scanning of a focused acoustic field
through the medium; though this could be extended to consider a time-gated measurement where the propagation
of a pulse defines a temporo-spatial distribution. The use of multiple source/detector locations is required to
resolve the non-uniqueness extant in the UOT problem. This approach is equivalent to the multiple-illumination
technique in photo-acoustics, and we shall see its effect on the ill-posedness of the problem in section 4.

To perform a reconstruction in a least-squares sense, we define a reqularised objective functional,
1
W) = 5 3 gme — 5l + AR() (6)
c

where x = [, (r) 1,(r)]7 consists of the parameters we wish to recover, and y.(x) is the output of the forward
model defined in section 2.1 with the optical and acoustical configuration indicated by index c¢. The practical
inverse problem in UOT remains ill-posed irrespective of the use of multiple illumination profiles, this is funda-
mentally due to the diffusive nature of the light transport problem; but the degree of ill-posedness is also affected
by how we choose to sample our domain with a choice of acoustic field distributions. To permit the solution
of the problem in a meaningful way therefore requires us to introduce prior information regarding the expected
structure of the solution. This task is achieved by the regularisation functional R(x), the contribution of which
is scaled by the hyper-parameter A\. A good solution, given our prior knowledge, is then given by finding

x4 = argmin ¥(x). (7)

There are numerous methods by which this optimisation procedure may be performed. For the small scale
two-dimensional problem presented in this work, we can choose a scheme which offers rapid convergence but
might otherwise be impracticable due to memory requirements. Here, we employ the damped Gauss-Newton
method, which is derived as follows.

1. The Newton update equation is sought by expanding the objective function in a second order Taylor series,
taking the derivative, and equating to zero.

2. The second order Fréchet derivatives are replaced with an approximation based upon the first order deriva-
tives, resulting in the Gauss-Newton method.

3. A scaling factor is introduced to the update equation which is found by a line-search of the un-approximated
forward model.

The next estimate of the parameters is thus given by,?"

-1
KD = x®) ¢ (7 (x)®) + AR D)) (0 D) (g — 5 x ) AR D)) ()

/%

where y/*(x(®)) represents the conjugate of the first Frechét derivative of the forward model with respect to the
parameters at iteration k, and R'(x(*)) and R”(x(*)) represent the first and second derivatives of the regularisa-
tion functional.

3. IMPLEMENTATION

In order to conduct the reconstruction procedure of equation 8 we require an implementation of the forward
model, and its derivatives, with respect to the optical parameters. In this work we will employ a finite element
implementation of the forward model, and take the derivatives of the discretised form.
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3.1 Finite element implementation
3.1.1 Forward model

We solve the correlation diffusion equation by the finite element method.?! 23 Equations 1 and 3 are each
multiplied by a test function which obeys the boundary conditions, and has zeroth and first derivatives which
are integrable over the domain. The boundary conditions of equation 4 are incorporated by subsequent integration
by parts. The domain is subdivided into a mesh of non-overlapping elements joined at IV vertex nodes. On this
mesh we define a set of piecewise linear basis functions such that u,;(r;) = d;; for ¢,j = 1,..., N where r; is
located at the j*" vertex node. We subsequently approximate the solution ¢, (r) ~ Z;V u;j(r)ds ;. Selecting the
basis functions in the weak formulation to be the same as the mesh basis allows us to write the resulting linear
system of equations:

A¢, = qq, (9)

where ¢, (r) is taken as ¢,(r) or ¢o(r), and ¢, (r) is g.(r) or go(r), respectively. A is the finite element system
matrix. We express the parameters of the forward model, x, using the same basis functions such that, for
example, fiq(r) = D) fa,kUu,k(r). Consequently, for the n dimensional problem,

Aij = ;/ﬂ [mkumk(r)Vui(r) - Vu;(r) + ,ua,ku“’k(r)ui(r)uj(r)} d"r + i . u; (r)u;(r) d"tr. (10)

The isotropic source term is given by
Q= Zqo,k/ u;(r) d"r. (11)
Q
k

Representing the acousto-optic modulation efficiency 7,(r) in the mesh basis, the UOT ‘virtual source’ term is
given by,

Ga; = 35 o /Q ()t (1) ()2, (12)

We make measurement(s) on the boundary by applying the measurement operator D' such that a given

measurement of the AC flux is
y= DT¢a~ (13)

3.1.2 Absorption and scattering sensitivity functions

To implement the reconstruction, we must determine the derivative of the forward model with respect to each
basis coefficient of u,(r) and p’(r),

0 0

y — DT ¢a , (14)

Opig Opir
where we take pu; to be equal to either p, j or u; > and understand y to be associated with a given index ¢ which
defines the particular optical source-detector pair and acoustic configuration employed in the forward model. To
find the derivative of ¢, with respect to each uy, we begin by differentiating equation 9 with ¢, = ¢,

Ao, a
o w
The derivative expressed in the first term of equation 15 is expanded,
and hence,
ki it @
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We denote the inverse of the system matrix (the discrete form Green’s function) G = A~! and find the
derivative of the system matrix with respect to each parameter,

A
Vi = o :/u,;(r)uj(r)uk(r)dr, (18)
aﬂa,k Q
0A 1
V“S = =—— (1) - Vg, (r)dr. 1
i, 3u;2’k/ﬂuk(r)Vuj(r) Vi, (r)dr (19)
By the application of reciprocity,?*
Oy T A —1 0qq T [0dq
— =D'A — Vg, | = o* — Vi, 20
O J k0 ¢ Opuk k0 (20)

Where ¢* solves the adjoint equation A¢* = qt for the adjoint source q* defined by our measurement
operator D”. We now turn our attention to the derivative of the source term,

Ma,j |
Owr Ok Zanabon/ o (T) Uy, (1) wj (r)d. (21)

The only term dependent upon p, or p’, are the optical fluence coefficients, ¢, thus,

0aj _ Z;”m (‘M}) /Q o ()t (1) (r) 2. (22)

Ok - Opk

To find the derivative of ¢y we differentiate equation 9 for ¢, = ¢y,

9(Ado) _ dq0
O e

(23)

Expanding and simplifying, noting that the source term is independent of absorption, and, with the exception
of a small region surrounding the source position, scattering,

A
% = - _187 0, (24)
8;% 5/Lk
inserting our definition of the system matrix derivative,
a¢0 -1
— =—-A"'V¥/ 25
6,uk k¢07 ( )

hence,

Tl - 2.2 i (ATVd), [ e (s ()0 (26)

The derivatives of the forward model are thus given by,

auk Y _ g7 >3 (A Vi), / ()t (£)11; (1) A2 — Vi, | (27)
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(a) Target absorption distribution [cm™!]. (b) Target scattering distribution [cm™].

Figure 1: Target absorption and scattering distributions. Co-located optical source and detector locations
indicated by arrows on the boundary of the domain. The set of ultrasound scan locations is indicated by the red
crosses.

3.2 Optimisation

In the following section we will attempt the reconstruction of a smooth distribution of p, and g} in a two
dimensional domain. Owing to the scale of the problem tackled in this work, we directly implement the update
of equation 8 as a matrix inversion using the discrete forward model and derivatives derived previously. Given
the nature of the distribution we chose to implement a first-order Tikhonov regularisation scheme which penalises
the gradient of the reconstructed parameters. The update is computed as

K(FHD) (8 | (g, (28)

-1
XD = x84+ ¢ (ITT 4 AW = xO)) (37 (e — 3e(x D) + AW, (29)

where J is the block Jacobian matrix formed from the two derivatives presented in equation 27, and the value of
¢ is determined by performing a line-search along the gradient direction, g. We perform the reconstruction on
an unstructured mesh such that the discrete form of the regularisation function involves the gradient operator
W,

Wij = VU,’(I‘)VUJ‘ (I‘) dr. (30)
Q

The use of a block Jacobian involving parameters of different scales requires that the Jacobian be appropriately
scaled (pre-conditioned), lest regularisation were to overly influence one parameter over another. Such matters
are considered in the context of DOT by Schweiger et al.?%

4. RESULTS

To demonstrate the reconstruction procedure we design a target absorption and scattering distribution which we
will attempt to reconstruct, as depicted in figure 1. The distributions include a number of smooth perturbations
from background parameters of j, = 0.lem ™!, p/ = 10cm ™!, with a maximum magnitude of +10%

Four collimated coherent optical sources are located normal to the boundary to which we refer by their
associated index, 1: (—25,0), 2: (0,25), 3:(25,0), 4 : (0,—25)mm. In simulation these are modelled by point-
sources at a distance of 1/u/, = 0.1cm below the boundary. Four diffuse detectors are co-located on the boundary
(indexed as per the source positions), which integrate the diffuse light over a Gaussian profile of full-width half
maximum (FWHM) of 0.lmm. A focused acoustic field with a Gaussian profile and FWHM of 1mm is scanned
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(c) Percentage error in absorption reconstruction. (d) Percentage error in scattering reconstruction.

Figure 2: Reconstructed parameter distributions, and percentage error of the reconstructions with respect to the
target parameters, using only a single optical source-detector pair (1,3).

through the plane at a series of locations indicated by the red crosses in figure 1. A simulated measurement of
the diffuse outgoing modulated flux was made for each source-detector pair, under each ultrasound scan location.

In all cases, the simulated measurements are corrupted by 1% Gaussian noise, and the reconstruction pro-
cedure is initialised with values of the absorption and scattering coefficient differing by +10% respectively from
the actual baseline values.

In the first reconstruction we employ optical source-detector pair (1,3). Convergence was achieved after four
iterations of the reconstruction algorithm, and the resultant images are shown in figure 2, alongside percentage
errors with respect to the target parameters. With a limited set of internal data the reconstructed distributions
vary by £5% from the target (which we recall has a maximum variation from the baseline of 10%. The recon-
structed absorption coefficient of figure 2a appears to capture the significant features of the target distribution,
but the larger perturbations of the distribution (both positive and negative) are seen to be under-reported, whilst
the smaller perturbations are over-reported. The scattering reconstruction of figure 2b fairs less well—only the
larger perturbations are discernible in the reconstructed images, the error of 5% being sufficient to completely
mask their presence.

In the second reconstruction we employ all six combinations of the source-detector pairs: (1,2), (1,3), (1,4),
(2,3), (2,4), (3,4). The simulated measurement data is again corrupted with 1% Gaussian noise, and the same
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Figure 3: Reconstructed parameter distributions, and percentage error of the reconstructions with respect to the
target parameters, using all combinations of the source-detector pairs.
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Figure 4: First 1,000 singular values of the approximation to the Hessian.

initial conditions are employed as in the case of a single source-detector pair. Convergence was again achieved
after four iterations of the reconstruction algorithm, and the resultant images are shown in figure 3, alongside
percentage errors with respect to the target parameters. The introduction of a significantly larger set of internal
data from the alternative source-detector pairs has considerably improved the reconstruction, permitting errors
of less than +1.8%, —2.3% from the target. All of the features of the target absorption and scattering distribution
are discernible in the reconstructed images, and the errors of figures 3c and 3d are, by inspection, uncorrelated
with the underlying parameter distribution.

The effect of introducing extra illumination profiles is seen by examining the singular value distribution of the
approximation to the Hessian, H. Figure 4 shows that the singular values involved in the second reconstruction
(that utilising all pairs of source-detectors) decay at a much slower rate than those of the first (utilising only pair
(1,3)). Simply employing a single source-detector pair used in alternate directions ((1, 3), (3,1)) almost doubles
the number of significant singular values in the spectrum. It is perhaps unsurprising that the amount of linearly
independent information is increased more significantly when utilising a second source-detector pair which is
spatially distinct ((1,2),(2,4)), and in this case located orthogonally to the first pair.

5. CONCLUSIONS

We have derived and implemented a model-based image reconstruction procedure for UOT based around a
linearised forward model. As part of this process we have developed the sensitivity functions which describe the
sensitivity of the measured modulated flux to changes in the absorption and scattering distributions within a
given domain.

We have explored the use of multiple optical source-detector pairs to reduce the ill-posedness of the inverse
problem, and in doing so achieved a simultaneous, quantitative reconstruction of an example absorption and
scattering distribution with an accuracy of +2.5% in the presence of 1% Gaussian noise.

To apply this work to real measurements will require three aspects of this work to be refined.

1. The model should be extended to three-dimensions to permit experimental realisable configurations of the
optical and acoustic configuration. Whilst there are no fundamental limitations in extending the model
to three-dimensions, the present implementation requires approximately 2N runs of the forward model to
calculate the requisite sensitivity functions, where N is the number of nodes in the mesh: this may present
too great a computational load for three-dimensional models.
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2. The present implementation of the reconstruction algorithm employs a straightforward matrix inversion
method to update the optical parameter distribution. In three dimensions the size of the Hessian ap-
proximation (J7J) may be too large to store in memory. In this case, a matrix-free approach must be
implemented.

3. A method to determine the inherent modulation efficiency, 7,(r), must be determined. Since we expect
the modulation efficiency to be proportional to the square of the acoustic pressure amplitude (over scales
comparable to those used in biomedical ultrasound), it is possible that this could be determined by multiple
measurements at different acoustic output pressures.
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