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Getting TRAIL back on track for cancer therapy

J Lemke1,2, S von Karstedt1, J Zinngrebe1 and H Walczak*,1

Unlike other members of the TNF superfamily, the TNF-related apoptosis-inducing ligand (TRAIL, also known
as Apo2L) possesses the unique capacity to induce apoptosis selectively in cancer cells in vitro and in vivo. This exciting
discovery provided the basis for the development of TRAIL-receptor agonists (TRAs), which have demonstrated robust
anticancer activity in a number of preclinical studies. Subsequently initiated clinical trials testing TRAs demonstrated,
on the one hand, broad tolerability but revealed, on the other, that therapeutic benefit was rather limited. Several factors that
are likely to account for TRAs’ sobering clinical performance have since been identified. First, because of initial concerns
over potential hepatotoxicity, TRAs with relatively weak agonistic activity were selected to enter clinical trials.
Second, although TRAIL can induce apoptosis in several cancer cell lines, it has now emerged that many others, and
importantly, most primary cancer cells are resistant to TRAIL monotherapy. Third, so far patients enrolled in TRA-employing
clinical trials were not selected for likelihood of benefitting from a TRA-comprising therapy on the basis of a valid(ated)
biomarker. This review summarizes and discusses the results achieved so far in TRA-employing clinical trials in the light of
these three shortcomings. By integrating recent insight on apoptotic and non-apoptotic TRAIL signaling in cancer cells, we
propose approaches to introduce novel, revised TRAIL-based therapeutic concepts into the cancer clinic. These include
(i) the use of recently developed highly active TRAs, (ii) the addition of efficient, but cancer-cell-selective TRAIL-sensitizing
agents to overcome TRAIL resistance and (iii) employing proteomic profiling to uncover resistance mechanisms. We
envisage that this shall enable the design of effective TRA-comprising therapeutic concepts for individual cancer patients in
the future.
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Facts

� The discovery that TRAIL can induce apoptosis selectively
in cancer cells has initiated the development of TRAs for
clinical application.

� First results of TRA-employing clinical trials revealed that
TRAs are well tolerated but failed to show robust
therapeutic activity in patients.

� In recent years, it has emerged that, although TRAIL can
induce apoptosis in many cancer cell lines, many other cell
lines and most primary cancers are TRAIL resistant.
Noteworthy, in some TRAIL-resistant cancer cells TRAIL
can trigger non-apoptotic signaling pathways, which can
contribute to their malignancy.

� Several means to overcome TRAIL resistance of cancer
cells have been reported, including combination of TRAs
with chemo- or radiotherapy or with targeted small
molecules such as Smac mimetics, BH3 mimetics or
inhibitors of kinases or the proteasome.

Open Questions

� Why could the promising preclinical results obtained with
TRAs not be successfully translated into anticancer activity
in patients?

� What are novel TRAs with improved pharmacokinetic
properties which could be taken forward into clinical
application without causing toxicity?

� Which TRAIL-apoptosis sensitizing strategies should be
considered for novel therapeutic combinations to overcome
TRAIL resistance?

� How can reliable molecular markers be identified to select
cancer patients that are likely to benefit from particular
TRA-comprising therapies?

Most current therapeutic strategies to treat cancer patients
aim to overcome two key hallmarks of cancer, i.e., excessive
proliferation and apoptosis resistance.1 In contrast to inhibiting
proliferation, which will mostly achieve stable disease by limiting
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tumor outgrowth, induction of apoptosis bears the potential to
eliminate cancer cells, which could provide an opportunity
for cure.

Apoptosis can be induced via an intrinsic and an extrinsic
pathway. The intrinsic apoptosis pathway senses cellular
damage, including misbalanced intracellular homeostasis,
oxidative stress and DNA damage, thereby triggering the cell
death program to eliminate non-functional cells and to
maintain tissue integrity.2 As this pathway depends on
mitochondria, it is also referred to as the ‘mitochondrial’
apoptosis pathway.3 A central molecule in detecting
cellular damage and triggering intrinsic apoptosis is the
tumor-suppressor protein p53. Importantly, most conventional
radio- and chemotherapies induce DNA damage that
activates the intrinsic apoptotic pathway in a p53-dependent
manner.4 However, functional inactivation of p53, either by
mutation or loss of expression, is one of the most common
genetic events in cancer. Hence, most cancer cells are either
primarily resistant or acquire resistance to these conventional
therapies.5

The extrinsic apoptosis pathways are triggered by binding
of death ligands to transmembrane receptors, so-called death
receptors (DRs), thereby transmitting a death signal coming
from the outside of the cell. Importantly, even though p53 has
been shown to be capable of influencing DR-induced
apoptosis signaling in certain cancers, mainly by influencing
DR expression itself,6,7 in most cases p53 appears to be
dispensable for apoptosis induction by DRs.8 Hence, stimula-
tion of the extrinsic apoptosis pathway is bound to be more
effective than chemotherapy for treating cancers with TP53
mutations.

Discovered in 1975, the first death ligand considered for
anticancer therapy was tumor necrosis factor (TNF).9 How-
ever, although TNF induced cell death in some cancer cells, it
soon became evident that TNF’s primary function is the
production of pro-inflammatory factors and that this activity is
causative for the severe toxicity induced by systemic
application of this cytokine.10–12 Subsequently, two agonistic
antibodies targeting the newly identified DR FAS/APO-1
(CD95) were shown to be capable of inducing apoptosis in a
wide range of cancer cells.13–16 Again, initial optimism to
target CD95 for anticancer therapy was stunted by the fact
that systemic treatment with recombinant CD95L or CD95-
agonistic antibodies resulted in fulminant and lethal hepato-
toxicity.17 A few years later, TNF-related apoptosis-inducing
ligand (TRAIL/Apo2L) was identified based on its sequence
homology to TNF and CD95L.18,19 Similar to TNF and CD95L,
TRAIL induced apoptosis in cancer cells. Importantly, how-
ever, and in contrast to TNF and CD95L, systemic treatment
with TRAIL in vivo killed tumor cells without causing
toxicity.20,21 Thereby, a death ligand with the promising
feature of cancer selectivity had been discovered. Apart from
sparking the development of TRAIL-receptor (TRAIL-R)
agonists (TRAs) for clinical application as potential novel
cancer therapeutics, this discovery resulted in intense world-
wide research efforts to unravel the signal transduction
machinery triggered by this ligand, especially concerning
apoptosis induction in cancer cells and how resistance to
TRAIL-induced apoptosis may be overcome when it is
encountered.

TRAIL-Induced Apoptosis

Two TRAIL-Rs are capable of transmitting apoptosis, i.e.,
TRAIL-R1 (also known as DR4)22 and TRAIL-R2 (also known
as Apo2, KILLER, DR5 or TRICK2; Figure 1).7,23–26 Binding of
TRAIL, which naturally occurs as a trimer, to TRAIL-R1 and/or
TRAIL-R2 induces receptor trimerization, the prerequisite for
formation of the death-inducing signaling complex (DISC).
The adaptor protein Fas-associated protein with death
domain (FADD) is recruited to the death domain (DD) of
these TRAIL-Rs via its own DD. FADD in turn recruits pro-
caspase-8/10 to the DISC via homotypic death effector
domain (DED) interaction as both FADD and these caspases
contain DEDs capable of interacting with each other.27–30

Both caspase-8 and caspase-10 are recruited to and
activated at the DISC. Whereas caspase-8 is the apoptosis-
initiating caspase at the DISC, caspase-10 is not required for
apoptosis induction and indeed cannot substitute for caspase-8
as pro-apoptotic caspase at the DISC.29 Caspase-8 is
recruited as an enzymatically inactive pro-caspase. It is
activated by a proximity-induced conformational change at the
DISC and subsequently fully activated by auto-catalytic
cleavage and formation of homodimers (reviewed in Kantari
and Walczak31). Upon release of active homodimers from the
DISC, caspase-8 cleaves and activates downstream sub-
strates of the apoptotic pathway (summarized in Figure 2).
Recent work using quantitative mass spectrometry has shed
light on the stoichiometry of the TRAIL-DISC, by demonstrat-
ing that three TRAIL-R1/2 receptors recruit only one FADD
molecule, which subsequently recruits multiple pro-caspase-8
molecules.32 Based on the presence of two DEDs in
caspase-8, the authors propose a model in which the first
pro-caspase-8 protein is recruited to the DISC via interaction
with the DED of FADD, whereas additional pro-caspase-8
molecules are recruited to the first one by interaction via their
respective DEDs resulting in chain formation of pro-caspase-8
molecules. Intriguingly, a very similar model of DISC
stoichiometry was also reported for the CD95-system.33

In addition to TRAIL-R1 and TRAIL-R2, TRAIL can also
bind to two non-DD-containing membrane-bound receptors,
TRAIL-R3 (also known as decoy receptor 1 (DcR1))23,25,34–36

and TRAIL-R4 (DcR2)37–39 (Figure 1). Although the
extracellular domains of these receptors are highly
homologous to those of TRAIL-R1/2, TRAIL-R3 is a
glycosyl-phosphatidyl-inositol-anchored receptor lacking an
intracellular domain and TRAIL-R4 only contains a truncated,
non-functional DD in its intracellular domain. Consequently,
these two receptors are incapable of inducing apoptosis.
As TRAIL-R3/4 can nevertheless bind TRAIL, they might
compete with the apoptosis-inducing DD-containing TRAIL-
Rs for ligand binding, which led to the hypothesis that these
receptors may act as decoys for TRAIL. Indeed, they were
both shown to be capable of inhibiting TRAIL-induced
apoptosis when overexpressed.40,41 In addition to a possible
TRAIL-sequestering function, TRAIL-R4 might impair TRAIL-
induced apoptosis by forming inactive hetero-complexes with
TRAIL-R2,40,42 and/or by triggering anti-apoptotic signaling
pathways such as NF-kB and PKB/AKT.37,43 Nevertheless,
as all of the above-mentioned mechanisms have almost
exclusively been studied in overexpression systems, the
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physiological function of endogenously expressed TRAIL-R3/4
and whether they can indeed interfere with TRAIL-induced
apoptosis under physiological expression conditions remains
to be established. Clinically, this understanding will be of great
interest given that TRAIL-R3 is highly expressed in many
primary gastrointestinal cancers44 and that high TRAIL-R4
expression is associated with poor prognosis in breast
cancer.45

In addition to the four membrane-bound TRAIL-Rs, the
soluble TNF receptor superfamily member Osteoprotegerin
(OPG), mainly involved in regulating osteoclast activity by
inhibiting RANKL,46 has also been reported to interact with
TRAIL47 (Figure 1). Whereas exogenous application of
recombinant OPG has indeed been shown to be capable of
inhibiting TRAIL-induced apoptosis,48,49 the apparently rather
low affinity between TRAIL and OPG at physiological
temperatures casts doubt on the physiological relevance of
this interaction and, hence, of endogenously expressed OPG
in impairing TRAIL signaling.50 This notion is further
supported by the intriguing observation that no in vivo study
in which high-dose TRAIL treatments have been employed
over extended periods of time has reported any bone
anomalies. This would, however, be expected in such animals
if the TRAIL–OPG interaction were of physiological relevance.
In summary, TRAIL is the most promiscuous TNF family
member as it binds to at least four different receptors.

The physiological reason for having such a variety of
TRAIL-Rs in humans is still not fully understood. Intriguingly,
in mice only one death-inducing receptor is expressed,
mTRAIL-R (MK/mDR5), which shares 43% and 49%
sequence homology with human TRAIL-R1 and TRAIL-R2,
respectively.51 In addition to mTRAIL-R, mice express two
potential decoy receptors, mDcTRAIL-R1 and mDcTRAIL-R2,
which are, however, quite distinct from the human decoy
receptors, TRAIL-R3 and -4.52 These differences between
mice and men suggest that the presence of two TRAIL-R
genes with a full DD in humans might have been a rather

recent evolutionary event, and it is still not entirely clear as to
why humans have two DD-containing TRAIL-Rs.

The emerging role of the ubiquitin-system in controlling
DISC activity. Recent evidence suggests post-translational
modification by ubiquitination to be a crucial regulator of
DISC activity. The E3 ligase Cullin3 has been reported to be
recruited to the DISC where it was shown to poly-ubiquitinate
caspase-8, leading to DISC recruitment of the ubiquitin-
binding protein p62, which stabilizes activated caspase-8,
thereby facilitating DISC activation.53 Second, it has been
shown that TNF receptor-associated factor 2 (TRAF2) is
recruited to the DISC where it mediates attachment of K48-
linked ubiquitin chains to caspase-8. This targets caspase-8
for proteasomal degradation and, hence, limits DISC
activity.54 Whether or not this K48-linked ubiquitination is
directly mediated by TRAF2 is currently debated as structural
and functional studies by others concluded that TRAF2
may not be able to act as an E3 ligase on its own.55,56

In summary, the DISC is a highly dynamic protein complex
that requires tight regulation. This regulation is, at least in
part, achieved by ubiquitination (Figure 2).

Type-I versus type-II cells. Cells have been classified in
two categories based on the pathway which they employ for
apoptosis induction upon DISC activation, a phenomenon
which was first described for the CD95/CD95L system.57

In so-called type-I cells, DISC activation is strong and stable
enough to induce robust caspase-8 activation, which is, in
turn, sufficient to directly and fully activate the effector
caspase-3, resulting in apoptosis. In type-II cells, DISC-
induced caspase-3 activation is incomplete and insufficient to
induce apoptosis. Therefore, additional triggering of the
mitochondrial pathway is required to induce apoptosis in
these cells. To achieve triggering of the mitochondrial
pathway, caspase-8 cleaves the pro-apoptotic BH3-only
protein Bid, generating truncated Bid.58 Truncated Bid in
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Figure 1 Overview of the TRAIL-R system in humans. TRAIL can bind to four membrane-bound and to one soluble receptor. TRAIL-R1 (DR4) and TRAIL-R2 (DR5) can
induce apoptosis via their DDs. In contrast, TRAIL-R3 (DcR1), TRAIL-R4 (DcR2) and the soluble receptor osteoprotegerin (OPG) have been suggested to impair TRAIL-
induced apoptosis as they are capable of binding to TRAIL but lack a functional DD required for apoptosis induction. TRAIL-R3 is as glycosyl-phosphatidyl-inositol-anchored
protein that completely lacks an intracellular domain. TRAIL-R4 is inserted in the membrane via a transmembrane domain but only expresses a truncated death domain, which
is incapable of inducing apoptosis
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turn activates the pro-apoptotic Bcl-2-family members Bax
and Bak enabling them to permeabilize the mitochondrial
outer membrane (reviewed in Westphal et al 59). Upon
mitochondrial outer membrane permeabilization (MOMP),
pro-apoptotic factors such as cytochrome-c are released.
Cytoplasmic cytochrome-c associates with Apaf-1 and pro-
caspase-9 to form the multiprotein complex known as the

apoptosome, an activation platform for pro-caspase-9 that
initiates effector caspase cleavage ultimately leading to
apoptosis (Figure 3).

Initially, differential efficiency in forming an active DISC was
thought to be the decisive factor distinguishing type-I from
type-II cells.60 However, more recently it was demonstrated
that the anti-apoptotic factor X-linked inhibitor of apoptosis
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Figure 2 The current model of TRAIL-induced DISC formation. Upon binding of trimerized TRAIL to TRAIL-R1/2, the adaptor molecule FADD is recruited via homotypic
DD interaction. Subsequently, FADD recruits pro-caspase-8/10 molecules via their respective DEDs. These pro-caspases are cleaved and activated at the DISC, initiating the
apoptosis signaling cascade. The E3 ligase Cullin3 has been shown to stabilize DISC formation by polyubiquitination of caspase-8. Different forms of cFLIP can inhibit DISC
formation by competing with caspase-8/10 for binding to FADD. TRAF2 has been suggested to negatively regulate DISC activity by promoting K48-linked ubiquitination and
subsequent proteasomal degradation of caspase-8
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proteins (XIAPs) is a crucial factor in making this distinction.61

XIAP counteracts apoptosis induction by directly inhibiting
caspase-3,62 and in type-II cells a high XIAP/caspase-3
ratio prevents full caspase-3 activation by caspase-8.

In summary, it appears that the DISC’s capacity to cleave
caspase-3 and the ratio of XIAP to caspase-3 in a given cell
are together critical for the distinction between type-I and
type-II cells.
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cells, activation of the mitochondrial apoptosis pathway, mediated by caspase-8-dependent cleavage of Bid, is required to achieve effector caspase activation. Truncated Bid
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for caspase-9. Active caspase-9 cleaves, and thereby activates, downstream effector caspases including caspase-3. The TRAIL-induced apoptosis cascade is inhibited at
various levels: (i) at the DISC, cFLIP competes with caspase-8 for binding to FADD; (ii) at the mitochondria, anti-apoptotic Bcl-2 family members like Bcl-2, Bcl-xL and Mcl-1
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TRAIL-Induced Necroptosis

Recently, it was demonstrated that DR triggering may also
program cells to die in a caspase-independent, necrotic way
(known as programmed necrosis or necroptosis).63 Necrop-
tosis depends on the formation of a complex containing the
kinases RIP1 and RIP3. This complex, also called necro-
some, mainly forms in scenarios when caspase-8 is absent or
when its activity is blocked. The necrosome in turn recruits
and phosphorylates the pseudokinase MLKL, which was
shown to be required for necroptosis induction.64,65 How
MLKL ultimately leads to necroptosis induction is still not fully
understood, but recent studies suggest that MLKL might be
recruited to the plasma membrane where it forms pores
leading to membrane permeabilization.66,67 Intriguingly, not
only TNF but also CD95L and TRAIL were shown to be
capable of inducing necroptosis.68–71 Given the emerging role
of necroptosis in pathophysiological processes and the
resulting therapeutic potential of targeting necroptosis, this
discovery may turn out to become important.

Resistance Mechanisms to TRAIL-Induced Apoptosis

Cellular FLICE-like inhibitory protein (cFLIP): regulator
of caspase-8 activation at the DISC. To avoid excessive
apoptosis induction by TRAIL, several mechanisms to
countervail TRAIL-induced apoptosis have evolved in normal
cells and are frequently exacerbated in tumor cells to escape
TRAIL-induced apoptosis. Formation of the DISC is con-
trolled by cFLIP (Figure 2). Three splice variants, cFLIP-long
(cFLIPL), cFLIP-short (cFLIPS) and cFLIP-Raji (cFLIPR), are
expressed on the protein level.72,73 All three of these cFLIP
variants contain two N-terminal DEDs that are highly
homologous to the two DEDs of caspases-8 and -10. cFLIPS

and cFLIPR are analogous as they both contain a short
C-terminal domain, albeit slightly different ones. In contrast,
cFLIPL contains a long C-terminal domain, which closely
resembles the caspase portion of caspase-8 but lacks
catalytic activity. Both cFLIPS and cFLIPR compete with
caspase-8 and casapse-10 for binding to FADD thereby
inhibiting the pro-apoptotic activity of the DISC.72,73

In contrast, the role of cFLIPL in regulating apoptosis appears
to be more complex and seems to depend on expression
levels and the intensity of receptor stimulation (reviewed in
Ozturk et al74). cFLIPL acts similar to the short cFLIP variants
in an anti-apoptotic manner when expressed at high levels.
When expressed at lower levels, however, cFLIPL can also
facilitate apoptosis by enhancing pro-caspase-8 recruitment
to the DISC.75,76 Interestingly, cFLIP splice variants have
also been shown to differentially control necroptosis induc-
tion. By completely preventing caspase-8 activation at the
DISC, cFLIPS can promote RIP-1/-3-dependent necroptosis
induction. By contrast, cFLIPL is thought to inhibit necropto-
sis in concert with caspase-8 because of formation of cFLIPL/
caspase-8 heterodimers resulting in localized caspase-8
activity and consequent inactivation of RIP1 and RIP3.71,77,78

In summary, cFLIP is a crucial regulator of the DISC and can
inhibit, promote or switch the signaling output of DR
stimulation. Therefore, cFLIP is an attractive target when
exploiting DR-induced cell death for cancer therapy.

The Bcl-2 family: balancing death and survival at the
mitochondrion. MOMP, the hallmark of the intrinsic apop-
tosis pathway, is positively and negatively regulated by three
different classes of Bcl-2 family members: (i) pro-apoptotic
effectors (Bax, Bak and possibly Bok), (ii) pro-survival
factors (e.g., Bcl-2, Bcl-xL and Mcl-1) and (iii) pro-apoptotic
inducers, which are BH3-only proteins (e.g., Bid, Bim, Puma,
Noxa; reviewed in Shamas-Din et al79). The latter proteins
are sensors for apoptotic stimuli and activated by transcrip-
tional induction, posttranslational modification or, in case of
Bid, by caspase-8-mediated proteolysis.80 Bax and Bak, the
executioners of the mitochondrial apoptosis pathway, are
kept in check by anti-apoptotic factors such as BcL-2, Bcl-xL
and Mcl-1. Thus, the balance of pro- versus anti-apoptotic
Bcl-2 family members tightly regulates MOMP and, thereby,
the mitochondrial apoptosis pathway. Alterations in this
balance, e.g., by overexpression of anti-apoptotic Bcl-2
family members or loss of expression of pro-apoptotic
members, frequently occur in cancers with the consequence
that these cancers are rendered resistant to conventional
chemo- and radiotherapy (reviewed in Indran et al81). With
respect to TRAIL signaling, it has been shown that type-II
cancer cells can acquire resistance to TRAIL-induced
apoptosis by loss of Bax82 or increased expression of
Bcl-2,83 Bcl-xL84 or Mcl-185 (Figure 3).

Inhibitor of apoptosis proteins (IAPs): caspase inhibitors
with emerging roles in the ubiquitin system. The family
of IAPs comprises of a number of members of which XIAP,
cellular IAP (cIAP)1 and cIAP2 have been most extensively
studied. All IAPs are characterized by containing at least one
baculovirus IAP repeat (BIR) domain. Their anti-apoptotic
function has been known for a long time and has initially been
solely attributed to their ability to directly inhibit caspases.
Indeed, XIAP was shown to prevent activation of caspases-3,
-7 and -9 via direct binding mediated by its BIR domains.62

As outlined above, its prominent role in regulating apoptosis
is also highlighted by its critical function in distinguishing
between type-I and type-II apoptosis signaling. In addition to
cytochrome-c, MOMP also results in release of the second
mitochondrial activator of caspases (Smac/DIABLO)86 from
the mitochondrial intermembrane space into the cytosol.
Cytosolic Smac directly binds to XIAP, thereby blocking its
inhibitory function on effector caspases and, in turn, allowing
for their full activation. Initially, the anti-apoptotic role of
cIAP1 and cIAP2 was, similar to XIAP, mainly attributed to
their direct inhibitory capacity toward caspases. Recently,
however, it has emerged that, although cIAP1 and cIAP2
bind caspases, they cannot efficiently inhibit them.87 These
results suggest that they exert their anti-apoptotic functions
by other mechanisms than directly inhibiting caspases.
Indeed, it has been demonstrated that cIAP1 and cIAP2, and
also XIAP, possess E3-ligase activity via their Really Interest-
ing New Gene (RING) domain, enabling them to ubiquitinate
proteins.88–90 Besides auto-ubiquitination and degradation of
cIAPs, several ubiquitination targets of cIAPs have been
proposed, including caspase-3 and -7, targeting them for
proteasomal degradation and thereby suppressing apoptosis.91

Furthermore, IAPs have been shown to also contribute to cell
survival and apoptosis resistance in a caspase-independent

TRAIL back on track to the cancer clinic
J Lemke et al

1355

Cell Death and Differentiation



manner by regulating a number of signaling pathways,
most importantly NF-kB signaling, by ubiquitination events
(reviewed in Gyrd-Hansen and Meier92 and Silke and Meier93).
In summary, IAPs are critical regulators of TRAIL-induced
apoptosis by either directly inhibiting caspases, targeting
caspases for proteasomal degradation and/or by regulating
cell survival signaling pathways such as NF-kB.

Non-Cell Death Signaling Pathways Induced by TRAIL

In addition to apoptotic and in some cases necroptotic cell
death, TRAIL treatment has been shown to induce a variety of
non-cell death signaling pathways, including the NF-kB,
MAPK, Src and phosphoinositide 3-kinase pathways
(reviewed in Azijli et al94). In line with the fact that activation
of these pathways is known to promote malignancy of cancer
cells, it could be demonstrated that TRAIL stimulation can
enhance migration and invasion by activation of these
pathways.95,96 Moreover, in vivo TRAIL treatment led to
enhanced metastasis in an orthotopic xenograft model of
pancreatic cancer96 and TRAIL-R2 expression in the same
model might promote tumor cell proliferation by suppressing
maturation of the microRNA let-7.97 One interesting study has
revealed that KRAS-mutated colorectal cancer cell lines are
not only more resistant to TRAIL-induced apoptosis induction
than KRAS wild-type cells, but instead are stimulated to
migrate when treated with TRAIL.98 In summary, these
findings highlight that treating certain TRAIL-resistant cancers
with TRAs might even bear the unwanted risk of worsening
disease burden. It is, therefore, imperative to understand non-
apoptotic signaling in order to preempt it. Interestingly, many
cancers highly express TRAIL-R1 and TRAIL-R2 and their
expression is not commonly lost during cancer progression,
suggesting that their endogenous expression might provide
an, as of yet, unknown advantage for disease progression of
certain cancers also during later stages. It will therefore be
interesting to investigate the function of the endogenous
TRAIL/TRAIL-R system in cancers that are resistant to its
apoptotic signaling output in order to understand the full
implication of high TRAIL-R expression in cancer biology.

Clinical Testing of TRAs

Initial optimism to utilize DRs for anticancer therapy was
dampened by the fact that systemic application of TNF and
CD95L provoked severe toxicity. Paradoxically, more than 20
years later, targeting the TNF/TNF-R and CD95/CD95L
system has become attractive for cancer therapy again,
however, with the opposing pharmacological concept, as
blockade of TNF or appears to exert therapeutic benefit in
certain malignancies.99,100 In contrast, targeting of the TRAIL/
TRAIL-R system has so far focused on inducing a death signal
in tumor cells and different TRAs have been developed and
already undergone first clinical testing (Figure 4).

How to therapeutically target TRAIL-Rs: recombinant
TRAIL versus agonistic TRAIL-R-specific antibodies.
Current clinically tested TRAs comprise two categories of
pharmacological agents: recombinant forms of TRAIL and
agonistic antibodies specific for TRAIL-R1 or TRAIL-R2.

Targeting both, TRAIL-R1 and TRAIL-R2, using recombinant
TRAIL might be advantageous because triggering both
death-inducing TRAIL-Rs at the same time might result in a
stronger death signal than an agonistic antibody specific for
only one receptor. However, TRAIL might also bind non-
death-inducing TRAIL-Rs, which could hamper its apoptotic
activity. Therefore, TRAIL-R1- or TRAIL-R2-specific TRAs
such as antibodies would be more advised in the latter case.
In this context, it is also interesting to note that for different
cancer entities different contributions of TRAIL-R1 or
TRAIL-R2 in transmitting TRAIL-induced signaling have
been reported. Although colon and breast cancer cells
primarily use TRAIL-R2 for apoptosis induction,101 lymphoid
malignancies and pancreatic cancer cell lines have been
reported to induce apoptosis primarily via TRAIL-R1.102–104

These differences in using one or the other receptor for
apoptosis induction should be considered, when targeting
cancer cells with TRAs specific for one of the two
DD-containing TRAIL-R. In addition to these considerations,
recombinant TRAIL and agonistic antibodies differ markedly
in their pharmacokinetic properties. Whereas recombinant
forms of human TRAIL are cleared within hours of systemic
application, the half-life of therapeutic antibodies is typically
in the range of several days to weeks. The higher half-life of
antibodies hence circumvents the need for repeated or
continuous application and allows a more stable concentra-
tion within cancerous tissues during treatment.

Surprisingly, it was recently shown that TRAIL treatment
results in an antitumor effect in a mouse model in which tumor
cells lack TRAIL-R expression suggesting that, at least in
certain cases, TRAIL is also capable of exerting a therapeutic
effect by targeting non-cancer cells, most likely cells in the
tumor microenvironment. In the reported case, it was
suggested that TRAIL-induced apoptosis in endothelial cells
led to vascular disruption and tumor hemorrhage.105 This
observation provides a novel approach to induce an antitumor
effect by selectively targeting tumor vascularization. It should
be noted, however, that tumor hemorrhage is a dreaded and
potentially life-threatening event in cancer therapy and there-
fore patients should be carefully monitored for this potentially
serious adverse effect during application of TRAs.

Safety and anticancer activity of TRAs in clinical trials.
Dulanermin, so far the only form of recombinant TRAIL
developed for clinical application, comprises the TNF
homology domain within the extracellular domain of human
soluble TRAIL (amino acids 114–281).20 In a number of
phase-I clinical trials, dulanermin was found to be safe and
well tolerated even when combined with chemotherapy or the
CD20-targeting antibody rituximab (Figure 4 and Table 1).
Moreover, these studies revealed some antitumor activity
evidenced by partial or complete clinical response in a subset
of patients. However, to evaluate specific anticancer activity
of novel therapeutic interventions randomized controlled
trials (RCTs) are required in which patients are assigned
into treatment groups to receive standard-of-care therapy
alone or combined with (a) novel pharmacological com-
pound(s). So far, dulanermin was evaluated in two RCTs:
one in non-small-cell lung cancer comparing dulanermin/
chemotherapy to chemotherapy alone106 and another in
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non-Hodgkin’s lymphomas comparing dulanermin/rituximab
to rituximab alone.107 Unfortunately, neither study revealed a
significant anticancer activity that could have been attributed
to dulanermin in these therapeutic regimes.

Apart from dulanermin, several agonistic TRAIL-R1- and
TRAIL-R2-specific antibodies have entered clinical trials with
one of them (mapatumumab) targeting TRAIL-R1 and all
others (conatumumab, lexatumumab, tigatuzumab and
drozitumab, LBY-135) targeting TRAIL-R2 (Figure 4 and
Tables 2 and 3). For all of them, anticancer activity was
demonstrated in preclinical models. Therefore, clinical trials
were launched revealing safety and broad tolerability for all of
them, both alone and in combination with standard therapy.
For tigatuzumab the results of one, for mapatumumab the
results of two, and for conatumumab the results of five, RCTs

are available, which were conducted in soft tissue sarcoma,
multiple myeloma, colorectal, pancreatic and lung cancer.
All of these studies were carried out in combination with
chemotherapy or the proteasome inhibitor bortezomib
compared with the respective standard therapy alone
(Tables 2 and 3). However, although some positive trends
were observed, no statistically significant anticancer activity
was achieved by addition of any of these TRAs in any RCT.

In summary, throughout all clinical studies dulanermin and
all agonistic TRAIL-R antibodies were well tolerated, yet only
minimal anticancer activity, which has not been confirmed in
RCTs to date, was achieved. Thus, whereas toxicity of the
evaluated TRAs is currently not to be expected, additional
measures will have to be taken to achieve significant
antitumor activity with TRAIL-based therapies.

Multiple
Myeloma

Pancreatic
cancer

Soft tissue
sarcoma

Lymphoma

Phase I Phase II Phase III

dulanermin

TRAIL-R1/2

mapatumuab

Lung cancer

Colorectal
cancer

Pediatric cancer

Advanced
cancer

TRAIL-R1

TRAIL-R2

drozitumumab

conatumumab

lexatumumab

tigatuzumab

LBY-135

Figure 4 Progress of TRA in clinical trials. Schematic representation of the different TRA for which results of clinical trials have been reported. Cancer entities in which the
different TRAs have been tested and the respective phase of clinical testing are shown

Table 1 Results of dulanermin (recombinant, soluble TRAIL) in clinical trials

Dulanermin (AMG-951/rhApo2L)

Phase n Cancer Combination Safety Efficacy Reference

I 71 Advanced cancers — Safe 2 Responses (2PR) 135

I 23 Colorectal ChemoþBV Safe 13 Responses (13PR) 140

I 27 Colorectal ChemoþBV Safe 6 Responses (6PR) 141

I 30 Colorectal ChemoþCX Safe NA 142

I 24 Lung ChemoþBV Safe 14 Responses (1CR/13PR) 143

I 7 Lymphoma Rituximab Safe 3 Responses (2CR/1PR) 144

II (RCT) 213 Lung ChemoþBV Safe No anticancer activitya 106

II (RCT) 48 Lymphoma Rituximab Safe No anticancer activitya 107

Abbreviations: BV, bevacizumab; chemo, chemotherapy; CR, complete response; CX, cetuximab; PR, partial response; n, number of patients enrolled;
NA, data about responses (efficacy) were not reported; RCT, randomized-controlled trials
aAnticancer activity was considered when the addition of the TRA demonstrated statistically significant activity compared with the standard therapy
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Future Direction to get TRAIL Back on Track for Cancer
Therapy

Given the promising preclinical results, the failure of the TRAs
that have thus far been tested clinically to exert robust
anticancer activity in patients is disappointing. Nonetheless, if
it were possible to identify the pitfalls of current TRA-based
treatment approaches, it should be feasible to overcome
these by novel strategies.

Development of highly active TRAs. In addition to
dulanermin, several other recombinant TRAIL preparations

have been developed in which the amino terminus of the TNF
homology domain of TRAIL was fused to tags such as poly-
histidine (His), Flag, leucine Zipper (LZ) and isoleucine
zipper (iz) tags. Although the first two tags merely serve a
purpose in purification of the recombinant protein, addition of
the LZ and iz sequence results in stabilization of TRAIL
trimers via hydrophobic interactions within the trimerizing
LZ and iz sequences.21,108 Trimer stabilization results in
increased agonistic activity of LZ- and iz-TRAIL as compared
with other forms of TRAIL.108 Raising concern for some of
these TRAIL variants, His-TRAIL and antibody-crosslinked
Flag-TRAIL were shown to induce apoptosis in primary

Table 2 Results of mapatumumab, an agonistic antibodies targeting TRAIL-R1 in clinical trials

Mapatumumab (HGS-ETR1)

Phase n Cancer Combination Safety Efficacy Reference

I 49 Advanced cancers — Safe No responses 145

I 41 Advanced cancers — Safe No responses 146

I 49 Advanced cancers Chemo Safe 12 Responses (12PR) 147

I 27 Advanced cancers Chemo Safe 5 Responses (5PR) 148

I/II 40 Lymphoma — Safe 3 Responses (2CR/1PR) 149

II 38 Colorectal — Safe No responses 150

II 32 Lung — Safe No responses 151

II (RCT) 104 Multiple myeloma Bortezomib Safe No anticancer activitya 121

II (RCT) 109 Lung Chemo Safe No anticancer activitya 152

Abbreviations: chemo, chemotherapy; CR, complete response; n, number of patients enrolled; PR, partial response; RCT, randomized-controlled trial
aAnticancer activity was considered when the addition of the TRA demonstrated statistically significant activity compared with the standard therapy

Table 3 Results of TRAIL-R2-targeting agonistic antibodies in clinical trials

Phase n Cancer Combination Safety Efficacy Reference

Conatumumab (AMG-655)
I 37 Advanced cancers — Safe 1 Response (1PR) 153

I 18 Advanced cancer — Safe No responses 154

I 6 Soft tissue sarcoma Chemo Safe No responses 155

I 9 Advanced cancers Ganitumab Safe No responses 156

I 12 Lung Chemo Safe 4 Responses (1CR/3PR) 157

I 12 Colorectal Chemo Safe 5 Responses (5PR) 158

I 13 Pancreatic Chemo Safe 4 Responses (4PR) 159

II (RCT) 128 Soft tissue sarcoma Chemo Safe No anticancer activitya 155

II (RCT) 172 Lung Chemo Safe No anticancer activitya 160

II (RCT) 83 Pancreatic Chemo Safe No anticancer activitya 161

II (RCT) 103 Colorectal Chemo Safe No anticancer activitya 162

II (RCT) 190 Colorectal ChemoþBV Safe No anticancer activitya 163

Lexatumumab (HGS-ETR2)
I 37 Advanced cancers — Safe No responses 164

I 31 Advanced cancers — Safe No responses 165

I 41 Advanced Cancers Chemo Safe Partial responses 166

I 24 Pediatric cancers — Safe No responses 167

Tigatuzumab (CS-1008)
I 17 Carcinoma or lymphoma — Safe No responses 168

II 61 Pancreatic Chemo Safe 8 Responses (8PR) 169

II (RCT) 97 Lung Chemo Safe No anticancer activitya 170

Drozitumab (PRO95780/apomap)
I 9 Colorectal Chemo Safe 2 Responses (2PR) 171

I 50 Advanced cancers — Safe No responses 172

LBY-135
I/II 73 Advanced cancers Chemo Safe 2 Responses (2PR) 173

Abbreviations: BV, bevacizumab; chemo, chemotherapy; CR, complete response; n, number of patients enrolled; PR, partial response; RCT, randomized-controlled
trial
aAnticancer activity was considered when the addition of the TRA demonstrated statistically significant activity compared with standard therapy
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human hepatocytes in vitro,108,109 whereas LZ- and iz-TRAIL
were found to be non-toxic to human hepatocytes and can be
safely applied in vivo.21,108,110 In conclusion, non-tagged
soluble TRAIL has been shown to have the lowest antitumor
efficiency, but on the other hand, also the lowest potential for
toxicity. The latter was presumably one of the reasons why
non-tagged recombinant TRAIL, dulanermin, was selected
for clinical development.

Agonistic TRAIL-R antibodies are per se rather weak
inducers of apoptosis, which is due to the fact that for efficient
apoptosis induction via DRs their trimerization is required. The
inherent bivalent nature of antibodies, however, only allows
for crosslinking of two DRs. Thereby, only inefficient DISC
formation is achieved, and further crosslinking of antibodies is
required for efficient antibody-induced DISC formation.111,112

This phenomenon has been intensively studied in the CD95
system since the early 1990s.113 Based on these considera-
tions, the LZ- and iz-tagged forms of TRAIL were devised
early on21,108 but not considered for clinical development at
the time for the above-mentioned concerns over potential
toxicity of high-activity forms of recombinant TRAIL.

Yet, novel TRAs capable of forming stable higher-order
complexes are currently developed (reviewed by Holland114).
Among other approaches, TRAIL was fused to the Fc portion
of human IgG1 (Fc-TRAIL), resulting in an increased capacity
to oligomerize and a prolonged half-live in vivo as compared
with soluble TRAIL. Importantly, Fc-TRAIL showed higher
potency in inducing apoptosis in cancer cells in vitro and
in vivo without exerting hepatotoxicity.115 Furthermore, a
compound in which two trimers of the extracellular domain of
TRAIL are fused to an Fc-part of human IgG1 generating a
hexavalent TRA has recently been developed (APG350).116

APG350 demonstrated potent apoptosis induction in cancer
cell lines, primary cancer cells and in xenograft mouse
models. In addition, a novel tetrameric TRAIL-R2-activating
nanobody, TAS266, has been developed for clinical use.
TAS266 has been reported to be more effective than soluble
TRAIL or agonistic antibodies in vitro and in vivo.117 However,
it appears that a phase I clinical study with TAS266 in patients
with advanced solid tumors was terminated early (clinical-
trials.gov). Although to date the reason for early termination of
this study has not been disclosed, it raises concerns about the
potential toxicity of this compound. In summary, first
preclinical results obtained with these novel TRAs are
promising, yet only clinical testing can ultimately reveal
whether this promise will hold.

Identification of potent and cancer-selective TRAIL
sensitizers
Conventional chemotherapy and bortezomib in combination
with TRAIL: The use of more active TRAs is likely to result in
significantly enhanced activity against cancer cells that are
susceptible to TRAIL-induced apoptosis. However, many
cancer cells are intrinsically TRAIL resistant,118 indicating
that crucial roadblocks in the form of resistance factors will
need to be removed from the TRAIL apoptosis pathway in
these cells in order to kill them by TRAIL. To date, a multitude
of publications has demonstrated sensitization of cancer cell
lines to TRAIL-induced apoptosis. However, many of these
studies do not provide evidence for therapeutic activity in vivo

and, thereby, also neglect potential toxicity. Thus, the use
of such TRAIL-sensitizing strategies should be carefully
evaluated for both efficiency and toxicity in vivo before
consideration for clinical use.

Most commonly used standard chemotherapeutic agents
including gemcitabine, irinotecan, doxorubicin, 5-FU and
platinum-based agents such as cisplatin have been shown
to synergize with TRAIL (reviewed in Newsom-Davis et al119).
Various mechanisms have been proposed to underlie chemo-
therapy-induced TRAIL sensitization including increased
DISC formation, upregulation of pro-apoptotic and suppres-
sion of anti-apoptotic proteins including of the pro- and
potentially anti-apoptotic TRAIL-Rs. These findings provided
the rationale to combine TRAs with conventional chemother-
apy also in clinical trials. As explained above, none of the
RCTs conducted to date, however, showed clinical activity
attributable to the respective TRAs (Tables 1, 2 and 3).

Bortezomib, which is used in multiple myeloma treatment,
shows antitumor activity alone and in combination with TRAs
in vitro and/or in vivo in a broad range of cancers, including
multiple myeloma, hepatocellular, breast, lung and pancreatic
cancer (reviewed in de Wilt et al120). Yet, a recently completed
RCT testing treatment of multiple myeloma with bortezomib
as compared with bortezomib plus the TRAIL-R1-targeting
TRA mapatumumab showed no additive therapeutic benefit.121

However, this may be due to the fact that mapatumumab
bears the intrinsic crosslinking limitation of antibodies
explained above, at least in the absence of sufficient Fcg
receptors in the vicinity of the tumor cells that could render this
antibody active.111,112 In summary, to date clinically available
TRAs did not achieve additional clinical activity in combination
with chemotherapy or bortezomib. Of note, the lack in efficacy
of these combinations might be due to insufficient agonistic
activity of the respective TRA employed, insufficient sensiti-
zation to TRAIL-induced apoptosis by the applied co-therapy,
or indeed the combination of these two shortcomings. It will
hence be interesting to test whether enhanced clinical activity
can be achieved by combining potent TRAIL-sensitizing
treatments with high-activity TRAs.
Smac und BH3 mimetics in combination with TRAIL: IAPs
represent attractive targets for cancer therapy since high IAP
expression is found in many cancers, which is associated
with tumor progression and therapy resistance (reviewed by
Fulda122). Hence, small molecules have been developed
which mimic the XIAP-binding site of the endogenous XIAP-
antagonist Smac, thereby antagonizing IAPs. This class of
agents named Smac mimetics or IAP antagonists has shown
promising preclinical activity alone or in combination with
anticancer agents, which initiated the development of these
small-molecule compounds for clinical application. Currently,
a number of phase I and II clinical studies testing different
Smac mimetic alone or in combination with chemotherapy
are under way. Intriguingly, Smac mimetics have shown
broad preclinical activity in sensitizing cancer cells to TRAIL-
induced apoptosis in vitro and in vivo in a variety of cancer
entities,123–126 rendering them promising candidates for
efficient TRA-comprising therapeutic approaches. Therefore,
a clinical trial in ovarian cancer patients has been launched,
which tests efficacy of the Smac mimetic birinapant in
combination with the TRAIL-R2 agonist conatumumab
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(clinicaltrials.gov). Results of this trial will show whether the
promising preclinical results will be translated into clinical
activity.

As mentioned above, intrinsic resistance to the mitochon-
drial apoptosis pathway caused by high expression of anti-
apoptotic Bcl-2 family members, such as Bcl-2, Bcl-xL and
Mcl-1, is a common feature of cancer cells and associated
with chemoresistance. To overcome mitochondrial apoptosis
resistance, BH3 mimetics have been developed to antagonize
anti-apoptotic Bcl-2 family members. To date, two such
compounds have been evaluated in the clinic: ABT-199,
which specifically targets Bcl-2, and ABT-263 (Navitoclax),
which antagonizes both Bcl-2 and Bcl-xL.127,128 BH3 mimetics
have demonstrated impressive clinical activity in single
therapy, and recently Bcl-2/xL inhibition by ABT-263, or its
non-orally available analog ABT-737, has been shown to
sensitize cancer cells to TRAIL in vitro.129–131 Thus, BH3 and
Smac mimetics can be used to sensitize cancer cells to
TRAIL-induced apoptosis by selectively inhibiting important
roadblocks that obstruct the TRAIL apoptosis pathway.
Cyclin-dependent kinase 9 (CDK9) inhibition and TRAIL:
Small-molecule inhibitors of several kinases are an emerging
class of cancer drugs based on the fact that cancer cells
have elevated kinase activity to enhance proliferation,
migration and invasion, but also to maintain apoptosis
resistance.132 We recently discovered selective inhibition of
CDK9133 as the most powerful approach to overcome TRAIL
resistance of cancer cells that we have come across in more
than a decade of searching for potent TRAIL-sensitizing
strategies.110 Intriguingly, CDK9 inhibition sensitizes cancer
cells irrespective of their p53 status and can be applied
together with a highly active recombinant form of TRAIL
(iz-TRAIL) without causing hepatotoxicity within a considerable
therapeutic window. Furthermore, the potency of this novel
combination was underlined by the fact that it eradicated
established orthotopic lung tumors in vivo. Mechanistically,
CDK9 inhibition led to concomitant downregulation of cFLIP
and Mcl-1 and, together, these two events were both
required and sufficient for CDK9 inhibition-mediated TRAIL
sensitization. The therapeutic principle that emerges from
these findings is that simultaneous removal of multiple
resistance factors is required to overcome TRAIL resistance
and to efficiently kill cancer cells by TRAIL-comprising
therapeutic combinations. This concept should be taken
into account when devising future TRAIL-based cancer
therapies.

In summary, besides conventional chemotherapy and
proteasome inhibition, several novel, more-selective pharmaco-
logical approaches are at hand, which exert promising
preclinical activity in combination with TRAIL. For the
establishment of an active but non-toxic TRAIL-based
therapeutic regime it will be decisive to evaluate these
different compounds, also in combination, in conjunction with
second-generation TRAs that exhibit higher agonistic activity
than their predecessors.

Identification of biomarkers that predict sensitivity to
novel TRAIL-based therapies. It is interesting to note that
among the majority of non-responding patients, in a subset of
patients, TRAs showed signs of therapeutic benefit. These

included two patients with chondrosarcoma, a cancer entity
which is known to be largely resistant to conventional
therapies. Intriguingly, both patients showed an antitumor
response upon dulanermin monotherapy and in one of them
long-term survival was achieved by combining surgery and
prolonged dulanermin treatment.134,135 These case reports
reveal that recombinant forms of TRAIL, and possibly other
TRAs, can be beneficial for individual patients even without
additional sensitization strategies. However, so far it remains
widely unresolved which markers, in addition to TRAIL-R1/2
expression, would identify and allow selection of patients that
are likely to benefit from a TRA-comprising therapy. One
report identified high expression of the O-glycosylation
enzyme GALNT14 as a signature of TRAIL sensitivity in
cancer cells. Mechanistically, the study showed that glyco-
sylation of TRAIL-R2 leads to enhanced ligand-induced
receptor clustering, facilitated DISC formation and subse-
quent apoptosis induction.136 Nevertheless, the value of
using GALNT14 expression for predicting TRAIL sensitivity in
patients remains to be shown as increased GALNT14
expression did not appear to significantly correlate with
clinical response to dulanermin in a clinical study.106 In
another approach, cell lines were systematically screened for
responsiveness to TRAIL and, in parallel, expression of a
panel of factors involved in executing or inhibiting the
extrinsic apoptosis pathway was quantified. Data extracted
from these results enabled predicting responsiveness to
TRAIL. Possibly even more interestingly from a clinical
perspective, the authors could utilize their system to propose
a case-specific TRAIL-sensitizing strategy by analyzing the
expression profiles from individual cell lines.137 Although
these findings will require further validation in primary cancer
cells and in vivo, this new and promising approach could
prove to be valuable, given the recent advances in
quantitative proteomics, which could enable the determina-
tion of protein expression profiles from patient-derived
cancer tissue.

Conclusion and Outlook

At the turn of the millennium, the discovery of TRAIL and its
capacity to induce apoptosis selectively in tumor cells sparked
the development of TRAIL and other TRAs as potential novel
cancer drugs. Since then, the TRAIL signaling cascade has
been the subject of intense research. However, 15 years on,
first-generation TRAs could not live up to high expectations in
clinical trials. The possible pitfalls have been identified, as
outlined above, and strategies to tackle these are intensively
investigated. Novel TRAs with increased agonistic properties
are currently developed and high-potency, cancer-selective
TRAIL sensitizers are appearing at the horizon. It is important
to note that all preclinical in-vivo studies preceding the
decision to start clinical trials with current TRAs were
performed in xenograft or syngeneic graft mouse models. At
the time, these were the standard mouse models available
and have been helpful in evaluating preclinical activity of many
anticancer therapies in the past. It has, however, become
evident that these models lack many crucial aspects of the
systemic disease that is cancer. This shortcoming has been
addressed by the development of genetically engineered
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mouse models of various cancers, which closely resemble the
full clinical spectra of the respective human cancers.138,139

Hence, the challenge now is to determine whether newly
devised high-activity TRAs combined with the most potent
TRAIL-sensitizing strategies exert a therapeutic effect in
these sophisticated mouse models of cancer to ultimately get
TRAIL back on track to the cancer clinic.
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