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Abstract— We studied user behaviors when the cursor is
directed by a head in a simple control task. We used an intelligent
writing tool called Dasher. Hidden Markov models (HMMs) were
applied to separate behavioral patterns. We found that a similar
interpretations can be given to the hidden states upon learning.
It is argued that the recognition of such general application
specific behavioral patterns should be of help for adaptive human-
computer interfaces.

I. I NTRODUCTION

The navigational, data and text entry tools and their com-
binations are gaining importance in today’s popular field
of human-computer interfaces (HCI). As computers show
off more processing power, these tools are becoming more
sophisticated: finally, adaptive features are finding their way
into conventional interfaces. For a survey on current intelligent
user interfaces see [1].

Any form of intelligence built in these interfaces inevitably
assumes that the computer should be aware of the user’s actual
state. This implies that some form of a behavioral model
should be implemented. In the last two decades well-known
classical mathematical modeling methods were applied for this
purpose. The practical targets of these efforts are extremely
broad.

A. Previous Works

A straightforward solution for describing the behavior in
time is the Markov chain (MC) model. MC is a simple state
space model where stochastical transitions happen between
states supposing the Markov property, which means that the
probability of getting into a specific next state depends on the
current state only. First and second order Markov chains were
built from user customs to predict user requests for Web pages
[2]. On the field of data mining and knowledge discovery,
probabilistic regular grammars were employed to extract user
navigation patterns [3]. Note that these grammars are related
to Markov chains. The page visiting history of the user is
analyzed by a special grammar where the strings generated
with a higher probability correspond to the user’s preferred
trails.

Cadez at al. examines human behavior in a ‘digital en-
vironment’, e.g., the Web [4]. They developed a model of
mixtures of Markov chains to cluster and visualize human
navigation. Their method based on a high level classification

of the visited pages (e.g. news, tech, weather, etc.). They
applied it for determining the browsing patterns of the visitors
of a commercial web site. A parsimonious and generative
representation of behavior was created to describe a group
of individuals by Girolami et al [5]. Their approach assumes
that the manifestation of human expressions is a production
of different underlying generating processes, thus a mixture
of Markov chains should be able to characterize the het-
erogeneous features of human behavior in a suitable way.
The distributed and dynamic model based on latent Dirichlet
allocation is applied for analyzing text editor and telephone
usage and to map Web browsing behavior.

A direct generalization of Markov chains are the hidden
Markov models (HMMs) [6], [7]. This approach presumes that
we are unable to observe the exact states, only a stochastic
function of these (hidden) states is available to us. HMMs
were used by Lane [8] for detecting computer usage anomalies
when searching for stolen computer accounts. A HMM is
constructed for the normal working state of the computer
users, and by using the HMMs for classification, it is possible
to detect deviations from the expected behavioral pattern.
The same classification ability was exploited for recognizing
human gestures [9], [10].

Bayesian networks1 are related to these models. For an
explanation on Bayesian networks the reader is referred to
[11]. Dynamic Bayesian Networks (DBNs) are a more general
formulation of HMMs. To predict real-time interaction behav-
ior, DBNs with different topological forms were compared to
the classical rule-based approach by [12].

A more practical work for assistance with modeling of
users is the well-known Office Assistant, developed in the
Lumiére project of the Microsoft Research Institute [13]. The
application utilizes a Bayesian network to determine when the
user needs help. An intelligent assistance system is described
by Xiangyang et al. where uncertain and incomplete multiple
modality sensory observation is used for assessing the user’s
current affective state [14]. A Bayesian approach is used by
Conati for detecting emotional states in educational systems:
socially intelligent, pedagogical agents are formed to entertain
the user and to provide optimal learning content [15].

1Subtypes of Bayesian networks include casual networks, influence dia-
grams, belief networks, and relevance diagrams.



B. Our Motivations and Our Contribution

Our motivation is to promote direct adaptation to the user by
means of reinforcement learning, where gain in performance
is the ‘goal’ of the learning algorithm of the computer.
Reinforcement learning concerns Markov decision processes.
In turn, HMMs suit well our long term goal. Therefore, we
would like to know if prototype behaviors emerge in particular
tasks and if those behaviors can be discovered by HMMs. If
the answer to this question is positive, then the route towards
application specific user adaptation may become possible.

Recently, an interesting mouse-driven text entry solution
called Dasher has been introduced [16]. We addressed the
issue what kinds of behavioral patterns emerge upon practicing
Dasher. Are these patterns similar for a set of users? Another
question was how to describe these features in a more formal
way and – possibly – how to model the actual behavior of the
user.

Regarding the structure of the paper, first we briefly intro-
duce the tools used in our experiments in Section II. In Section
III a technical description of the conducted experiments is
provided and the results of our efforts are presented. These
results are discussed in Section IV. Conclusions are drawn in
Section V.

II. TOOLS

A. Dasher

Dasher has been developed by the Inference Group of the
Cavendish Laboratory of Cambridge University2. Dasher is
driven by pointing gestures. It has a zooming interface: you
point to your region of interest, and the display zooms to that
region. The display is painted with a single letter or with a
combination of letters, so that any point corresponds to a piece
of text. Typing is achieved by choosing the appropriate letter
or combinations of letters. Dasher is equipped by a predictive
language model. It forecasts the probabilities of the possible
next letters or letter combinations. Probable pieces of text are
made larger and can be selected easily. Improbable pieces
of text (for example, text with spelling mistakes) are made
smaller, so they are harder to write.

We used a slightly modified version of the 3.0.1 version of
the application where the language model can be turned off.
Two screenshots of the application are shown in Figure 1.

B. Input Devices

We developed a special mouse system which is controlled
by head movements and can be downloaded for free3. The
headmouse combines head detection built on Haar-wavelets
and a tracking solution based on optic flow. The result is a
non-intrusive and cheap (only a webcam is needed) interaction
tool. Head and eye driven tools should gain importance in the
future because the fast development of mobile devices requires
alternative solutions in different environments. Headmouse
systems are already important for augmented and alternative

2http://www.inference.phy.cam.ac.uk/is/
3http://www.nipg.inf.elte.hu/headmouse/headmouse.html

Fig. 1. Dasher in action. The upper screenshot was taken when the user
started to type the word ‘narrow’. The lower snapshot was taken about a
second later. The reader should imagine a continuous transformation which
happens between the two screenshots. On the upper one, the user had already
typed the letters ‘n’ and ‘a’, and he/she had been advancing towards the
end of the word. On the lower picture, two ‘r’s were ‘typed’. Letters and
combinations of letters emerge on the right side of the screen, while the
whole board is sliding to the left. The typed letters assemble on the left hand
side. The direction and the speed of the sliding is determined by the position
of the cursor (the red cross on the figure). Selecting letters of the alphabet
is possible by moving the cursor vertically. Horizontal position of the cursor
influences the actual speed of the text flow. Notice that probable combinations
have larger areas but they are pushed aside as the movement of the user makes
clear that he/she intends to type something else.



communication for disabled people. For control experiments,
the normal desk mouse was used.

C. Hidden Markov Model (HMM)

We intended to use the components of the speed vector
of the cursor as the observed variables. That implies that
we are expecting to find behavioral components which are
patterns of the actualuser movement. The user’s intended
course of the movement is distorted because there is noise
in the input process and unwanted movement of the head
may also occur. We can assume that the actual user movement
is a noisy observation of underlying behavioral components.
Therefore choosing a hidden Markov model for the underlying
mathematical model is justified.

Training of the HMM [6] was achieved by inputting the
observed variables and by tuning the parameters of the HMM
until it could generate the observed variables with the highest
probability. In this procedure Maximum Likelihood (ML)
estimation was applied. Technically, we have two observed
variables here: one for the movements in the vertical direction
and another one for the horizontal direction. Provided that the
emission had Gaussian noise in the different hidden states,
the analysis should result in hidden states whose emission
functions correspond to different cursor speed regions. The
center of the region corresponds to the most probable cursor
speed in that state. This probability decreases monotonically
as a function of the distance from the center of the region.
We will characterize any hidden state with its center and
its variance ellipse representing the corresponding emission
probability density.

We would like to emphasize that the utilized temporal
resolution – defined by the cursor sampling rate – does not
enable recognizing events (states) on a time scale longer
than some hundreds of a millisecond. By aggregating cursor
movements in longer temporal regions it is possible to extract
states with longer duration. Information on user intentions,
however, can not be provided without more sophisticated
methods, which, for example, consider possible text-fragments
that have been typed and may be typed given the language
model.

III. E XPERIMENTS AND RESULTS

Experiments were conducted with five volunteer Ph.D.
students. They did not have previous experiences neither
with Dasher nor with the headmouse. Their task was to
type randomly selected short English sentences, created from
lyrics of different songs (for example ‘children need traveling
shoes’). We saved the cursor trajectories with a 30-50 Hz
sampling rate (the rate depended on the computational load of
the computer). First, 25 training experiments were conducted
in five days. After this, the participants had the opportunity
to improve their skills for three weeks. Then the survey was
repeated with a fewer number of experiments. By analyzing
the results in terms of typing speed we can conclude that four
out of the five users gained good typing skills in about six to

Fig. 2. Experiments with Dasher using conventional desk mouse (light
gray) and headmouse (dark gray). Average time required for inputting one
character vs. experiment number. Width of stripes: standard deviation regions
for four participants. Overlap between STD regions for different methods have
an intermediate color. Performance of the fifth participant (ZP) is classified
as an outlier and is plotted separately (dashed line in ranges B and C). Up to
the 25th experiment (range A): training without intelligent English language
predictor. Duration of range A: 5 days. Further training took place for 3 weeks.
Section B: 5 experiments after training. Section C: 5 experiments with the
intelligent English language predictor for the first time. Data were taken on
the same day when range B was recorded. Results are presented in temporal
order in every range.

seven experiments. The final performance reached the typing
speed of an average computer user for all participants (Fig.2).

One of the participants showed lower performance at the
beginning, but in the later phase of the training he/she reached
the performance of the others. This subject is referred to as
‘ZP’.

A HMM with Gaussian emission functions was trained for
every participant. The training made use of the Expectation-
Maximization (EM) algorithm [17].

Human head movements tend to build from strictly hori-
zontal or vertical elements, therefore we considered the ob-
servations as being independent in the x and y directions.
With other words, we prescribed a diagonal form for the
covariance matrices of the observations, i.e. the axes of the
variance ellipses are parallel to the x and y axes of the screen.
We also tried a circular form or an arbitrary ellipse, but the
most informative results was found by the diagonal setup. We
also found that the diagonal form is the most appropriate for
recognition tasks, i.e. models built with this kind of restriction
have got the best recognition capabilities.

To select an appropriate number of states we scanned a
realistic domain of this parameter in the analysis. HMMs
were trained with different state numbers; 3, 4, 5, 8 and 15.
We found that 3 or 4 states are not expressive enough for
characterizing different behaviors and important details were
missed. When choosing a high number of states, the HMM
tends to have an intriguing log-polar structure, i.e. there are
many states around the origin with small variances and a
smaller number of states are formed further out from the
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Fig. 3. Hidden states found by the HMM analysis.Results for 5 hidden states are presented. Left column (a-e): variance ellipses of the Gaussian emission
functions of the hidden states, from the ‘inexperienced’ time region (first 15 experiments of range A of Fig. 2). Middle column: hidden states extracted from
range B of Fig. 2. Right column: hidden states extracted with language model turned ‘on’ (range C of Fig. 2). Note that the ellipses of the first row and the
last row have different characteristics. Note also the different scale of the last row.

origin. These latter states have higher variances. Although
more details about the movement of the user can be determined
by such HMM-based ‘discretization’, but our interpreting
capability of the HMM states was lost.

Uniform probability for the initial transition matrices was
set and the starting states were initialized to equal proba-
bilities. The parameters of the observation function (i.e., the
expected value and the variance) was initialized randomly by
the k-means algorithm. The EM algorithms can be trapped in

local minima, therefore we started the EM algorithm 10 times
using different starting conditions to overcome this problem.
The most probable models as defined by ML were selected for
every user. The most probable model, by definition, reproduces
the user’s inputs with the highest probability.

Data sets were split. The first phase of the experiment series
contains the first 25 experiments (Fig. 2, range denoted by A).
Users are considered ‘inexperienced’ up to experiment number
15, later they are called ‘experienced’ users. We trained models
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Fig. 4. Intuitive labeling of the hidden states. (1) ‘It is going fine, keep
it steady’, (2) ‘I need to choose a letter (or word fragment), which is closer
to the beginning of the alphabet’, (3) ‘I need to choose a letter (or word
fragment), which is closer to the end of the alphabet’, (4) ‘I can accelerate
the typing speed’, (5) ‘I made a mistake, correction is needed fast’.

for every user for 1) the ‘inexperienced’ part of section A, 2)
for section B and 3) for section C of the data. The results
can be seen in Fig. 3. It is obvious that the more experienced
the user, the more separated and more distinctly arranged the
hidden states become. Moreover, the hidden states of each
participant have certain similarities that we shall discuss later.

IV. D ISCUSSION

A. Interpretation of the hidden states

In case of Dasher, models with 5 hidden states have an
important property: they catch something general forall
users. This encourages us to map these states to behavioral
components. We can always find
(1) a state which is concentrated on the origin and has a small

variance (this is barely visible on some of the figures),
(2) a state with a moderate variance situated above the origin,
(3) a state with a moderate variance situated below the origin,
(4) in four cases, a state with a moderate variance situated to

the right the origin,
(5) and a state (or two states in one case), which has (have)

a large variance.
Let us recall the effect of mouse movements in Dasher.

Vertical movements are related to changing the selection of
letters of the alphabet: Going up (down) aims to find a letter
closer to letter ‘a’ (‘z’) in the alphabet. Horizontal movements
change the typing speed. A natural interpretation for the states
formed can be provided for Fig.3(C2)-(E2) as it is shown in
Fig. 4.

States of Fig. 4(A2) have got a slightly different interpre-
tation, because this user kept an optimal typing speed, no
accelerating state was distinguished and the mistake state was
resolved into two distinct states, which may not be mistakes
at all:

1) ‘It is going fine, keep it steady’,
2) ‘I need to choose a letter (or word fragment), which is

somewhat closer to the beginning of the alphabet’,
3) ‘I need to choose a letter (or word fragment), which is

somewhat closer to the end of the alphabet’,
4) ‘I need to choose a letter (or word fragment), which is

much closer to the beginning of the alphabet’,

5) ‘I need to choose a letter (or word fragment), which is
much closer to the end of the alphabet’.

Similar pattern started to emerge in the second row of Fig. 3.
The interpretations are also reinforced by Fig. 3: after

training, the size of the ellipse with the largest variance,
has become significantly smaller. This phenomenon marks an
increase in performance, the earlier detection of necessary
corrections and the smaller motion speeds required for cor-
rections. For Fig. 3(A2), it seems that the correcting state
has disappeared. We shall return to this point later. For the
case of participant ‘ZP’ (Fig. 3(e), (E1) and (E2)), it was
found that ‘ZP’ tried to avoid making any error and developed
rather distinct behavioral patterns. Participant ‘ZP’ is the best
example for the interpretation on Fig. 4.

B. Transitions amongst behaviors

The detailed transitions of the five states are plotted on
Figure 5 in the form of Hinton diagrams.
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Fig. 5. Hinton diagrams of transition probabilities for trained users.
Transition probabilities concern subfigures A2-E2 of Figure 3. States 1 to 5
of Fig. 4 are denoted by symbols (o)↑, ↓, →, and (O), respectively. For
the special arrangement of the first subject’s A2 model, states are denoted by
symbols (o)↑, ↓, (D=down), and (U=up), where U and D marks the two states
with bigger variance in the corresponding position. Sizes of the squares are
proportional to the corresponding transition probabilities. Transitions where
the state remains unchanged are neglected (the diagonals contain zeros).

Time shares of specific states in percentage of all states were
computed (Tables I-II). The Viterbi algorithm was used for this
purpose and the most probable current states were determined.
Notations is as follows: states 1 to 5 of Fig. 4 are denoted by
symbols (o)↑, ↓, →, and (O), respectively. For the special
arrangement of Fig. 3(A2): states are denoted by symbols (o)
↑, ↓, (D=down), and (U=up), where U and D marks the two
states with the big variance in the corresponding position.

TABLE I

PERCENTAGE OF HIDDEN STATES– NO LANGUAGE MODEL

FOR NOTATIONS, SEEFIGURE 3 AND 5

code o ↑ ↓ → or D O or U
A1 38.4 7.1 30.6 14.5 9.4
B1 47.1 17.7 16.4 12.1 6.7
C1 44.7 15.5 17.6 9.1 13.1
D1 35.2 18.3 17.1 19.4 10.1
E1 76.4 9.0 5.4 3.8 5.4

Subject ‘ZP’ spends considerably less time inMistake State
than any other participant. Considering that ‘ZP’ has reached
the performance of the others at the end of study, and that
‘ZP’ has extremely well articulated hidden states, one may



TABLE II

PERCENTAGE OF HIDDEN STATES– WITH LANGUAGE MODEL

FOR NOTATIONS, SEEFIGURE 3 AND 5

code o ↑ ↓ → or D O or U
A2 41.2 25.8 17.0 5.7 10.3
B2 48.0 7.1 28.7 11.1 5.1
C2 35.1 12.6 21.2 14.2 16.9
D2 43.0 20.3 11.9 12.1 12.7
E2 60.8 12.2 10.3 9.0 7.7

conclude that ‘ZP’ has applied an error avoiding safe typing
strategy during learning.

On the other hand, the Hinton diagram reveals that the
first participant applied a strategy forming two typical series
during a large proportion of the time. Series 1: (D)⇒ ↓ ⇒
(o). Series 2: (U)⇒ ↑ ⇒ (o). From Good Statetransitions
occurred to any other states, whereas state (U) is basically
never followed by either state (D) or state↓ and similarly, state
(D) is basically never followed by state (U) or state↑. This
observation provides further support to our impression that the
first participant succeeded in avoiding theMistake State. Small
adjustments were utilized or large correcting movements were
followed by small adjustments in this case.

V. CONCLUSIONS ANDOUTLOOK

In this work, experiments with writing tool Dasher were
conducted. We studied the behavior of the users before and
after the training using a hidden Markov model. The hidden
states had similar arrangements for every user, and we can
label these states with different behavioral components in an
intuitive way.

The recognition of the users’ behavioral patterns may pro-
mote the development of adaptive human-computer interfaces
in the future. As described in the ISO 18529 standard, a
human-centered design process for an interactive system starts
with the identification of the target user group(s) by determin-
ing group characteristics, and then continues by developing
a different instance of the software design for every possible
context of user groups. Our view is that this design process
can be, and in some cases, should be postponed. It can be
postponed when on-line adaptive functionality, like behavioral
component recognition is available. It should be postponed,
when all types of behavioral patterns, such as strategies
followed by very cautious users or by dyslexic persons can not
be foreseen. Such adaptive tools can be used for different pur-
poses, e.g. (i) as a tool for user clustering, or possibly for user
identification [18], (ii) as a remote diagnostic tool, and/or (iii)
as the underlying technology for performance optimization or
personalization for individual users. Considering case (iii), the
identification of behavioral components may offer alternative
help options, e.g., limiting cursor speed adaptively to avoid
mistakes, etc. More complex interaction can be envisioned by

employing reinforcement learning to optimize the actions of
the computer.

The HMM technology is promising, but predictions on
longer time scales seem necessary for better service to the
user. Such longer predictions can be achieved by including
information about the actual task, such as the language model
in the case of typing tool Dasher. This is an obvious extension
of the model, which however, may lead to combinatorial
explosion. This point deserves further investigations.
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