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Abstract. Here, a separation theorem about Independent Subspace Analysis (ISA), a generalization of Independent
Component Analysis (ICA) is proven. According to the theorem, ISA estimation can be executed in two steps
under certain conditions. In the first step, 1-dimensional ICA estimation is executed. In the second step, optimal
permutation of the ICA elements is searched for. We shall show that elliptically symmetric sources, among others,
satisfy the conditions of the theorem.

1 Introduction

Independent Component Analysis (ICA) [1,2] aims to recover linearly or non-linearly mixed independent and hidden
sources. There is a broad range of applications for ICA, such as blind source separation and blind source deconvolution
[3], feature extraction [4], denoising [5]. Particular applications include, e.g., the analysis of financial data [6], data from
neurobiology, fMRI, EEG, and MEG (see, e.g., [7,8] and references therein). For a recent review on ICA see [9].

Original ICA algorithms are 1-dimensional in the sense that all sources are assumed to be independent real valued
stochastic variables. However, applications where not all, but only certain groups of the sources are independent may
have high relevance in practice. In this case, independent sources can be multi-dimensional. For example, consider the
generalization of the cocktail-party problem, where independent groups of people are talking about independent topics,
or that more than one group of musicians are playing at the party. The separation task requires an extension of ICA,
which can be called Independent Subspace Analysis (ISA) or, alternatively, Multi-Dimensional Independent Component
Analysis (MICA) [10,11]. Throughout the paper, we shall use the former abbreviation. An important application for ISA
is, e.g., the processing of EEG-fMRI data [12].

Efforts have been made to develop ISA algorithms [10,12,13,14,15,16]. Related theoretical problems concern mostly the
estimation of entropy and/or mutual information. In this context, entropy estimation by Edgeworth expansion [12] can
deal with relatively high dimensions and such estimations have been used for clustering and mutual information testing
[17]. k-nearest neighbor and geodesic spanning trees methods have been applied in [15] and [16] for the ISA problem.
Another recent approach searches for independent subspaces via kernel methods [14].

An important observation of previous computer studies [10,18] is that general ISA solver algorithms are not more
efficient, in fact, sometimes produce lower quality results than simple ICA algorithm superimposed with searches for
the optimal permutation of the components. This observation led to the present theoretical work and to some computer
studies that will be published elsewhere [19].

This technical report is constructed as follows: In Section 2 the ISA task is described. Section 3 contains our separation
theorem for the ISA task. Sufficient conditions for the theorem are provided in Section 4. Conclusions are drawn in
Section 5.

2 The ISA Model

The generative model of mixed independent multi-dimensional sources (independent subspace analysis, ISA) is the follow-
ing. We assume that there are M pieces of hidden d-dimensional sources: sm (m = 1, . . . , M). The linear transformation

z = As (1)

of their concatenated form
s :=

[(
s1

)T
, . . . ,

(
sM

)T
]T

(2)



is available for observation only. Here, superscript T denotes transposition, the total dimension of the sources is D := d ·M
and thus, s ∈ IRD and A ∈ IRD×D, and z ∈ IRD. In what follows, we shall assume that mixing matrix A is invertible.
The ISA task is to estimate the unknown matrix A (or its inverse, the so-called separation matrix W ) and the original
sources by means of the observations z(t). The special case of d = 1 corresponds to the ICA task.

Given our assumption on the invertibility of matrix A, we can assume without any loss of generality that both the
sources and the observations are white, that is,

E[s] = 0, E
[
ssT

]
= ID, (3)

E[z] = 0, E
[
zzT

]
= ID, (4)

where ID is the D-dimensional identity matrix, E[·] denotes the expectation value operator. It then follows that the
mixing matrix A and thus the separation matrix W = A−1 are orthogonal:

ID = E[zzT ] = AE[ssT ]AT = AIDAT = AAT . (5)

The ambiguity of the ISA task is decreased by Eqs. (3)-(4): Now, sources are determined up to permutation of the
sources and orthogonal transformation of the subspaces belonging to the sources. For more details on this subject, see
[20].

The ISA task can be viewed as the minimization of mutual information between the components. That is, we should
minimize the cost function

J(W ) :=
M∑

m=1

H(ym) (6)

in the space of D × D orthogonal matrices, where y = Wz, yT =
[(

y1
)T

, . . . ,
(
yM

)T
]
, ym (m = 1, . . . ,M) are the

estimated components and H is Shannon’s (multi-dimensional) differential entropy (for more details, see, e.g., [15]).

3 The ISA Separation Theorem

The main result of this work is that the ISA task may be accomplished in two steps under certain conditions. In the first
step ICA is executed. The second step is search for the optimal permutation of the ICA components.

First, consider the so called Entropy Power Inequality (EPI)

22H(PK
i=1 ui) ≥

K∑

i=1

22H(ui), (7)

where u1, . . . , uK ∈ IR denote continuous stochastic variables. This inequality holds for example, for independent contin-
uous variables [21].

Let ‖·‖ denote the Euclidean norm. That is, for w ∈ IRK

‖w‖2 :=
K∑

i=1

w2
i , (8)

where wi is the ith coordinate of vector w. The surface of the unit sphere in K dimensions shall be denoted by SK :

SK := {w ∈ IRK : ‖w‖ = 1}. (9)

If EPI is satisfied (on SK) then a further inequality holds:

Lemma 1. Suppose that continuous stochastic variables u1, . . . , uK ∈ IR satisfy the following inequality

22H(PK
i=1 wiui) ≥

K∑

i=1

22H(wiui),∀w ∈ SK . (10)

This inequality will be called the w-EPI condition. Then

H

(
K∑

i=1

wiui

)
≥

K∑

i=1

w2
i H (ui) , ∀w ∈ SK . (11)



Note 1. w-EPI holds, for example, for independent variables ui, because independence is not affected by multiplication
with a constant.

Proof. Assume that w ∈ SK . Applying log2 on condition (10), and using the monotonicity of the log2 function, we can
see that the first inequality is valid in the following inequality chain

2H

(
K∑

i=1

wiui

)
≥ log2

(
K∑

i=1

22H(wiui)

)
= log2

(
K∑

i=1

22H(ui) · w2
i

)
≥

K∑

i=1

w2
i · log2

(
22H(ui)

)
=

K∑

i=1

w2
i · 2H(ui). (12)

Then,

1. we used the relation [21]:
H(wiui) = H(ui) + log2 (|wi|) (13)

for the entropy of the transformed variable. Hence

22H(wiui) = 22H(ui)+2 log2(|wi|) = 22H(ui) · 22 log2(|wi|) = 22H(ui) · w2
i . (14)

2. In the second inequality, we utilized the concavity of log2. ut
Now we shall use Lemma 1 to proceed. The separation theorem will be a corollary of the following claim:

Proposition 1. Let OD denote the space of the D ×D orthogonal matrices, let y =
[(

y1
)T

, . . . ,
(
yM

)T
]T

= y(W ) =

Ws, where W ∈ OD, ym is the estimation of the mth component of the ISA task. Let ym
i be the ith coordinate of this

mth component. Similarly, let sm
i stand for the ith coordinate of the mth source. Let us assume that the sm sources satisfy

Condition (11). Then
M∑

m=1

d∑

i=1

H (ym
i ) ≥

M∑
m=1

d∑

i=1

H (sm
i ) . (15)

Proof. Let us denote the (i, j)th element of matrix W by Wi,j . For the sake of simplicity, coordinates of y and s will be
denoted by yi and si, respectively. Now, writing the elements of the ith row of matrix multiplication y = Ws, we have

yi = (Wi,1s1 + . . . + Wi,dsd) + . . . + (Wi,D−d+1sD−d+1 + . . . + WiDsD) (16)

and thus,

H (yi) =

= H




d∑

j=1

Wi,jsj + . . . +
D∑

j=D−d+1

Wi,jsj


 (17)

= H




(
d∑

l=1

W 2
i,l

) 1
2 ∑d

j=1 Wi,jsj

(∑d
l=1 W 2

i,l

) 1
2

+ . . . +

(
D∑

l=D−d+1

W 2
i,l

) 1
2 ∑D

j=D−d+1 Wi,jsj

(∑D
l=D−d+1 W 2

i,l

) 1
2


 (18)

≥
(

d∑

l=1

W 2
i,l

)
H




∑d
j=1 Wi,jsj

(∑d
l=1 W 2

i,l

) 1
2


 + . . . +

(
D∑

l=D−d+1

W 2
i,l

)
H




∑D
j=D−d+1 Wi,jsj

(∑D
l=D−d+1 W 2

i,l

) 1
2


 (19)

=

(
d∑

l=1

W 2
i,l

)
H




d∑

j=1

Wi,j(∑d
l=1 W 2

i,l

) 1
2
sj


 + . . . +

(
D∑

l=D−d+1

W 2
i,l

)
H




D∑

j=D−d+1

Wi,j(∑D
l=D−d+1 W 2

i,l

) 1
2
sj


 (20)

≥
(

d∑

l=1

W 2
i,l

)
d∑

j=1


 Wi,j(∑d

l=1 W 2
i,l

) 1
2




2

H (sj) + . . . +

(
D∑

l=D−d+1

W 2
i,l

)
D∑

j=D−d+1


 Wi,j(∑D

l=D−d+1 W 2
i,l

) 1
2




2

H (sj) (21)

=
d∑

j=1

W 2
i,jH (sj) + . . . +

D∑

j=D−d+1

W 2
i,jH (sj) (22)



The above steps can be justified as follows:

1. (17): Eq. (16) was inserted into the argument of H.
2. (18): New terms were added for Lemma 1.
3. (19): Sources sm are independent of each other and this independence is preserved upon mixing within the subspaces,

and we could also use Lemma 1, because W is an orthogonal matrix.
4. (20): Nominators were transferred into the

∑
j terms.

5. (21): Variables sm satisfy Lemma 1 according to our conditions.
6. (22): We simplified the expression after squaring.

Using this inequality, summing it for i, exchanging the order of the sums, and making use of the orthogonality of matrix
W , we have

D∑

i=1

H(yi) ≥
D∑

i=1




d∑

j=1

W 2
i,jH (sj) + . . . +

D∑

j=D−d+1

W 2
i,jH (sj)


 (23)

=
d∑

j=1

(
D∑

i=1

W 2
i,j

)
H (sj) + . . . +

D∑

j=D−d+1

(
D∑

i=1

W 2
i,j

)
H (sj) (24)

=
D∑

j=1

H(sj). (25)

ut
Having this proposition, now we present our main theorem.

Theorem 1 (Separation theorem for ISA). Presume that the sm sources of the ISA model satisfy Condition (11).
Then the ISA task can be executed in two steps. In the first step, ICA preprocessing is executed on observed data z. If
the W ICA solution is unique (up to permutation and the sign of the coordinates), then the same matrix is also the W
separation matrix of the ISA task (up to permutation and sign of the coordinates). Therefore, it is satisfactory to search
for the separation matrix of the ISA task in the following form

W = PW ICA, (26)

where P
(∈ IRD×D

)
is a permutation matrix to be determined.

Proof. ICA minimizes the l.h.s. of Eq. (15), that is, it minimizes
∑M

m=1

∑d
i=1 H (ym

i ). If the solution of the ICA task
is unique (up to permutation and the sign of the coordinates), then the location of the minimum is also unique (up to
permutation and the sign of the coordinates). However, the minimum, according to Proposition 1, can be achieved only
at {sm

i } (up to permutation and the sign of the coordinates). ut

4 Sufficient Conditions of the Separation Theorem

In the separation theorem, we assumed that relation (11) is fulfilled for the sm sources. Here, we shall provide sufficient
conditions when this inequality is fulfilled.

4.1 w-EPI

According to Lemma 1, if the w-EPI property (i.e., (10)) holds for sources sm, then inequality (11) holds, too.

4.2 Elliptically Symmetric Sources

A stochastic variable is elliptically symmetric, or elliptical, for short, if its density function – which exists under mild
conditions – is constant on elliptic surfaces.1 We shall show that (11) as well as the stronger (10) w-EPI relations are
fulfilled. We need certain definitions and some basic features to prove the above statement. Thus, below we shall elaborate
on spherical (spherically symmetric) and elliptically symmetric stochastic variables [22,23].
1 They are often called elliptically contoured stochastic variables.



Basic Definitions

Definition 1. (Characteristic function) The characteristic function of stochastic variable v ∈ IRd is defined by the map-
ping

IRd 3 t 7→ ϕv(t) := E[exp(itT v)], (27)

where i =
√−1 and exp is the exponential function.

Spherically symmetric variables can be introduced in different ways that, together, provide the view that we need
here.

Definition 2 (Spherically symmetric variable around µ). A stochastic variable v ∈ IRd is called spherically sym-
metric around µ, if:

1. its density function is not modified by any rotation around µ. Formally, if

v − µ
distr= O (v − µ) , ∀O ∈ Od, (28)

where distr= denotes equality in distribution.
2. its characteristic function with some φ : [0,∞) → IR assumes the following form

ϕv−µ(t) = φ
(
tT t

)
. (29)

Function φ is called the characteristic generator of v.
3. it has the following stochastic representation

v
distr= µ + ru(d), (30)

where
(a) µ ∈ IRd: is a constant vector,
(b) u(d): is a stochastic variable of uniform distribution over Sd,
(c) r: is a non-negative scalar stochastic variable, which is independent of u(d).

We shall make use of the following well known property of spherically symmetric variables:

Proposition 2. Let v denote a d-dimensional variable, which is spherically symmetric around µ. Then the projection of
v − µ onto lines through the origin have identical univariate distribution.

Affine transforms of spherically symmetric variables take us to the concept of elliptically symmetric variables. We shall
be interested in the case, when the affine transform is bijective. Then the following definitions are equivalent:

Definition 3 (Elliptically symmetric variable around µ). A stochastic variable e ∈ IRd is called elliptically sym-
metric around µ, if:

1. there exists µ ∈ IRd and an invertible Λ ∈ IRd×d such that

e = µ + Λv, (31)

where v is a d-dimensional stochastic variable, which is spherically symmetric around 0. In this case, the characteristic
function of e is

ϕe(t) = exp
(
itT µ

)
φv

(
tT Σt

)
, (32)

where Σ := ΛΛT and φv is the characteristic function of v.
2. there exists vector µ ∈ IRd, positive definite symmetric matrix Σ ∈ IRd×d, and function φ : [0,∞) → IR such, that the

characteristic function of e− µ is
ϕe−µ(t) = φ

(
tT Σt

)
. (33)

This property will be denoted as e ∼ Ed(µ, Σ, φ). φ will be called the characteristic generator of variable e.
3. e has stochastic representation of the form

e
distr= µ + rΛu(d) (34)

where Λ ∈ IRd×d is an invertible matrix and
(a) µ ∈ IRd: is a constant vector,
(b) u(d): stochastic variable with uniform distribution on Sd,
(c) r: non-negative scalar stochastic variable, which is independent from u(d).

Here: µ, Σ, and r are called the location vector, the dispersion matrix, and the generating variate, respectively.



Basic Properties Here, we list important properties of an elliptic variable e ∼ Ed(µ, Σ, φ).

1. Density function: if e has a density function, then it assumes the form

fe(x) = |Λ|− 1
2 · g

(
(x− µ)T

Λ−1 (x− µ)
)

, x 6= µ (35)

where ∫ ∞

0

π
d
2

Γ
(

d
2

) t
d
2−1g(t)dt = 1 (36)

and g : [0,∞) → IR is a non-negative function. Here, Γ denotes the gamma function defined as

Γ (a) :=
∫ ∞

0

ta exp(−t)dt (a > 0). (37)

One can show that condition (36) on g is necessary and sufficient for making (35) a density function. For the existence
of the density function it is sufficient if variable r is absolutely continuous. Then function g has an explicit form, see
[23].

2. Momenta: we consider the expectation value and the variance

V ar[e] := E
[
(e− E[e]) (e− E[e])T

]
(38)

of variable e. They exist iff the respective momenta of r are finite. Then, supposing that E
[
r2

]
is finite, we have

E[e] = µ (39)

V ar[e] =
E[r2]

d
Σ = −φ′(0)Σ. (40)

In what follows, we assume that E
[
r2

]
is finite.

Elliptical Sources Now we are ready to claim the following theorem.

Proposition 3. Elliptical sources sm (m = 1, . . . ,M) with finite covariances satisfy condition (11) of the ISA separation
theorem. Further, they satisfy w-EPI (with equality).

Proof. Let sm ∼ Ed(µm,Σm, φm) (m = 1, . . . ,M) denote elliptical sources. Let us normalize each of them as

y 7→ (Σm)−
1
2 (y − µm) . (41)

So, it is satisfactory to prove the theory for spherically symmetric sources. In what follows, sm denotes these spherically
symmetric sources. According to (39)-(40), spherically symmetric sources sm have zero expectation values and up to a
constant multiplier they also have identity covariance matrices:

E[sm] = 0 (42)
V ar[sm] = cm · Id (43)

Note that our constraint on the ISA task, namely that covariance matrices of the sm sources should be equal to Id, is
fulfilled up to constant multipliers.

Let Pw denote the projection to straight line with direction w ∈ SK , which crosses the origin, i.e.,

Pw : IRd 3 u 7→
d∑

i=1

wiui ∈ IR. (44)

In particular, if w is chosen as the canonical basis vector ei (all components are 0, except the ith component, which
is equal to 1), then

Pei(u) = ui. (45)



In this interpretation, (10) and w-EPI are concerned with the entropies of the projections of the different sources onto
straight lines crossing the origin. The l.h.s. projects to w, whereas the r.h.s. projects to the canonical basis vectors. Let
u denote an arbitrary source, i.e., u := sm. According to proposition 2, distribution of the spherical u is the same for all
such projections and thus its entropy is identical. That is,

d∑

i=1

wiui
distr= u1

distr= . . .
distr= ud, ∀w ∈ SK , (46)

h := H

(
d∑

i=1

wiui

)
= H (u1) = . . . = H (ud) , ∀w ∈ SK . (47)

Thus:

– l.h.s. of w-EPI: 22H(u1).
– r.h.s. of w-EPI:

K∑

i=1

22H(wiui) =
K∑

i=1

22H(ui) · w2
i = 22H(u1)

K∑

i=1

w2
i = 22H(u1) · 1 = 22H(u1) (48)

At the first step, we used identity (14) for each of the terms. At the second step, (47) was utilized. Then term 2H(u1)

was pulled out and we took into account that w ∈ SK .
ut

Note 2. We note that sources of spherically symmetric distribution have already been used in the context of ISA in
[11]. In that work, a generative model was assumed. According to the assumption, the distribution of the norms of
sample projections to the subspaces were independent. This way, the task was restricted to spherically symmetric source
distributions, which is a special case of the general ISA task.

4.3 Takano’s Dependency Criterium

We have seen that the w-EPI property is sufficient for the ISA separation theorem. In [24], sufficient condition is provided
to satisfy the EPI condition. The condition is based on the dependencies of the variables and it concerns the 2-dimensional
case. The constraint of d = 2 may be generalized to higher dimensions. We are not aware of such generalizations.

We note, however, that w-EPI requires that EPI be satisfied on the surface of the unit sphere. Thus it is satisfactory
to consider the intersection of the conditions detailed in [24] on surface of the unit sphere.

5 Conclusions

In this paper a separation theorem was presented for the independent subspace analysis (ISA) problem. If the conditions
of the theorem are satisfied then the ISA task can be solved in 2 steps. The first step is concerned with the search
for 1-dimensional independent components. The second step corresponds to a combinatorial problem, the search for
the optimal permutation. We have shown that elliptically symmetric sources satisfy the conditions of the theorem. We
have also noted that the mixture of 2-dimensional sources can also satisfy the theorem provided that the sources satisfy
Takano’s dependency criterium.

These results underline our experiences that the presented 2 step procedure for solving the ISA task may produce
higher quality subspaces than sophisticated search algorithms [19].

Finally we mention that the possibility of this two step procedure was first noted in [10].
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