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Abstract or code), for example that certain covariate groups are se-
lected jointly. Numerous works point to the advantages if
We develop a dictionary learning method which is (i) such structure could be taken into account. The Lasso for-
online, (ii) enables overlapping group structures with)(ii  mulation is improved from this point of view in the group
non-convex sparsity-inducing regularization and (iv) han Lasso framework usingroup?; 2-norm, where the coordi-
dles the partially observable case. Structured sparsity an nates of the hidden representation may form distinct groups
the related group norms have recently gained widespread[33]. Recently, [9] presented a general theoretical frame-
attention in group-sparsity regularized problems intheea work underpinning the advantages of such a group based
when the dictionary is assumed to be known and fixed.Lasso assumption. Among the broad spectrum of success-
However, when the dictionary also needs to be learned, theful applications of group norms, one finds multi-task featur
problem is much more difficult. Only a few methods have learning [2], joint subspace/covariate selection for sifas
been proposed to solve this problem, and they can handlecation [22], and structure learning in log-linear modeB][2
two of these four desirable properties at most. To the besttoo.

of our knOWledge, our propOSEd method is the first one that Recent research Oﬁructured-sparsit}hag shown that
possesses all of these properties. We investigate several i more general structures than sparse disjunct groups, such
teresting special cases of our framework, such as the on-as trees or general groups with possible overlaps may help

line, structured, sparse non-negative matrix factori@afi  in many applicationse.g, in multiple kernel learning and
and demonstrate the efficiency of our algorithm with sev- myiti-task regression [15]. For more information on tree-
eral numerical experiments. structured group Lasso, and structured sparsity regalariz

tion see [18, 11, 24, 21, 34].
All the above Lasso-like problems assume, however, that
the dictionary is fixed and known. This is not the case in
Sparse signal representation and signal processing are ifinany tasks, and learning a dictionary that leads to sparse
the focus of machine learning research. Insparse cod- ~ codes can be important. This is thiéctionary learning
ing framework one approximates the observations with the task [32] (also called matrix factorization [31]), whichrca
linear combination of a few vectors (basis elements) from be traced back to [23]. Dictionary learning is a general
a fixed dictionary. This principle has been successful in a Problem class that containsg, (sparse) Principal Compo-
number of applications including the processing of natural Nent Analysis (PCA) [36], Independent Component Analy-

images, bio-informatics and many others. For a recent re-sis (ICA) [10], and (sparse) Non-negative Matrix Factoriza
view see [29]. tion (NMF) [17, 27, 8], among many others. Considerable

The general task, namely th&-norm solution that research efforts have been devoted to these problems and
searches for the least number of basis elements is NPled to state-of-the-art methods, seeg, the image process-
hard, and thus one often considers the relaxed and conveid application in [1].
¢, variant of this task, the so-called Lasso problem [28].  Although both dictionary learning and structured sparse
The/,-norm based approach leads to sparse models, but itoding (when the dictionary is given) are very popular, in-
does not take into account any prior information about the terestingly, very few works focused on the combination of
structure of hidden representation (also called covasjate these two tasks.e., on the learning o$tructured dictionar-

~©2011 IEEE. IEEE Computer Vision and Pattern Recogni- iesby pre-assuming certain :?‘tructures onthe repregentation.
tion (CVPR 2011), pages 2865-2872, Colorado Springs, COA.US Ve list a few notable exceptions. Groups are considered on
http://dx. doi . org/10. 1109/ CVPR. 2011. 5995712. the observations in [4] with alternating minimization oéth
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dictionary and the hidden representations subject to grouptive numbersp, ¢, (i) (quasi-)norm¢, of vectora € R¢
{12 and group/; ; or ¢; 2 regularization, respectively. Tree g lally = (27:1 |ai|q)é, (ii) ¢,.,-norm of the same vec-
Ibaseq group Strua;.”ﬁ i; gssumed inf[1h2], and ﬁicdtionarytor is(lall,, = [llarllg:- - lape o]l where{P;}/,
earning is accomplished by means of the so-called prox-; i d _ d .
imal methods [6]. The efficiency afon-convex sparsity- 's a partition of the sefl,....d}. 9, = {a ¢ R :
inducing normn the dictionary has recently been demon-
strated in structured sparse PCA [13]. Geneagedup-
structured but convex sparsity-inducing regularizer is ap-
plied in [20] for the learning of the dictionary by taking
advantage of network flow algorithms. In [25], the authors
take partition (special group structure) on the hidden deva
ates and explicitly limit the number of non-zero elementsin . ' g with respect to variablex at pointxo is 2 (xo).
each group in the dictionary learning problem. R — f{x € R : 2, > 0(Vi)} stands for the nor?-)ﬁegative
All the cited algorithms above woréff-line. However, orJtrant inRY. -
online methods fit large or slowly varying systems better.
The cost function based on structure inducing regulaorati - 2 Formal problem definition
in [14] is a special case of [13]. However, as opposed to the
previous works, here in [14] the presented dictionary learn ~ Let us define the online group-structured dictionary
ing approach isnline Lasso and certain convex regulariz- learning task starting from the fully observed case. Our
ers are used for online dictionary learning in [19] allowing go0al in dictionary learning is to find a dictionary matrix

a continuous flow of observations, but group structures areD € R *?~ that can approximate observatiogse R
not considered. by the linear combinations of its columns. We assume that

dictionaryD belongs to a closed, convex and bounded set
D (D € D), which is defined by the direct product of con-
straintsD; of columnsd; (atoms, basis elements) of ma-
trix D (D = x’ D,). We assume further that the hid-
den representation (coefficients) € R of observation

x; belongs to a convex, closed sét(«; € A) subject to
certain structural constraints. Namely, we assume that (i)
a group structurédj is given for the hidden representation,
that is, a subset of the power set{df,. .., d,} for which
UgesG = {1,...,d.}, and (ii) weight vectorgl® ¢ R«

(G € 9) are also given. For a given weight vectdf, the
coefficients belonging t& are positive, and the coefficients
not in G are zeros. FofixedD andx, we define the rep-
resentationx of x to be the vector itA that minimizes the
following structured sparse representation task

lall, < 1} is the unit sphere associated with in R<.
Pointwise product of vectora,b € R¢ is denoted by
aob = [a1b1;...;aqbg]. FOr any given set systef ele-
ments of vecton € RIS! are denoted by, whereG < g,
thatisa = (a%)geg. lle(x) = argmingce||x — c||2 de-
notes the orthogonal projection to the closed and convex
set@ C RY, wherex € R?. Partial derivative of func-

All of these methods deal with the fully observable case.
By contrast, [3] develops an online dictionary learninditec
nique for PCA subject tmissing observation®ut without
group structures.

Our goal is to develop a dictionary learning method ex-
hibiting all the four properties at a timee., it (i) is online,
(il) enables general overlapping group structures, (i) a
plies non-convex sparsity inducing regularization, angl (i
can deal with missing information. The above methods can
exhibit two of these features at most. We will see that the
derivation of such an algorithm is far from being trivial. We
will reduce the optimization of dictionary learning to con-
vex subtasks and derive online rules for the update of the
dictionary using block-coordinate descent method. This is
the contribution of our current work.

The paper is built as follows: We define theline group- I(x,D) = lﬂ,n,g’{dc}Geg (x,D) (1)
structured dictionary learnindOSDL) task in Section 2. 1
Section 3 is dedicated to our optimization scheme solving = min |- ||x — Da||§ +rQa)], (2@
the OSDL problem. Numerical examples are shown in Sec- acd |2
tion 4. Conclusions are drawn in Section 5. wherex > 0,7 € (0,1], and

Notations. Vectors have bold faces), matrices are G
written by capital letters4). Thet" coerdinate of vec- Q) = 2.5.(a¢)5, ) = A7 0 yl2)ceslly - (3)
tor a is a;, diag(a) denotes the diagonal matrix formed is the structured regularizer for grougs in G and for
from vectora. For a set (number),- | denotes the num-  weightsd®.
ber of elements in the set, (the absolute value of the num- Letx; € R% (i = 1,2,...) be a sequence of i.i.d. (in-

ber). Fora € RY A € R¥P and for seO C {1,...,d}, dependent identically distributed) observations. Thénenl
ap € RI9 denotes the coordinates of vectarin O, group-structured dictionary learning (OSDL) problem is de
whereasAp € RIOIXP contains the rows of matriA fined as the minimization of the following cost function:
in O. AT is the transposed of matriA. I and0 stand .
for the identity and the null matrices, respectively. Op- : 1 i\’

. atrices, P min (D)= —————Y (-] (x,D), (@)
erationmax acts component-wise on vectors. For posi-  DeD =1 (/)P i\t



wherep is a non-negative forgetting factor. For the case of
p=0in(4), f(D) = 13! i(x;, D) reduces to the em-
pirical average. Note that here the OSDL task is defined via
the sparsity-inducing regulariz€r[13] aiming to eliminate
the terms|d“ o y||2 (G € G) by means of|-[[,,. An alter-
native sparsity inducing solution (for fixdd) Is provided
in [11, 24], it searches for non-zero elementsoobn the
union of groups irg.

Let us now define the OSDL problem for the partially
observable case. Now, at time instamte can access only
a certain subse®?; C {1,...,d,} of x;. We modifyl in (2)
by applying the approach of [31, 3], that is, we use the error
on the observed coordinates:

. 1
l(xoi’DOi) = glel.lfll |:§ ||Xoi - Dola”g + HQ(O‘)] )
(5)

and we also changéx;, D) to/(xo,, Do,) in optimization
(4). In turn, our goal is to solve the following minimization

)=

]rjnel% fi(D

o () (x0.,Do,). (6)

2.1. Interesting special cases

ForO; = {1,...,d,} (Vi) the fully observed OSDL task
is recovered. Further special cases of the OSDL model in-
clude the following:
Special cases fog:

o If |G| = d, and§ = {{1},{2},...,{da}}, then we
assume no dependence between coordinateand
the problem reduces to the classical task of learning
‘sparse representation dictionaries’. A further special-
ization is whenD is given,p = 0,7 = 1, d’ = e;,
wheree; is theit" canonical basis vector. This corre-
sponds to the Lasso task.

If || = d., coordinates; make the nodes of a
tree, and§ = {descendantsi, . ..,descendantsg, },
wheredescendants; stands for thé'” node and its de-

o D, =S¢ NRY (Vi), A = R%: columns of dic-
tionary D are constrained to the non-negatiseunit
sphereg;s are non-negative arffican arbitrary. This
is the structured NMF model.

D; = S NRY (Vi), A = R%: columns of dictio-
naryD are constrained to the non-negatiiesphere,
«;S are non-negative ar@@ can arbitrary. This is the
structured mixture-of-topics model.

3. Optimization

We consider the optimization of cost function (6), which
is equivalent to the joined optimization of dictionddyand
coefficients{a; }!_;:

argmin  f,(D, {ai}i_y), (7)
DeD {a;e A},
where
. 1
fr= ( ) { HXOi—DOiOLiH2+nQ(ai) .
CaGr J/t o 2 2
(8)

Assume that our samples; are emitted from an i.i.d.
sourcep(x), and we can observe,,. We execute the on-
line optimization of dictionanD (i.e., the minimization of
(7)) through alternations:

1. For the actual samptey, we optimize hidden repre-
sentation; belonging taxo, using our estimated dic-
tionaryD;_; and solving the minimization task

o.al; + rQ(a)
9)

2. We use hidden representatiofa;}!_; and update
D,_; by means of quadratic optimization

1)

1
o = argmin | = [|xo, — (D¢—1)
acA 2

fe(Dy) = min fi(D, {e}i_ (10)

scendants, then we have a tree-structured, hierarchial

representation.

If || = da, coordinatesy; make the nodes of a grid,
andG = {NNy,..., NNy}, whereNN; denotes the

neighbors of thé'” point in radius- on the grid, then

we obtain a grid representation.

e If § = {P,...,Px}, where{P,}  is a partition
of {1,...,d.}, then non-overlapping group structure
is obtained.

Special cases foD, A:

o D; = 8% (Vi), A = R%: columns of dictionaryD
are constrained to the Euclidean unit sphere.

In the next subsections, we elaborate on the optimization of

representation in (9) and the dictionar in (10).

3.1. Representation updated)

Obijective function (9) is not convex in. We use a vari-
ational method to find a solution: (i) we rewrite the term
by introducing an auxiliary variablez) that converts the
expression to a quadratic onedr) and then (ii) we use an
explicit solution toz and continue by iteration. Namely, we
use Lemma 3.1 of [13]: for any € R? andy € (0, 2)

d 2 1
lyll, = min Z %y +5 lzlls, (11)
=& =1



where = 57— -, and it takes its minimum value af =

lyi?~"ly|l7—". We apply this relation for the tera in (9)
(see Eq. (3)), and have that

min [Z

Z:[(ZG)GES]GRM Geg

|d€ o

al;
2Q(a) e T 1] 5

— min [aTdmg(c)a + ||z B] , (12)
zER‘f‘
where¢ = ¢(z) € R, and
2
(4f)
G= > G (13)
GeG,G3j
Inserting (12) into (9) we get the optimization task:
argmin J(a,z), where (14)
aGA,zeRf‘
J(a,z) = (15)

1 1 _
= 3 Ixo, = (Di-v)o,al + x5 (a”diag(C)a+ Izl 5)-

One can solve the minimization df «, z) by alternations:

1. For givenz: we can use least mean square solvepfor
whenA = R4 in (15), and non-negative least square
solver whenA = RY~. For the general case, the cost
function J (e, z) is quadratic ina and is subject to
convex and closed constraints (¢ A). There are
standard solvers for this case [16, 5], too.

2. For givena:: According to (11), the minimunz
(2%)ceg can be found as

“=d%oal; (14 o all2)cesly . (16)

Note that for numerical stability smoothing,
max(z,¢) (0 < € < 1), is suggested in practice.

3.2. Dictionary update (D)

We use block-coordinate descent (BCD) [5] for the op-
timization of (10). This optimization is not influenced by
the regularizef)(«), since itis independent &. Thus the
task (10) issimilar to the fully observable case [19], where
for O, = {1,...,d,} (Vi) it has been shown that the BCD
method can work without storing all of the vectots «;

(i <t). Instead, it is sufficient to keep certain statistics that ej0 =

charactenzgft, which can be updated online. This way, op-
timization of f, in (10) becomes online, too. As it will be
elaborated below, (i) certain statistics describjfipgan also

be derived for the partially observed case, which (ii) can
be updated online with a single exception, and (iii) a good

approximation exists for that exception (see Section 4).

During the BCD optimization, columns dD are min-
imized sequentially: other columns than the actually up-
datedd; (i.e., d;,i # j) are kept fixed. The functior,
is quadratlc ind;. During minimization we search for its
minimum (denoted byi;) and project the result to the con-
straint setD; (d; « Ilp,(uy)). To find thisu;, we solve

the equation(%(uj) = 0, which leads (as we show it in
J

the supplementary material) to the following linear equiati

system

Cja; =b; —ej+Cj.dj, (17)

whereC;, € R¥=*d: is a diagonal coefficient matrix, and

t -\ P
1
Cit = ), (g) Aol (18)
=1
t i 14
Bt _ Z <Z) Azxz [bl tyoon ,bda,t]v(lg)
=1
t i 14
e = Y (Z) Do 2

i=1

Here A; represents a diagonal matrix correspondin@®to
(element; in the diagonal isl if 5 € O;, and0 other-
wise). C,;s € Ré=*ds andB; € R=*do take the form

of M; = >F_ L (3 )’ N; matrix series/statistics, and thus
(as we detall it in the supplementary material) they can be
updated as

Cjit = %Cj -1 + Asaij, (21)

Bt = ’YtBt—l + Atxtaz, (22)
with initialization C;o = 0, By = 0 for the case of
p = 0, and with arbitrary initialization fop > 0, where
v = (1—1)”. For the fully observed case\; = I, ),
one can pull ouD frome; ; € R, the remaining part is
of the formM,, and thus it can be updated online giving
rise to the update rules in [19], see the supplementary ma-
terial. In the general case this procedure can not be applied
(matrix D changes during the BCD updates). According to
our numerical experiences (see Section 4) an efficient on-
line approximation foe; ; is

e =Vej 1+ A¢Dyaay j, (23)
with the actual estimation foD, and with initialization
0 (V5). We note that

1. convergence is often speeded up if the updates
of statistics{{C;;}9=,, By, {e;.} =} are made in
batches ofR samplesxop, ,,...,%o,, (in R-tuple
mini-batches). The pseudocode of this OSDL method
is presented in the supplementary material.



2. Projections tod and®D;: For many convex and closed
sets€ (A or D;), the computation of projectiohle
can be done efficiently. For example, f6r = Ri,
Ile(x) = max(x,0), whereas for the@ = 59,
Ile(x) = lelzl) Similarly, the projection to the
¢1-sphere §¢) can be done easily, even when we have
extra non-negativity constraints, too. Other famous ex-

amples where this projection can be done efficiently Figyre 1: Illustration of the used natural image datasét. (a
include the elastic net constraints, the fused Lasso con-12 images of similar kind were used to select train¥g,

straints, and the groufy-sphere as well. For more de-  yajidationX.,,,;, and tesiX,.; sets. (b): testimage used for
tails, seee.g, [7, 30, 19] and references therein. We the jllustration of full image inpainting.

note that since group norm projections can be com-
puted efficiently, by choosind; to a group-norm

sphere, one can obtain a double-structured (groupof the dataset to study the first two questions above (see
structure ore and D) dictionary learning scheme as a Fig. 1(a)), and used thes" picture for studying the third
special case of our presented OSDL framework. question (Fig. 1(b)). For each of the 12 images, we sampled
131072 = 2'7 pieces of8 x 8 disjunct image patches ran-
domly (without replacement). This patch set was divided to
a training seiX,,- made 0f65536 pieces, and to a validation
(X,q1) and test X.;) set with set size82768. Each patch
was normalized to zero average and dpihorm.

(@) (b)

3. Thetrick in the representation update (Section 3.1) was
that the auxiliary variable ‘replaced’ the term with
a quadratic one imx. One could use furthey(«) reg-
ularizers augmenting in (8) provided that the corre-
spondingJ(«, z) + g(«) cost function (see Eg. (15))

can be efficiently optimized in € A. In thefirst experiment x;s were fully observed4; =
I) and thus the update of their statistics was precise. This is
4. Numerical experiments called the BCD case in the figures. Matfixwas learned on

the setX,,, columnsd; were initialized by using a uniform
We illustrate our OSDL method on inpainting of natural  distribution on the surface of th&-sphere. Pixels of the
images (Section 4.1) and on structured non-negative matrixx patches in the validation and test sets were removed with
factorization of faces (Section 4.2). probability pv?/,. For a given noise-free image patghlet
4.1. Inpainting of natural images X0 denote its opserved ver_sion, whevestands for the_ in- _
dices of the available coordinates. The task was the inpaint

We studied the following issues on natural images: ing of the missing pixels ot by means of the pixels present

1. Is structured dictionar]d beneficial for inpainting of ~ (*0) and by the learned matrid. After removing the rows
patches of natural images, and how does it compare to®f D corresponding to missing pixels ®f the resultinddo
the dictionary of classical sparse representation? Dur-andxo were used to estimate. The final estimation of

ing learning ofD, training samplex; were fully ob- x wasx = Da. According to preliminary experiments,
servedie., A; =1I). learning ratep and mini-batch sizék were set t@32 and64

respectively (the estimation was robust as a functiop of
andR). In the updates af anda (14) only minor changes
were experienced after 2-3 iterations, thus the number of it
erationsT,, was set td. Concerning the other parameters,

2. Inthisimage patches inpainting problem, we also stud-
ied the case when the training sampleswere par-
tially observed A; # I).

3. We also show results for inpaintingfofl imagesusing we usedy = 0.5, andx € {2719 2718 2710} The
a dictionary learned from partially observefd { = I) e smoothing parameter wa$)—°, and the iteration num-
patches. ber for the update oD wasTp = 5. Values ofpy%,

. . were chosen from s€0.3,0.5,0.7,0.9}, so for the case of
In our numerical experiments we usél, = S%= (i), val 40.3,0.5,0.7,0.9}

pia, = 0.9, only 10% of the pixels ofx were observed. For
each fixed neighborhood sizeand parametes??,, x was
chosen as the minimum of mean squared error (MSE) using
D trained on patch séX,, and evaluated oX,,;. Having
found this optimak on the validation set, we used its value

0 compute the MSE oiX,..;. Then we changed the roles

f X, andX,..;, thatis, validated oiX;.,;, and tested on
Xyal- This procedure was repeated for four random initial-
1See http://www.cis.hut.fi/projects/ica/data/images/. izations D) and different corruptionsX ,;, Xies:). The

A = R? without additional weighingd® = x¢, VG € G,
wherey is the indicator function). Group structuge of
vectora was realized on &6 x 16 torus (, = 256) with

|| = d. applyingr = 0,1,2, or 3 neighbors to define
G. Forr =0 (5 = {{1},...,{da}}) the classical sparse
representation is recovered. Our test database was the IC
natural image databadeWe chose 12 of the 13 images




(b) ©

(b)

Figure 2: lllustration of the online learned group-struetl Figure 3: lllustration of the online learned group-struetl
D dictionaries with the BCD technique and MSE closest to D dictionaries for the BCDA technique with MSE closest
the average (see Table 1) api}’, = 0.7. (a): 7 = 0, (b): to the average (see Table 2) gujid!, = 0.7. (a): ps = 0,
r=2,(c):r=3. (b): pir = 0.1, (C): s = 0.5.

average MSE values (multiplied by 100) and their standard
deviations for different neighbor sizesnd corruptionrates M
pvel, are summarized in Table 1. This table shows that (i) §
the inpainting error grows with the corruption rate’, , (ii)
compared to sparse representation=0) small neighbor-
hood sizer = 1 gives rise to similar results, = 2 is better
andr = 3 seems to be the best for all cases wigh— 19%
improvement in precision for MSE. Learned and average
quality dictionaried can be seen in Fig. 2 (= 0 no struc-
ture,r = 2,3 with torus structure). Based on this exper-
iment we can conclude that the structured algorithm gives
rise to better results than ordinary sparse represengation

In thesecond experimentthe size of the neighborhood
was fixed, set to- = 3. We learned dictionard on par- © (d)
tially observedpatches A; # I). The probabilityp;, of ) o ) ) )
missing any pixel from the observations in the training set Fi9ure 4: Inpainting illustration using the online learned
assumed values from the s, 0.1,0.3,0.5,0.7,0.9}. In gr'oup-structured) dictionaries for the BCDA technique
this case, we updateslusing the approximation Eq. (23), With MSE closest to the average (see Table 2) and=
hence we call this method Approximate-BCD (or BCDA, Y-5- (a)l: measured, (b): estimated, PSNR = 36 dB. (a)-
for short). The other experimental details were identioal t (b):l piesy = 0.3. (c)-(d): the same as (a)-(b), but with
the previous caseé.€., whenA; = I). Results and statistics Piese = 0.7,in (d) PSNR = 29 dB.
for MSE are provided for a small€f.3) and for a larger
(0.7) value ofp¥®, in Table 2 for different probability val-
uesp,.. We found that increasing, up top;, = 0.7 MSE
values grow slowly. Note that we kept the number of sam-
plesx; at 65536 identical to the previous caseé\( = I),
and thus by increasing,. the effective number of observa-
tions/coordinates decreases. Learned average quality-dic
nariesD are shown in Fig. 3 fop?%, = 0.7. Note that the
MSE values are still relatively small for missing pixel prob )
ability p; = 0.9 (100x MSE maximum is about.96), tus  pg iy, v) = 10log,, (max(max; |Uz‘|,m3;<j vil)
our proposed method is still efficient in this case. Recon- Lu=v|;
struction with value).92 (100x MSE) is shown in Fig. 4.

In our third illustration we show full image inpainting  where the higher value is the better. Acceptable values in
using dictionaryD learned withp;, = 0.5 and using the  wireless transmission (lossy image and video compression)
13t" image (X) shown in Fig. 1(b). We executed inpainting are around20 — 25 dB (30 dB). By means ofD and for
consecutively on a$ x 8 patches of imag& and for each  missing probabilityp??, = 0.3 we achieved6 dB PSNR,
pixel of imageX, we averaged all estimatioss from all whereas for missing probabilipf, = 0.7 we still have29
8 x 8 patches that contained the pixel. Results are shown indB PSNR, underlining the efficiency of our method.

Fig. 4 forpye!, = 0.3 and0.7 values. We also provide the
PSNR (peak signal-to-noise ratio) values of our estimation
This measure for vectors v € R¢ (i.e., for vectors formed
from the pixels of the image) is defined as




| [ il = 0.3 [preli =05 [prel, =07 |prel =09 |
=0 [[0.65 (£0.002) 0.83 (£0.003) 1.10 (£0.002) 1.49 (+0.006)
=1 {[0.60 (£0.005; +6.78%) [0.85 (£0.017; —2.25%) [1.10 (£0.029; +0.27%) | 1.45 (£0.004; +2.96%)
r =2 [[0.59 (£0.005; +10.39%) |0.81 (£0.008; +2.67%) |[1.12 (£0.029; —1.09%) |1.46 (£0.029; +2.51%)
r =3 |0.56 (£0.002; +16.38%)]0.71 (+0.002; +16.01%) | 0.93 (£0.001; +18.93%) | 1.31 (£0.002; +-13.87%)

Table 1: BCD: 10& the MSE averaged std) as a function of neighbors & 0: sparse representation, no structure) for

differentp?, corruption rates.
| |pir =0 [pir =01 |pr=03  [pr=05  [pr=07 [pir=09 ]
piel, = 0.3]]0.55 (£0.003) [ 0.56 (£0.001) [ 0.57 (£0.003) | 0.59 (0.001) [ 0.61 (£0.002) [ 0.71 (£0.007)
prel, = 0.7]/0.91 (£0.002) [ 0.91 (£0.002) | 0.91 (£0.002) | 0.92 (+0.003) [ 0.93 (£0.002) [ 0.96 (+0.003)

Table 2: BCDA ¢ = 3): 100x the MSE averagef std) for different for differenp?®,

andp,,. corruption rates.

4.2. Online structured non-negative matrix factor-
ization on faces

It has been shown on the CBCL database that dictio-
nary vectors ;) of the offine NMF method can be in-
terpreted as face components [17]. However, to the best
of our knowledge, there is no existing NMF algorithm as
of yet, which could handle gener8l group structures in
an online fashion. Our OSDL method is able to do that,
can also cope with only partially observed inputs, and can
be extended with non-convex sparsity-inducing norms. We
illustrate our approach on the color FERE@ataset: we
setD; = S NRY¥ (vi), A = R¥, A, = I and
1 = 0.5. We selected 736 facial pictures from this dataset.
Using affine transformations we positioned the noses and
eyes to the same pixel coordinates, reduced the image size
to 140 x 120, and set theify norms to be one. These
images were the observations for our ODSL methed (
d, = 49140 = 140 x 120 x 3 minus some masking). The
group structuré was chosen to be hierarchical; we applied rigyre 5: Illustration of the online learned structured NMF
a full, 8-level binary tree. Each node with its correspogdin dictionary. Upper left corner: training samples.
descendants formed the sets@fe § (d., = 255). Ac-
cording to our experiments, the learned dictionBrywas
influenced mostly by the constart and similarly to Sec-
tion 4.1, it proved to be quite insensitive to the value of the
Iegrning factorp, and to the size of the mini—bgtcheR)( In this paper we proposed a new dictionary learning
Fig. 5 shows gfgw elemeqts from thle online estimated struc-method, which is (i) online, (ii) enables overlapping group
tured NMF dictionary (using: = 55, p = 32, R = 8, structures on the hidden representation/dictionary, &i-
d® = x¢ (VG € §), Ta =5,Tp =5ande = 107°). We pjies non-convex, sparsity inducing regularization, a (
can observe that the proposed algorithm is able to naturallycgn nandle the partially observable case, too. We reduced
develop and hierarchically organize the elements of the dic ¢, optimization problem of dictionary learning to convex
tionary: towards the leaves the learned filters reveal Moreghtasks, and using a block-coordinate descent approach
and more details. We can also notice that the colors are sepznq 4 variational method we derived online update rules for
arated as well. This example demonstrates that our methogpe statistics of the cost of the dictionary. The efficienty o
can be used for large problems where the dimension of theg ;- 4igorithm was demonstrated by several numerical ex-
observations is aboG000. periments. We have shown that in the inpainting problem
our method can perform better than the traditional sparse
methods. As a special case, we have also shown that our ap-

5. Conclusions

2See http://face.nist.gov/colorferet/.



proach can be used for the online structured NMF problem,[16] C.L.Lawson and R. J. Hanso8olving Least Squares Prob-

too, and it is able to hierarchically organize the elemefts o

the dictionary.

One possible extension of our online group-structured

[17]

dictionary learning framework may touch the nonparamet- [18]
ric Bayesian dictionary learning approach [35], recenily i
troduced for the (traditional, unstructured) sparse diry
learning problem.
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