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Abstract

We develop a dictionary learning method which is (i)
online, (ii) enables overlapping group structures with (iii)
non-convex sparsity-inducing regularization and (iv) han-
dles the partially observable case. Structured sparsity and
the related group norms have recently gained widespread
attention in group-sparsity regularized problems in the case
when the dictionary is assumed to be known and fixed.
However, when the dictionary also needs to be learned, the
problem is much more difficult. Only a few methods have
been proposed to solve this problem, and they can handle
two of these four desirable properties at most. To the best
of our knowledge, our proposed method is the first one that
possesses all of these properties. We investigate several in-
teresting special cases of our framework, such as the on-
line, structured, sparse non-negative matrix factorization,
and demonstrate the efficiency of our algorithm with sev-
eral numerical experiments.

1. Introduction

Sparse signal representation and signal processing are in
the focus of machine learning research. In thesparse cod-
ing framework one approximates the observations with the
linear combination of a few vectors (basis elements) from
a fixed dictionary. This principle has been successful in a
number of applications including the processing of natural
images, bio-informatics and many others. For a recent re-
view see [29].

The general task, namely theℓ0-norm solution that
searches for the least number of basis elements is NP-
hard, and thus one often considers the relaxed and convex
ℓ1 variant of this task, the so-called Lasso problem [28].
Theℓ1-norm based approach leads to sparse models, but it
does not take into account any prior information about the
structure of hidden representation (also called covariates,
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or code), for example that certain covariate groups are se-
lected jointly. Numerous works point to the advantages if
such structure could be taken into account. The Lasso for-
mulation is improved from this point of view in the group
Lasso framework usinggroupℓ1,2-norm, where the coordi-
nates of the hidden representation may form distinct groups
[33]. Recently, [9] presented a general theoretical frame-
work underpinning the advantages of such a group based
Lasso assumption. Among the broad spectrum of success-
ful applications of group norms, one finds multi-task feature
learning [2], joint subspace/covariate selection for classifi-
cation [22], and structure learning in log-linear models [26],
too.

Recent research onstructured-sparsityhas shown that
more general structures than sparse disjunct groups, such
as trees or general groups with possible overlaps may help
in many applications,e.g., in multiple kernel learning and
multi-task regression [15]. For more information on tree-
structured group Lasso, and structured sparsity regulariza-
tion see [18, 11, 24, 21, 34].

All the above Lasso-like problems assume, however, that
the dictionary is fixed and known. This is not the case in
many tasks, and learning a dictionary that leads to sparse
codes can be important. This is thedictionary learning
task [32] (also called matrix factorization [31]), which can
be traced back to [23]. Dictionary learning is a general
problem class that contains,e.g., (sparse) Principal Compo-
nent Analysis (PCA) [36], Independent Component Analy-
sis (ICA) [10], and (sparse) Non-negative Matrix Factoriza-
tion (NMF) [17, 27, 8], among many others. Considerable
research efforts have been devoted to these problems and
led to state-of-the-art methods, see,e.g., the image process-
ing application in [1].

Although both dictionary learning and structured sparse
coding (when the dictionary is given) are very popular, in-
terestingly, very few works focused on the combination of
these two tasks,i.e., on the learning ofstructured dictionar-
iesby pre-assuming certain structures on the representation.
We list a few notable exceptions. Groups are considered on
the observations in [4] with alternating minimization of the



dictionary and the hidden representations subject to group
ℓ1,2 and groupℓ1,1 or ℓ1,2 regularization, respectively. Tree
based group structure is assumed in [12], and dictionary
learning is accomplished by means of the so-called prox-
imal methods [6]. The efficiency ofnon-convex sparsity-
inducing normson the dictionary has recently been demon-
strated in structured sparse PCA [13]. Generalgroup-
structured, but convex sparsity-inducing regularizer is ap-
plied in [20] for the learning of the dictionary by taking
advantage of network flow algorithms. In [25], the authors
take partition (special group structure) on the hidden covari-
ates and explicitly limit the number of non-zero elements in
each group in the dictionary learning problem.

All the cited algorithms above workoff-line. However,
online methods fit large or slowly varying systems better.
The cost function based on structure inducing regularization
in [14] is a special case of [13]. However, as opposed to the
previous works, here in [14] the presented dictionary learn-
ing approach isonline. Lasso and certain convex regulariz-
ers are used for online dictionary learning in [19] allowing
a continuous flow of observations, but group structures are
not considered.

All of these methods deal with the fully observable case.
By contrast, [3] develops an online dictionary learning tech-
nique for PCA subject tomissing observations, but without
group structures.

Our goal is to develop a dictionary learning method ex-
hibiting all the four properties at a time,i.e., it (i) is online,
(ii) enables general overlapping group structures, (iii) ap-
plies non-convex sparsity inducing regularization, and (iv)
can deal with missing information. The above methods can
exhibit two of these features at most. We will see that the
derivation of such an algorithm is far from being trivial. We
will reduce the optimization of dictionary learning to con-
vex subtasks and derive online rules for the update of the
dictionary using block-coordinate descent method. This is
the contribution of our current work.

The paper is built as follows: We define theonline group-
structured dictionary learning(OSDL) task in Section 2.
Section 3 is dedicated to our optimization scheme solving
the OSDL problem. Numerical examples are shown in Sec-
tion 4. Conclusions are drawn in Section 5.

Notations. Vectors have bold faces (a), matrices are
written by capital letters (A). The ith coordinate of vec-
tor a is ai, diag(a) denotes the diagonal matrix formed
from vectora. For a set (number),| · | denotes the num-
ber of elements in the set, (the absolute value of the num-
ber). Fora ∈ R

d,A ∈ R
d×D and for setO ⊆ {1, . . . , d},

aO ∈ R
|O| denotes the coordinates of vectora in O,

whereasAO ∈ R
|O|×D contains the rows of matrixA

in O. AT is the transposed of matrixA. I and0 stand
for the identity and the null matrices, respectively. Op-
erationmax acts component-wise on vectors. For posi-

tive numbersp, q, (i) (quasi-)normℓq of vectora ∈ R
d

is ‖a‖q = (
∑d

i=1 |ai|
q)

1
q , (ii) ℓp,q-norm of the same vec-

tor is ‖a‖p,q = ‖[‖aP1
‖q, . . . , ‖aPK

‖q]‖p, where{Pi}
K
i=1

is a partition of the set{1, . . . , d}. Sd
p = {a ∈ R

d :

‖a‖p ≤ 1} is the unit sphere associated withℓp in R
d.

Pointwise product of vectorsa,b ∈ R
d is denoted by

a ◦ b = [a1b1; . . . ; adbd]. For any given set systemG, ele-
ments of vectora ∈ R

|G| are denoted byaG, whereG ∈ G,
that isa = (aG)G∈G. ΠC(x) = argminc∈C‖x − c‖2 de-
notes the orthogonal projection to the closed and convex
set C ⊆ R

d, wherex ∈ R
d. Partial derivative of func-

tion g with respect to variablex at point x0 is ∂g
∂x

(x0).
R

d
+ = {x ∈ R

d : xi ≥ 0 (∀i)} stands for the non-negative
ortant inR

d.

2. Formal problem definition

Let us define the online group-structured dictionary
learning task starting from the fully observed case. Our
goal in dictionary learning is to find a dictionary matrix
D ∈ R

dx×dα that can approximate observationsxi ∈ R
dx

by the linear combinations of its columns. We assume that
dictionaryD belongs to a closed, convex and bounded set
D (D ∈ D), which is defined by the direct product of con-
straintsDi of columnsdi (atoms, basis elements) of ma-
trix D (D = ×dα

i=1Di). We assume further that the hid-
den representation (coefficients)αi ∈ R

dα of observation
xi belongs to a convex, closed setA (αi ∈ A) subject to
certain structural constraints. Namely, we assume that (i)
a group structureG is given for the hidden representation,
that is, a subset of the power set of{1, . . . , dα} for which
∪G∈GG = {1, . . . , dα}, and (ii) weight vectorsdG ∈ R

dα

(G ∈ G) are also given. For a given weight vectordG, the
coefficients belonging toG are positive, and the coefficients
not in G are zeros. ForfixedD andx, we define the rep-
resentationα of x to be the vector inA that minimizes the
following structured sparse representation task

l(x,D) = lκ,η,G,{dG}
G∈G

(x,D) (1)

= min
α∈A

[

1

2
‖x−Dα‖

2
2 + κΩ(α)

]

, (2)

whereκ > 0, η ∈ (0, 1], and

Ω(y) = Ωη,G,{dG}
G∈G

(y) = ‖(‖dG ◦ y‖2)G∈G‖η (3)

is the structured regularizer for groupsG in G and for
weightsdG.

Let xi ∈ R
dx (i = 1, 2, . . .) be a sequence of i.i.d. (in-

dependent identically distributed) observations. The online
group-structureddictionary learning (OSDL) problem is de-
fined as the minimization of the following cost function:

min
D∈D

ft(D) :=
1

∑t
j=1(j/t)ρ

t
∑

i=1

(

i

t

)ρ

l(xi,D), (4)



whereρ is a non-negative forgetting factor. For the case of
ρ = 0 in (4), ft(D) = 1

t

∑t
i=1 l(xi,D) reduces to the em-

pirical average. Note that here the OSDL task is defined via
the sparsity-inducing regularizerΩ [13] aiming to eliminate
the terms‖dG ◦ y‖2 (G ∈ G) by means of‖·‖η. An alter-
native sparsity inducing solution (for fixedD) is provided
in [11, 24], it searches for non-zero elements ofα on the
union of groups inG.

Let us now define the OSDL problem for the partially
observable case. Now, at time instanti we can access only
a certain subsetOi ⊆ {1, . . . , dx} of xi. We modifyl in (2)
by applying the approach of [31, 3], that is, we use the error
on the observed coordinates:

l(xOi
,DOi

) = min
α∈A

[

1

2
‖xOi

−DOi
α‖22 + κΩ(α)

]

,

(5)
and we also changel(xi,D) to l(xOi

,DOi
) in optimization

(4). In turn, our goal is to solve the following minimization

min
D∈D

ft(D) :=
1

∑t
j=1(j/t)ρ

t
∑

i=1

(

i

t

)ρ

l(xOi
,DOi

). (6)

2.1. Interesting special cases

ForOi = {1, . . . , dx} (∀i) the fully observed OSDL task
is recovered. Further special cases of the OSDL model in-
clude the following:
Special cases forG:

• If |G| = dα andG = {{1}, {2}, . . . , {dα}}, then we
assume no dependence between coordinatesαi, and
the problem reduces to the classical task of learning
‘sparse representation dictionaries’. A further special-
ization is whenD is given,ρ = 0, η = 1, di = ei,
whereei is theith canonical basis vector. This corre-
sponds to the Lasso task.

• If |G| = dα, coordinatesαi make the nodes of a
tree, andG = {descendants1, . . . , descendantsdα

},
wheredescendantsi stands for theith node and its de-
scendants, then we have a tree-structured, hierarchial
representation.

• If |G| = dα, coordinatesαi make the nodes of a grid,
andG = {NN1, . . . , NNdα

}, whereNNi denotes the
neighbors of theith point in radiusr on the grid, then
we obtain a grid representation.

• If G = {P1, . . . , PK}, where{Pk}
K
k=1 is a partition

of {1, . . . , dα}, then non-overlapping group structure
is obtained.

Special cases forD, A:

• Di = Sdx

2 (∀i), A = R
dα : columns of dictionaryD

are constrained to the Euclidean unit sphere.

• Di = Sdx

2 ∩ R
dx

+ (∀i), A = R
dα

+ : columns of dic-
tionaryD are constrained to the non-negativeℓ2 unit
sphere,αis are non-negative andG can arbitrary. This
is the structured NMF model.

• Di = Sdx

1 ∩ R
dx

+ (∀i), A = R
dα

+ : columns of dictio-
naryD are constrained to the non-negativeℓ1-sphere,
αis are non-negative andG can arbitrary. This is the
structured mixture-of-topics model.

3. Optimization

We consider the optimization of cost function (6), which
is equivalent to the joined optimization of dictionaryD and
coefficients{αi}

t
i=1:

argmin
D∈D,{αi∈A}t

i=1

ft(D, {αi}
t
i=1), (7)

where

ft =
1

Pt

j=1
(j/t)ρ

t
X

i=1

„

i

t

«ρ »

1

2
‖xOi

− DOi
αi‖

2

2
+ κΩ(αi)

–

.

(8)
Assume that our samplesxi are emitted from an i.i.d.

sourcep(x), and we can observexOi
. We execute the on-

line optimization of dictionaryD (i.e., the minimization of
(7)) through alternations:

1. For the actual samplexOt
we optimize hidden repre-

sentationαt belonging toxOt
using our estimated dic-

tionaryDt−1 and solving the minimization task

αt = argmin
α∈A

[

1

2
‖xOt

− (Dt−1)Ot
α‖

2
2 + κΩ(α)

]

.

(9)

2. We use hidden representations{αi}
t
i=1 and update

Dt−1 by means of quadratic optimization

f̂t(Dt) = min
D∈D

ft(D, {αi}
t
i=1). (10)

In the next subsections, we elaborate on the optimization of
representationα in (9) and the dictionaryD in (10).

3.1. Representation update (α)

Objective function (9) is not convex inα. We use a vari-
ational method to find a solution: (i) we rewrite the term
Ω by introducing an auxiliary variable (z) that converts the
expression to a quadratic one inα, and then (ii) we use an
explicit solution toz and continue by iteration. Namely, we
use Lemma 3.1 of [13]: for anyy ∈ R

d andη ∈ (0, 2)

‖y‖η = min
z∈R

d
+

1

2

d
∑

i=1

y2
j

zj

+
1

2
‖z‖β , (11)



whereβ = η
2−η

, and it takes its minimum value atz∗i =

|yi|
2−η‖y‖η−1

η . We apply this relation for the termΩ in (9)
(see Eq. (3)), and have that

2Ω(α) = min
z=[(zG)G∈G]∈R

|G|
+

[

∑

G∈G

∥

∥dG ◦α
∥

∥

2

2

zG
+ ‖z‖β

]

= min
z∈R

|G|
+

[

αT diag(ζ)α + ‖z‖β

]

, (12)

whereζ = ζ(z) ∈ R
dα , and

ζj =
∑

G∈G,G∋j

(

dG
j

)2

zG
. (13)

Inserting (12) into (9) we get the optimization task:

argmin
α∈A,z∈R

|G|
+

J(α, z), where (14)

J(α, z) = (15)

=
1

2
‖xOt

− (Dt−1)Ot
α‖22 + κ

1

2

(

αT diag(ζ)α + ‖z‖β

)

.

One can solve the minimization ofJ(α, z) by alternations:

1. For givenz: we can use least mean square solver forα

whenA = R
dα in (15), and non-negative least square

solver whenA = R
dα

+ . For the general case, the cost
function J(α, z) is quadratic inα and is subject to
convex and closed constraints (α ∈ A). There are
standard solvers for this case [16, 5], too.

2. For givenα: According to (11), the minimumz =
(zG)G∈G can be found as

zG = ‖dG ◦α‖2−η
2 ‖(‖dG ◦α‖2)G∈G‖

η−1
η . (16)

Note that for numerical stability smoothing,z =
max(z, ε) (0 < ε≪ 1), is suggested in practice.

3.2. Dictionary update (D)

We use block-coordinate descent (BCD) [5] for the op-
timization of (10). This optimization is not influenced by
the regularizerΩ(α), since it is independent ofD. Thus the
task (10) issimilar to the fully observable case [19], where
for Oi = {1, . . . , dx} (∀i) it has been shown that the BCD
method can work without storing all of the vectorsxi, αi

(i ≤ t). Instead, it is sufficient to keep certain statistics that
characterizêft, which can be updated online. This way, op-
timization of f̂t in (10) becomes online, too. As it will be
elaborated below, (i) certain statistics describingf̂t can also
be derived for the partially observed case, which (ii) can
be updated online with a single exception, and (iii) a good
approximation exists for that exception (see Section 4).

During the BCD optimization, columns ofD are min-
imized sequentially: other columns than the actually up-
dateddj (i.e., di, i 6= j) are kept fixed. The function̂ft

is quadratic indj . During minimization we search for its
minimum (denoted byuj) and project the result to the con-
straint setDj (dj ← ΠDj

(uj)). To find thisuj , we solve

the equation∂f̂t

∂dj
(uj) = 0, which leads (as we show it in

the supplementary material) to the following linear equation
system

Cj,tuj = bj,t − ej,t + Cj,tdj , (17)

whereCj,t ∈ R
dx×dx is a diagonal coefficient matrix, and

Cj,t =

t
∑

i=1

(

i

t

)ρ

∆iα
2
i,j , (18)

Bt =

t
∑

i=1

(

i

t

)ρ

∆ixiα
T
i = [b1,t, . . . ,bdα,t],(19)

ej,t =
t

∑

i=1

(

i

t

)ρ

∆iDαiαi,j . (20)

Here∆i represents a diagonal matrix corresponding toOi

(elementj in the diagonal is1 if j ∈ Oi, and 0 other-
wise). Cj,ts ∈ R

dx×dx andBt ∈ R
dx×dα take the form

of Mt =
∑t

i=1

(

i
t

)ρ
Ni matrix series/statistics, and thus

(as we detail it in the supplementary material) they can be
updated as

Cj,t = γtCj,t−1 + ∆tα
2
tj , (21)

Bt = γtBt−1 + ∆txtα
T
t , (22)

with initialization Cj,0 = 0, B0 = 0 for the case of
ρ = 0, and with arbitrary initialization forρ > 0, where
γt =

(

1− 1
t

)ρ
. For the fully observed case (∆i = I, ∀i),

one can pull outD from ej,t ∈ R
dx , the remaining part is

of the formMt, and thus it can be updated online giving
rise to the update rules in [19], see the supplementary ma-
terial. In the general case this procedure can not be applied
(matrixD changes during the BCD updates). According to
our numerical experiences (see Section 4) an efficient on-
line approximation forej,t is

ej,t = γtej,t−1 + ∆tDtαtαt,j , (23)

with the actual estimation forDt and with initialization
ej,0 = 0 (∀j). We note that

1. convergence is often speeded up if the updates
of statistics{{Cj,t}

dα

j=1,Bt, {ej,t}
dα

j=1} are made in
batches ofR samplesxOt,1

, . . . ,xOt,R
(in R-tuple

mini-batches). The pseudocode of this OSDL method
is presented in the supplementary material.



2. Projections toA andDj : For many convex and closed
setsC (A or Dj), the computation of projectionΠC

can be done efficiently. For example, forC = R
d
+,

ΠC(x) = max(x,0), whereas for theC = Sd
2 ,

ΠC(x) = x

max(‖x‖
2
,1) . Similarly, the projection to the

ℓ1-sphere (Sd
1 ) can be done easily, even when we have

extra non-negativity constraints, too. Other famous ex-
amples where this projection can be done efficiently
include the elastic net constraints, the fused Lasso con-
straints, and the groupℓ1-sphere as well. For more de-
tails, see,e.g., [7, 30, 19] and references therein. We
note that since group norm projections can be com-
puted efficiently, by choosingDj to a group-norm
sphere, one can obtain a double-structured (group
structure onα andD) dictionary learning scheme as a
special case of our presented OSDL framework.

3. The trick in the representation update (Section 3.1) was
that the auxiliary variablez ‘replaced’ theΩ term with
a quadratic one inα. One could use furtherg(α) reg-
ularizers augmentingΩ in (8) provided that the corre-
spondingJ(α, z) + g(α) cost function (see Eq. (15))
can be efficiently optimized inα ∈ A.

4. Numerical experiments

We illustrate our OSDL method on inpainting of natural
images (Section 4.1) and on structured non-negative matrix
factorization of faces (Section 4.2).

4.1. Inpainting of natural images

We studied the following issues on natural images:

1. Is structured dictionaryD beneficial for inpainting of
patches of natural images, and how does it compare to
the dictionary of classical sparse representation? Dur-
ing learning ofD, training samplesxi were fully ob-
served (i.e., ∆i = I).

2. In this image patches inpainting problem, we also stud-
ied the case when the training samplesxi were par-
tially observed (∆i 6= I).

3. We also show results for inpainting offull imagesusing
a dictionary learned from partially observed (∆i 6= I)
patches.

In our numerical experiments we usedDi = Sdx

2 (∀i),
A = R

dα without additional weighing (dG = χG, ∀G ∈ G,
whereχ is the indicator function). Group structureG of
vectorα was realized on a16 × 16 torus (dα = 256) with
|G| = dα applying r = 0, 1, 2, or 3 neighbors to define
G. For r = 0 (G = {{1}, . . . , {dα}}) the classical sparse
representation is recovered. Our test database was the ICA
natural image database.1 We chose 12 of the 13 images

1See http://www.cis.hut.fi/projects/ica/data/images/.

(a) (b)

Figure 1: Illustration of the used natural image dataset. (a):
12 images of similar kind were used to select trainingXtr,
validationXval, and testXtest sets. (b): test image used for
the illustration of full image inpainting.

of the dataset to study the first two questions above (see
Fig. 1(a)), and used the13th picture for studying the third
question (Fig. 1(b)). For each of the 12 images, we sampled
131072 = 217 pieces of8 × 8 disjunct image patches ran-
domly (without replacement). This patch set was divided to
a training setXtr made of65536 pieces, and to a validation
(Xval) and test (Xtest) set with set sizes32768. Each patch
was normalized to zero average and unitℓ2-norm.

In thefirst experiment xis were fully observed (∆i =
I) and thus the update of their statistics was precise. This is
called the BCD case in the figures. MatrixD was learned on
the setXtr, columnsdj were initialized by using a uniform
distribution on the surface of theℓ2-sphere. Pixels of the
x patches in the validation and test sets were removed with
probabilitypval

test. For a given noise-free image patchx, let
xO denote its observed version, whereO stands for the in-
dices of the available coordinates. The task was the inpaint-
ing of the missing pixels ofx by means of the pixels present
( xO) and by the learned matrixD. After removing the rows
of D corresponding to missing pixels ofx, the resultingDO

andxO were used to estimateα. The final estimation of
x was x̂ = Dα. According to preliminary experiments,
learning rateρ and mini-batch sizeR were set to32 and64
respectively (the estimation was robust as a function ofρ
andR). In the updates ofz andα (14) only minor changes
were experienced after 2-3 iterations, thus the number of it-
erationsTα was set to5. Concerning the other parameters,
we usedη = 0.5, andκ ∈ {2−19, 2−18, . . . , 2−10}. The
ǫ smoothing parameter was10−5, and the iteration num-
ber for the update ofD was TD = 5. Values ofpval

test

were chosen from set{0.3, 0.5, 0.7, 0.9}, so for the case of
pval

test = 0.9, only10% of the pixels ofx were observed. For
each fixed neighborhood sizer and parameterpval

test, κ was
chosen as the minimum of mean squared error (MSE) using
D trained on patch setXtr and evaluated onXval. Having
found this optimalκ on the validation set, we used its value
to compute the MSE onXtest. Then we changed the roles
of Xval andXtest, that is, validated onXtest, and tested on
Xval. This procedure was repeated for four random initial-
izations (D0) and different corruptions (Xval, Xtest). The



(a) (b) (c)

Figure 2: Illustration of the online learned group-structured
D dictionaries with the BCD technique and MSE closest to
the average (see Table 1) andpval

test = 0.7. (a): r = 0, (b):
r = 2, (c): r = 3.

average MSE values (multiplied by 100) and their standard
deviations for different neighbor sizesr and corruption rates
pval

test are summarized in Table 1. This table shows that (i)
the inpainting error grows with the corruption ratepval

test, (ii)
compared to sparse representation (r = 0) small neighbor-
hood sizer = 1 gives rise to similar results,r = 2 is better
andr = 3 seems to be the best for all cases with13− 19%
improvement in precision for MSE. Learned and average
quality dictionariesD can be seen in Fig. 2 (r = 0 no struc-
ture, r = 2, 3 with torus structure). Based on this exper-
iment we can conclude that the structured algorithm gives
rise to better results than ordinary sparse representations.

In thesecond experiment, the size of the neighborhood
was fixed, set tor = 3. We learned dictionaryD on par-
tially observedpatches (∆i 6= I). The probabilityptr of
missing any pixel from the observations in the training set
assumed values from the set{0, 0.1, 0.3, 0.5, 0.7, 0.9}. In
this case, we updatede using the approximation Eq. (23),
hence we call this method Approximate-BCD (or BCDA,
for short). The other experimental details were identical to
the previous case (i.e., when∆i = I). Results and statistics
for MSE are provided for a smaller(0.3) and for a larger
(0.7) value ofpval

test in Table 2 for different probability val-
uesptr. We found that increasingptr up toptr = 0.7 MSE
values grow slowly. Note that we kept the number of sam-
plesxi at 65536 identical to the previous case (∆i = I),
and thus by increasingptr the effective number of observa-
tions/coordinates decreases. Learned average quality dictio-
nariesD are shown in Fig. 3 forpval

test = 0.7. Note that the
MSE values are still relatively small for missing pixel prob-
ability ptr = 0.9 (100×MSE maximum is about0.96), thus
our proposed method is still efficient in this case. Recon-
struction with value0.92 (100×MSE) is shown in Fig. 4.

In our third illustration we show full image inpainting
using dictionaryD learned withptr = 0.5 and using the
13th image (X) shown in Fig. 1(b). We executed inpainting
consecutively on all8× 8 patches of imageX and for each
pixel of imageX, we averaged all estimationŝxi from all
8× 8 patches that contained the pixel. Results are shown in

(a) (b) (c)

Figure 3: Illustration of the online learned group-structured
D dictionaries for the BCDA technique with MSE closest
to the average (see Table 2) andpval

test = 0.7. (a): ptr = 0,
(b): ptr = 0.1, (c): ptr = 0.5.

(a) (b)

(c) (d)

Figure 4: Inpainting illustration using the online learned
group-structuredD dictionaries for the BCDA technique
with MSE closest to the average (see Table 2) andptr =
0.5. (a): measured, (b): estimated, PSNR = 36 dB. (a)-
(b): pval

test = 0.3. (c)-(d): the same as (a)-(b), but with
pval

test = 0.7, in (d) PSNR = 29 dB.

Fig. 4 forpval
test = 0.3 and0.7 values. We also provide the

PSNR (peak signal-to-noise ratio) values of our estimations.
This measure for vectorsu,v ∈ R

d (i.e., for vectors formed
from the pixels of the image) is defined as

PSNR(u,v) = 10 log10

[

(max(maxi |ui|, maxj |vj |))
2

1
d
‖u− v‖

2
2

]

,

(24)
where the higher value is the better. Acceptable values in
wireless transmission (lossy image and video compression)
are around20 − 25 dB (30 dB). By means ofD and for
missing probabilitypval

test = 0.3 we achieved36 dB PSNR,
whereas for missing probabilitypval

test = 0.7 we still have29
dB PSNR, underlining the efficiency of our method.



pval
test = 0.3 pval

test = 0.5 pval
test = 0.7 pval

test = 0.9

r = 0 0.65 (±0.002) 0.83 (±0.003) 1.10 (±0.002) 1.49 (±0.006)
r = 1 0.60 (±0.005; +6.78%) 0.85 (±0.017; −2.25%) 1.10 (±0.029; +0.27%) 1.45 (±0.004; +2.96%)
r = 2 0.59 (±0.005; +10.39%) 0.81 (±0.008; +2.67%) 1.12 (±0.029; −1.09%) 1.46 (±0.029; +2.51%)
r = 3 0.56 (±0.002; +16.38%) 0.71 (±0.002; +16.01%) 0.93 (±0.001; +18.93%) 1.31 (±0.002; +13.87%)

Table 1: BCD: 100× the MSE average (± std) as a function of neighbors (r = 0: sparse representation, no structure) for
differentpval

test corruption rates.

ptr = 0 ptr = 0.1 ptr = 0.3 ptr = 0.5 ptr = 0.7 ptr = 0.9

pval
test = 0.3 0.55 (±0.003) 0.56 (±0.001) 0.57 (±0.003) 0.59 (±0.001) 0.61 (±0.002) 0.71 (±0.007)

pval
test = 0.7 0.91 (±0.002) 0.91 (±0.002) 0.91 (±0.002) 0.92 (±0.003) 0.93 (±0.002) 0.96 (±0.003)

Table 2: BCDA (r = 3): 100× the MSE average (± std) for different for differentpval
test andptr corruption rates.

4.2. Online structured non-negative matrix factor-
ization on faces

It has been shown on the CBCL database that dictio-
nary vectors (di) of the offline NMF method can be in-
terpreted as face components [17]. However, to the best
of our knowledge, there is no existing NMF algorithm as
of yet, which could handle generalG group structures in
an online fashion. Our OSDL method is able to do that,
can also cope with only partially observed inputs, and can
be extended with non-convex sparsity-inducing norms. We
illustrate our approach on the color FERET2 dataset: we
set Di = Sdx

2 ∩ R
dx

+ (∀i), A = R
dα

+ , ∆i = I and
η = 0.5. We selected1736 facial pictures from this dataset.
Using affine transformations we positioned the noses and
eyes to the same pixel coordinates, reduced the image sizes
to 140 × 120, and set theirl2 norms to be one. These
images were the observations for our ODSL method (xi,
dx = 49140 = 140 × 120 × 3 minus some masking). The
group structureG was chosen to be hierarchical; we applied
a full, 8-level binary tree. Each node with its corresponding
descendants formed the sets ofG ∈ G (dα = 255). Ac-
cording to our experiments, the learned dictionaryD was
influenced mostly by the constantκ, and similarly to Sec-
tion 4.1, it proved to be quite insensitive to the value of the
learning factorρ, and to the size of the mini-batches (R).
Fig. 5 shows a few elements from the online estimated struc-
tured NMF dictionary (usingκ = 1

210.5 , ρ = 32, R = 8,
dG = χG (∀G ∈ G), Tα = 5, TD = 5 andε = 10−5). We
can observe that the proposed algorithm is able to naturally
develop and hierarchically organize the elements of the dic-
tionary: towards the leaves the learned filters reveal more
and more details. We can also notice that the colors are sep-
arated as well. This example demonstrates that our method
can be used for large problems where the dimension of the
observations is about50000.

2See http://face.nist.gov/colorferet/.

Figure 5: Illustration of the online learned structured NMF
dictionary. Upper left corner: training samples.

5. Conclusions

In this paper we proposed a new dictionary learning
method, which is (i) online, (ii) enables overlapping group
structures on the hidden representation/dictionary, (iii) ap-
plies non-convex, sparsity inducing regularization, and (iv)
can handle the partially observable case, too. We reduced
the optimization problem of dictionary learning to convex
subtasks, and using a block-coordinate descent approach
and a variational method we derived online update rules for
the statistics of the cost of the dictionary. The efficiency of
our algorithm was demonstrated by several numerical ex-
periments. We have shown that in the inpainting problem
our method can perform better than the traditional sparse
methods. As a special case, we have also shown that our ap-



proach can be used for the online structured NMF problem,
too, and it is able to hierarchically organize the elements of
the dictionary.

One possible extension of our online group-structured
dictionary learning framework may touch the nonparamet-
ric Bayesian dictionary learning approach [35], recently in-
troduced for the (traditional, unstructured) sparse dictionary
learning problem.
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