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Sparse coding

@ Observation (x) = linear combination of a few vectors («)
from a fixed dictionary (D).

@ /p-norm solution: NP-hard.
@ Popular relaxations: ¢, (0 < p < 1) norm.
@ Special case: /1, Lasso problem, efficient algorithms,

. 1
min | > [Ix — Dat|5 + &leel1 | - (1)
a |2

@ Disadvantage: prior knowledge on the structure of the
hidden code is not taken into account.
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Structured sparsity

Different kind of structures (e.g., disjunct groups, trees) on the
sparse codes = increased performances in several
applications:

@ robust CS with substantially fewer observations,
multi-task learning problems,
structure learning in graphical models,

fMRI analysis,

o
°

@ natural language processing,

°

@ face expression discrimination/recognition.
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Structured dictionary learning

@ Both dictionary learning

@ (sparse) principal component analysis,

@ (sparse) non-negative matrix factorization (NMF),
@ independent component analysis,

@ independent subspace analysis,

and structured sparse coding are very popular.

@ However, very few works have focused on the combination
of these two tasks.
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Structured dictionary learning: wanted properties

Interested in algorithms with the following four properties:
@ handle general, overlapping group structures,
@ online: fast, memory efficient, adaptive,

@ non-convex sparsity inducing regularization:

o fewer measurements,
@ weaker conditions on the dictionary,
@ robust (w.r.t. noise, compressibility).

@ can deal with missing information.
Current approaches: handle < 2.
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Cost function

@ Notation: « hidden representation, x observation, D
dictionary, § group structure (set system) C 2{1:--da},

@ Group structure inducing on the hidden representation:

Q) = || (lasll2)ces Hn’ 2)

Qa) = || (I1d° 0 el|2)ges |, 3)
Qe) = || (IA®all2)geg ||, 7 € (0,2). 4
@ Approximate on the observed coordinates (xg):
1
5 lIxo ~ Doel3. (5)
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Cost function — continued

@ Loss for a fixed observation (x > 0):
. [1 2
(X0, Do) = min > [Xo — Doe[|5 + xQ(e)| . (6)

@ Goal (OSDL): minimize the average loss of the dictionary

t
. 1
minf(D) = + z;l(xoi, Do,)- )
1=
@ Possible dictionary/representation constraints:

o DeD = x% D; C R%*: closed, convex, and bounded.
e a € A CRY%: convex, closed.
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Special cases

@ O, ={1,...,dx} (Vi): fully observed OSDL task.
@ Special cases for G:

‘Traditional’ sparse dictionary G ={{1},{2},...,{d.}}.
Hierarchical dictionary G = descendants of the nodes.

Grid adopted dictionary G = nearest neighbors of the nodes.
Group Lasso G = partition.

Elastic net G =singletons and {1,...,d,}.
Contiguous code G = intervals.
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Special cases — continued

Special cases for {A®}gcg:

do—1
Fused Lasso Qa)= 3 |ojy1 — qjl.
=1
Graph-guided fusion penalty Qa) = > Wilog — Vgl
e=(i,j)eE:i<]j
da—1
Linear trend/polynomial filtering  Q(a) = > | — oj_1 + 205 — 41|
j=2
Generalized Lasso penalty Qo) = [|[Ac;.
di dy
Total variation Qo) = 3 3 [[(Va)i]|,-
i=1j=1
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Special cases — continued

Special cases for D, A:

‘Traditional’ setting ¢, constrained D.
Structured NMF non-negative D and a.
Structured mixture-of-topics ¢, constained D, non-negative D, «.

‘Hard’ representation constraints group norm/elastic net/
fused Lasso constrained o.
Double structured dictionaries group norm constraints to o and D.

Z. Szahd, B. Pdczos, A. Lérincz Online Dictionary Learning with Group Structure Inducing Norms



OSDL optimization

Online optimization of D through alternations:
@ For fix D;_1 and Xp,, a is the solution of

oy = argmin B X0, — (Dt—l)otaHg - nQ(a)] . (8)
acA

@ ‘Using’ {a;}!_;, D is updated by means of the quadratic
optimization

fi(Dr) = min fi(D, {ev }_y). ©)

Solution idea: variational property of ||-[|,; BCD + 3 different f;
statistics + matrix recursions.
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Numerical examples — inpainting of natural images

@ Structured (toroid) vs. unstructured dictionary: 13 — 19%
improvement.

@ Efficiency in case of missing observations: MSE grows
slowly, py = 0.9 (training incompleteness: 90%) is still OK.

Left: unstructured; center: structured; right: structured,
incomplete observations.
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Numerical examples — inpainting, full unseen image

Learning: py = 0.5. Inpainting: p/@. = 0.7

test
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Numerical examples — inpainting, full unseen image

Learning: py = 0.5. Inpainting: p¥?. = 0.7 (PSNR = 29 dB):

test
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Numerical examples — online structured NMF on faces

@ Online, §-NMF: special case of OSDL.
@ lllustration: color FERET, 140 x 120 sized facial dataset.
@ G: complete, 8-level binary tree (d, = 255).
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Numerical examples — collaborative filtering

@ Joke recommendation (Jester): 100 jokes x 73,421 users.

@ Observation: xp, = ratings of the t™ user.
@ Baseline: best known RMSEs

@ 4.1123 (item neighbor),

@ 4.1229 (unstructured dictionary, d,, = 100).
@ Result:

@ toroid § (d, = 100): RMSE =4.0774,
@ hierarchical G (d, = 15): RMSE = 4.1220.
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Conclusions

@ We developed a dictionary learning method, which
enables general overlapping group structures,

@ is online,

@ applies non-convex sparsity inducing regularization,
@ can deal with missing information.

(4

@ = Dictionary learning for several actively studied
structured sparse coding problems.

@ Numerical examples: inpainting of natural images,
structured NMF, collaborative filtering.
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Thank you for the attention!
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Representation optimization ()

@ Structured sparse coding task:

1 .
5 [0, = (Di-1)o,[; + 5Q(a) — min.  (10)

@ Solution: let us use the

d 2
11 Yi 1
Iyll, = ngggr% [5 Z Z +5 ||z||5] ; (11)

i=1

variational property of ||-[|,, where
° ye}Rd,ﬁ:ﬁ,and
o the minimum value is attained at z* = |y;[*~7[|y||7~".
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Representation optimization («) — continued

Our problem is equivalent to the solution of

1 2, 1 i
J(a,2) = 5 X0, — (Dt—l)OtaH2+’<‘§ (aTHa + HZHﬁ) - aE./TZIQRf"

where
H=H(z) =) (A®)TA%/z°, (12)
Ge§
One can optimize J(a, z) by iterative alternating steps:
@ For given a: explicit formula for the optimal z = (z€)g¢q

2— _
¢ = ||A®al; (1A% all2)ces|ln (13)

@ For given «:: quadratic cost on the convex set A.
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Dictionary optimization (D)

@ Cost function (p: non-negative forgetting factor):

t i
f.(D X D.a-2+n§2a-}—>min.
©= 5 s 2 (i )" [3 o~ Dol + nf2an)] — i
@ Optimization (BCD):
@ optimize in dj, while the other columns (d;, i # j) are fixed.
o f; is quadratic in d;:
© Solve the equation: X
T w)
ad; !
@ Project the solution to the constraint set D;:

- 0. (14)

dj = Mo, (uj). (15)
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Computation of u;

@ Task: .
[
ad;

@ Solution: u; satisfies the linear equation

(uj) = 0. (16)

Cjtuj = bjt —€j ¢ + Cjdj, 17)

where for the {{C;j(}{2), By, {ej 1}, } statistics
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Computation of u; — continued

i\” .
Cj,t=Z<> AiaﬁjERdXde (=1,...,da), (18)

t SN\ P
Z |
Bt = <E> Aixia;r = [bl,t> ce 7bda7t] € RdXXda’ (19)

i=1

N
[ .
e = ; <E> ADajajj €R*™  (j=1,...,dy), (20)
where C;; and A;s are diagonal; A; matrix < O; (elementj in
the diagonal is 1 if j € O;, and 0 otherwise).
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Matrix recursion lemma

Let

@ Ny € Rhvxb2 (t =1,2,...) be a given matrix series,
o yw=(1-1)"p>0,
@ the M; and M| matrix series be defined as

M; = 3Mi_1 + Ny e Rb>te (1 =1,2,..),  (21)
t N
|
M2 () Mert (=120 @)

If p =0, then M; = Mg + M{ (Vt > 1). When p > 0, then
M = M/ (vt > 1).
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Computation of u; — continued

@ Matrix recursion lemma =- one can update C;; and B¢ as

Cit=nCjt-1+ Atatzja (23)
Bt = %Bi_1 + Atk (24)
with Cj o = 0, Bg = 0 (p = 0), or arbitrary initialization
(p > 0).
@ Numerical experiences = efficient online approximation for
€t

€jt = 1€ t-1 + AtDaay j, (25)

with the actual estimation D and initialization ej o = 0.

Z. Szahd, B. Pdczos, A. Lérincz Online Dictionary Learning with Group Structure Inducing Norms



Special, fully observable case

In this case (A; = I, Vi):

t Ny t S\ p
| |
Cii=1> <E> afj, Bi=)_ <E) Xioq (26)
i=1 i=1
L /NP LN
ej,t = (E) Daiai,j =D <E> Q;Q j, (27)
i=1 i=1

that is
@ D can be pulled out from e; s, and
@ it is sufficient to maintain 2 statistics, By and

t o\ p
A=Y G) aja € Rexdo (28)

i=1
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