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1. Introduction

•Linear dynamical systems (LDS): st = Fst−1 + µt, xt = Ast + νt

– Limitations: linear dynamics, Gaussian driving noise.

•Non-Gaussian driving noises:

– ICA = separation of mixed non-Gaussian, one-dimensional sources:
– ISA = ICA with multidimensional sources. xt = Ast.

∗Limitations: Unknown, nonparametric dynamics is hardly touched:
·stationary + ergodic sources, constrained mixing.
·block-decorrelatedness for all time-shifts.
·Additionally both assume: known and equal component dimensions.

•Our contributions :

– ISA with nonparametric, asymptotically stationary dynamics.
– unknown and possibly different dimensional components.
– simple separation based solution: kernel regression + ISA.

2. Problem

•Task: estimate linearly mixed (A), multidimensional sources (s) of unknown functional au-
toregressive (fAR) dynamics (f) with independent driving noises (e)

st = f(st−1, . . . , st−Ls
) + et, (1)

xt = Ast. (2)

•Assumptions: A: full column rank; e =
[

e1; . . . ; eM
]

(em ∈ R
dm): traditional ISA.

•Goal (fAR-IPA): estimate A and st by using observations xt only.

•Special cases:

– if f were known, linear: autoregressive IPA (AR-IPA).
– if order Ls = 0: traditional ISA.
– ISA with one-dimensional independent subspaces (dm = 1, ∀m): ICA.

3. Method

• In the ISA special case: ISA separation principle
– ISA = ICA up to permutation – conjecture of Cardoso (’98).
– recently has been proved – sufficient conditions (Szabó et al., JMLR 2007).

•We derive a similar reduction scheme for the fAR-IPA problem:

fAR-IPA = fAR identification + ISA.

•According to (1)-(2) xt is fAR with innovation nt = Aet:

xt = Af(A−1xt−1, . . . ,A
−1xt−Ls

) + Aet = g(xt−1, . . . ,xt−Ls
) + nt. (3)

Idea: (3) = nonparametric regression problem
e.g., Nadaraya-Watson
−−−−−−−−−−−−→ ĝ, n̂t

ISA
−−→ A, et.

4. Illustration

•Dataset: d-geom (d1 = 2, d2 = d3 = 3, d4 = 4), ikeda (M = 2, dm = 2); see Fig. 3.
•Performance (Amari-index): ISA ambiguities ⇒ measure the block-permutation property of

G = WISAA. (4)

•Experiences:
– d-geom (different dimensional sources; 12D):

∗amenable for sample size T ≥ 100, 000, see Fig. 4.
– ikeda (Fig.5):

∗AR-IPA: can not find the proper subspaces.
∗LDS: EM + Kalman smoother ⇒ Amari-index = 0.48 – poor.
∗ fAR-IPA: precise estimation for sample number T ≥ 10, 000, Amari-index = 0.0055.

Figure 3: Datasets. Left: d-geom. Right: ikeda.
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Figure 4: Illustration on the d-geom dataset. Left: Amari-index. Right: Hinton-diagram of G.
.

5 10 20

10
−2

10
−1

10
0

A
m

ar
i−

in
de

x 
(r

)

Number of samples (T/1000)

ikeda, M=2

 

 

AR
fAR, β

c
=1/2

fAR, β
c
=1/4

fAR, β
c
=1/8

fAR, β
c
=1/16

fAR, β
c
=1/32

fAR, β
c
=1/64

(a) (b) (c) (d)

Figure 5: Illustration on the ikeda dataset. (a): Amari-index. (b): Observation, xt. (c): Hinton-
diagram of G. (d): Estimated subspaces (ŝt, fAR-IPA).
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