Nonparametric Independent Process Analysis

Barnabás Póczos

School of Computer Science, Carnegie Mellon University,
5000 Forbes Ave, 15213, Pittsburgh, PA, USA
email: bapoczos@cs.cmu.edu
web: http://www.autonlab.org

1. Introduction

- Linear dynamical systems (LDS): $\mathrm{s}_{t}=\mathrm{Fs}_{t-1}+\mu_{t}, \mathrm{x}_{t}=\mathrm{As}_{t}+\nu_{t}$
-Limitations: linear dynamics, Gaussian driving noise.
- Non-Gaussian driving noises:
-ICA = separation of mixed non-Gaussian, one-dimensional sources: \downarrow
-ISA = ICA with multidimensional sources. $\mathrm{x}_{t}=\mathrm{As}_{t}$.
*Limitations: Unknown, nonparametric dynamics is hardly touched: stationary + ergodic sources, constrained mixing. - block-decorrelatedness for all time-shifts.

Additionally both assume: known and equal component dimensions. Our contributions:
-ISA with nonparametric, asymptotically stationary dynamics.
-unknown and possibly different dimensional components.
-simple separation based solution: kernel regression + ISA.

2. Problem

Task: estimate linearly mixed (A), multidimensional sources (s) of unknown functional autoregressive (fAR) dynamics (f) with independent driving noises (e)

$$
\begin{align*}
& \mathbf{s}_{t}=\mathbf{f}\left(\mathbf{s}_{t-}\right. \tag{1}\\
& \mathbf{x}_{t}=\mathbf{A s} \mathbf{s}_{t} .
\end{align*}
$$

-Assumptions: A: full column rank; $\mathbf{e}=\left[\mathbf{e}^{1} ; \ldots ; \mathrm{e}^{M}\right]\left(\mathrm{e}^{m} \in \mathbb{R}^{d_{m}}\right)$: traditional ISA - Goal (fAR-IPA): estimate A and s_{t} by using observations x_{t} only.

Special cases:
-if f were known, linear: autoregressive IPA (AR-IPA)
-if order $L_{s}=0$: traditional ISA.
-ISA with one-dimensional independent subspaces ($d_{m}=1, \forall m$): ICA.

Figure 4: Illustration on the d-geom dataset. Left: Amari-index. Right: Hinton-diagram of G

(a) or samples
(a)

(b)

