Automated word puzzle generation using topic models and semantic relatedness measures

Balázs Pintér, Gyula Vörös, Zoltán Szabó and András Lőrincz

ELTE IK

2012. 02. 11.

Nemzeti Fejlesztési Ügynökség www.ujszechenyiterv.gov.hu 06 40 638 638

イロト イポト イヨト イヨト ヨー のくぐ

The Project is supported by the European Union and co-financed by the European Social Fund (grant agreement no. TAMOP 4.2.1./B-09/1/KMR-2010-0003).

Table of contents

1 Introduction

- Our goal
- The method

2 Steps of the algorithm

Modeling the corpus as a combination of latent topics

・ロト ・ 日 ・ エ ヨ ト ・ 日 ・ うらつ

- Identifying consistent sets
- Generating the puzzles

3 Results

- The performance of the three topic models
- Some interesting puzzles

Our goal The method

Our goal

Word puzzles

- Are used in education, psychometry, etc. (e.g., TOEFL)
- Are costly to design and maintain
- Our goal is to generate word puzzles from unstructured and unannotated corpora
- Puzzle types
 - Odd one out: salmon, shark, whale, elephant
 - Choose the related word: regiment, battalion, army | infantry, service, king

・ロト ・ 日 ・ エ ヨ ト ・ 日 ・ うらつ

Separate the topics: *water, heat, temperature, pressure superman, clark, luthor, kryptonite*

Our goal The method

The method

Building blocks of puzzles

- Consistent sets (sets of related words): {salmon, shark, whale}
- Less related words: *elephant*
- Steps of the algorithm
 - Model the corpus as a combination of latent topics
 - Identify consistent sets from among these topics
 - Generate the puzzles by mixing these sets with less related elements

・ロト ・ 日 ・ エ ヨ ト ・ 日 ・ うらつ

- Building blocks of the algorithm
 - Topic models
 - Semantic similarity measures
 - Network flow

Modeling the corpus as a combination of latent topics Identifying consistent sets Generating the puzzles

Topic models

Modeling the corpus as a combination of latent topics Identifying consistent sets Generating the puzzles

Topic models used

Latent Semantic Analysis

$$\underset{\mathsf{rank}(\hat{\mathbf{X}})=d}{\arg\min} \left| \left| \mathbf{X} - \hat{\mathbf{X}} \right| \right|_{F} = \hat{\mathbf{0}} \hat{\mathbf{S}} \hat{\mathbf{V}}^{\mathsf{T}}.$$
(1)

Online Group-Structured Dictionary Learning

$$\min_{\mathsf{D},\{\boldsymbol{\alpha}_i\}_{i=1}^{M}} \frac{1}{\sum_{j=1}^{M} (j/M)^{\rho}} \sum_{i=1}^{M} \left(\frac{i}{M}\right)^{\rho} \left[\frac{1}{2} \|\mathsf{x}_i - \mathsf{D}\boldsymbol{\alpha}_i\|_2^2 + \kappa \Omega(\boldsymbol{\alpha}_i)\right] (\kappa > 0),$$
(2)

$$\Omega(\boldsymbol{\alpha}) = \left(\sum_{j} \left\|\boldsymbol{\alpha}_{\boldsymbol{G}_{j}}\right\|_{2}^{\eta}\right)^{\frac{1}{\eta}},$$
(3)

Latent Dirichlet Allocation

$$P(W, Z, \theta, \phi | \alpha, \beta) = \prod_{i=1}^{K} P(\phi_i | \beta) \prod_{j=1}^{M} P(\theta_j | \alpha) \prod_{t=1}^{N_j} P(z_{j,t} | \theta_j) P(w_{j,t} | \phi_{z_{j,t}}),$$
(4)

5900

Modeling the corpus as a combination of latent topics Identifying consistent sets Generating the puzzles

Topic models used

Latent Semantic Analysis

$$\underset{\mathsf{rank}(\hat{\mathbf{X}})=d}{\arg\min} \left| \left| \mathbf{X} - \hat{\mathbf{X}} \right| \right|_{F} = \hat{\mathbf{0}} \hat{\mathbf{S}} \hat{\mathbf{V}}^{\mathsf{T}}.$$
(1)

Online Group-Structured Dictionary Learning

$$\min_{\mathbf{D}, \{\boldsymbol{\alpha}_i\}_{i=1}^{M}} \frac{1}{\sum_{j=1}^{M} (j/M)^{\rho}} \sum_{i=1}^{M} \left(\frac{i}{M}\right)^{\rho} \left[\frac{1}{2} \|\mathbf{x}_i - \mathbf{D}\boldsymbol{\alpha}_i\|_2^2 + \kappa \Omega(\boldsymbol{\alpha}_i)\right] (\kappa > 0),$$
(2)

$$\Omega(\boldsymbol{\alpha}) = \left(\sum_{j} \left\|\boldsymbol{\alpha}_{\boldsymbol{G}_{j}}\right\|_{2}^{\eta}\right)^{\frac{1}{\eta}},$$
(3)

Latent Dirichlet Allocation

$$P(W, Z, \theta, \phi | \alpha, \beta) = \prod_{i=1}^{K} P(\phi_i | \beta) \prod_{j=1}^{M} P(\theta_j | \alpha) \prod_{t=1}^{N_j} P(z_{j,t} | \theta_j) P(w_{j,t} | \phi_{z_{j,t}}),$$
(4)

Modeling the corpus as a combination of latent topics Identifying consistent sets Generating the puzzles

▲ロト ▲圖ト ▲ヨト ▲ヨト ニヨー のへで

Identifying consistent sets

Modeling the corpus as a combination of latent topics Identifying consistent sets Generating the puzzles

・ロト ・ 日 ・ エ ヨ ト ・ 日 ・ うらつ

Generating the puzzles

Odd one out

- Mix a consistent set and a less related word
- salmon, shark, whale, elephant
- Choose the related word
 - Mix a consistent set with some less related words
 - Present the words in a different grouping
 - regiment, battalion, army | infantry, service, king
- Separate the topics
 - Mix two (or more) consistent sets
 - water, heat, temperature, pressure | superman, clark, luthor, kryptonite

The performance of the three topic models Some interesting puzzles

The performance of the three topic models

Some interesting odd one out puzzles

Consistent set of words				Odd one out
сао	wei	liu	emperor	king
superman	clark	luthor	kryptonite	batman
devil	demon	hell	soul	body
egypt	egyptian	alexandria	pharaoh	bishop
singh	guru	sikh	saini	delhi
language	dialect	linguistic	spoken	sound
mass	force	motion	velocity	orbit
voice	speech	hearing	sound	view
athens	athenian	pericles	corinth	ancient
data	file	format	compression	image
function	problems	polynomial	equation	physical