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Outline

ITE (Information Theoretical Estimators) Toolbox.

Distribution Regression:

Motivation, examples.
Algorithm, consistency result.
Numerical illustration.
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Distribution based tasks: building blocks

Entropies: uncertainty

H(x) = −
∫

Rd

f (u) log f (u)du.
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Distribution based tasks: building blocks

Entropies: uncertainty

H(x) = −
∫

Rd

f (u) log f (u)du.

Mutual information, association indices: dependence

I
(

x1, . . . , xM
)

=

∫

f
(

u1, . . . ,uM
)

log

[

f
(

u1, . . . ,uM
)

∏M
m=1 fm(u

m)

]

du.

Divergences, kernels: ’distance’/inner product of probability
distributions

D(f1, f2) =

∫

Rd

f1(u) log

[

f1(u)

f2(u)

]

du.

Zoltán Szabó Learning on Distributions



Estimation

1 Plug-in of estimated densities:

Example: histogram based methods.
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Estimation

1 Plug-in of estimated densities:

Example: histogram based methods.
Poor scaling!
Reason:

goal 6= density estimation, but
functionals of distributions.
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Estimation

1 Plug-in of estimated densities:

Example: histogram based methods.
Poor scaling!
Reason:

goal 6= density estimation, but
functionals of distributions.

2 Nonparametric, non plug-in type estimators.
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Existing packages

Focus on

discrete variables, or

quite specialized

applications and
information theoretical estimation methods.
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ITE (information theoretical estimators) toolbox

Goal:

state-of-the-art, nonparametric estimators,

modularity:

high-level optimization,
combinations (methods/estimators).
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Covered quantities

entropy: Shannon entropy, Rényi entropy, Tsallis entropy (Havrda and Charvát entropy), complex entropy,
Φ-entropy (f -entropy), Sharma-Mittal entropy,

mutual information: generalized variance, kernel canonical correlation analysis, kernel generalized variance,
Hilbert-Schmidt independence criterion, Shannon mutual information (total correlation, multi-information),
L2 mutual information, Rényi mutual information, Tsallis mutual information, copula-based kernel
dependency, multivariate version of Hoeffding’s Φ, Schweizer-Wolff’s σ and κ, complex mutual
information, Cauchy-Schwartz quadratic mutual information (QMI), Euclidean distance based QMI,

distance covariance, distance correlation, approximate correntropy independence measure, χ2 mutual
information (Hilbert-Schmidt norm of the normalized cross-covariance operator, squared-loss mutual
information, mean square contingency),

divergence: Kullback-Leibler divergence (relative entropy, I directed divergence), L2 divergence, Rényi
divergence, Tsallis divergence Hellinger distance, Bhattacharyya distance, maximum mean discrepancy
(kernel distance), J-distance (symmetrised Kullback-Leibler divergence, J divergence), Cauchy-Schwartz
divergence, Euclidean distance based divergence, energy distance (specially the Cramer-Von Mises
distance), Jensen-Shannon divergence, Jensen-Rényi divergence, K divergence, L divergence, f-divergence
(Csiszár-Morimoto divergence, Ali-Silvey distance), non-symmetric Bregman distance (Bregman

divergence), Jensen-Tsallis divergence, symmetric Bregman distance, Pearson χ2 divergence (χ2 distance),
Sharma-Mittal divergence,

association measures: multivariate extensions of Spearman’s ρ (Spearman’s rank correlation coefficient,
grade correlation coefficient), correntropy, centered correntropy, correntropy coefficient, correntropy
induced metric, centered correntropy induced metric, multivariate extension of Blomqvist’s β (medial
correlation coefficient), multivariate conditional version of Spearman’s ρ, lower/upper tail dependence via
conditional Spearman’s ρ,

cross quantities: cross-entropy,

kernels on distributions: expected kernel (summation kernel, mean map kernel), Bhattacharyya kernel,
probability product kernel, Jensen-Shannon kernel, exponentiated Jensen-Shannon kernel, Jensen-Tsallis
kernel, exponentiated Jensen-Rényi kernel(s), exponentiated Jensen-Tsallis kernel(s),

+some auxiliary quantities: Bhattacharyya coefficient (Hellinger affinity), α-divergence.
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ITE: summary

Matlab/Octave (first release).

Multi-platform.

GPLv3(≥).

Appeared in JMLR, 2014.

Homepage: https://bitbucket.org/szzoli/ite/

Zoltán Szabó Learning on Distributions

https://bitbucket.org/szzoli/ite/


ITE: built-in tests/applications

Consistency tests.

Prototype: independent subspace analysis, its extensions.

Image registration → outlier robustness.

Distribution regression (next part).
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Regression

Given: {(xi , yi)}li=1 samples H ∋ f =? such that f (xi ) ≈ yi .

Typically: xi ∈ Rp, yi ∈ Rq.

Our interest: xi -s are distributions (∞-dimensional objects).
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Distribution regression: two-stage sampling difficulty

In practise:

xi -s are only observable via samples: xi ≈ {xi ,n}Nn=1 ⇒
an xi is represented as a bag:

image = set of patches,
document = bag of words,
video = collection of images,
different configurations of a molecule = bag of shapes.
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Set kernels: consistency?

Given (2 bags):

Bi := {xi ,n}Ni

n=1 ∼ xi , (1)

Bj := {xj ,m}Nj

m=1 ∼ xj . (2)

Similarity of the bags (set/multi-instance/ensemble kernel):

K (Bi ,Bj) =
1

NiNj

Ni
∑

n=1

Nj
∑

m=1

k(xi ,n, xj ,m). (3)

Many successful applications – no theory.

Our results ⇒
statistical consistency of set kernels in regression .
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Example: supervised entropy learning

Entropy of x ∼ f : −
∫

f (u) log[f (u)]du.

Training: samples from distributions, entropy values.

Task: estimate the entropy of a new sample set.
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Example: age prediction from images

Training: (image, age) pairs; image = bag of features.

Goal: estimate the age of a person being on a new image.
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Example: Sudoku difficulty estimation

Sudoku: special constraint satisfaction problem.

Spiking neural networks (SNN)

can be used to solve such problems,
have stationary distribution under mild conditions.

Sudoku ↔ stationary distribution of the SNN.
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Example: aerosol prediction using satellite images

Aerosol = floating particles in the air; climate research.

Multispectral satellite images: 1 pixel = 200× 200m2 ∈ bag.

Bag label: ground-based (expensive) sensor.

Task: satellite image → aerosol density.
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Towards problem formulation: kernel, RKHS

k : D×D → R kernel on D, if

∃ϕ : D → H(ilbert space) feature map,
k(a, b) = 〈ϕ(a), ϕ(b)〉H (∀a, b ∈ D).

Kernel examples: D = Rd (p > 0, θ > 0)

k(a, b) = (〈a, b〉+ θ)
p
: polynomial,

k(a, b) = e−‖a−b‖22/(2θ
2): Gaussian,

k(a, b) = e−θ‖a−b‖1 : Laplacian.

In the H = H(k) RKHS (∃!): ϕ(u) = k(·, u).
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Some example domains (D), where kernels exist

Euclidean spaces: D = Rd .

Strings, time series, graphs, dynamical systems.

Distributions.
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Distribution kernel: example (used in our work)

Given: (D, k); we saw that u → ϕ(u) = k(·, u) ∈ H(k).

Let x be a distribution on D (x ∈ M
+
1 (D)); the previous

construction can be extended:

µx =

∫

D

k(·, u)dx(u) ∈ H(k). (4)

If k is bounded: µx is well-defined for any distribution x .
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Mean embedding based distribution kernel

Simple estimation of µx =
∫

D
k(·, u)dx(u):

Empirical distribution: having samples {xn}Nn=1

x̂ =
1

N

N
∑

n=1

δxn . (5)

Mean embedding, inner product – empirically (set kernels!):

µx̂ =

∫

D

k(·, u)dx̂(u) = 1

N

N
∑

n=1

k(·, xn), (6)

K
(

µx̂i , µx̂j

)

=
〈

µx̂i , µx̂j

〉

H(k)
=

1

NiNj

Ni
∑

n=1

Nj
∑

m=1

k(xi ,n, xj ,m).
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Mini summary

Until now

If we are given a domain (D) with kernel k , then
one can easily define/estimate the similarity of distributions on
D.

Prototype example: D = Rd , k = Gaussian, K = lin. kernel.

The real conditions:

D: locally compact, Polish. k : c0-universal.
K : Hölder continuous.
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Distribution regression problem: intuitive definition

z = {(xi , yi )}li=1: xi ∈ M+
1 (D), yi ∈ R.

ẑ =
{(

{xi ,n}Nn=1, yi
)}l

i=1
: xi ,1, . . . , xi ,N

i .i .d.∼ xi .

Goal: learn the relation between x and y based on ẑ.

Idea: embed the distributions (µ) + apply ridge regression

M+
1 (D)

µ−→ X (⊆ H = H(k))
f ∈H=H(K)−−−−−−−→ R.
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Objective function

fH ∈ H = H(K ): ideal/optimal in expected risk sense (E):

E [fH] = inf
f ∈H

E [f ] = inf
f ∈H

∫

X×R

[f (µa)− y ]2dρ(µa, y). (7)

One-stage difficulty (
∫

→ z):

f λz = argmin
f ∈H

(

1

l

l
∑

i=1

[f (µxi )− yi ]
2 + λ ‖f ‖2

H

)

. (8)

Two-stage difficulty (z → ẑ):

f λẑ = argmin
f ∈H

(

1

l

l
∑

i=1

[f (µx̂i )− yi ]
2 + λ ‖f ‖2

H

)

. (9)
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Algorithmically: ridge regression ⇒ simple solution

Given:

training sample: ẑ,
test distribution: t.

Prediction:

(f λẑ ◦ µ)(t) = [y1, . . . , yl ](K + lλIl)
−1







K (µx̂1 , µt)
...

K (µx̂l , µt)






, (10)

K = [Kij ] = [K (µx̂i , µx̂j )] ∈ Rl×l . (11)
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Consistency result

We studied

the excess error: E
[

f λẑ
]

− E [fH], i.e,
the goodness compared to the best function from H.

Result: with high probability

E
[

f λẑ

]

− E [fH] → 0, (12)

if we appropriately choose the (l ,N, λ) triplet.
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Consistency result: P(b, c) class

Let the T : H → H covariance operator be

T =

∫

X

K (·, µa)K
∗(·, µa)dρX (µa) =

∫

X

K (·, µa)δµadρX (µa)

with eigenvalues tn (n = 1, 2, . . .).

Let ρ ∈ P(b, c) be the set of distributions on X × R:

α ≤ nbtn ≤ β (∀n ≥ 1;α > 0, β > 0),

∃g ∈ H such that fH = T
c−1
2 g with ‖g‖2

H
≤ R (R > 0),

where b ∈ (1,∞), c ∈ [1, 2].
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Consistency result: convergence rates

High-level idea:

The excess error can be upper bounded on P(b, c) as:

g(l ,N, λ) = E
[

f λẑ

]

− E [fH] ≤
log(l)

Nλ3
+ λc +

1

l2λ
+

1

lλ
1
b

.

We choose
λ = λl,N → 0:

by matching two terms,
g(l ,N, λ) → 0; moreover, make the 2 equal terms dominant.

l = Na (a > 0).
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Convergence rate: results

1 = 2 : If λ =
[

log(N)
N

]
1

c+3
,

1
b
+c

c+3 ≤ a, then

g(N) = O

(

[

log(N)

N

]
c

c+3

)

→ 0. (13)
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Convergence rate: results

1 = 2 : If λ =
[

log(N)
N

]
1

c+3
,

1
b
+c

c+3 ≤ a, then

g(N) = O

(

[

log(N)

N

]
c

c+3

)

→ 0. (13)

1 = 3 : If λ = Na− 1
2 log

1
2 (N), 1

6 ≤ a < min

(

1
2 − 1

c+3 ,
1
2(

1
b
−1)

1
b
−2

)

,

g(N) = O

(

1

N3a− 1
2 log

1
2 (N)

)

→ 0. (14)

1 = 4 : If λ =
[

Na−1 log(N)
]

b
3b−1 , max( b−1

4b−2 ,
1
3b ) ≤ a < bc+1

3b+bc
,

g(N) = O

(

1

N
a+ a

3b−1
− 1

3b−1 log
1

3b−1 (N)

)

→ 0. (15)
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Convergence rate: results

2 = 3 : ∅ (the matched terms can not be made dominant).

2 = 4 : If λ = 1

N
ab

bc+1

, a < bc+1
3b+bc

, then

g(N) = O

(

1

N
abc
bc+1

)

→ 0. (16)

3 = 4 : If λ = 1

N
ab

b−1
, 2 < b, a < b−1

2(2b−1) , then

g(N) = O

(

1

N
2a− ab

b−1

)

→ 0. (17)
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Numerical illustration: supervised entropy learning

Problem: learn the entropy of Gaussians in a supervised
manner.

Formally:

A = [Ai ,j ] ∈ R2×2, Aij ∼ U[0, 1].
100 sample sets: {N(0,Σu)}100u=1, where

100 = 25(training) + 25(validation) + 50(testing).
one set = 500 i.i.d. 2D points,
Σu = R(βu)AA

TR(βu)
T ,

R(βu): 2d rotation,
angle βu ∼ U[0, π].

Zoltán Szabó Learning on Distributions



Supervised entropy learning: goal, performance measure

Goal: learn the entropy of the first marginal

H =
1

2
ln
(

2πeσ2
)

, σ2 = M1,1, M = Σu ∈ R2×2. (18)

Baseline: kernel smoothing based distribution regression
(applying density estimation) =: DFDR.

Performance: RMSE boxplot over 25 random experiments.
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Supervised entropy learning: results
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Numerical illustration: aerosol prediction

Bags:

randomly selected pixels,
within a 20km radius around an AOD sensor.

800 bags, 100 instances/bag.

Instances: xi ,n ∈ R16.
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Aerosol prediction - baseline

Baseline: state-of-the-art mixture model

EM optimization,
800 = 4× 160(training) + 160(test); 5-fold CV, 10 times.
Accuracy: 100× RMSE (± std) = 7.5− 8.5 (±0.1− 0.6).

Ridge regression:

800 = 3× 160(training) + 160(validation) + 160(test),
5-fold CV, 10 times,
validation: λ regularization, θ kernel parameter.
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Aerosol prediction: kernel k

We picked 10 kernels (k): Gaussian, exponential, Cauchy,
generalized t-student, polynomial kernel of order 2 and 3
(p = 2 and 3), rational quadratic, inverse multiquadratic
kernel, Matérn kernel (with 3

2 and 5
2 smoothness parameters).

We also studied their ensembles.

Explored parameter domain:

(λ, θ) ∈
{

2−65, 2−64, . . . , 2−3
}

×
{

2−15, 2−14, . . . , 210
}

.

First, K was linear.
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Aerosol prediction: kernel definitions

Kernel definitions (p = 2, 3):

kG (a, b) = e
−

‖a−b‖22
2θ2 , ke(a, b) = e

−
‖a−b‖2

2θ2 , (19)

kC (a, b) =
1

1 +
‖a−b‖22

θ2

, kt(a, b) =
1

1 + ‖a− b‖θ2
, (20)

kp(a, b) = (〈a, b〉+ θ)p , kr (a, b) = 1− ‖a − b‖22
‖a − b‖22 + θ

, (21)

ki (a, b) =
1

√

‖a − b‖22 + θ2
, (22)

kM, 3
2
(a, b) =

(

1 +

√
3 ‖a − b‖2

θ

)

e−
√

3‖a−b‖2
θ , (23)

kM, 5
2
(a, b) =

(

1 +

√
5 ‖a − b‖2

θ
+

5 ‖a − b‖22
3θ2

)

e−
√

5‖a−b‖2
θ . (24)
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Aerosol prediction: results (K : linear)

100 × RMSE (±std) [baseline: 7.5 − 8.5 (±0.1− 0.6)]:

kG ke kC kt
7.97 (±1.81) 8.25 (±1.92) 7.92 (±1.69) 8.73 (±2.18)

kp(p = 2) kp(p = 3) kr ki
12.5 (±2.63) 171.24 (±56.66) 9.66 (±2.68) 7.91 (±1.61)

kM, 32
kM, 52

ensemble

8.05 (±1.83) 7.98 (±1.75) 7.86 (±1.71)

Best combination in the ensemble: k = kG , kC , ki .
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Aerosol prediction: nonlinear K

We fed the mean embedding distance (‖µx − µy‖H(k)) to the
previous kernels.

Example (RBF on mean embeddings – valid kernel):

K (µa, µb) = e
−
‖µa−µb‖

2
H(k)

2θ2
K (µa, µb ∈ X ). (25)

We studied the efficiency of (i) single, (ii) ensembles of
kernels [(k ,K ) pairs].
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Aerosol prediction: nonlinear K , results

Baseline:

Mixture model (EM): 7.5− 8.5 (±0.1− 0.6),
Linear K (single): 7.91 (±1.61).
Linear K (ensemble): 7.86 (±1.71).

Nonlinear K :

Single: 7.90 (±1.63),
Ensemble:

Accuracy: 7.81 (±1.64),

(k ,K) = (ki , kt) ,
(

kM, 3
2
, kM, 3

2

)

, (kC , kG ).
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Summary

Problem: distribution regression.

Difficulty: two-stage sampling.

Examined solution: ridge regression; simple alg.!

Contribution (on arXiv):

consistency; convergence rate.
specially: consistency of set kernels in regression.

ITE toolbox (Bitbucket, ∋MERR).
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Thank you for the attention!

Acknowledgments: This work was supported by the Gatsby Charitable
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Topological space, open sets

Given: X 6= ∅ set.

τ ⊆ 2X is called a topology on X if:
1 ∅ ∈ τ , X ∈ τ .
2 Finite intersection: O1 ∈ τ , O2 ∈ τ ⇒ O1 ∩ O2 ∈ τ .
3 Arbitrary union: Oi ∈ τ (i ∈ I ) ⇒ ∪i∈IOi ∈ τ .

Then, (X, τ) is called a topological space; O ∈ τ : open sets.
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Topology: examples

τ = {∅,X}: indiscrete topology.

τ = 2X: discrete topology.

(X, d) metric space:

Open ball: Bǫ(x) = {y ∈ X : d(x , y) < ǫ}.
O ⊆ X is open if for ∀x ∈ O ∃ǫ > 0 such that Bǫ(x) ⊆ O.
τ := {O ⊆ X : O is an open subset of X}.
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Closed set, compact set, closure, subspace topology

Given: (X, τ). A ⊆ X is

closed if X\A ∈ τ (i.e., its complement is open),

compact if for any family (Oi )i∈I of open sets with
A ⊆ ∪i∈IOi , ∃i1, . . . , in ∈ I with A ⊆ ∪n

j=1Oij .

Closure of A ⊆ X:

Ā :=
⋂

A⊆C closed in X

C . (26)

For A ⊆ X the subspace topology on A: τA = {O ∩ A : O ∈ τ}.
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Hausdorff space

(X, τ) is a Hausdorff space, if

for any x 6= y ∈ X ∃U,V ∈ τ such that x ∈ U, y ∈ V ,
U ∩ V = ∅.
In other words, disjunct points have disjunct open
environments.

Example: metric spaces.
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Dense subset, separability, basis of a topology, Polish

A ⊆ X is dense if Ā = X.

(X, τ) is separable if ∃ countable, dense subset of X.
Counterexample: l∞/L∞.

τ1 ⊆ τ is a basis of τ if every open is union of sets in τ1.
Example: open balls in a metric space.

(X, τ) is Polish if τ has a countable basis and ∃ metric
defining τ. Example: complete separable metric spaces.
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Environment, locally compact spaces

(X, τ):

V ⊆ X is a neighborhood of x ∈ X if ∃O ∈ τ such that
x ∈ O ⊆ V .

is called locally compact if for ∀x ∈ X ∃ compact
neighborhood of x . Example: Rd ; not compact.
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Examples: LCH, but not (necessarily) compact

Euclidean spaces: Rd , not compact.

Discrete spaces: LCH. Compact ⇔ |X| < ∞.

Open/closed subsets of an LCH: LC in subspace topology.
Example: unit ball (open/closed).
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Examples: Hausdorff, but not locally compact

(Q, topology inherited from R).

In other words, not every subset of an LCH is LC.

Infinite dimensional Hilbert spaces.

Example: complex L2([0, 1]); {fn(x) = e2πinx , n ∈ Z}: ONB.
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The discrete space

(

X, 2X
)

: complete metric space.

Discrete metric (inducing the discrete topology):

d(x , y) =

{

0, if x = y

1, if x 6= y

}

. (27)

Discrete space: separable ⇔ |X| is countable.
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Example: hyperparameter selection

Training: samples from MOGs with component number labels.

Task:

given: samples from a new MOG distribution,
predict: the number of components.
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Example: toxic level estimation from tissues

Toxin alters the properties/causes mutations in cells.

Training data:

bag = tissue,
samples in the bag = cells described by some simple features,
output label = toxic level.

Task: predict the toxic level given a new tissue.
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Kernel k : c0-universal

Let C0(D) = D → R continuous functions vanishing at infinity,
i.e.,

{u ∈ D : |g(u)| ≥ ǫ} (28)

is compact for g ∈ C0(D), ∀ǫ > 0. k : D×D → R is c0-universal
if

‖k‖∞ := supu∈D
√

k(u, u) < ∞,

k(·, u) ∈ C0(D) (∀u ∈ D).

H = H(k) is dense in C0(D) w.r.t. the uniform norm.
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