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Abstract

This thesis concerns feature selection, with a particular emphasis on the computational biology domain

and the possibility of non-linear interaction between features. Towards this it establishes a two-step

approach, where the first step is feature selection, followed by the learning of a kernel machine in this

reduced representation.

Optimization of kernel target alignment is proposed as a model selection criterion and its properties

are established for a number of feature selection algorithms, including some novel variants of stability

selection. The thesis further studies greedy and stochastic approaches for optimizing alignment, propos-

ing a fast stochastic method with substantial probabilistic guarantees. The proposed stochastic method

compares favorably to its deterministic counterparts in terms of computational complexity and resulting

accuracy.

The characteristics of this stochastic proposal in terms of computational complexity and applicabil-

ity to multi-class problems make it invaluable to a deep learning architecture which we propose. Very

encouraging results of this architecture in a recent challenge dataset further justify this approach, with

good further results on a signal peptide cleavage prediction task.

These proposals are evaluated in terms of generalization accuracy, interpretability and numerical

stability of the models, and speed on a number of real datasets arising from infectious disease bioinfor-

matics, with encouraging results.
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Chapter 1

Introduction

We present a family of two-stage techniques for kernel machines. The first stage of these techniques is

a feature selection method in order to reduce the number of variables while the second stage is fitting a

kernel machine on this lower- dimensional dataset. Given the potential benefits of a reduced representa-

tion it is not surprising that a rich variety of methods have been proposed in order to achieve this. Such

algorithms are routinely used in order to alleviate problems such as the so-called curse of dimensionality

and reduce generalisation error. Another common use for these methods is in reducing the storage and

processing requirements for large datasets. However, the most important property as far as the field com-

putational biology is concerned may be that of parsimony. Models relying on fewer variables are easier

to explain and have the potential to accelerate experimental validation by providing valuable insight into

the importance and role of the variables. Considering their potential applications we enumerate four

highly desirable properties for the ideal feature selection algorithm:

1. Low generalization error. Feature selection should improve generalization performance, or at the

very least not deteriorate the error rate as compared to learning on the full set of features.

2. Parsimony. The resulting models should use the smallest possible number of features. Models

relying on fewer variables are easier to study. This can be viewed as a form of Occam’s razor

whereby hypotheses that rely on fewer variables are preferred.

3. Selection Consistency. Here selection consistency means that the variables selected should not

radically change for small perturbations in the data. This is a key property in computational

biology where dirty data such as noisy outputs or labels are not uncommon.

4. Scalablility. The size of datasets is increasing at a much faster rate than speed increases in com-

modity hardware can cope with. Given this simple fact, computationally efficient algorithms and

methods which can be parallelized are advantageous.

1.1 Background
It is not uncommon to encounter features that exhibit a high degree of redundancy in practice. In such

cases the SVM classifier tends to assign similar weights to features that exhibit a high degree of similarity

between them. It is also possible however to have a large number of variables that appear to be irrelevant
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to the target concept lead to deteriorating generalization. In both of these cases it is possible for a benign

collusion between feature selection mechanisms and SVMs to yield many of the benefits previously

listed above. For this to occur, an effective feature selection method is expected to find a small and

informative set of relevant features as well as identify features that are redundant or irrelevant to the

target concept. An attempt to formalize the notions of feature relevance follows.

The following section summarizes work and definitions in [GGNZ06], where the authors attempt

to produce formal mathematical definitions of the notions of feature relevance.

Making the assumption that the dependency between input patterns X and desired outputs Y is gov-

erned by the joint distribution P (X,Y) = P (Y|X)P (X) we introduce the following auxiliary notations.

Let V be some subset of X, X−i bet the subset of X excluding feature xi and V−i be a subset of X−i.

Those are used to make the following definitions of variable relevance or irrelevance.

1.1.0.1 Surely Irrelevant Features

A feature Xi is surely irrelevant iff for all subset of features V −i including X−i we have:

P (Xi,Y|V−i) = P (Xi|V−i)P (Y|V−i)

This definition can be extended through the use of the Kullback-Leibler divergence between

P (Xi,Y|V −i) and P (Y|V−i) giving rise to the following measure of conditional mutual information,

MI(Xi,Y|V−i):

MI(Xi,Y|V−i) =
∑
{Xi,Y}

P (Xi,Y|V−i) log
P (Xi,Y|V−i)

P (Xi|V−i)P (Y|V−i)

The above sum runs over all possible values of the random variables Xi and Y. The conditional

mutual information can be used to derive a score that encapsulates the relevance of a feature Xi by

summarizing over all the values of V−i. For the relevance of feature Xi, given Y, we obtain the expected

mutual information as:

EMI(Xi,Y) =
∑
V−i

P (V−i)MI(Xi,Y|V−i)

Using this quantity we can proceed to the following definitions.

1.1.0.2 Approximately Irrelevant Features

A feature Xi is approximately irrelevant with level of approximation ε > 0, iff for all subsets of features

V−i including X−i,

EMI(Xi,Y) ≤ ε

1.1.0.3 Surely Sufficient Feature Subsests

We have provided a definition of feature relevance. However even relevant features may be redundant.

Hence, merely ranking features by their relevance is not sufficient in order to extract a minimum subset

of features that produce optimal predictions. We introduce the additional notation V̄ for the subset that

complements a set of features V in X : X = [V, V̄]. Using this we obtain that a subset V of features is

surely sufficient iff, for all assignments of values to its complementary subset V̄
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P (Y|V) = P (Y|X)

Similarly to the definition of feature relevance, we can extend this through the use of mutual infor-

mation, defining a new quantity, DMI(V):

DMI(V) =
∑
{u,ū,y}

P (X = [v, v̄],Y = y) log
P (Y = y|X = [v, v̄])

P (Y = y|V = v)

The above quantity, which was introduced in [KS96] is the expected value over P (X) of the

Kullback-Liebler divergenvence between P (Y|X) and P (Y|V). It can be verified that :

DMI(V ) = MI(X,Y)−MI(V,Y)

1.1.0.4 Approximately sufficient feature set

Again in similarity with the previous definitions of approximate feature relevance, we have that a subset

V of features if approximately sufficient with level of approximation ε ≥ 0, iff

DMI(V) ≤ ε

In the case that ε = 0 the subset V is called almost surely sufficient.

1.1.0.5 Minimal Approximately Sufficient Feature Subset

Finally a subset V of features is minimal approximately sufficient, with level of approximation ε ≥ 0

iff it is ε-sufficient and other ε-sufficient subsets of smaller size do not exist. From this definition it fol-

lows that a minimal approximately sufficient subset is a (possibly non-unique) solution to the following

optimization problem:

minV ‖|V||0, s.t. DMI(V) ≤ ε

Where ||V||0 is the zero norm, which equals the number of selected variables. These definitions

underpin the fact that there is no one-size-fits all approach to feature selection, as objectives can vary

substantially.

1.2 Approaches to feature selection
Finding the minimal approximately sufficient feature set is a NP-hard problem. Naive attempts to com-

putationally identify an optimal combination of features by exhaustive search are infeasible, even for

a relatively small number of variables. Practical feature selection algorithms address this limitation by

using a number of proxy criteria related to the selection problem. Depending on the core criterion, three

principal selection approaches can be identified:

• Filter Methods employ simple heuristics or statistical tests for evaluating the importance of a

feature.
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• Wrapper Methods, in contrast to filter methods tend to refine an initial solution by relying on

performance bounds or empirical estimates that encapsulate the impact that removing a feature, or

number of features would have to the solution of the problem.

• Embedded Methods, where feature selection is embedded as part of the learning algorithm, typi-

cally by using L1-norm minimization or similar approaches.

1.2.1 Filters

Filter methods provide a simple and fast approach to filter selection. Typically, filters rely on statistical

criteria which act as a proxy for the underlying modelling problem. A typical example of this approach

would be a filter that employs correlation coefficients. Making the assumption that informative features

are highly correlated with the classification target, it ranks features by the magnitude of their correlation.

Variables that do not exhibit a user-specified degree of correlation are filtered out of the dataset, resulting

in a simple and efficient filtering method .

This simple, and efficient approach has been successfully employed in a large variety of problems.

However, there are drawbacks to using correlation coefficients. First, correlation coefficients make the

assumption that the underlying relation is linear. While this assumption applies to a certain degree in

numerous problem domains, it is a clear limit to the scope of its application. Furthermore, correlation

coefficients fail to encapsulate interactions between variables. The relief algorithm [KR92] is a multi-

variate filter method which addresses some of the shortcomings of correlation coefficients. The relief

method uses a k-nearest-neighbor derived criterion.At each iteration, the algorithm cycles through the

samples, estimating the relevance as a function of the nearest within-class and out-of-class samples.

This is achieved through comparing the distance of the ith sample to its nearest hits (closest, within

class neighbors) and nearest misses (closest out-of-class neighbors), with and without the inclussion of

a feature.

In recent years, information-theoretic approaches to filtering have seen substantial growth. Numer-

ous methods using mutual information as an indicator of statistical dependence have been proposed, with

encouraging results on real world data [ZH02]. [Bro09],[BPZL12] propose the conditional likelihood

of the training labels as a unifying theme for information theoretic approaches, viewing such filters as

belonging to a spectrum of approximate maximizers of the conditional likelihood and differentiated by

their implicit statistical assumptions.

Another line of inquiry relies on the estimation of cross-covariance between kernels defined on the

input and output data [GBSS05], which proposes the Hilbert-Schmidt Independence Criterion. This prin-

cipled approach benefits from sharp concentration estimates. [SBB+07] illustrates procedures relying

on HSIC are fairly simple to implement, and do not require user intervention in terms of regularization.

Further work utilising HSIC for feature selection is found in [SSG+12] where a slew of connections with

existing algorithms is presented, including its similarity to Kernel Target Alignment (KTA).
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1.2.2 Wrapper Methods

Wrapper methods are strongly paired to the classification problem. One of the first wrappers, specific

to support vector machines (SVMs)was introduced in [WMC+00]. The approach used gradient descent

optimization on a margin bound, removing the least-weighted features after each iteration. Recursive

feature elimination (RFE[GWBV02]), is similar in function, removing the least weighted feature from

the actual linear predictor at the end of each iteration. In the kernelized setting, RFE is significantly

more demanding. Non-linear RFE quantifies the sensitivity of the learning rule to the removal of each

individual feature. This means that for non-linear, high-dimensional datasets, RFE is tractable but com-

putationally prohibitive as at each iteration it needs to train a support vector machine, and then estimate

the sensitivity to the individual removal of the remaining features.

1.2.3 Embedded Methods

In recent years, there has been a flurry of embedded feature selection methods. Embedded methods

achieve parsimony by enforcing additional constraints to the recovered solution. Lasso,[Tib96] is one

of the earliest proposals in this class of algorithms. The lasso algorithm attempts to minimise the sum

of the square loss of the derived predictor and a multiple of the `1-norm of the weight vectors. Setting

the regularization of the weights complicates model selection. To some degree, this complication is

addressed by regularization paths. A regularization path, is a piecewise linear function that associates

the regularization parameter with a corresponding recovered solution to the optimization problem. The

homotopy algorithm described in [OPT00], leverages regularization paths to describe an efficient algo-

rithm that computes the entire space of recovered solutions with small additional computation overhead.

This is further elaborated in [EHJ+04] in the context of the LARS algorithm, where an algorithm that

computes the regularization path in time similar to ordinary least squares is introduced.

The Lasso objective optimizes the square loss. The square loss is applicable to a wide variety of

settings, including classification and regression. In classification problems the same approach, using loss

functions specific to the classification setting such as the logistic loss [LLAN06],is applied. Warm-start

techniques [KKB07], use a previously computed solution as the starting point for computing the solution

for an updated regularization term. For the hinge loss, commonly employed by SVMs, a regularization

path approach has been proposed in the case of `2-regularized SVMs [HRTZ04]. To the best of my

knowledge, there is no published work detailing a regularization path approach for `1-regularized SVMs.

Boosting [FS97] can also be thought of as an embedded feature selection algorithm. Boosting at-

tempts to produce a strong learning rule by combining predictions produced by weak base learners. A

weak learner can be thought of as a simple prediction algorithm relying on a subset of features. By

limiting the number of weak learners boosting can be effectively used as a feature selection algorithm,

a procedure which is illustrated in [BY06]. The most common boosting variant, adaboost [FSA99],

optimizes the exponential loss. LPBoost [DBST02] is another boosting algorithm, geared towards op-

timizing the hinge loss, and in the setting where a base learner corresponds to a single feature can be

thought of as an `1-regularized approach to the support vector machine.

Finally, there is a wealth of approaches for feature selection in the framework of multiple kernel
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learning. Once more, by defining low-rank kernels on small groups of features, this approach effectively

performs feature selection. Some early propositions include [LCB+04] where semi-definite program-

ming was used to learn the kernel matrix. Multiple refinements to this approach have been presented,

including [BLJ04], where sequential minimal optimization (SMO) techniques were utilised for greater

efficiency, [SRSS06] which relies on a semi-infinite linear programming formulation and [RBCG08]

which presents a simple approach which is essentially based on gradient descent. More recently an

approach relying on the optimization of KTA was proposed in [CMR12] which utilises existing SVM

solvers.

1.2.4 Meta-Selection Approaches

The previous sections presented the three major feature selection approaches. By meta-selection strate-

gies, we refer to feature selection regimes which intelligently exploit properties of these three basic

feature selection approaches. Two methods that exemplify this approach are BoLasso [Bac08] and Sta-

bility Selection [MB10]. Both methods rely on bootstrapped Lasso estimates, exploiting the fact that

relevant variables will enter the model with substantially higher probability than those that are irrele-

vant. This property suggests that with a large number of bootstrapped lasso estimates of a given sample,

intersecting their supports leads to improvements in selection consistency. This simple idea is further

elaborated in [MB10], where the approach is extended to a more general framework, that combines sub-

sampling with sparse selection algorithms. A significant contribution of stability selection is its ability to

provide probabilistic guarantees for the false discovery rate of the selected features. Examples illustrat-

ing the need for meta-selection algorithms are given in [DET06] and [CT07], where the irrepresentable

condition for the Lasso and related algorithms is introduced. The irrepresentable condition is violated

in scenarios where the number of variables exceeds the number of samples, and a substantial degree of

between-variable correlation is present leading to inconsistent selection.

1.3 Application to biomarker discovery
Biomarkers are small, statistically validated sets of variables that strongly characterize an underlying bi-

ological process. High throughput biological screening methods such as micro-arrays and time-of-flight

mass spectrometry capture large numbers of variables related to biological samples. Through systematic

comparison to appropriately chosen reference samples it is possible to discover, and statistically validate

disease specific proteome patterns. This is a process where feature selection plays a major role. Feature

selection is pivotal in shifting the focus from a very large number of variables to a substantially smaller

number of of features, which at this point are considered as biomarker candidates.

Feature selection is a generic methodology that needs to effectively address the already large num-

ber of extant technologies in biology as well as anticipate the advent of new technologies. In so doing,

these algorithms need to retain their connection to the biological context of the problem. An example of

this is [AFRP+06] where feature selection on mass-spectrometry data from a Tuberculosis(TB) study,

resulted in the identification of novel biomarkers. The impact of accurate algorithms is not limited to

just novel diagnostics. It is often the case that biomarkers can reveal a vast amount of information on the
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underlying biological process, as well as providing a target for therapeutic approaches to focus on.

In terms of practical considerations, feature selection algorithms need to address a series of issues.

They need to be computationally efficient in order to address the ever-increasing size of the datasets.

All the other desiderata also apply, in terms of consistency, parsimony and generalization. Additionally

it needs to address nuances specific to biology. Principal among these is the variance samples can

exhibit. It is often the case to encounter a substantial degree of variation even for replicates of the

same biological sample. A further complication comes in the form of label noise,as the classes which

correspond to diagnoses on the biological samples are not always accurate. Robustness towards these

factors is important.

1.4 Structure of the thesis
The rest of the thesis is structured as follows.

1. Chapter 2 provides the necessary background on max-margin learning and feature selection as-

sumed throughout the rest of the thesis.

2. Chapter 3 examines variants of stability selection better tailored towards classification and intro-

duces the greedy maximization of kernel target alignment as a model selection criterion.

3. Chapter 4 presents a randomized feature selection algorithm for nonlinear feature selection and

provides empirical comparisons with other non-linear feature selection variants.

4. Chapter 5 studies the use of feature selection on representation learning, providing very encour-

aging results.

5. Chapter 6 concludes the thesis by summarizing the presentation and identifying avenues for future

research.



Chapter 2

Background: Enabling Technologies

This chapter establishes the background and introduces the necessary notation for the following chapters

of the thesis. We begin with the introduction of linear learning. We establish some characteristics

of linear classification such as margins, as well as illustrating how kernels are utilised to address the

limitations of linear learning. Going back to feature selection, algorithms that exemplify the approaches

mentioned in the previous chapter are presented. Finally, we introduce metrics and the experimental

pipeline for evaluation of the chapters to follow.

2.1 Linear Learning
We consider the supervised learning problem of modelling the relationship between am×n input matrix

X and a corresponding m× n′ output matrix Y. The archetypical instance of such a problem is binary

classification where the objective of the learning problem is to learn a function f : x→ y mapping input

vectors x to the desired outputs y. In the binary case we are presented with a m × n matrix X and a

vector of outputs y ∈ {+1,−1}m Limiting the class of discrimination functions to linear classifiers we

wish to find a classifier :

f(x) =
∑
i

wixi + b = 〈w, x〉+ b (2.1)

where the weight vector w and bias b are parameters derived by the learning algorithm.

Beneath the simplicity of the above equation lies the most fundamental problem for most machine

learning applications. The problem is that in most practical settings, learning is ill-conditioned. In simple

terms this can mean that the number of samples is insufficient to guarantee the discovery of an accurate

prediction rule. In the presence of noise, aiming to perfectly fit the training set often leads to overfitting,

whereby the prediction function accounts for noise in the training set instead of learning a meaningful

representation of the underlying problem.

Simple linear algebra guarantees that with enough variables it is possible to perfectly fit any dataset.

This raises the question of how to choose from competing hypotheses that ’look good’ on the data set at

hand, and how well do these competing hypotheses mirror the properties of the underlying process. Reg-

ularization is an answer to the first question. Regularization places additional restrictions to the weight

vector, with the most common approach being to favour solutions that have small norms. Learning the-

ory attempts to answer the latter question, and SVMs combine these two insights to create an effective
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algorithm.

2.2 Max margin classification and support vector machines
The signed distance of a point x from a hyperplane (w, b) is 〈w, x〉 + b. The margin is the minimum

distance between the convex hulls of the negative and positive training points. We denote as x+, x−,

two samples belonging to margins of the positive and negative class respectively. For a weight vector w

realising a functional margin of 1 on the positive point x+ and the negative point x− we have

〈w, x+〉+ b = 1

〈w,x−〉+ b = −1

To compute the geometric margin γ, w must be normalised. The geometric margin γ is the func-

tional margin of the resulting classifier

γ =
1

2
(〈 w
||w||2

x+〉 − 〈 w
||w||2

x−〉) =
1

||w||2
(2.2)

Equation (2.2) introduces the relation between the weight vector w and achieved margin γ. In

the linearly separable case, the SVM algorithm attempts to recover the maximal margin hyperplane w

through the following optimization problem:

minimizew,b 1
2 ||w||

2

subject to

yi(〈w, xi〉+ b) ≥ 1

i = 1, ...,m

(2.3)

Introducing slack variables to the above optimization problem we can obtain the soft-margin SVM

formulation [CV95] :

minimizew,b,ξ 1
2 ||w||

2 + C
∑n
i=1 ξi

subject to

yi(〈w, xi〉+ b) ≥ 1− ξi
i = 1, ...,m

ξi ≥ 0

(2.4)

In the above formulation, the regularization parameter C controls the balance between goodness-

of-fit and the weights of the recovered solution. Considering that the slack variables ξi are equivalent

to the hinge loss function Lhinge = max(0, 1 − yi〈w, xi〉), equation (2.4) exemplifies an approach

we will encounter again, namely minimising a loss function under additional weight restrictions. It is

important to note that for most practical scenarios, a large number of the slack variables ξ will be zero.

The discovered classification rule only depends on the few samples that lie on the margin, for which the
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inequality constraint is active and therefore ai > 0. These samples are called support vectors, lending

their name to the algorithm.

An examination of the max-margin approach would be incomplete without some mention of the

wealth of learning theory relating the margin γ with generalization. Indeed, a large body of work is

dedicated to establishing bounds for generalization performance of support vector machines in terms of

the margin distribution. In [STBWA98], it was shown that margins and the number of support vectors

can be used to estimate how well the recovered classifier relates to the underlying statistical process.

A functionally tighter, more data-dependent bound in variational form was presented in [LST02]. This

work was further refined in [McA03], where an explicit solution to the variational problem posed in

[LST02] is provided. These results, as well as a large number of publications that followed, justify the

max-margin approach, providing theoretical justifications for its generalization accuracy.

2.3 Non-linear maps and kernels
The obvious drawback of linear learning is that richer, non-linear representations are often required in

practical applications. Through the use of a non-linear feature map φ(x), the linear learning formulation

can be generalized to deal with non-linear settings. This leads to the kernelized formulation:

f(x) = 〈w, φ(x)〉 = 〈
∑
i

aiyiφ(xi), φ(x)〉 =
∑
i

aiyik(xi,x) (2.5)

Where κ(xi,x) = 〈φ(xi), φ(x)〉 is the kernel function for xi and x. The kernel formulation is

enabled by the representer theorem. The representer states that the weights w can be expressed as a

convex combination of the projections of the input vectors.

w =
∑
i aiyixi

or in the case of using a feature map φ(x)

w =
∑
i aiyiφ(xi)

(2.6)

2.3.1 SVM Dual

Through use of the representer theorem we obtain the dual SVM problem:

maxW (a) =
∑m
i=1 αi −

1
2

∑m
i,j=1 yiyjαiαjκ(xi, xj)

subject to

∑m
i=1 yiαi = 0

αi ≥ 0, i = 1, ...,m

Where k(xi, xj) = 〈φ(xi), φ(xj)〉 is the kernel between samples xi and xj .

2.3.2 Kernel Target Alignment

Finally a key measure of interest in our work is kernel target alignment (KTA) [CMR12] which is defined

as:
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Definition 2.3.1.

a(Cx, Cy) =
〈Cx, Cy〉F
‖Cx‖F ‖Cy‖F

=

∑
i,j cxij

cyij∑
i,j ‖cxij

‖
∑
i,j ‖cyij‖

The matrices Cx and Cy correspond to centred kernels on the features X and outputs Y and are com-

puted as:

C =

[
I − 11T

m

]
K

[
I − 11T

m

]
where 1, in the above equation denotes the m-dimensional vector with all entries set equal to one.

KTA can be seen as an extension of correlation to kernel induced feature spaces, effectively mea-

suring the degree of agreement between two kernels. Centering confers a number of benefits over the

use of the original, uncentered kernels. It removes the effect of having a large expected value in the

input matrix and it additionally facilitates estimating the alignment of datasets with imbalanced class

proportions, as the interclass ratio can affect the estimated covariance of the input kernel with the kernel

defined on the labels when the kernel matrices are uncentered. This was illustrated in [CMR12](p. 20

fig 1), where it was contrasted to the uncentered definition of alignment. The denominator normalization

in the alignment estimation is useful for using unbounded kernels, as scaling can affect their alignment

score. It is not however necessary when dealing with bounded kernels such as the gaussian. Additional

discussion of centering, as well as its necessity for convergence of alignment to the covariance operator

in feature space can be found in [SSG+12].

2.4 Feature Selection For SVMs
Chapter 1 provided motivations for employing feature selection approaches and gave an overview of

algorithms commonly used in practice. The following sections will cover how some representatives of

the feature selection approaches can be combined with SVMs. After covering some baseline approaches

we provide some criteria for their systematic evaluation and briefly describe the experimental pipeline

used in their comparison.

We have already mentioned that finding the minimal approximately sufficient feature set is a NP -

hard problem. Depending on the different criteria to optimize an approximate solution and the search

strategies employed to achieve that objective we identify three principal approaches towards solving the

feature selection problems, namely Filter Methods, Wrappers, and Embedded Methods.

The following sections present three methods representative of each approach. Our aim, is to pro-

vide sufficient intuition as to how these broad classes of algorithms work and provides a few simple

benchmarks for practical comparison with the methods we will be proposing.

2.4.1 Filtering

Statistical tests are often used by filter methods. Simple statistical approaches that employ Correlation

Coefficients as a measure of linear dependence between variables such as [vVDVDV+02] are ubiquitous

in the biological domain.
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Definition 2.4.1. For a set of samples (x1, y1), . . . , (xN , yN ) of variables X, Y, with an empirical esti-

mate of population means x̄ and ȳ respectively the pearson correlation coefficient, denoted by r is:

r =

∑
i(xi − x̄)(yi − ȳ)√∑
i(xi − x̄)2(yi − ȳ)2

The result, r ∈ [−1,+1] denotes the signed magnitude of linear codependence between the vari-

ables. This can be used effectively as a simple feature selection mechanism by ignoring variables that

display a lower degree of covariance.

Assuming that we have an m × n dimensional matrix of inputs Xtrain and corresponding output

patterns Ytrain as well as validation and test patterns Xval, Yval and Xtest Ytest we would like to find the

combination of features that empirically results in the highest accuracy while relying upon the smallest

number of features.

We can attempt to obtain this combination of features empirically by the following procedure:

For each variable Xi in the training set Xtraincalculate the magnitude of its correlation with the

target Ytrain as:

ri =

∣∣∣∣∣∣
∑
j(xij − x̄i)(yj − ȳ)√∑
j(xij − x̄i)2(yj − ȳ)2

∣∣∣∣∣∣
From a computational standpoint, the calculation of correlation coefficients is very efficient having

a complexity of O(nm). However using this method is effective when the decision rule is linear and

does not account for colinearities or other types of variable interactions which is a limitation in terms of

applicability.

2.4.2 Wrappers

A typical example of a wrapper method is Recursive Feature Elimination, [GWBV02] which is a consid-

erably better fit for svms. Starting with the full set of features, RFE at each iteration greedily eliminates

the variable that has the least contribution in the classification rule. In the primal case, this is equivalent

to removing the variable that has been assigned the least weighting from the learning rule. When using

kernels, the sensitivity to each variable is calculated as the following:

Definition 2.4.2.

∣∣∣‖w‖2 − ‖w(i)‖2
∣∣∣ =

1

2

∣∣∣∣∣∣
∑
k,j

a∗ka
∗
jykyjκ(xk, xj)−

∑
k,j

a
∗(i)
k a

∗(i)
j ykyjκ

(i)(xk, xj)

∣∣∣∣∣∣
Where κ(i)(xj , xk) is the kernel function value for samples xj xk when the ith feature is removed.

The sensitivity of the learning rule to the removal of a specific variable is used in practice by

removing the variable that least affects the learning rule at each iteration of the algorithm. Using this

we can obtain a simple methodology that ranks variables by the sequence in which they are removed

through the following method:

Having ranked the variables according to the sequence they are removed by the above procedure, an

empirical estimate of the algorithm’s performance can be obtained in a similar way to the one indicated
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Algorithm 1 RFE

Input: input data X , labels Y , kernel function κ(x, x′) and regularization parameter c

Initialize: X̄ = Xtrain

repeat

Train a SVM on the set of features X̄

for i = 1 to |X̄| do

Evaluate the criterion:

ri =
∣∣∣‖w‖2 − ‖w(i)‖2

∣∣∣ =
1

2

∣∣∣∣∣∣
∑
k,j

a∗ka
∗
jykyjκ(x̄k, x̄j)−

∑
k,j

a
∗(i)
k a

∗(i)
j ykyjκ

(i)(x̄k, x̄j)

∣∣∣∣∣∣
end for

remove the variable X̄ifor which ri is minimum

until X̄={}

Return: Sequence of removed variables

previously for the use of correlation of coefficients. In practice, RFE variants often remove more than a

single variable at a time improving the running time of the algorithm at the potential cost of arriving at

an inexact solution.

A number of studies have highlighted the method’s capacity to eliminate redundancy and yield

substantial improvements in generalization accuracy. However, there are some important drawbacks

when we consider our desiderata for an effective feature selection mechanism. First and foremost is

the fact that especially in the kernelized case RFE is computationally prohibitive having a complexity of

O(max(n,m)m2) compared toO(nm) for Pearson correlation, while it can also be prone to overfitting.

Its computational complexity has ramifications in any attempt to use RFE on a large dataset, while the

possibility to overfit can affect both the generalisation ability of the resulting classification rule and the

consistency of the algorithm when we consider the possibility of label noise. By label noise we mean

the existence of a number of inaccurate class labels in the dataset, as a result of error in earlier parts of

the experimental design.

2.4.3 Embedded Feature Selection

The Lasso algorithm [Tib96] finds a least-squares solution with additional constraints on the L1-norm of

the parameter vector and can be formulated as finding the solution to the following optimisation problem:

Definition 2.4.3.

minimise‖Xw − Y‖22 + λ‖w‖1

This is another example of the interplay between goodness-of-fit and restrictions on the weight

vector w we previously noted with the SVM algorithm. There are important distinctions to be made

however. The first one is that Lasso attempts to minimise the square loss Lsquare(yi, ŷi) = (yi − ŷi)2,

which is more amenable to regression problems. Secondly, but more importantly in terms of feature

selection, the L1-regularization used by the Lasso, implicitly performs feature selection. This is due
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Figure 2.1: regularization path for lasso on TB dataset. The TB dataset comprises 523 features. Here,

each line represents the computed weight-coefficients for each variable at varying levels of regulariza-

tion. It can be seen that for increasing amounts of regularization, controlled by the parameter λ, the

1-norm of the weight w decreases, resulting in models that rely on fewer variables. The λ parameter

essentially controls the exchange between sparsity and goodness of fit for the Lasso problem.

to its tendency to prefer sparser solutions, thus reducing the number of variables upon which the given

solution is dependent. Still, this approach provides a transparent method of controlling the sparsity-

accuracy tradeoff of the solution through tuning the λ parameter. The computation of the lasso solutions

can be tackled with standard convex optimisation tools, or by customised solvers such as the Least Angle

Regression (LARS)[Efron,2004] algorithm. An advantage of using the LARS algorithm is the fact that it

can compute the entire path of solutions for every possible λ with time requirements that do not exceed

those of obtaining a least squares estimate.

2.4.4 Meta-Selection

The selection consistency of the Lasso estimator has come into focus thanks to work examining the

irrepresentability condition such as [DET06], and [CT07]. Work on the irrepresentability condition of

the Lasso has illustrated that in settings where there are many highly correlated input variables, the Lasso

estimator is only asymptotically identical to the true underlying pattern. In simple terms this means that

when the experimental design includes large numbers of correlated variables, the Lasso estimator may

exhibit inconcistency by only selecting the most correlated variable from a group of highly inter-related

variables. A scenario from computational biology that illustrates this scenario comes from estimating

the impact of peptide families for a feature selection problem. For example cytokines are a protein

family which are often present in inflammatory reactions. When trying to estimate the dependence of

the underlying biological process on cytokines, the Lasso estimator in this scenario could simply select
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the cytokine that appears to have the largest correlation with the process, ignoring other, potentially

informative peptides.

The following definition of the irrepresentability condition adheres to the exposition of [ZY06].

Let w denote the recovered weight vector, with q non-zero entries,wj 6= 0, j ∈ {1, . . . , q}, wj =

0, j ∈ {q + 1, . . . , n}. Let w(1) = (w1, . . . , wq)
T and denote X(1) and X(2) as the first q and n − q

columns of X , and let C = m−1XTX . By setting C11 = m−1XT
(1)X(1) and C21 = m−1XT

(2)X(1), the

irrepresentable condition holds if there exists a number θ, 0 < θ < 1, such that

‖C21C
−1
11 sign(w(1))‖∞ ≤ θ

What we deem meta-selection approaches, typically address this problem by combining a sparse

selection algorithm with bootstrapping. Such an approach is stability selection [MB10], which intro-

duces a very general framework for variable selection and structure estimation. During each iteration

(bootstrap) , the sparse selection algorithm is presented with a subsample of the data. By repeating this

process and keeping track of the number of times each variable was used over the different iterations this

framework builds an estimate for the importance of each feature.

Algorithm 2 Stability Selection

Input: input data X, labels Y, regularization parameter λ, and a number of bootstraps nbootstraps

for i = 1 to nbootstaps do

randomly select a subsample X(i) and corresponding output values, Y(i) of the original dataset X

and Y

solve the lasso problem on the ith bootstrap :

minimise‖X(i)w − Y(i)‖22 + λ‖w‖1

if wj 6= 0 then

Increment the frequency counter for the jth feature by 1.

end if

end for

Return: Inclusion frequencies for variables

Once this process is completed, model selection can be completed in the same way as with the other

methods, using the selection frequency for each variable as a ranking criterion, or setting a threshold on

the frequency of a variable’s selection. What is particularly important however, is the fact that this

approach provides a bound for the expected number of falsely included variables V . For a regularization

parameter λ, the bound takes the following form [MB10]:

E(V ) ≤ 1

2πthr − 1

q2
λ

p
(2.7)

Where:
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• E(V ) is the expected number of falsely included variables.

• πthr is the cutoff frequency for the included variables.

• qλ is the number of selected variables with inclusion frequency at least πthr

• p is the number of variables

2.5 Evaluation
Here, we give a simple overview of how we evaluate various feature selection algorithms. The intro-

duction outlines four particular desiderata for evaluation, namely generalization accuracy, parsimony,

selection consistency and scalability. In this section, we proceed to enumerate direct, or surrogate met-

rics that mirror these properties.

A large number of experiments were performed on synthetic datasets to establish the empirical per-

formance of various feature selection approaches. The use of synthetic datasets enables the production

of more comprehensive results. Along with the accuracy on the test set and the sparsity we also record

the precision and recall of the selection algorithms. Analogously to information retrieval, we define the

precision as the number of the relevant features that were selected from the feature selection procedure

over the total number of features selected and recall as the number of relevant features selected over the

total number of relevant features.

Definition 2.5.1.

Accuracy =
Number of Correctly Classified Samples

Total Number of Samples

Precision =
Number of Correctly Identified Relevant Variables

Total Number of Identified Variables

Recall =
Number of Correctly Identified Relevant Variables

Total Number of Relevant Variables

We include two evaluation metrics that encapsulate the consistency properties of the various algo-

rithms we have tested. The first one is based on the mean variance of the selection of individual compo-

nents represented as binary indicator variables.Letting w′ij be a binary indicator variable that indicates

that feature j was selected during validation i we calculate the mean variance over different variables as

var(w′j)

n

The mean variance however is biased towards non-sparse solutions. In order to account for this bias

we also compute an upper bound on the probabilities of obtaining a particular set of selected weights in

the following way.

Consider k-fold cross validation and let s1, . . . , sk be the size of the sets of features identified in

each fold. Furthermore let su be the size of the union of features selected in at least one fold. For the

fixed set of indices in the union, for a random choice of indicies the probability of set si all falling in this
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set is (s/n)si . Taking a union bound over all of the possible choices of the intersection of size s gives:(
n
su

)
(su/n)

∑
i si

Hence log probability is

log(su/n)
∑
i si + n log n− su log su − (n− su) log(n− su)

(2.8)

Where we have used Stirling’s approximation for ln(n!) ≈ n ln(n)− n

Figure 2.2 presents a number of scenarios to illustrate the two different methods of evaluating the

consistency of selected features,where the relevant features are selected with probability 1, 0.9, . . . , 0.1.

Figure 2.3 illustrates that mean variance is a poor indicator for the consistency of the recovered features,

as solutions that include the relevant features with high probability, often have higher mean variance than

their low-probability counterparts(for an example of this situation see figure 2.3). Figure 2.4 illustrates

how our proposed criterion has a much better correspondence to including a consistent, small number of

variables.

p=1

p=0.9

p=0.8

p=0.7

p=0.5

p=0.4

p=0.3

p=0.2

p=0.6 p=0.1

Figure 2.2: Examples of selected features over 30 cross-validation folds for a toy 20-dimensional dataset.

Black bars indicate that the the feature was selected for that fold(features:left-to-right, folds: top-to-

bottom). We consider the first two features to be relevant, and selected with varying probability between

1 and 0.1. The remaining, features are selected uniformly at random with a probability of 0.05.
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Figure 2.3: Example Mean Variance for different inclusion probabilities of the relevant features in the

scenarios of figure 2.2. This figure illustrates that only estimating the variance of a feature can be

misleading. In this example, selecting the two relevant features with probability 0.9 appears to have

larger mean variance than selecting them with probability 0.1.
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Figure 2.4: Plot for the log likelihood corresponding to the different selection probabilities of the relevant

features. The correspondence between log likelihood and the high selection rate of the relevant compo-

nents is substantially improved. For selection probabilities 0.2 and 0.1 the log likelihood is positive, as

we are estimating an upper bound of the true probability.
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2.5.1 Experimental Set Up & Cross-Validation

The following chapters will entail a substantial ammount of experimentation on both artificial and real

datasets. Unless otherwise stated, the results reported for these experiments will rely on 10-fold cross-

validation. For the sake of completeness we will review this approach here:

1. Split the dataset into a training and testing set for the external validation loop. Typically the data

are divided in 10 folds.

2. Split the inner loop’s dataset into a training and a testing set.

3. Perform feature selection on the inner-loop training set.

4. Validate model on the inner-loop validation set.

5. Repeat the inner process for 10 folds of the inner-loop data.

6. Select the model with the best accuracy. If two or more models are tied for accuracy, select the

one that relies on the smaller number of variables.

7. Use the best parameters for variable selection and kernel width from the inner-loop to test on the

outer loop’s validation set.

8. Repeat this process for 10 folds of the outer loop.

Summary
This chapter presents a short review of max-margin learning and some of the theoretical justifications

behind it. Kernels are introduced as a method to generalize max-margin learning to problems which are

inherently nonlinear, while we also examine how feature selection algorithms fit into this framework.

The chapter concludes with the introduction of the experimental pipeline that is utilised in most of the

experiments for the following chapters as well as the evaluation metrics used.



Chapter 3

Stability Selection

This chapter presents an initial attempt at a three-stage technique for kernel machines, relying on a linear

feature selection method combined with a gaussian kernel prediction rule. A number of factors justify a

careful examination of this approach. Linear variable selection algorithms constitute the most common

approach in many models. The simplicity of the resulting models, coupled with the fact that linear

models are often competitive in terms of generalisation explain their ubiquity.

The approach comprises three steps. Initially, a linear feature selection method is utilised in order

to rank the features. The resulting ranked list is then passed to a method that determines the number of

features to be used in the prediction rule. Finally, the resulting reduced dataset is used in conjuction with

a gaussian kernel SVM in order to infer the final prediction rule.

Typically, selecting the number of features to use is achieved through nested cross-validation. This

chapter explores an alternative approach that utilises greedy maximization of Kernel Target Alignment

(KTA) for the same purpose. Selecting the number of features to use in this approach is equivalent to

greedily removing features from the ranked list until the alignment of a gaussian kernel defined on the

remaining features is maximised. Recent publications ([GBSS05][SSG+12] [CMR12]) have studied the

theoretical properties of KTA suggesting numerous advantages. Here KTA is employed so as to avoid

nesting in the validation phase, which constitutes a substantial overhead in the model selection phase,

even for computationally inexpensive feature selection methods. Overall, this provides a significant

advantage in terms of computational efficiency. What’s more, our experimental comparison of KTA and

nested cross-validation, illustrates improved concistency of the recovered subset of relevant variables,

and competitive generalization accuracy for the various feature selection approaches we examine.

Another focal point of this chapter is stability selection, a meta-selection framework that was intro-

duced in the previous chapter. Previous work on stability selection, focused on its strong probabilistic

guarantees for controlling the false discovery rate. We expand the scope of inquiry by examining its

performance in terms of the criteria we have previously outlined. What’s more, we apply the frame-

work with the use of sparse selection algorithms tailored towards classification, such as LPBoost and

l1-regularized logistic regression. We provide experimental comparisons of stability selection with the

use of correlation coefficients and RFE.

An important aspect of the experiments is assessing the performance of this three-stage approach
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to real world, and potentially non-linear datasets. We provide practical comparisons for the efficacy

of linear feature selection algorithms in this setting, and establish the empirical performance of using

them in conjunction with KTA. We employ real world datasets from computational biology, where the

properties of consistency and sparsity are pivotal.

Our findings indicate that our classification oriented stability selection variants, are competitive with

their more traditional counterparts. The combination of stability selection with kernel target alignment

provides encouraging results. The computational efficiency of this approach, as well as the improved

sparsity and consistency of the resulting models, make this approach an attractive option for the analysis

of large datasets.

3.1 Model Selection with KTA

Section 2.5.1 outlined the use of nested cross validation as a model selection heuristic. In practice, cross

validation is used in order to select the best model parameters from a predefined range as well as provide

an empirical estimate of their impact on the generalization accuracy, through a repeated process of trial

and error. When using cross-validation with a feature selection, nesting is necessary. This, significantly

increases the computational requirements.

Here we briefly outline an alternative model selection criterion that utilises centred KTA

[CSTEK01] [GBSS05] [CMR12]. Previous work in [CMR12] shows that KTA is sharply concen-

trated around its expected value, making its empirical value stable with respect to different splits of

the data. This is a theoretical finding that was reproduced in practice on the datasets of this report. A

significant practical advantage of using alignment instead of cross-validation is the fact that it is possible

to avoid nesting through the use of KTA. We have previously defined the alignment a(Cx, Cy) between

two centred kernel matrices Cx and Cy in chapter 2 as:

〈Cx, Cy〉F
‖Cx‖F ‖Cy‖F

,

where ‖Cx‖F ‖Cy‖F is a normalization term, used for matrices that do not have an upper bound on the

values of their entries. This approach to model selection is further justified by the following well-known

observation that links kernel target alignment with the degree to which an input space contains a linear

projection that correlates with the target.

Proposition 3.1.1. Let P be a probability distribution on the product space X × R, where X has a

projection φ into a Hilbert space F defined by a kernel κ. We have that

√
E(x,y)∼P,(x′,y′)∼P [yy′κ(x,x′)] =

= sup
w:‖w‖≤1

E(x,y)∼P [y〈w, φ(x)〉]
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Proof:

sup
w:‖w‖≤1

E(x,y)∼P [y〈w, φ(x)〉] =

= sup
w:‖w‖≤1

〈
w,E(x,y)∼P [φ(x)y]

〉
=
∥∥E(x,y)∼P [φ(x)y]

∥∥
=

√∫ ∫
dP (x, y)dP (x′, y′)〈φ(x), φ(x′)〉yy′

=
√
E(x,y)∼P,(x′,y′)∼P [yy′κ(x,x′)]

This suggests alignment can be utilised in order to quantify the degree of agreement between a

kernelised representation of a group of features and the target concept. The idea of alignment as a

measure of statistical dependence was illustrated in [GBSS05], where the centred KTA is used as the

empirical estimator for the the Hilbert Schmidt Independence Criterion.

In terms of kernel functions, the Hilbert Schmidt Independence Criterion can be expressed as

HSIC(pxy,F ,G) = Ex,x′,y,y′ [k(x,x′)l(y,y′)]

+Ex,x′ [k(x,x′)]Ey,y′ [l(y,y
′)]

−2Ex,y[Ex′ [k(x,x′)]Ey′ [l(y,y
′)]

where, Ex,x′,y,y′ denotes expectation over independent pairs (x,y) and (x′,y′) and k(x,x′),

l(y,y′) are kernel functions on x and y respectively.

This, combined with a ranking of features resulting from a feature selection procedure, leads to the

simple model selection procedure described in algorithm 3, where HSIC is used to select how many of

the ranked features to use. The results of the process outlined in algorithm 3 depend strongly on the

selection of an appropriate parameter σ for the gaussian kernel that is used for the computation of the

alignment. In practical settings, a large range of numbers is explored for selecting the parameter σ as this

strongly depends on the dimensionality of the dataset under consideration. In the experimental settings

the algorithms select the parameter σ which maximizes alignment. . This is illustrated in figure 3.1.

Using KTA as a model selection criterion as outlined in the above procedure has a number of

advantages. From a practical point of view, it is a very simple process, that involves optimizing for a

single quantity over the entirety of the training data. This adds the substantial benefit of avoiding nesting

in the cross-validation phase. Compared to the overhead of nesting, this is a significant computational

advantage. From a theoretical perspective this approach affords us with a bound on the empirical quantity

of alignment [GBSS05]:

‖HSIC(pxy,F ,G)−HSIC(Z,F ,G‖ ≤
√

log(6/δ)

α2m
+
C

m
(3.1)

In the above equation HSIC denotes the Hilbert Schmidt Independence Criterion, a covariance

operator introduced in [GBSS05]. The empirical estimator for HSIC is the KTA. A similar concentration

property was later reported in [CMR12].
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Algorithm 3 Greedy KTA Model Selection

Input: n-dimensional training set Xtrain,Ytrain and a test-set Xtest,Ytest and a ranked list of the

features r, whose elements are sorted in order of increasing assigned importance according to a feature

selection algorithm.

Initialize:

abest = 0,

rbest = {r1, .., rn}

KY = κY (Ytrain,Ytrain) on the desired outputs Ytrain

CY =
[
I − 11T

m

]
KY

[
I − 11T

m

]
for i = 1 to n do

Compute the centred reduced input kernel:

X̄ = Xtrain[i : n, :]

KX = κX(X̄, X̄)

CX =
[
I − 11T

m

]
KX

[
I − 11T

m

]
ai =

〈Cx,Cy〉F
‖Cx‖F ‖Cy‖F

if ai ≥ abest then

abest ← ai

rbest ← {ri, . . . , rn}

end if

end for

Use the reduced set rbest to obtain a prediction on Xtest

Figure 3.1: Dependence of target alignment on the σ parameter of the gaussian kernel. For increasing

number of irrelevant features, smaller values of σ tend to produce higher alignment. This appears to

stem from increasing the effective dimensionality, and has been also observed in ([SFG+09], sec. 5).
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3.2 Extending Stability Selection

This section presents some immediate extensions to the stability selection framework, which was pre-

sented in section 2.4.4. To reiterate, stability selection utilises bootstrapping in combination with a

sparse selection algorithm and uses the inclusion frequency of the selected variables over a number of

bootstraps as a feature selection criterion. In the original presentation, stability selection relies on the

Lasso for sparse selection.

3.2.1 loss functions for classification

The Lasso follows the familiar pattern of minimising the sum of a loss function, ‖Xw − Y ‖22 with the

addition of a constraint on the 1-norm of the recovered solution λ‖w‖1, where λ is a regularization

parameter. The choice of loss function should reflect the real world semantics of the problem. For

example, the square loss is a sensible choice in regression problems, where the minimisation of the

discrepancy between real number values and the predicted output is the target.

The target in classification is optimizing the 0-1 loss, which is equivalent to maximising the accu-

racy. As direct optimization of the 0-1 loss is computationally intractable, in practice a proxy loss which

is easier to optimise is used. The square loss is a valid choice of proxy for the 0-1 loss. However, as

classification problems comprise a large number of the problems encountered in practice, sparse selec-

tion algorithms that are better tailored towards classification are highly desirable. Two such examples

are sparse logistic regression and LPBoost.
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Figure 3.2: Different loss functions for classification. The lasso minimises the square loss (blue). The

0-1 loss function(black), which is directly related to accuracy, is NP-hard to optimise. Two loss functions

commonly applied to classification problems are the logistic loss (magenta), and the hinge loss(red), that

act as proxies for the 0-1 loss.
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l1 regularized logistic regression

For the purposes of classification we can consider the logistic model, which has the form:

p(yi|xi) =
exp(yi(xTi w + b))

1 + exp(yi(xTi w + b))

Where:

• p(yi|xi) is the conditional probability of yi given xi

• w is the weight vector

• b is the intercept, or bias term

The parameters of the logistic regression function are optimised by maximising the likelihood of the

training data in the model. This is equivalent to maximising the log likelihood given by the expression

1

m

m∑
i=1

log(1 + exp(−yi(xTi w + b)))

Similarly to the approach taken for LASSO, sparsity in the case of penalised logistic regression can

be enforced by adding an l1-regularization term in the objective function, thus obtaining the following

problem:

minimize
1

m

m∑
i=1

log(1 + exp(−yi(xTi w + b))) + λ‖w‖1 (3.2)

LPBoost

Another approach suitable for classification problems would be trying to minimize the hinge loss lhinge:

Lhinge = max(0, 1− yi〈w,xi〉)

LPBoost [DBST02], is a sparse selection algorithm that minimises the hinge loss and can be used in the

stability selection framework. LPBoost attempts to build a classification rule as a weighted sum of weak

learners h(x). A weak learner is a classifier that depends on a small subset of features.As an example

consider the stump hypothesis on a single thresholded feature j

hj(xij) =

 1 if xij ≥ θ

−1 otherwise

Denoting by H the matrix with elements hij = hj(xij) LPBoost can be expressed as the following

linear program:

minimizeu,ββ

subject to∑
i,j uiyiHij ≤ β∑

ui = 1

(3.3)

By using individual features as weak predictors, LPBoost is functionally equivalent to the 1-norm,

soft margin SVM.
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minimizew,b,γ,ξ − γ + C
∑n
i=1 ξi

subject to

yi(〈w, xi〉+ b) ≥ γ − ξi
i = 1, ...,m

ξi ≥ 0

‖w‖1 = 1

(3.4)

Where C a regularization parameter.

3.3 Experiments & Results
This section is concerned with the empirical performance characteristics of our proposals. Preceding

sections presented theoretical intuitions for classification oriented variants of stability selection. Addi-

tionally, they provide some theoretical justification for the use of KTA as a model selection criterion,

particularly in terms of computational economy and statistical properties. In all cases the linear selection

methods are used to derive a set of features that are subsequently used in a Gaussian kernel. Here, we

provide a number of experiments on artificial and real world datasets that attempt to characterize these

approaches in terms of accuracy, sparsity and consistency.

To this end, we conducted a range of experiments employing Lasso stability selection and our pro-

posed classification-oriented stability selection variants relying on l1-logistic regression and LPBoost.

Our benchmarks also employ correlation coefficients and linear RFE. In order to benchmark these ap-

proaches, we include two baseline comparisons. The first involves using the KTA model selection on a

random ordering of features, and secondly a fixed randomly chosen set of 10% of the features. It must

be noted that despite some small theoretical motivations, the approach of using linearly ranked features

to order features for a nonlinear selection algorithm remains a heuristic, as these motivations do not

guarantee the optimality of this approach.

In the case of the stability selection variants, we employed the approach for 1000 bootstraps, em-

ploying a range of different regularization parameters. We report two sets of results, resulting from our

two different model selection procedures, and compare the experimental performance of the two ap-

proaches. In one approach, the final model parameters where set through nested cross-validation, while

the other employs kernel target alignment for the same purpose, by choosing the kernel that maximises

alignment, over the ordered set of features for a user-specified range of kernel parameters σ.

3.3.1 Synthetic Data

We generated six synthetic datasets in order to carefully illustrate the properties of the different feature

selection algorithms. All six synthetic datasets contain 300 samples with a dimensionality of 200 fea-

tures. With the exception of the XOR dataset, all other datasets were designed to contain 10 relevant

variables for simplicity.

Along with the accuracy on the test set and the sparsity, we also record the precision and recall of
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the selection algorithms. Analogously to information retrieval, we define the precision as the number

of the relevant features that were selected from the feature selection procedure over the total number of

features selected and recall as the number of relevant features selected over the total number of relevant

features. We include results on the consistency of selected features for the synthetic experiments. Finally

table 3.2 compares the decrease in time requirements for different algorithms when using KTA in place

of cross-validation.

Table 3.1: Class proportions for synthetic data.

Dataset +1 -1

Fake Class 49.33 (148) 50.67 (152)

Linear Zhang - Feature Noise 51.67 (155) 48.33 (145)

Linear Zhang - Sample Noise 48.00 (144) 52.00 (156)

Linear Weston 53.67 (161) 46.33 (139)

Non-Linear Weston 48.67 (161) 51.33 (154)

Xor 48.00 (144) 52.00 (156)

3.3.1.1 Fake Class

The Fake Class dataset benchmark (figure 3.3 ), can be thought of as a negative control, as no supervised

feature selection method is expected to find a meaningful relationship. As such, the low performance of

all methods on all fronts is to be expected. In terms of numbers of selected features for the fake class

dataset, none of the two methods to selected the number of variables appears to have a distinct advantage

in terms of sparsity. Precision-wise, all methods, with the exception of linear RFE used in conjuction

with nested cross-validation are indistinguishable, and no better than random guessing. Most methods

perform similarly with stability selection in conjunction with cross validation having a slight edge where

recall is concerned. Finally in terms of mean variance and log likelihood of the selected features for

the fake class dataset, models resulting from KTA appear more stableand less random than their nested

cross validation counterparts. Comparing the alignment criterion on a random ranking of the features

with randomly selecting 10% of the features, it appears that selecting for alignment in a random ordering

includes a substantially larger number of variables, without any noticeable effects on performance.

3.3.1.2 Linear Zhang With Feature Noise

The performance picture is much improved in the linear Zhang dataset with feature noise (figure 3.4). In

terms of generalization accuracy, most methods are indistinguishable, with all methods performing sub-

stantially better than randomly selecting 10% of the features, including using alignment to select a model

using a random ranking of variables. The number of selected features tends to be substantially smaller

for the alignment based methods, with the linear RFE producing the sparsest pattern. The reliance on

larger number of features, leads the cross-validation based variants to diminished precision, whereas the

alignment-based models achieve perfect precision. Conversely however, this means that the recall of the
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Figure 3.3: Results for the fake class dataset. Rand selects a random 10% of the variables in the cross-

validation setting, or the subset of a random ordering of variables which maximises alignment in the

alignment case.

alignment based models, is decreased compared to their CV-derived counterparts. Finally, KTA based

models outperform their cross-validation counterparts with a large margin, in terms of consistency, and

appear to have very similar variance and likelihood.

3.3.1.3 Linear Zhang - Sample Noise

The linear Zhang dataset with sample noise(figure 3.5, paints a similarly indistinguishable picture in

terms of classification accuracy. Yet again, cross validation relies on more features on average and

includes irrelevant features in the final model. On the other hand, alignment produces sparser models,

and in three cases, (correlation coefficients, l1-logistic regression & LPBoost) produces models with

perfect precision and recall. Lasso-Stability selection and linear RFE produced sparser models, a fact

which also appears to have a very small effect in their generalization performance. Alignment based

models appear more stable with three methods consistently identifying all the relevant features without

variation.
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Figure 3.4: Results for the Linear Zhang with Feature Noise. Rand selects a random 10% of the vari-

ables in the cross-validation setting, or the subset of a random ordering of variables which maximises

alignment in the alignment case.

3.3.1.4 Linear Weston

The linear Weston dataset (figure 3.6) provides an example were the aggressive resulting sparsity for

the alignment models can have a detrimental effect in generalization accuracy. In particular, correlation

coefficients and linear RFE are sparser, producing models relying on 1.3 and 1.1 variables on average

respectively. However, this comes at the cost of reduced accuracy. Once again, alignment leads to perfect

precision, a feat that only LPBoost stability selection reproduced in the cross validation setting. It is also

interesting to note that in this benchmark, KTA based correlation coefficients and linear RFE models

have substantially less consistent behaviour than their cross-validation based counterparts.

3.3.1.5 Non Linear Weston

The two nonlinear datasets provide a more interesting test scenario. In the case of the nonlinear Weston

dataset (figure 3.7), with the exception of RFE, all methods perform abysmally on all captured metrics.

RFE produced the sparsest solutions in both the cross validation and alignment setting, while managing

to identify some of the relevant variables. In conjuction with alignment based model selection, RFE
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Figure 3.5: Results for the linear Zhang dataset with sample noise. Rand selects a random 10% of the

variables in the cross-validation setting, or the subset of a random ordering of variables which maximises

alignment in the alignment case.

benefits in terms of precision, something which is reflected in the fact that this is the clear winner in

terms of both sparsity and generalization accuracy. Interestingly, using KTA on randomly ranked features

appears to capture some of the dependencies, however the models also include many irrelevant features,

with the higher signal to noise-ratio meaning that it fails to produce the generalization accuracy of RFE.

3.3.1.6 XOR

The case of the XOR dataset (figure 3.8) illustrates the potential benefits of using alignment as a model

selection criterion. The accuracy for the models relying on alignment is significantly higher than their

nested cross validation counterparts. Using alignment contributes to improved recall, which is a neces-

sary condition for capturing the interdependence between features the model is trying to predict. While

most of the nested cross-validation models are not substantially more precise from selecting variables at

random, this problem is improved through the use of KTA. In contrast to the non-linear Weston dataset,

RFE is the worst performer for this dataset. All approaches exhibit substantial variance, however KTA
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Figure 3.6: Results for the linear Weston dataset. Rand selects a random 10% of the variables in the

cross-validation setting, or the subset of a random ordering of variables which maximises alignment in

the alignment case.

based methods indicating a slightly improved behaviour, with LPBoost Stability Selection being the

overall most stable.

Overall, KTA nearly universally improves the consistency of the recovered solutions, showing sig-

nificantly smaller variance. This is strongly illustrated in the linear Zhang with sample noise and linear

Weston datasets where l1-logistic regression and LPBoost stability selection show no variation. In the

case of Linear Zhang, the same behavior is exhibited by correlation coefficients. There are two impor-

tant exceptions to this trend, in the case of the linear Weston (figure 3.6) dataset, where linear RFE and

correlation coefficients exhibit a switching behavior in terms of the solutions they recover compared to

their counterparts resulting from cross-validation. Here, the aggresive sparsity and switching behavior

has catastrophic results in the generalization accuracy.

Table 3.2 provides the fold-change when employing KTA instead of nested cross-validation for

model selection purposes. All algorithms benefit substantially with the stability selection variants close

to the 10-fold theoretical improvement in speed.
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Figure 3.7: Results for the non-linear Weston dataset. Rand selects a random 10% of the variables in the

cross-validation setting, or the subset of a random ordering of variables which maximises alignment in

the alignment case.

Table 3.2: Fold Decrease for the time requirements of different methods when using alignment instead

of cross validation

Algorithm Fold Decrease

Corr Coeff. 6.05 ± 0.29

StabSel-Lasso 9.38± 0.70

StabSel-LogReg 9.32 ± 0.32

StabSel-LPBoost 9.9737 ± 1.26

Linear RFE 7.6779 ± 0.05
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Figure 3.8: Results for the XOR dataset. Rand selects a random 10% of the variables in the cross-

validation setting, or the subset of a random ordering of variables which maximises alignment in the

alignment case.

3.3.2 Real Data

3.3.2.1 TB - Task 1

In the first TB Classification task(figure 3.9), most methods perform similarly in terms of generalization,

with LPBoost stability selection relying on cross validation for model selection being the winner in terms

of generalization accuracy. It is also worth noting that randomly selecting 10% of the variables gives

a non-trivial result. This has largely to do with the fact that a large number of variables exhibit near

equicorrelation with the target output, however using KTA for model selection on the randomly ranked

features does outperform the random 10% benchmark in terms of generalization. LPBoost stability

selection is also the winner in terms of sparsity among the models resulting from cross-validation relying

on 90.4 features on average. The models relying on alignment, are in many cases competitive in terms

of generalization performance, relying however on an order of magnitude fewer features, which is a key

element in assisting interpretation. Correlation coefficients and linear RFE result in the sparsest models
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on average.
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Figure 3.9: Results for the first TB task. Rand selects a random 10% of the variables in the cross-

validation setting, or the subset of a random ordering of variables which maximises alignment in the

alignment case.

3.3.2.2 TB - Task 2

Interestingly, on the second TB classification task (figure 3.10), the best performer in terms of accuracy

is simple correlation coefficients with an average accuracy of 82.9, although most methods are indis-

tinguishable. From the stability variants, LPBoost is yet again the best performer, with an accuracy of

81.8 when combined with alignment, being also the sparsest stability variant relying on 13.4 features for

prediction on average. The sparsest overall method is yet again correlation coefficients, this time relying

on an average of 6.5 features. KTA based models are universally sparser, and tend exhibit lower variance

than their cross validation derived counterparts, with correlation coefficients being the overall sparsest.

3.3.2.3 TB - Task 3

On the third TB Task (figure 3.11), correlation coefficients remain the sparsest method, using on average

8.3 features. The winner in terms of generalization accuracy is Lasso-stability selection, combined with

alignment with an average accuracy of 86%. Once more the other stability variants remain competitive

in terms of accuracy when used in conjunction with alignment but rely on a substantially smaller number

of features. KTA based models are sparser than their nested cross validation counterparts, with correla-

tion coefficients being the overall sparsest. KTA-based LPBoost and l1-regularized logistic regression

stability selection models appear to be the most consistent. Interestingly correlation coefficients seems

to be worse in terms of consistency when combined with KTA.
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Figure 3.10: Results for the second TB task. Rand selects a random 10% of the variables in the cross-

validation setting, or the subset of a random ordering of variables which maximises alignment in the

alignment case.
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Figure 3.11: Accuracy results for the third TB task. Rand selects a random 10% of the variables in the

cross-validation setting, or the subset of a random ordering of variables which maximises alignment in

the alignment case.
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3.3.2.4 TB - Task 4

The next two benchmarks are more interesting as they model a substantially more nuanced problem of

predicting the presence of a latent TB infection in an otherwise seemingly healthy population. This

explains the low classification accuracy all across the board for the fourth TB classification task (figure

3.12), as latent infection should not be expected to have a systematic impact on the differentiation of

the blood-plasma proteomic profile. Accordingly most methods barely manage to achieve an accuracy

of 60. In fact, only correlation coefficients combined with nested cross-validation is the only method

that clearly outperforms using a random 10% subset of the features. Even though KTA-based models

are sparser and more stable than their cross-validation counterparts, this property does not translate into

substantial accuracy gains.
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Figure 3.12: Results for the fourth TB task. Rand selects a random 10% of the variables in the cross-

validation setting, or the subset of a random ordering of variables which maximises alignment in the

alignment case.

3.3.2.5 TB - Micro-Array

The accuracy picture for the same classification task changes dramatically in the TB micro-array dataset

(figure 3.13). Ostensibly, this stems from the better fit to the classification problem, resulting from the

improved resolution of the underlying technology. This task illustrates the negative effects of aggressive

sparsity, that were previously seen for some of the alignment models in the Linear Weston dataset. On

average, none of the models selected through alignment use more than three features. This is reflected

in the fact that the two densest models for the case of alignment, the one for logistic regression, and the

linear-rfe, are the only ones that achieve a performance that touches 80.

This behavior is further reflected in the recall consistency results. In all other real world experi-

ments, the likelihood for the alignment-based models was significantly smaller than their cross-validation
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based counderparts,with the exception of the catastrophic failures for correlation coefficients and linear

RFE in the linear Weston dataset. The micro-array dataset is another case where we observe this be-

havior, where alignment will greedily select a very small group of variables, that will be substantially

different among different folds of the data. This observation while troublesome, empirically illustrates

the importance of consistency, something we outlined in the desiderata. It can further be seen as validat-

ing the observation that the consistency of models through different folds of data, should be one of the

guiding properties of feature selection.
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Figure 3.13: Results for the TB micro-array task. Rand selects a random 10% of the variables in the

cross-validation setting, or the subset of a random ordering of variables which maximises alignment in

the alignment case.

3.4 Discussion
In terms of feature selection, our experimental results indicate that stability selection is a potent frame-

work for datasets arising in computational biology. In the performed experiments there was no clear

winner in terms of generalization accuracy among the different stability selection variants. In terms of

achieved sparsity the various stability selection approaches achieve somewhat similar results, with LP-

Boost solutions appearing sparser in a number of settings. In terms of computational efficiency, stability

selection methods outperform RFE, with the additional benefit that they are embarrassingly(this is used

a lot as a term) parallel.

Using Kernel Target Alignment for model selection provides a significantly faster method and our

experimental results on the synthetic benchmarks indicate substantially sparser models leading to im-

proved precision in terms of the selected variables. Throughout our experiments, the only case where the

achieved sparsity of the two approaches was comparable was the XOR dataset. It is noteworthy however
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that in this case, the similar size to the KTA based model, leads to recovering both of the relevant vari-

ables. However, owing to the presence of a large number of irrelevant variables, this only led to modest

gains in terms of generalization.

KTA based models were also more consistent in terms of variable selection for most of the exper-

imental comparisons. The two datasets where the KTA derived models exhibited instability in terms of

recovery are the same two datasets where the generalization accuracy for the alignment-derived models

noticeably deteriorated (figures 3.6 and 3.13). This observation lends further credence to the importance

of consistency for variable selection in our proposed framework.

Correlation coefficients, and linear RFE are two widely adopted feature selection methods which

were used as baseline methods for the experimental comparisons. Both methods were competitive

throughout all synthetic dataset benchmarks with the already noted exception of the linear Weston

dataset, where both methods produced models that were too sparse when combined with KTA. Lin-

ear RFE is also the only method to successfully identify part of the structure of the non-linear Weston

dataset, which explains why it was the only method to achieve an accuracy surpassing 70 when combined

with alignment. Among all the methods tested, RFE appears to be the most sensitive to small changes in

the dataset, something which is reflected by its being constantly the least consistent method in terms of

the consistency of the recovered solutions.

Throughout most of the experiments, using KTA results in very sparse models. If a small num-

ber of variables is capable of explaining the majority of the observations, than the KTA based models

have distinct advantages over using nested cross validation, with similar accuracy. However, when this

condition does not hold, the generalization accuracy can diminish substantially. Interestingly in the two

notable cases of the linear Weston dataset, and the TB micro-array dataset, this is accompanied with

diminished consistency for the KTA based models, in contrast to the experiments with nearly all other

datasets. This fact suggests that the consistency of the selected models to some degree can act as a proxy

for their generalization ability.

This chapter attempts to establish the ability of the three step approach to generalise to real world

and potentially non-linear datasets. The methods we examined are not designed to cope with non-linear

datasets, something that the non-linear synthetic benchmarks strongly illustrated. The same experiments

however exhibited somewhat improved behavior when using the alignment of a nonlinear kernel as the

model selection criterion. This observation further underlines the possibility of directly optimising the

alignment of a non-linear kernel function, something which is the central theme of the next chapter.



Chapter 4

Randomised Feature Selection

Experiments with the linear feature selection methods in the previous chapter illustrated their inability to

effectively identify nonlinear combinations of features. Failing to identify such interrelation has impor-

tant ramifications in various practical settings, where a single variable may exhibit weak influnence on a

classification rule, but its effect when combined in groups of two or more independent variables becomes

significantly more pronounced. An example of this in the context of genome-wide association studies is

[KTS+09], where it is shown that three-variable interactions can identify switching mechanisms of two

genes’ expressions under the influence of a third gene. Some results in the synthetic datasets indicated

that using the alignment of a combination of features in a RKHS, can yield some information and po-

tentially identify non-linear interactions. This chapter examines methods that try to optimize directly the

alignment of a subset of variables.

Kernel methods excel in modelling non-linear relations, and consequently a number of kernel-based

feature selection algorithms have been proposed. Early propositions, such as RFE [GWBV02] can be

computationally prohibitive. This is also true of more recent approaches for non-linear feature selection

employing greedy optimisation of Centred Kernel Target Alignment(KTA). Although such methods ex-

hibit strong results in terms of generalisation accuracy and sparsity, their application to high-dimensional

datasets can become computationally prohibitive. Meanwhile, attempts to learn a convex combination

of low-rank kernels may fail to encapsulate nonlinearities in the underlying relation[Cortes11]. Recent

approaches using explicit kernel approximations can capture such non-linear relations[Bach, 2008], but

increase the storage and computational requirements. The successful use of a kernel-based feature se-

lection methods is a matter of balance.

This chapter proposes a randomised feature selection algorithm, with attractive scaling properties.

It examines the use of centred KTA as a measure of dependence on RKHS, and reiterates the properties

of the deterministic, greedy approaches in [SSG+12]. It then proceeds to show how randomization and

bootstrapping can be combined with KTA to great effect by introducing a randomized algorithm that

takes variance information into consideration.

An outline analysis suggests the possibility of deriving rigorous guarantees on the performance of

the algorithm. The experimental results on real and artificial data, show that the method successfully

identifies informative combinations of features, often outperforming its deterministic counterparts.
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4.1 Related Work
Previous chapters introduced the Hilbert Schmidt Independence Criterion(HSIC). As a cross-covariance

operator, HSIC functions analogously to covariance, but in reproducing kernel hilbert spaces. In statis-

tics, covariance functions as a measure of statistical dependence, quantifying the extent to which two

random variables x,y vary together. In the case that x and y are independent, their covariance vanishes.

cov(x,y) = Ex,y[{x− E[x]}{y − E[y]}] = Ex,y[xy]− E[x]E[y]

And so x,y are independent if

E[xy] = E[x]E[y] or alternatively cov(xy) = 0

The use of Hilbert-Schmidt norms as a measure of statistical dependence was introduced in

[GBSS05]. In terms of kernel functions, the Hilbert Schmidt Independence Criterion can be expressed

as

HSIC(pxy,F ,G) = Ex,x′,y,y′ [k(x,x′)l(y,y′)]

+Ex,x′ [k(x,x′)]Ey,y′ [l(y,y
′)]

−2Ex,y[Ex′ [k(x,x′)]Ey′ [l(y,y
′)]

where, Ex,x′,y,y′ denotes expectation over independent pairs (x,y) and (x′,y′) and k(x,x′),

l(y,y′) are kernel functions on x and y respectively. The empirical estimator for this quantity is the

centred KTA, whose computation in terms of previously computed gram matrices was introduced in def-

inition 2.3.1. Furthermore, section 3.1, introduced a key property for the concentration of the empirical

estimate, which is reiterated here:

‖HSIC(pxy,F ,G)−HSIC(Z,F ,G)‖ ≤
√

log(6/δ)

α2m
+
C

m

The above suggests that the empirical estimate will converge to the population estimate at rate

1/
√
m, a property that guarantees the detection of statistical dependence with high probability. This

property is illustrated for varying degrees of dependence in figure 4.1. [SSG+12] illustrates that greedy

optimization of the HSIC is an effective methodology for feature selection, proposing two variants,

FoHSIC and BaHSIC relying on forward and backward selection respectively.

FoHSIC (algorithm 4), starts with an empty set of variables and at each iteration the variable whose

inclusion maximises the KTA to the output kernel is selected and added to the set. FoHSIC repeats

this procedure until it has included the entire set of variables. BaHSIC (algorithm 5), in essence is

the functional converse of FoHSIC. Starting with the full set of features, at each iteration the algorithm

removes the feature whose exclusion maximises, the KTA to the output kernel, repeating the process until

all variables have been removed from consideration. FoHSIC is more efficient in terms of computation.

This however, comes at a price, as unlike BaHSIC features are assessed individually and without the

context of all the other present features. When considering inter-relations between variables this can be

significantly detrimental, something that will be shown in the experimental results.
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Figure 4.1: Mean alignment as a function of sample size. For each sample size the mean alignment is

computed on 500 bootstraps of the data. Black line corresponds to a a random 25-dimensional multi-

variate gaussian. Red line depicts the mean alignment of 2 relevant variables generated according to the

[WMC+00], and 23 gaussian probes. Green depicts the alignment for only the two relevant features.

The influence of self-interaction terms (the diagonal terms cxii
cyii ) decreases for larger sample sizes,

leading to the displayed drop here.

Algorithm 4 FohSic

Input: Full set of variables S, input kernel function κ(x, x′), output kernel KY and and kernel band-

width parameters Ξ

Initialize: S† = {}

repeat

σ ← Ξ

I ← argmaxI
∑
j∈I HSIC(S† ∪ {j},KY , σ), I ⊂ S

S ← S \ I

S† ← (S†, I)

until S={}

Return: Sequence of included variables S†
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Algorithm 5 BahSic

Input: Full set of variables S, input kernel function κ(x, x′) output kernel KY and kernel bandwidth

parameters Ξ.

Initialize: S† = {}

repeat

σ ← Ξ

I ← argmaxI
∑
j∈I HSIC(S† \ {j},KY , σ), I ⊂ S

S ← S \ I

S† ← (S†, I)

until S={}

Return: Sequence of dropped variables S†

4.2 A randomized algorithm for feature selection
In principle feature selection using HSIC in combination with greedy forward or backward selection is

an effective strategy for the elucidation of nonlinear feature interactions. However, in practice greedy

schemes for variable selection, and especially those relying on backward elimination, become compu-

tationally prohibitive for large numbers of features. The following section develops some key ideas,

that can be combined to produce a weighting scheme for feature selection employing HSIC. Instead of

relying on a greedy scheme, this proposal employs randomization to elicit information on the relevance

of features. Combining the resulting fast weighting scheme with backward elimination leads to a fast

algorithm for nonlinear feature selection.

4.2.1 Development of key ideas

The core of the proposed approach remains the use of centred kernel target alignment as an empirical

estimator for HSIC. Substantial evidence in support of HSIC as a feature selection criterion are presented

in [SSG+12], along with the two greedy optimization procedures of FoHSIC and BaHSIC.

The main novelty of our proposal is the use of randomization in order to produce an estimate of the

importance of each variable. At each stage, the algorithm randomly splits the variables in two groups of

equal size. This random splitting is repeated over a number of bootstrapped samples of the data, and the

algorithm computes the alignment for each resulting random half of the variables over these bootstraps.

The final constituent of the method is bootstrapping. Certainly, the use of subsampling is

widespread in statistical modelling where it is commonly used for the estimation of confidence intervals

and statistical testing. Its use in this proposal however, is motivated by its prominence in the stability

selection framework [MB10]. Subsampling lies at the core of stability selection where it is combined

with sparse selection algorithms in order to detect dependence relations that consistently occur in a large

fraction of the resulting selection sets. What’s more, figures 4.2 strongly suggests that for samples cor-

responding to higher signal-to-noise ratios, the variance of the resulting alignment seems to be much

higher, something which is demonstrated visually by their substantially increased spread in both figures.

This work, proposes the synthesis of the aforementioned approaches through a randomised fea-
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ture selection algorithm based on estimating the statistical dependence between random subspaces of

bootstraps of the dataset in RKHS. Having completed introduction of the individual constituents the

following section will examine the properties of the resulting algorithm.
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Figure 4.2: Scatter plot of the resulting alignment over random splits of variables for an XOR dataset

with the additional inclussion of a varying number of irrelevant variables (blue n=5, green n=10, red

n= 15, light blue n= 20, magenta n = 25, bootstrap size = 100 samples). Over the different number of

dimensions, a common pattern emerges: Samples concentrated over the lower left corner correspond to

estimates in which each random split of the variables contains a single relevant feature, resulting in lower

alignment for both splits. The bottom-right and top-left corners contain cases where one split contains

both of the relevant variables, resulting in a visible hike in alignment for that split. It is also particularly

instructive to notice that for samples corresponding to higher signal-to-noise ratios, the variance of the

resulting alignment seems to be much higher, further justifying subsampling.

4.2.2 A randomized algorithm for feature selection

The approach we will take will be based on observations that link kernel target alignment with the degree

to which an input space contains a linear projection that correlates with the target, such as Propositions

3.1 and 3.1.1. These propositions suggest that measuring kernel target alignment can detect useful repre-

sentations. For non-linear functions the difficulty is to identify which combination of features creates a

useful representation. Section 4.3 illustrates how this problems can be addressed through randomization

and sampling. Here, we solidify the notion sampling subsets S of features and assessing whether on

average the presence of a particular feature i contributes to an increase ci in the average centred kernel

target alignment. In this way we derive an empirical estimate of a quantity we will term the contribution.
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Definition 4.2.1. The contribution ci of feature i is defined as

ci = ES∼Si [Ex,x′,y,y′ [κS(x,x′)κ′(y,y′)] + Ex,x′ [κS(x,x′)]Ey,y′ [κ
′(y,y′)]

−2Ex,y[Ex′ [κS(x,x′)]Ey′ [κ
′(y,y′)]

−ES′∼S\i [Ex,x′,y,y′ [κS′(x,x
′)κ′(y,y′)] + Ex,x′ [κS′(x,x

′)]Ey,y′ [κ
′(y,y′)]

−2Ex,y[Ex′ [κS′(x,x
′)]Ey′ [κ

′(y,y′)],

where κS denotes the (non-linear) kernel using features in the set S (in our case this will be a Gaussian

kernel with equal width), κ′ is a kernel defined on the target outputs, Si the uniform distribution over sets

of features of size bn/2c+ 1 that include the feature i, S\i the uniform distribution over sets of features

of size bn/2c that do not contain the feature i, and n is the number of features. We further introduce the

notation

A(S) = ES∼Si [Ex,x′,y,y′ [κS(x,x′)κ′(y,y′)] + Ex,x′ [κS(x,x′)]Ey,y′ [κ
′(y,y′)]

−2Ex,y[Ex′ [κS(x,x′)]Ey′ [κ
′(y,y′)]

for the centred kernel target alignment of the kernel defined on a set S of variables. Hence, we can write

ci = ES∼Si [A(S)]− ES′∼S\i [A(S′)] = Ai −A\i, (4.1)

where Ai = ES∼Si [A(S)] and similarly for A\i.

Note that the two distributions over features Si and S\i are matched in the sense that for each S

with non-zero probability in S\i, S ∪ {i} has equal probability in Si. This approach is a straightforward

extension of the idea of BaHsic [5].

We will show that for variables that are independent of the target this contribution will be negative.

On the other hand, provided there are combinations of variables including the given variable that can

generate significant correlations then the contribution of the variable will be positive. We now consider

the problem of specifying whether a random variable is irrelevant. Ideally we would define a random

variable to be irrelevant if it was independent of the target outputs Y , given the values of all other relevant

variables. However in order to make the analysis tractable we make a stronger assumption in terms of

irrelevance.

Definition 4.2.2. We will define an irrelevant feature to be one whose value is statistically independent

of the label and of the other features.

We have previously noted that in terms of kernel functions, the Hilbert Schmidt Independence

Criterion can be expressed as:

Ex,x′,y,y′ [κ(x,x′)κ′(y,y′)] + Ex,x′ [κ(x,x′)]Ey,y′ [κ
′(y,y′)]− 2Ex,y[Ex′ [κ(x,x′)]Ey′ [κ

′(y,y′)].

We would like an assurance that irrelevant features do not increase centred kernel target alignment. This

is guaranteed for the Gaussian kernel by the following result.
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Proposition 4.2.3. Let P be a probability distribution on the product space X × R, where X has a

projection φS into a Hilbert space F defined by the Gaussian kernel κS on a set of features S. In

addition, define the kernel κ′ on the targets y. Suppose a feature i 6∈ S is irrelevant. We have that

Ex,x′,y,y′ [κS∪{i}(x,x
′)κ′(y,y′)] + Ex,x′ [κS∪{i}(x,x

′)Ey,y′ [κ
′(y,y′)]− 2Ex,y[κS∪{i}(x,x

′)]Ey′ [κ
′(y,y′)]

≤ Ex,x′,y,y′ [κS(x,x′)κ′(y,y′)] + Ex,x′ [κS(x,x′)Ey,y′ [κ
′(y,y′)]− 2Ex,y[κS(x,x′)]Ey′ [κ

′(y,y′)]

Proof. Since the feature is independent of the target and the other features, functions of these features

are also independent. Hence,

Ex,x′,y,y′ [κS∪{i}(x,x
′)κ′(y,y′)] + Ex,x′ [κS∪{i}(x,x

′)Ey,y′ [κ
′(y,y′)]− 2Ex,y[κS∪{i}(x,x

′)]Ey′ [κ
′(y,y′)]

= α (Ex,x′,y,y′ [κS(x,x′)κ′(y,y′)] + Ex,x′ [κS(x,x′)]Ey,y′ [κ
′(y,y′)]− 2Ex,y[Ex′ [κS(x,x′)]Ey′ [κ

′(y,y′)])

≤ Ex,x′,y,y′ [κS(x,x′)κ′(y,y′)] + Ex,x′ [κS(x,x′)]Ey,y′ [κ
′(y,y′)]− 2Ex,y[Ex′ [κS(x,x′)]Ey′ [κ

′(y,y′)]

for α = E(x,y)∼P,(x′,y′)∼P [exp(−γ(xi − x′i)2)] ≤ 1.

In fact the quantity α is typically less than 1 so that adding irrelevant features decreases the align-

ment. Our approach will be to progressively remove sets of features that are deemed to be irrelevant,

hence increasing the alignment together with the signal to noise ratio for the relevant features. Figure 4.3

shows how progressively removing features from a learning problem whose output is the XOR function

of the first two features both increases the alignment contributions and helps to highlight the two relevant

features.

We now introduce our definition of a relevant feature.

Definition 4.2.4. A feature i will be termed η-influential when its contribution ci ≥ η > 0.

So far have only considered expected alignment. In practice we must estimate this expectation from

a finite sample. This part of the analysis is an application of U-statistics that ensures that with high

probability for a sufficiently large sample from Si and S\i and of samples from P (whose sizes depend

on η, probability δ, the number k of η-influential variables and the number T of iterations) an empirical

estimate of the contribution of an η-influential variable will with probability at least 1−δ be greater than

0 for all of the fixed number T of iterations of the algorithm.

We begin by bounding the effect of taking an empirical estimate for the expectations in definition

4.1. Consider ns randomly chosen sets of bn/2c + 1 variables that include feature i, we denote these

sets S1, . . . , Sns
. We denote the empirical mean alignment as:

Âi =
1

ns

ns∑
j=1

A(Sj)

Note that these estimates are averages of the true alignments which we will not be able to estimate

exactly. We will consider their estimation later. Similarly, consider a sample of size ns of n/2 features

that exclude feature i. We denote these sets S′1, . . . , S
′
ns

and the empirical estimate of A\i:

Â\i =
1

ns

ns∑
j=1

A(S′j)
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T

Figure 4.3: 200-dimensional XOR classification problem. The expected contribution of the two relevant

features is in red. It can be seen that as more of the noise features are removed in latter iterations of

the method, the expected contribution of the two relevant variables rises substantially, in contrast to the

contribution of the other features.

Finally, denote by ĉi the empirical estimate of the contribution of feature i computed as

ĉi = Âi − Â\i.

Proposition 4.2.5. Consider the empirical estimate ĉi of the contribution of a feature i. The probability

of a deviation larger than η
6 from the true contribution of feature i can be bounded as:

P (|ci − ĉi| ≥
η

6
) ≤ 4 exp

(
− 1

72
nsη

2

)
(4.2)

Proof. Using Hoeffding’s inequality, we have:

P (|Âi −Ai| ≥ t) ≤ 2 exp

(
− 2n2

st
2∑ns

j=1(1− 0)

)
≤ 2 exp

(
−2nst

2
)

Setting t = η
12

P (|Âi −Ai| ≥
η

12
) ≤ 2 exp

(
− 1

72
nsη

2

)
(4.3)

A further application of Hoeffding’s inequality on A\i gives:

P (|Â\i −A\i| ≥
η

12
) ≤ 2 exp

(
− 1

72
nsη

2

)
(4.4)
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Since ci = Ai −A\i,

|ci − ĉi| ≤ |Âi −Ai|+ |Â\i −A\i|,

and hence we can use equations (4.3) and (4.4) to bound the deviation between ci and ĉi as:

P (|ci − ĉi| ≥
η

6
) ≤ 4 exp

(
− 1

72
nsη

2

)
(4.5)

Corollary 4.2.6. Provided that we use a sample size ns = 72
η2 ln

(
8nT
δ

)
, then with probability 1 − δ

2

there is no deviation larger than η
3 for the entire set of n variables over all T time periods.

Proof. Equation (4.5) calculates the probability of an a deviation larger than η
6 for a single variable i.

An upper bound for the number of deviations of magnitude larger than η
6 for the entire set of n variables

can be computed by taking the the union bound over the n different variables yielding:

P
(
∃i : |ci − ĉi| ≥

η

6

)
≤

i=n∑
i=1

P
(
|ci − ĉi| ≥

η

6

)
≤ 4

∑
i

exp

(
− 1

72
nsη

2

)
≤ 4n exp

(
− 1

72
nsη

2

)
We would like this to hold with high confidence for all T iterations. Setting the left hand side of the

equation to δ
2T , in equation (4.6), we obtain

δ

2T
= 4n exp

(
− 1

72
nsη

2

)
(4.6)

Solving for ns in equation (4.6) we obtain an estimate for ns

ns =
72

η2
ln

(
8nT

δ

)
, as required. (4.7)

We now consider estimating the alignment A(S) for a set S of variables from a sample B =

{(x1, y1), . . . , (x|B|, y|B|)}. We will denote the empirical estimate of this quantity as Â(S,B), where

Â(S,B) =
2

n(n− 1)

∑
1≤i,j≤|B|:i6=j

κ(xi,xj)yiyj . (4.8)

Proposition 4.2.7. Consider a fixed set S of variables, and the gaussian kernel κS(x,x′) defined on this

set. Let B be an iid sample drawn from the distribution P. It follows that

P (|Â(S,B)−A(S)| ≥ t) ≤ 2 exp

(
2|B|t2

4

)
. (4.9)

Proof. We will apply Hoeffding’s concentration bound for U-Statistics from Theorem A.1.1. We define

Xi to be (xi, yi) and

g(Xi, Xi+1) = g((xi, yi), (xi+1, yi+1)) = yiyi+1κS(xi,xi+1). (4.10)
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We must verify U is equal to the empirical alignment, that is

U =
2

n(n− 1)

∑
i,j≤|B|:j 6=i

κS(xi,xj)yiyj .

It will then follow that E(U) = A(S) and the result will follow from Theorem A.1.1. Since U is an av-

erage of evaluations of expressions g(·, ·), the result follows from the observation that all the expressions

g((xi, yi), (xj , yj)), for i 6= j, occur equally often by the symmetry of the permutation group.

Corollary 4.2.8. Fix δ > 0, with probability 1− δ
2 , provided that we use samples ma ≥ 72

η2
ln 4nsnT

δ for

estimating A(S) for all 2nsnT occasions, all estimates will be within η
6 .

Proof. We apply Proposition 4.2.7 nsnT times with t = η
6 . Substituting ma for |B| in the right hand

side of equation (4.9 ), we obtain δ
2nsnT

, and the result follows.

Theorem 4.2.9. Consider estimating the alignment by sampling ns sets of features Si1, . . . , S
i
ns

accord-

ing to Si. For each set Sij of features , an iid sampleBij of sizema from P , for each feature i = 1, . . . , n,

where ns = 72
η2 ln

(
8nT
δ

)
and ma ≥ 72

η2
ln 4nsnT

δ . Similarly sample ns sets of features from S\i. Denote

the estimated alignments by

ˆ̂
Ai =

1

ns

ns∑
j=1

A(Sij , B
i
j),

ˆ̂
A\i = 1

ns

∑ns

j=1A(S
\i
j , B

\i
j ),

with ˆ̂ci =
ˆ̂
Ai − ˆ̂

A\i, for i = 1, . . . , n Then, with probability 1− δ, | ˆ̂ci − ci| ≤ η
2 , ∀i = 1, . . . , n, for all

iterations of the algorithm.

Proof. For all i, and all iterations, we can bound | ˆ̂ci − ci| as follows:

| ˆ̂ci − ci| ≤ | ˆ̂ci − ĉi|+ |ĉi − ci|

≤ | ˆ̂ci − ĉi|+
η

6

with probability at least 1− δ
2 , by applying corollary 4.2.8. Furthermore, with probability at least 1− δ

2

for all iterations:

| ˆ̂ci − ĉi| ≤ | ˆ̂Ai − Âi|+ | ˆ̂A\i − Â\i|

≤ 1

ns

j=ns∑
j=1

|A(Sij , B
i
j)−A(Sij)|+

j=ns∑
j=1

|A(S
\i
j , B

\i
j )−A(S

\i
j )|

≤ 1

ns

j=ns∑
j=1

η

6
+

1

ns

j=ns∑
j=1

η

6

≤ 2η

6
.

Hence with probability at least 1− δ, | ˆ̂ci − ci| ≤ η
2 , for all i = 1, . . . , n for all iterations.

Our final ingredient is a method of removing irrelevant features that we will term culling. It is

inspired by the following theorem which states that we can reliably remove irrelevant vartiables. After

an iteration of the algorithm the contributions of all of the features are estimated using the required

sample size and those features with contributions ˆ̂ci <
η
2 are removed.
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Theorem 4.2.10. Fix η > 0. Suppose that there are k η-influential variables and all other variables are

irrelevant. Fix δ > 0. After 1 iteration of the algorithm, given sufficiently many samples ns = 72
η2 ln

(
8n
δ

)
and ma ≥ 72

η2
ln 4nsn

δ as described in Theorem 4.2.9, removing all features with estimate contribution

ˆ̂ci < η/2, will with probability at least 1 − δ only preserve all k relevant features, and remove all

irrelevant features.

Proof. For all irrelevant variables i, ˆ̂ci ≤ η
2 with probability at least 1 − δ. Conversely, for all relevant

variables will be within ˆ̂cj ≥ η
2 , with probability at least 1 − δ. Therefore, provided sufficiently many

samples as described in theorem 4.2.9, removing all variables with contribution ˆ̂ci < η/2 will only

remove irrelevant variables, and preserve all relevant variables.

This section has provides a theoretical study of a randomised feature selection approach employing

KTA, however it does not provide a theoretical comparison with its deterministic counterparts, which

is an open topic for future research. In addition, the sample size required to achieve the probabilistic

guarantees of Theorem 4.2.10, are too large for most practical settings. For this reason in our experi-

mentation, we proceed to iteratively cull a smaller percentage of the bottom-contributing features at the

end of each iteration. For example, most of the experiments in this chapter were performed with culling

25% of the features after the end of each iteration.

4.2.3 Properties of the algorithm

We now define our algorithm for randomised selection (randSel). Given a m × n input matrix X and

corresponding output matrix Y , randSel proceeds by estimating the individual contribution of features

by estimating the alignment of a number of random subsamples that include n
2 and n

2 + 1 randomly

selected features. This leads to an estimate for the expected alignment contribution of including a feature.

The algorithm is parametrized by the number of bootstraps ns, a bootstrap size ma and a percentage

z% of features that are dropped after ns bootstraps. The algorithm proceeds iteratively until only two

features remain. Optionally the algorithm can be further parametrized by permanently including features

which were ranked in the top percentile a% on at least a number t occasions. This option enhances the

probability of detecting non-linear dependencies between variables, should they be present.

There are a number of benefits to this approach, aside from the tangible probabilistic guarantees.

RandSel scales gracefully. Considering the computation of a kernel k(x, x′) for samples x, x′ atomic,

the number of kernel computations for a single iteration are m2
ans, which for a sensible choice of ma

and ns can be substantially smaller than the m2n complexity of the deterministic HSIC variants, which

have a quadratic dependence on the sample size. For example settingma =
√
m and ns = n an iteration

would require mn kernel element computations.

4.2.4 Model Selection

The final ingredient to the methods we examined is an effective approach for model selection. FoHSIC

and BaHSIC by design return an ordered list, where the variables are ranked by their sequence of in-

clusion/exclusion respectively. This fits with the cross validation framework outlined in section 2.5.1.

RandSel is somewhat different in this respect from its deterministic siblings, as at each iteration it pro-
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Algorithm 6 randSel

Input: input data X , labels Y , number of iterations ns subsample size ma, number of features n,

drop percentile proportion z, top percentile proportion a, number of occasions t

repeat

for i = 1 to ns do

B ← random subsample from of size ma from X

Si ← random subset of n2 + 1 variables, including the ith variable.

S\i ← random subset of n2 variables, excluding the ith variable.

ai ← Â(Si, B)

a
(+)
i ← Â(S\i, B))

end for

for j = 1 to n do
ˆ̂cj ← ˆ̂

A(Sj , B)− ˆ̂
A(S\j , B)

end for

cull the z% bottom-contributing features

save the a% top-contributing features

if fixing features then

if j top-contributor for t consecutive times then

fix feature j

end if

end if

until no features left to fix, or only 2 features remain

Return Sequence of estimated contributions and Fixed Variables

duces a list of the expected contributions for the inclusion of each remaining variable. While the expected

contribution does afford us with a ranking criterion that can readily be used in the framework we previ-

ously introduced, there’s also a simpler option, which is a more natural fit for the procedure.

Instead of trying to produce a total ranking of the variables, we can look at the expected contri-

butions at the end of each iteration of the algorithm, and only include the features which are expected

to have a positive contribution. Further to integrating additional information made available by the al-

gorithm, this process greatly reduces the computational burden, as the individual models resulting from

this process is typically substantially smaller.

4.3 Experiments & Results
This section presents experiments comparing randSel to other nonlinear feature selection approaches,

specifically, RFE, FoHSIC and BaHSIC. The experiments follow closely the experimental setup in sec-

tion 3.3, and are designed to capture the evaluation metrics that were outlined in section 2.5. For the

input data, the gaussian kernel is used throughout the experiments, while we use the simple linear kernel

for the output data. The same range of gaussian kernel bandwidths was explored in all algorithms and
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the resulting final classifiers employed a regularisation parameter of c = 1. Specific details relating to

the different algorithms used are included in the following sections.

For the synthetic benchmarks we used randSel using 3000 bootstraps of size m/4 of the dataset,

culling the bottom 25% of variables in terms of expected contribution after the end of each iteration. The

same 25% proportion of features was dropped for the two other backward elimination methods, RFE and

BaHSIC. We allowed FoHSIC to run for 150 iterations, adding a single variable at the end of each loop.

For the mass spectrometry tasks we used randSel using 5000 bootstraps of size m/3 of the dataset,

culling the bottom 25% of variables in terms of expected contribution after the end of each iteration. We

used similar parameters for the Micro-array dataset but with an increased number of bootstraps of 10000

in order to account for the substantially higher dimensionality of the data. Again, no variables were fixed

and the algorithm iterated until only two variables remained.

4.3.1 Synthetic Data

4.3.1.1 Fake Class

In the fake class benchmark (figure 4.4), the generalization accuracy achieved by the different methods

is not significantly different from choosing features at random, and the number of identified features

changes substantially between folds, for most methods. As expected they are all unable to establish

a meaningful dependence relation between the selected features and the output, explaining the poor

recall and precision. The estimated set of relevant variables changes substantially between folds for all

methods, which the log likelihood of the recovered sets of variables strongly reflects.
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Figure 4.4: Results for the fake class dataset.

4.3.1.2 Linear Zhang With Feature Noise

This situation is reversed in the linear Zhang dataset with feature noise(figure 4.5). In terms of gener-

alization accuracy, the resulting models are almost indistinguishable, with RFE having a minor edge.
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In terms of selected features, all methods falsely identify a substantial number of probe variables as

relevant, with RFE being the worst offender with an average precision of 0.49. This is also an issue

for randSel, although on average it achieves the highest precision of 0.71 and is the only method that

achieved perfect recall. This however comes at a cost in terms of the concistency of the recovered so-

lution, where it is very close to RFE. The two greedy HSIC variants tend to be sparser and much more

stable on average, with FoHSIC being the sparsest, and BaHSIC the all-around more consistent method.
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Figure 4.5: Results for the linear Zhang with feature noise dataset.

4.3.1.3 Linear Zhang With Sample Noise

The linear Zhang dataset with sample noise (figure 4.6), paints a much improved picture in terms of

selection precision for most algorithms. Classification performance is indistinguishable among the dif-

ferent algorithms. In terms of precision and sparsity, FoHSIC is a clear winner, however this comes at

the cost of a slightly diminished performance in terms of recall, where randSel fairs slightly better than

all competing algorithms. FoHSIC also appears to be the most stable in terms of the solution it recovers,

followed by randSel and BaHsic. RFE, yet again picks a number of probe variables, which reflects neg-

atively in its stability profile. FoHSIC is the most consistent according to both metrics of consistency,

with randSel a close second.

4.3.1.4 Linear Weston

In the linear Weston dataset (figure 4.7)the precision of all HSIC variants is further improved, with

randSel achieving near perfect selection precision. All three HSIC variants on average produce very

sparse and stable solutions with randSel illustrating a marginal advantage. RFE although generally

competitive in terms of classification accuracy, for some folds of the data fails catastrophically something

that is reflected in the large deviation in the number of variables it selects. The same fact is responsible

for the substantially diminished stability profile of the algorithm, however RFE outperforms the other
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Figure 4.6: Results for the linear Zhang with sample noise dataset

algorithms in terms of recall. In terms of selection consistency, randSel appears to be more stable than

competing approaches.
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Figure 4.7: Results for the linear Weston dataset.

4.3.1.5 Non Linear Weston

In the case of the non linear Weston dataset (figure 4.8), all algorithms perform exceptionally, with RFE

eeking a 0.1% advantage in terms of generalization accuracy. RandSel and FoHSIC achieve perfect

precision in terms of recovered variables, with FoHSIC being slightly sparser on average, and randSel

being the most stable in terms of recovered features. Yet again, RFE achieves the highest recall, followed
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by randSel and the other HSIC variants. RandSel and FoHSIC are very similar in terms of consistency,

with randSel having a slight advantage, as illustrated by the log likelihood.
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Figure 4.8: Results for the non linear Weston dataset.

4.3.1.6 XOR

Finally the XOR benchmark (figure 4.9) illustrates a case where the myopic strategy employed by

FoHSIC, wherein the algorithm fails to consider a variable in the context of other included variables

backfires catastrophically. FoHSIC is the only variant that fails catastrophically across the board, with

randSel and BaHSIC being indistinguishable and RFE following in accuracy and number of features.

Interestingly randSel and BaHSIC achieve identical performance on every captured metric, being tied in

accuracy, sparsity, precision, recall and accordingly the stability of their recovered solutions.
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Figure 4.9: Results for the XOR dataset.
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4.3.2 Real Data

4.3.2.1 TB - Task 1

In the first TB Classification task (figure 4.10), most methods perform similarly in terms of generaliza-

tion, with randSel being the winner in terms of generalization accuracy. RandSel is also the winner in

terms of sparsity among the different selection strategies. In terms of stability FoHSIC appears to be

better, followed by randSel.
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Figure 4.10: Results for the first TB task.

4.3.2.2 TB - Task 2

On the second TB task (figure 4.11), randSel is again the winner in terms of accuracy. In terms of sparsity

and consistency, FoHSIC fairs substantially better than most of its competitors, followed by BaHSIC.

RFE typically results in the selection of a larger group of variables, with substantial variance in the

selection consistency for the resulting group of features. This is reflected in its substantially diminished

consistency.

4.3.2.3 TB - Task 3

On the third TB Task (figure 4.12), the HSIC variants are indistinguishable in terms of generalization

accuracy. The sparsest solutions are on average produced by RFE, although a substantial ammount of

variation enters into the set of recovered solutions. In terms of stability, BaHSIC and FoHSIC outperform

the other algorithms.

4.3.2.4 TB - Task 4

The fourth TB Task (figure 4.13) concludes the mass spectrometry benchmarks, with BaHSIC being the

only method to reach an accuracy over 60%. Most selection methods have abysmal consistency, with

FoHSIC’s greedy forward approach affording the algorithm a modicum of consistency.
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Figure 4.11: Results for the second TB task.
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Figure 4.12: Results for the third TB task.

4.3.2.5 TB - Micro-Array

Finally on the TB Micro-Array dataset (figure 4.14), randSel surpasses the other methods in terms of

accuracy. RandSel follows FoHSIC in terms of sparsity, although FoHSIC typically results in much

more consistent solutions. BaHSIC is second in terms of accuracy, and stability, and is close to the

other HSIC variants in terms of sparsity. Finally, RFE is between FoHSIC and BaHSIC in terms of

performance, but performs abysmally in terms of sparsity and consistency.
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Figure 4.13: Results for the fourth TB task.
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Figure 4.14: Results for the TB Micro-Array task.
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4.4 Discussion

This chapter proposes randSel, a new algorithm for non-linear feature selection based on randomised

estimates of HSIC. RandSel, stochastically estimates the expected importance of features at each iter-

ation, proceeding to cull a large proportion of uninformative features at the end of each iteration. We

compare randSel, with FoHSIC and BaHSIC which also utilise HSIC for feature selection. In addition

we included gaussian kernel based RFE in our experimental comparisons. For most of the experiments

the HSIC variants produced competitive results. On many instances RFE exhibited bad experimental

results.

This behavior is interesting as RFE is closely linked to HSIC. However, it is not surprising.

Whereas, other HSIC variants utilise the entirety of the dataset and operate as filters. RFE is a wrapper

method that is tightly coupled with the use of a support vector machine. As a result of this, RFE only

considers the set of support vectors in estimating the relevance of a feature. Given that the set of support

vectors is comprised of more atypical examples (for which the constraint of the convex optimization

problem is active), using them to infer the relevance of variables is marred with a larger degree of bias.

Furthermore, RFE requires the setting of a regularization parameter C, a choice which substantially

affects the support vectors and the resulting ranking of variables by RFE.

None of the experiments on real datasets presented in this chapter play to HSIC’s strengths. The

real-world datasets we employ arise in infectious disease modelling. Consequently, all experiments per-

formed in this section are binary classifications for small sample sizes where strong linear relations can

potentially overshadow non-linear interactions between the observed variables and the target classes.

This echoes findings in [SSG+12], where a linear method exhibited the best performance in the major-

ity of the extensive experimental evaluations. It appears that this is also the case for the experiments

presented in this section, with linear methods capturing the majority of information to be found in most

datasets. Nonetheless, [SSG+12] illustrated a small number of cases where the identification of non-

linear interactions was beneficial, a property which will be illustrated in the following chapter. This

observation means that for a large number of datasets, surpassing the performance of established linear

methods is not in any way trivial. Comparing the results in this chapter with the cross validation results

in section 3.3 there is no clear winner in terms of generalization performance, although the HSIC variants

tend to produce sparser solutions on average.

A further issue in nonlinear modelling for the sample sizes examined in the last two chapters is the

fact that the gaussian kernel offers a much richer representation in comparison to simple linear modelling.

Such a representation in combination with the small number of samples can adversely effect the inferred

relations. A clear example of this is comparing the performance of linear and nonlinear RFE on the

TB Micro-Array dataset, on average resulting in significantly more accurate, interpretable and stable

decision rules.

These observations do not indict the use of HSIC variants, or nonlinear feature selection. On the

contrary, they simply suggest cautious examination of the modelling assumptions. HSIC variants more

than hold their own in most experimental comparisons, and performed remarkably well in the datasets
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where nonlinear dependency detection was a requirement. HSIC provides a versatile approach, with

good finite sample behaviour that also generalizes naturally to structured domains. If detecting arbitrary

nonlinear dependence or accounting for structure is a requirement, then the approach advocated in this

chapter is more than sensible.

The true strengths of HSIC based methods are the fact that they can infer dependence relations

on arbitrary domains and provide finite sample estimates, while only requiring a set of kernel hyper

parameters, in terms of parameter-tuning. From a theoretical standpoint, randSel inherits many of the

properties of HSIC. The theoretical analysis suggests strong guarantees for the expected performance of

this procedure which is was demonstrated by testing on a number of real and artificial datasets. This,

combined with the algorithm’s attractive scaling properties make randSel a strong proposition for use in

application areas where the volume of data increases at a frantic pace. RandSel’s exact time requirements

depend on user supplied parameters, however the use of sampling provides a more transparent exchange

between expected performance and time requirements, that is trivial to parallelize. The next chapter

gives an example where randSel’s strengths are instrumental to producing improved results.

4.5 A weighting scheme for randomized feature selection
A prior attempt to leverage randomized splitting of the features, was based on exploiting the anticorre-

lation in the alignment of random splits of the variables. This section briefly summarises this approach.

Assume that the kernel K on input variables can be written as a combination of l kernels, K(1), . . . ,K(l),

each defined on a small subset of the variables. In the case of a Gaussian kernel this combination would

correspond to the product of the component kernels. We consider here the simpler case of taking the sum

of the kernels in order to illustrate the approach:

K =

l∑
j=1

K(j).

In this case the unnormalised empirical alignment for the kernel K is equal to

yTKy =

l∑
j=1

yTK(j)y.

Let a1 and a2 be vectors whose entries correspond to the resulting alignment of randomly partitioning the

data into 2 separate sums ns times. For each of the ns random partitions we have â =
∑
j y

TK(j)y =∑
j b

(1)
j yTK(j)y +

∑
j b

(2)
j yTK(j)y = a1i + a2i, for b(1) and b(2), the binary vectors defining the two

parts of the partition. There are two simple outcomes:

• If there is a negative correlation between a1 and a2, it would suggest that some of the input vari-

ables exhibit a statistical dependence on the target output and that is reflected in the corresponding

alignment. Accordingly this suggests a mechanism through which the presence or absence of

relevant variables in each random set might be detected .

• If no statistically significant correlation between a1 and a2 can be detected, it would suggest that

no meaningful statistical dependence can be inferred between individual variables and the target

output.
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Indeed, it is straightforward to prove in our simplified case that a1 and a2 must be anticorrelated, unless

the features are independent of the target output.

Proof. For every iteration i we have a1i + a2i = â, where â is a constant. The covariance of a1and a2 is

1

ns

i=ns∑
i=1

(a1i − E(a1))(a2i − E(a2)) =
1

ns

i=ns∑
i=1

(a1i − E(a1))(â− a1i − E(â− a1))

=
1

ns

i=ns∑
i=1

(a1i − E(a1))(â− E(â)− a1i + E(a1))

=
1

ns

i=ns∑
i=1

−(a1i − E(a1))2

≤ 0,

using E(â− a1) = E(â)− E(a1), by linearity of expectation, and E(â) = â, by definition.

Having established the anticorrelation property for different sets of variables, this approach breaks

down to two steps. The first step entails generating ns random partitions and for each iteration estimating

the resulting difference zi = a1i − a2i in alignments between them. This is illustrated in algorithm 7.

Algorithm 7 createRandomEstimates

Input: n-dimensional datasetX , number of iterations ns, input kernel function κ(x, x′), output kernel

KY , kernel bandwidth σ.

for i = 1, ..., ns do

p← random permutation of the vector (1, . . . , n)

p← {p1, ..., pn/2}

p′ ← {pn/2+1, ..., pn}

a1 ← HSIC(X(p),KY ,σ)

a2 ← HSIC(X(p′),KY ,σ)

zi ← a1 − a2

for j = 1, ..., n/2 do

bi,pj = 1

bi,p′j = −1

end for

end for

Return: Partitioning indicator matrix B, per iteration differences in alignment, z.

The final step of this approach, is to estimate which variables account for substantial differences in

alignment between the two partitions. To achieve this, we rely on an ε-insensitive regression, that acts

as a threshold to the deviations zi, effectively ignoring any difference in alignment which is below a

user-specified threshold. This is achieved by solving the following convex program:



4.5. A weighting scheme for randomized feature selection 73

minimize
∑i=n
i=1 max(|〈bi,w〉 − zi| − ε, 0) + λ‖w‖1

subject to

wi ≥ 0

where ε is the parameter for the ε-insensitive loss function, and λ a regularization parameter. The

non-zero entries in the solution vector w indicate the active variables that should be selected.

When using this approach with a gaussian kernel two problems arise. Firstly, although for the

gaussian kernel, randomised splitting and estimation of alignment, does in general lead to anticorrelated

estimates for the alignment of random subsets, the condition that â = a1 +a2, does not hold, as the gaus-

sian is a product, rather than sum of component kernels. In addition, initial experimentation indicated

substantial sensitivity to the parameters ε and λ.
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Deep(er) Learning

This chapter represents a shift in focus from work in previous sections. Whereas previous chapters

focused exclusively on feature selection, this chapter illustrates some of the characteristics that make

randSel an attractive proposal in the somewhat novel context of deep learning. In recent years, deep

learning has risen to prominence as deep architectures show a substantial degree of success in many ap-

plication areas. A key strength of deep architectures is their ability to learn multiple levels of nonlinear

representations of their input. This property however, comes at the cost of increased complexity. This

chapter advocates a simpler approach, relying on a simple, ”good-but-not-optimal” learned representa-

tion and leveraging non-linear feature selection to improve prediction.

This approach ranked third out of 218 competing proposals in the recent ICML black box learn-

ing competition. However problems in the biological domain remain the subject of the thesis. To this

end, this chapter introduces a novel application of representation learning to biological sequence predic-

tion. The proposed architecture is applied to the Signal Peptide Cleavage Site prediction problem, with

substantial statistical performance gains over the original representation.

5.1 Introduction
Often the original features may not be sufficiently expressive for many tasks. The idea of introducing

feature maps φ(x) that transform inputs that may be more useful for prediction is not new. In fact, it is

the foundation of kernel methods. A clever choice of features enables superior predictions to using the

original representation. Representation learning takes this notion a step further, allowing for the feature

map to be parametrised by a set of values that may be trained and tuned.

The ability of representation learning to encapsulate substantial relational information among the

observed variables is pivotal for deep learning. Representation learning techniques, such as RBMs

[HOT06] and sparse auto-encoders[MRBL07], have flourished in recent years. Recent literature pro-

vides numerous instance of successful applications of representation learning in novel areas. Despite the

recent success stories however, the successful application of representation learning somewhat remains

a black art. In large part this stems from the large number of parameters and variety of components that

are available to the practitioner. Current literature provides scant actionable guidance for integrating the

large number of available components and tuning their respective parameters.
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The lack of guidance is particularly pronounced in the field of deep learning where multiple layers

of representation learning mechanisms are present.

To the uninitiated, current results in literature may often appear confusing, even contradictory, with

minor parameter tuning leading to dramatic changes in the performance of seemingly similar algorithms.

While the reported results underline the performance gains associated with representation learning, its

effective application may often necessitate a substantial investment on parameter tuning. This issue has

been noted in the literature by a number of practitioners, as for example in the review article [BCV13],

or [NKC+11].

This chapter proposes a different approach, that is motivated by overall simplicity. The proposed

architecture, utilises sparse filtering4 [NKC+11], a simple algorithm that optimizes the sparsity of `2-

normalized learned representations. Instead of learning a complicated deep representation, the archi-

tecture learns a representation that is ”good enough” but not optimal. The main advantage of sparse

filtering is that it only requires a single parameter, which is the number of features to learn. In this way,

the approach trades some degree of sub-optimality in the learned representation for simplicity. Issues

arising from the sub-optimality of the learned representation are rectified further down the pipeline, by

careful application of feature selection and a strong kernel based classifier.

The confluence of representation learning and kernel methods is the subject of a growing body of

work with many reported encouraging results [WRMC12], [SH07]. Our proposed architecture, illus-

trated in figure 5.1, leverages numerous aspects of this confluence and comprises the following three

steps:

1. Learn a sparse, over-complete representation of the observed data.

2. Select a series of informative non-linear combinations of learned features, which are progressively

fine-grained in relation to the learning problem.

3. Learning an ensemble classifier, using kernels defined on the previously selected non-linear com-

binations of features.

The rest of this chapter is organised as follows: Section 2 presents Sparse Filtering and its use in

our architecture. Section 3 reviews the use of randSel in conjunction with the prediction mechanism.

Section 4 presents results on the ICML Black Box learning challenge. Section 5 introduces the signal

peptide cleavage site prediction problem, and the corresponding experimental pipeline and results. A

brief discussion section concludes the chapter.

5.2 Feature Selection for learned representations
Unsupervised feature learning algorithms such as sparse filtering are typically used to learn an over-

complete representation of the data. Over-completeness refers to learned representations that learn a

number of features that exceeds the dimensionality of the original dataset.

Sparse filtering learns such a representation by optimizing the sparsity of `2-normalized learned

features. Concretely let f (j)
i represent the ith learned feature value for the jth example, with f (j)

i =
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Figure 5.1: Overall architecture; randSel is applied on the features learned by sparse filtering, producing

a number of nonlinear combinations of learned features of increasing granularity. A number of kernels is

defined on these nonlinear combinations of features, and multiple kernel learning is used for the overall

prediction.
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wTi xj . The method iterates through the following three steps until convergence:

1. Normalize each learned feature value by its `2-norm across all examples. This for the ith feature

becomes:

f̃i = fi/‖fi‖2

2. Normalize these values by sample. For the jth sample this becomes:

f̂ (j) =
f̃ (j)

‖f̃ (j)‖2

3. Optimize what is termed population sparsity, For a dataset comprising m samples:

minimize
m∑
j=1

‖f̂ (j)‖1 =

m∑
j=1

∥∥∥∥∥ f̃ (j)

‖f̃ (j)‖2

∥∥∥∥∥
1

Here the population sparsity limits the magnitude of learned features for the jth example. This

step reduces the number of learned features that are active for the jth sample, leading to only a

small number of features being used for the representation of each sample in the dataset.

The representations learned according to sparse filtering are then passed to randSel for feature

selection. The depth of a deep learning architecture refers to the composition of different levels of

non-linear operations in the learned function. This suggests that the feature selection component of the

architecture, which is utilised to refine the initial learned representations, would substantially benefit

from capturing non-linear interactions between the learned features.

The previous chapter’s survey of non-linear feature selection methods provides a number of options.

The decision of utilising randSel for feature selection is predicated on the following properties:

• Scalability. From the methods examined in the previous chapter, randSel is the most readily appli-

cable to a large sample size, a key property for the signal peptide dataset, which involves roughly

100,000 samples. The only other non-linear method that can cope with this sample size on standard

commodity hardware is RFE, owing to the fact that the active set of support vectors is substantially

smaller, comprising roughly 5,000 of the original 100,000 samples.

• Structure Relevancy. The algorithm is readily applicable to domains that have some structure,

such as the multi-class structure of the black box challenge. This, property is shared among all the

HSIC-variants.

• Granularity. Granularity refers to a property that was illustrated when considering model selection

strategies for randSel. At the end of each iteration the algorithm returns a list of the remaining

features and their expected contributions, which in our architecture leads to a series of kernels

of increased granularity. Arguably a similar strategy could be developed for other non-linear

feature selection algorithms, however randSel is the only algorithm that readily provides kernels

of increasing granularity, which can be a highly desirable when using MKL for the final prediction.
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5.3 Prediction
The feature selection layer produces progressively fine-grained combinations of features. A prediction

mechanism effectively utilising the increasingly granular combinations of features comprises the last

step of our approach, where we take a boosting approach based on LPBoost-MKL[FHST10]. LPBoost-

MKL is a simple extension of the LPBoost algorithm presented in section 3.2.1, where the t-th weak

learner employs a kernel to produce a prediction of the form:

ht(xj) =

m∑
i=1

u
(t)
i yiκst(xi,xj),

and the vector u(t) corresponds to the optimal dual parameters of the optimization program 5.1, and st

is the index of the kernel selected at iteration t.The overall classification rule has the form of a linear

combination of weak predictors

f(x) =
∑
t

atht(x).

The architecture proceeds by building a number of Gaussian kernels. Each kernel is parametrised by

the different sets of features Si they are defined on, and a kernel bandwidth parameter σ. Thus each

individual kernel has the form

κ(Si,σ)(x,x
′) = exp(−σ‖x(Si) − x′(Si)‖2),

where, x(Si),x′(Si) are vectors containing only variables included in the set Si. For small sample sizes,

as was the case with the contest dataset, it is perfectly possible to store all these different kernels in

memory. However, storing a single approximately 100, 000 × 100, 000 kernel matrix for the signal

peptide dataset is prohibitive in most modern commodity hardware. The use of kernel ridge regression

with subsampling addresses this limitation. Rather than use LPBoost-MKL, we precompute a set of

weak learners derived by applying kernel ridge regression to balanced subsamples of the training data.

By using kernel ridge regression each individual weak predictor takes the form:

ht(x) =
∑
i

aiκsi,σ(xi,x),

where a is the solution to the ridge regression problem (Kst,σ +λI)a = y⇒ a = (Kst,σ +λI)−1y, and

λ a `2 regularization parameter.

The algorithm then computes the classification rule through the following linear program:

minimize β

s.t.
m∑
i=1

uiyihij ≤ β

m∑
i=1

ui = 1

0 ≤ ui ≤ D

(5.1)

WhereD is a `1 regularization parameter. Provided a sensible range of kernel bandwidths σ is spec-

ified, the final LPBoost classifier only requires tuning the regularization parameter D. In our search for
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simplicity, this is a tangible benefit, substantially reducing the search space of parameter combinations,

to tuning this single regularization parameter.

There is one remaining concern that the prediction mechanism needs to address. The weak learners’

predictions are highly correlated between them. LPBoost is a sparse selection algorithm. Work on the

irrepressentability condition of the lasso and related sparse selection methods [DET06] has shown that

this can lead to recovering an inconsistent solution. Our proposal addresses this problem by a simple use

of randomisation. Concretely, we train a number of LPBoost-based classifiers. For each classifier we

randomly omit half of the weak learners. We select as our predicted class, the majority class as voted by

the randomised classifiers.

5.3.1 Results on the ICML Black Box Learning Challenge

We used our architecture in the recent ICML 2013 Challenges in Representation Learning Black Box

Learning challenge [Cha13]. The dataset used in the challenge was an obfuscated subset of the Street

View House Numbers dataset [NWC+11]. The original where projected down to 1875 dimensions by

multiplication with a random matrix, and the organizers did not reveal the source of the dataset until

the competition was over. The training set comprises only 1,000 labelled samples, while an additional

130,000 samples where provided for the purposes of unsupervised pre-training.

For our submissions, cross validation was used to select the number of features to learn with sparse

filtering, with our best solution using a set of 625 learned features. Randsel was then used to select

combinations of the 625 learned features dropping 12.5% of the least contributing features at the end

of each iteration. The resulting set of 34 different sets of features was combined with 75 different

σ parameters to result in 2550 weak learners. The output of a randomly selected half of these weak

learners was used to train 500 different LPBoost-MKL classifiers, and the majority vote of these 500

classifiers resulted in our final set of predictions. The regularisation parameter D was also set through

cross validation. This approach led to a generalisation accuracy of 68.44% on the public and 68.48% on

the private leaderboards, ranking third in both cases out of a total of 218 teams.

5.4 Application to cleavage site prediction
This section examines the application of the proposed architecture to the signal peptide cleavage prob-

lem. Signal peptides are amino-acid sequences found in transported proteins that selectively guide the

distribution of the proteins to specific cellular compartments. Often referred to as the zip-code sequences,

owing to their role in sub-cellular localization, a substantial body of work is devoted to predicting the

cleavage site of signal sequences. Current literature establishes the importance of a number of physico-

chemical properties of the signal sequence in determining the cleavage site location. The experimental

pipeline presented in this section further supplements this approach, by learning a feature representation

of multiple physicochemical property encodings.

5.4.1 Experimental Pipeline

The Predisi dataset [HGS+04] of eukaryotic signal sequences was used for experimentation. Initial

filtering produced a dataset of 2,705 unique signal peptide sequences, with a sequence length of 50
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amino-acids. The approach used for cleavage site prediction breaks each individual sequence into smaller

windows. Cross validation was used to estimate the parameters relating to the window size. The resulting

convention was to use windows that contain 9 aminoacids prior to what we deem the target of the window

and 2 aminoacids following that position. For an individual prediction to be considered accurate, the

window predicted as most likely to contain the cleavage site in its target position, must coincide with the

actual window containing the cleavage target site for the sequence.

With the window parameters chosen through cross validation, this results in each individual se-

quence of 50 aminoacids producing 39 windows with a length of 12 aminoacids each. The resulting

process generates a dataset comprising of 105,495 windows. The entirety of 54 distinct physicochemical

encodings offered by the Matlab bioinformatics toolbox was used for numerical representation of each

sequence window, which is then represented by a 648-dimensional vector of physicochemical prop-

erties.At this point, sparse filtering learns an overcomplete representation comprising of 1500 learned

features. The complete process, illustrated in figure 5.2 generates a dataset comprising of 105,495 1500-

dimensional samples.

B

Figure 5.2: How the learned representation is generated. The amino-acid sequence is broken into smaller

windows. Each amino-acid in the window is represented by its 54 distinct physicochemical properties.

Sparse filtering is used to learn a representation for this encoding.

5.5 Experiments
There are three interesting questions which the experiments where designed to address. Concretely,

the experimental comparisons are designed to establish the performance gains from using a learned

representation, over learning in the original feature space, using randSel for feature selection as opposed

to other possible feature selection methods, and finally establishing the importance of multiple kernel
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learning, used for prediction.

To this end, a number of competing solutions were implemented. The shallow approach uses the

original physichochemical properties for prediction. For comparing the performance of different feature

selection algorithms on learned representations, `1-logistic regression stability selection and nonlinear

SVM-RFE are used in addition to randSel. Finally we compare the performance of a prediction rule

relying on a single gaussian kernel SVM, to the performance of randomized-MKL.

The large size of the dataset, as well as the fact that it is highly imbalanced make for some chal-

lenges. Stability selection can readily be applied to a problem of this dimensionality. While deterministic

HSIC-variants are ill-equipped to deal with the size of the resulting kernel in most current commodity

hardware, the use of sampling in randSel largely alleviates the problems related with size. In order to

address the issue of the imbalance, subsamples where both classes are equally represented were used.

The possibility of using RFE for non-linear feature selection is of particular interest. At over 100,000

samples, the size of the full dataset is prohibitive, however at each fold the size of the active set is sub-

stantially smaller, averaging aproximately 5,100 support vectors. The substantially smaller active set

makes RFE feasible.

In terms of producing the actual prediction the experiments examine two options. The first is using

a chunking, non-linear SVM, which is the same approach that enables the use of RFE. Using vanilla

LPBoost-MKL for prediction is prohibitive, owing to the memory requirements of storing the kernel

matrices. The approach to rectify this problem is to use subsampling from the negative class, combined

with kernel ridge regression as a weak predictor in our boosting framework. This results in a mixed-norm

(as the individual weak learners are `2-normalized, and the overall prediction rule is `1-normalized) MKL

formulation which effectively addresses the limitation of not being able to store the kernel matrices. For

the l2 regularization parameter λ of individual weak predictors, a very small range of parameters was

used. The l1 regularization parameterD for the LPBoost prediction rule was set through cross-validation.

5.5.1 Results

Figure 5.3 summarizes the results for the different attempted approaches. Using the original feature

representation with a non-linear SVM leads to a generalization accuracy of 67.2%. This is substantially

smaller than all the approaches that rely on the learned feature representation. This suggests that there

are performance gains to be had in using a learned representation.

In terms of using feature selection on the learned representation, the results indicate that randSel has

an edge over the other methods, with RFE also performing marginally better than l1-regularized logistic

regression-based stability selection and randSel employing a linear kernel. The learned representation

offers a case where it is reasonable to suspect benign non-linear collusion between features, something

that both RFE and randSel are designed to take advantage of, and the large sample size allows for

increased confidence when inferring such relationships. The fact that randSel outperforms RFE repeats

some of the observations of the previous chapter. RFE’s reliance on the support vectors for feature

selection can negatively bias the feature selection procedure. Figure 5.4 indicates substantial differences

for the correlation of learned features to the output. There is enough order information for the method
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Figure 5.3: Accuracy of different feature selection and representation approaches on the signal peptide

dataset. All feature selection approaches that operate on the learned representation clearly outperform

the original features. Methods employing a single kernel for prediction result in similar accuracy. Com-

bining randSel with MKL outperforms all other approaches.

0 200 400 600 800 1000 1200 1400 1600
−0.03

−0.02

−0.01

0

0.01

0.02

0.03
CORRELATION BETWEEN LEARNED FEATURES AND TARGET OUTPUTS FOR THE ACTIVE SET

0 200 400 600 800 1000 1200 1400 1600
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25
CORRELATION BETWEEN LEARNED FEATURES AND TARGET OUTPUTS FOR THE ENTIRE DATASET

Figure 5.4: Substantial differences in correlation between full dataset (top row) and the support vectors

(bottom row). This is largely due to the support vectors comprising of more atypical examples, for

which the constraint of the SVM optimization problem is active. It is not visually obvious, but the two

rows are very correlated, however some ordering information, which is important for feature selection, is

lost in the active set. This means that while the ranking the features by correlation to the target output is

largely similar between the active set and the entire set of variables, the differences in rank are substantial

enough to affect the behavior of RFE.

to make useful inferences about the relevance of each variable, but as the results show, the employed

approach with randSel is better suited for feature selection in this dataset. Finally, the use of MKL

for prediction further improves the results. Direct comparisons to state-of-the art methods for cleavage

prediction is difficult as the reported accuracy highly depends on the dataset and modelling assumptions,
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such as the original sequence length. It does appear however that the method proposed here outperforms

SignalP’s [PBvHN11] reported accuracy of 72.9% for eukaryotic sequences.

5.6 Discussion
This chapter presented a simple system that produces a classification rule based on non-linear learned

feature combinations of increasing granularity. The architecture of the system comprises a fast, unsuper-

vised feature learning mechanism, randomised non-linear feature selection and a multiple kernel learning

based classifier. The guiding principle of this approach is to use simple components that require minimal

parameter tuning, with components further down the pipeline making up for the potential shortcomings

upstream. Indeed, the three different constituents of this architecture, require minimal parameter tuning

and scale gracefully, and the experimental results on both datasets appear to validate the approach.

While current literature already reports many encouraging results on the intersection of representa-

tion learning and kernel methods, the field remains relatively young. This simple fact encourages further

exploration and opens many avenues for improvements. Such an opportunity for improvement which is

particularly pronounced in the proposed architecture stems from the fact that the individual components

are to a large degree insular. Improving feedback between layers would allow for improved performance

at the feature learning level, in a way that is more directly related to the classification objective. The

growing number of convex optimization approaches for representation learning, such as sparse coding

[LBRN07] provide strong candidates that address this condition. This approach suggests the possibility

of deeper overall convex architectures, with the benefits convexity entails.

In terms of applying deep learning, computational biology largely appears to be unknown territory,

with the exception of a small number of image processing tasks that arise in the biological domain.

This is largely a matter of culture. Deep learning is still a relatively recent development, and from the

perspective of a biological science practitioner, its application in various biological domains is far from

obvious. The sheer number of different approaches, in combination with their apparent complexity, fur-

ther hinder the adoption of representation learning. Another important reason is that in many biological

application areas representation learning does very little to aid interpretation. This particularly applies

to data arising from methods such as micro-arrays. In such an example, the biological significance of an

inferred micro-array feature is puzzling.

Luckily, there are certain areas in computational biology where high accuracy far outweighs any

other considerations. Many tasks relating to proteomics belong to this category. The signal peptide

cleavage site prediction presented in this chapter exemplifies this category, with the state-of-the-art ap-

proach, [PBvHN11] hardly offering any interpretation. Currently, searching google for applications of

deep representations in biological areas other than image processing returns only a handful of existing

publications ( see for example [DLBN+12], [EC12], [LXLF13]). For applications where accuracy is

paramount, representation learning should be considered. The advent of improved methods, and better

theory to drive their adoption and application promises many interesting developments for both fields.
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Conclusions

It is often repeated that the adoption of data-driven methods has revolutionalized biology. This is partic-

ularly true for biomarker discovery, a field where feature selection methods often play a key role. This

thesis showcases the machine learning approach for biomarker discovery by building on the rich theory

of max-margin learning and kernel machines. Kernel methods and feature selection are important tools

for many bioinformaticians with good reason. Most chapters focus on a simple approach comprising

feature selection and prediction through a nonlinear SVM. This approach is vindicated by strong ex-

perimental results even for methods that are considered as baselines in the context of this thesis, such

as correlation coefficients and RFE. Throughout our work, the use of kernel target alignment features

prominently, either as a model selection criterion in chapter 3, or as an empirical estimator for an in-

dependence criterion that powers the majority of the non-linear feature selection approaches in chapter

4. Furthermore, chapter 5 illustrates a case where there is a strong synergy between feature selection

methods and representation learning. However, as is often the case for research, the work presented here

opens up many new questions and avenues for experimentation.

6.1 Future Work

The use of kernel target alignment, often in the guise of HSIC permeates this thesis. It is therefore logical

that future iterations take the latest developments in this area into consideration. For example, the vast

majority of our work employing HSIC relies on the presentation of [GBSS05] and relies on the biased

estimator which following the authors’ conventions we denote HSIC0. HSIC is central to a growing

body of work, and some refinements for its estimation have been presented, such as the use of HSIC1

in the work of [SSG+12]. The important aspect of HSIC0 for the feature selection work presented here

is supplying order information for the relevance of variables. For most experiments the results do not

indicate substantially diminished performance that can directly be attributed to the bias of the HSIC0

estimator. However, given the fact that using HSIC1, does not complicate most computations and is

more sound from a theoretical point of view, its adoption is a reasonable next step. More pertinently,

[SSG+12] notes that HSIC1, can address problems which arise from the use of diagonally dominant

kernels, a property which is highly important for many applications in biology. This was also previously

reported in the work of [QSST10].
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Chapter 3 explores the use of HSIC as a model selection criterion in place of cross-validation. In

most cases, the models resulting from HSIC produced competitive accuracy, while being sparser and

more consistent in terms of recovered variables. However there are two instances in chapter 3 where op-

timizing for HSIC results in inconsistent variable selection, severely impacting generalization accuracy.

A careful examination of the conditions leading to such inconsistencies as well as a principled method to

avoid such inconsistencies could prove highly beneficial. This is an application with significant practical

repercussions, as from a practitioner’s point of view it can vastly simplify model selection.

Chapter 4 introduces a randomized algorithm that relies on HSIC for feature selection. Our analysis

of randSel, derives some probabilistic guarantees on its performance. However, the sample sizes required

for those guarantees are unrealistic for a lot of real world applications. As such, an investigation of

tighter bounds is a logical next step. Another aspect of chapter 4 that merits closer examination are the

definitions of relevance. The section works on the strong assumption that an irrelevant feature is one

that is independent of the target output and other variables. This definition while simplifying potential

analyses, is too strong, as it fails to consider interactions between variables. This is the undertaking of

very recent work in [SGB13], which explores three-variable interaction. However, as the authors note,

detection of higher order interactions between variables, is substantially harder to analyse.

Chapter 5 illustrated the application of feature selection on learned representations. In the search

for a more principled approach to deep learning, the exploration of convex optimization approaches

such as sparse coding is interesting. By providing the largest dataset studied in the thesis chapter 5 also

emphasises another aspect that is of interest. The real world datasets in mass spectrometry and genomics

have a relatively small sample size. This is largely due to the acquisition difficulties associated with

collecting data in the biomedical domain. As acquisition costs are driven down, the performance picture

for the various algorithms in this presentation may change dramatically.

Finally, we have noted that methods utilising HSIC for feature selection have distinct advantages

in structured domains on a number of occasions. However, the only illustration of this property in

the thesis was on the black box competition dataset. Partly responsible is the fact that most datasets

in biomarker discovery are designed to answer very specific questions, typically involving a target and

control class. Provided more studies begin integrating larger ammounts of information, this should prove

to be a particularly fruitful avenue for future research.

Simply enumerating the applications of machine learning on biological data would be no mean feat,

as it is successfully adopted in novel areas with increasing frequency. By covering feature selection for

biomarker discovery and signal peptide prediction, barely scratches the surface of its potential applica-

tions. The focus on biomarker discovery is not only due to the fact that it constitutes an ideal application

area, but also reflects its impact.

The study from which the TB micro-array dataset has resulted from [BGM+10], is an attempt

to improve the understanding of a major global cause of mortality. According to the World Health

Organization, Tuberculosis was responsible for 1.3 million deaths in 20121, with over 8.6 million falling

1http://www.who.int/mediacentre/factsheets/fs104/en/

http://www.who.int/mediacentre/factsheets/fs104/en/
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ill. More importantly, according to the same report one third of the world’s population has latent TB,

which has an approximately 10% lifetime risk of becoming an active infection. Developing tools that can

identify individuals who will develop active disease, has the potential to facilitate preventative therapy.

A staggering body of work is devoted to identifying the underlying mechanisms of the disease, and

develop better-targeted approaches for intervention. Recent approaches that attempt to directly link

clinical data with biological profiling such as [RAS+13], serve to further improve the understanding

of how biological data can be linked to the different clinical aspects of this disease. New screening

technologies, and reduced data acquisition costs have resulted in a frantic increase in the volume of data.

Feature selection methods are pivotal for making sense out of this deluge of information.
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Appendix A

A.1 Concentration Inequalities

A.1.1 Hoeffding’s inequality

Let X1, . . . , Xn be independent random variables. Assume that the Xi are almost surely bounded; that

is, assume for 1 ≤ i ≤ n that P (Xi ∈ [ai, bi]) = 1.We define the empirical mean of these variables

X = 1
n (X1 + · · ·+Xn). Theorem 2 of [Hoe63] proves the inequality:

P (|S − E(S)| ≥ t) ≤ 2 exp

(
− 2t2∑n

i=1(bi − ai)2

)
.

A.1.2 Hoeffding’s concentration bound for U-Statistics

Theorem A.1.1. Consider n ≥ r. Let

V (X1, ..., Xn) =
1

k
{g(X1, ..., Xr) + g(Xr+1, ..., X2r) + . . .+ g(Xkr−r+1, ..., Xkr)}

where k = [n/r], the largest integer contained in n/r. Then,

U =
1

n!

∑
n,n

V (Xi1 , . . . , Xin)

Where the sum
∑
n,n is taken over all permutations i1, i2, . . . , in of the integers 1, 2, . . . , n. Each

term in the sum on the right is a sum of k independent random variables. Thus the expression gives a

representation of U . If the function g is bounded a ≤ g(x1, . . . , xr) ≤ b, then

P (|U − E(U)| ≥ t) ≤ 2 exp

(
−2kt2

(b− a)2

)
(A.1)

A.2 Sparse Filtering Implementation
This section includes Jiquan Ngiam’s implementation for spare filtering[NKC+11], which was

used in the experiments of Chapter 5. More information can be found at the implementa-

tion’s github page at https://github.com/jngiam/sparseFiltering/blob/master/

sparseFiltering.m.

function [optW] = sparseFiltering(N, X)

https://github.com/jngiam/sparseFiltering/blob/master/sparseFiltering.m
https://github.com/jngiam/sparseFiltering/blob/master/sparseFiltering.m
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% N = # features, X = input data (examples in column)

optW = randn(N, size(X, 1));

optW = minFunc(@SparseFilteringObj, optW(:), ...

struct(’MaxIter’, 200, ’Corr’, 20), X, N);

optW = reshape(optW, [N, size(X, 1)]);

end

function [Obj, DeltaW] = SparseFilteringObj (W, X, N)

% Reshape W into matrix form

W = reshape(W, [N, size(X,1)]);

% Feed Forward

F = W*X;

Fs = sqrt(F.ˆ2 + 1e-8);

[NFs, L2Fs] = l2row(Fs);

[Fhat, L2Fn] = l2row(NFs’);

% Compute Objective Function

Obj = sum(sum(Fhat, 2), 1);

% Backprop through each feedforward step

DeltaW = l2rowg(NFs’, Fhat, L2Fn, ones(size(Fhat)));

DeltaW = l2rowg(Fs, NFs, L2Fs, DeltaW’);

DeltaW = (DeltaW .* (F./Fs)) * X’;

DeltaW = DeltaW(:);

end

%

% The following functions are now in common/

% function [Y,N] = l2row(X) % L2 Normalize X by rows

% % We also use this to normalize by column with l2row(X’)

% N = sqrt(sum(X.ˆ2,2) + 1e-8);

% Y = bsxfun(@rdivide,X,N);

% end

% function [G] = l2grad(X,Y,N,D) % Backpropagate through Normalization

% G = bsxfun(@rdivide, D, N) - bsxfun(@times, Y, sum(D.*X, 2)./(N.ˆ2));

% end
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A.3 Datasets
Synthetic datasets were generated in order to enable more control in the experimental design. Stem-

ming from the fact that analysis of differential expression in proteomic profiles produced through mass

spectrometry is one of the primary fields of application for feature selection, 3 of the datasets were gen-

erated according to work in [ZLS+06]. Another two of the datasets were generated according to work in

[WMC+00]. For each of the methods some simplifying conventions where used, namely the size of the

dataset was fixed to 300 samples, each composed of 200 variables. From these 200 variables, 10 were

relevant to the problem and 190 where noise. While using these conventions we generate the following

datasets:

1. Fake Class , the relevant features where gaussians defined as N(0.25, 1) for class 1 and

N(−0.25, 1) for class −1. The remaining,”junk”, features where also gaussian N(0, 1). The

class labels are then randomly permuted. This dataset can act as a sanity-check for supervised

feature selection algorithms.

2. Linear Weston, for the total of 10 relevant features the first five {x1, ..., x5} where drawn as xi =

yN(i, 1) and the second ten features {x6, ..., x10} with a probability of 0.7. Otherwise the first

five where drawn as xi = N(0, 1) and the second ten as xi = yN(i − 10, 1). The remaining

features where gaussian noise xi = n(0, 20), i = 21, ..., 500

3. Linear Zhang - Sample , the relevant features where gaussians defined as N(0.25, 1) for class 1

and N(−0.25, 1) for class −1. The remaining,”junk”, features where also gaussian N(0, 1). The

data is constructed to contain 5% ”outlier samples,” which were made by randomly picking 5% of

the samples and increasing the standard deviation of every variable in these samples by a factor of

10.

4. Linear Zhang - Feat , the relevant features where gaussians defined as N(0.25, 1) for class 1 and

N(−0.25, 1) for class −1. The remaining,”junk”, features where also gaussian N(0, 1). For the

informative genes 5% of values in all samples were randomly used as outliers by making them to

follow N(0.25, 100) for positive samples and N(−0.25, 100) for negative samples.

5. Nonlinear Weston, For y = −1, {x1, ..., x10 where drawn with equal probability from N(µ1,Σ),

or N(µ2,Σ), where µ1 = {−0.7500,−1.0, ...,−2.75− 3.0000} and µ2 = {−3,−2.4, ..., 2.4, 3}

and Σ = I . If y = 1, then {x1, ..., x10} are drawn again from two normal distributions with

equal probability and means µ3 = {3, 2.4, ...,−2.4, 3} and µ4 = {−3,−2.4, ..., 2.4, 3} and same

covariance Σ as before. The rest of the features are just noise, xi = N(0, 20), i = 21, ..., 500.

A.4 Real Data
We conducted experiments in real datasets arising in the computational profiling of tuberculosis (TB),

an application where feature selection plays a pivotal role both in terms of improving accuracy but

also providing insight into the underlying mechanisms. We conducted experiments on two different
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datasets. The first TB dataset consists of 523-dimensional mass-spectrometry proteomic profiles of blood

plasma [SBE+12], and consists of 100 active TB samples, 40 symptomatic controls, and 49 samples of

patients with TB-Like symptoms with a co-existing latent TB infection (LTBI). We performed pairwise

comparisons between active TB and Unhealthy Controls (Task 1), Active TB and symptomatic LTBI

(Task 2), and Active TB with symptomatic patients without LTBI (Task 3),which correspond to scenarios

in real clinical applications. The second dataset comprises of the transcriptomic profiles of 69 healthy

individuals with LTBI and 133 healthy controls from [BGM+10]. Preprocessing removed probes with

low acquisition precision as well as factors with missing values, resulting in a set of 6247 variables.

Table 2 summarises the experiments.

A.5 Software
The majority of the code used for the experiments presented in the thesis is hosted on github. The thesis

would not have been possible without some excellent open source packages, which provide the founda-

tion for our code. The majority of the experiments rely on LIBSVM [CL11] for a SVM solver. Ryota

Tomioka’s DAL package [TS09] was used for solving Lasso and L1-logistic regression problems. Tom

Minka’s lightspeed toolbox [Min] has boosted the performance of many routines. The linear program-

ming boosting implementation relies on CVX [GBY] for solving the underlying linear problem.
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