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Abstract: 

Short-term forecasts based on time series of counts or survey data are 
widely used in population biology to provide advice concerning the 
management, harvest and conservation of natural populations. A common 
approach to produce these forecasts uses time-series models, of different 
types, fit to time series of counts.  Similar time-series models are used in 
many other disciplines, however relative to the data available in these 
other disciplines, population data are often unusually short and noisy and 
models that perform well for data from other disciplines may not be 
appropriate for population data.  In order to study the performance of 

time-series forecasting models for natural animal population data, we 
assembled 2379 time series of vertebrate population indices from actual 
surveys.  Our data were comprised of three vastly different types: highly 
variable (marine fish productivity), strongly cyclic (adult salmon counts), 
and small variance but long-memory (bird and mammal counts).  We 
tested the predictive performance of 49 different forecasting models 
grouped into three broad classes: autoregressive time-series models, non-
linear regression-type models and non-parametric time-series 
models.  Low-dimensional parametric autoregressive models gave the most 
accurate forecasts across a wide range of taxa; the most accurate model 
was one that simply treated the most recent observation as the forecast. 

More complex parametric and non-parametric models performed worse, 
except when applied to highly cyclic species. Across taxa, certain life 
history characteristics were correlated with lower forecast error; 
specifically, we found that better forecasts were correlated with attributes 
of slow growing species: large maximum age and size for fishes and high 
trophic level for birds. 
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Abstract 17	
  

Short-term forecasts based on time series of counts or survey data are widely used 18	
  

in population biology to provide advice concerning the management, harvest and 19	
  

conservation of natural populations. A common approach to produce these forecasts uses 20	
  

time-series models, of different types, fit to time series of counts.  Similar time-series 21	
  

models are used in many other disciplines, however relative to the data available in these 22	
  

other disciplines, population data are often unusually short and noisy and models that 23	
  

perform well for data from other disciplines may not be appropriate for population data.  24	
  

In order to study the performance of time-series forecasting models for natural animal 25	
  

population data, we assembled 2379 time series of vertebrate population indices from 26	
  

actual surveys.  Our data were comprised of three vastly different types: highly variable 27	
  

(marine fish productivity), strongly cyclic (adult salmon counts), and small variance but 28	
  

long-memory (bird and mammal counts).  We tested the predictive performance of 49 29	
  

different forecasting models grouped into three broad classes: autoregressive time-series 30	
  

models, non-linear regression-type models and non-parametric time-series models.  Low-31	
  

dimensional parametric autoregressive models gave the most accurate forecasts across a 32	
  

wide range of taxa; the most accurate model was one that simply treated the most recent 33	
  

observation as the forecast. More complex parametric and non-parametric models 34	
  

performed worse, except when applied to highly cyclic species. Across taxa, certain life 35	
  

history characteristics were correlated with lower forecast error; specifically, we found 36	
  

that better forecasts were correlated with attributes of slow growing species: large 37	
  

maximum age and size for fishes and high trophic level for birds. 38	
  

 39	
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Introduction 40	
  

Short-term forecasts are used widely in population biology – fisheries biologists 41	
  

forecast commercially valuable species to inform harvest levels and to evaluate 42	
  

management strategies, conservation biologists use forecasts to evaluate the extinction 43	
  

risks for threatened species, and theoretical biologists rely on forecasts to test predictions 44	
  

of population responses to perturbations. The challenge, particularly with limited data, is 45	
  

how should predictions be made?  In an infinite data universe, a mechanistic model could 46	
  

be constructed from first principles, incorporating population-specific biological 47	
  

information such as age-structured survival or fecundity rates, spatial structure or habitat 48	
  

information, species interactions, and sex-ratios (Hilborn & Walters 1992; Buckland et 49	
  

al. 2004; Newman et al. 2006). In data limited situations, however, there is little data to 50	
  

inform the nature of the complexity.  A more common approach, taken in data-limited 51	
  

situations, is that population biologists apply non-mechanistic approaches to characterize 52	
  

patterns in the data. Types of patterns include trends, cycles, and variability. The 53	
  

statistical time-series models used in this non-mechanistic framework do not have a direct 54	
  

relationship to biological mechanisms, although they may be related to biological 55	
  

processes, such as population growth, survival, or density dependence.  56	
  

Forecasting using this non-mechanistic approach has evolved over the last 50 57	
  

years, but in population biology, the most commonly used models represent a small 58	
  

subset of statistical forecasting models available and used in other disciplines.  To 59	
  

explore forecasting performance over a wide range of statistical models from the time-60	
  

series modeling literature and to study which classes of models are best for the short-term 61	
  

prediction of population data, we adopted an inter-disciplinary approach, drawing from 62	
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statistical methods familiar to biologists and also approaches more frequently used in 63	
  

other fields. We assembled a large database of natural population time series to evaluate 64	
  

the real-world predictive accuracy of three large classes of statistical time-series models: 65	
  

autoregressive time-series models, non-linear regression models and non-parametric 66	
  

time-series models.  67	
  

Autoregressive integrated moving average (ARIMA) models have a long history 68	
  

in time-series analysis and have been widely used for population forecasting (Dennis, 69	
  

Munholland & Scott 1991; Holmes et al. 2007; Ives, Abbott & Ziebarth 2010). Important 70	
  

variants of ARIMA models include AR models, such as stochastic exponential growth 71	
  

models and Gompertz density-dependent models, state-space models and correlated error 72	
  

models.  State-space models separate the total variance into process and observation error 73	
  

components, yielding more precise estimates of the hidden true states of nature (e.g. 74	
  

abundance, vital rates) when the data include high observations or error (Lindley 2003; 75	
  

Holmes et al. 2007). ARIMA models with correlated errors allow the temporal deviations 76	
  

to be temporally dependent or smoothed in different ways (Ives, Abbott & Ziebarth 77	
  

2010). Regardless of how errors are modeled, all ARIMA models assume that the states 78	
  

of nature at two points in time separated by a time lag p are linearly related to one 79	
  

another.  A variety of natural phenomena can lead to more complex lag structures, 80	
  

including interactions within- and between-species (May 1977; Sugihara & May 1990), 81	
  

age-structured demography (Gurtin & Maccamy 1974), variable sex ratios (Hassell, 82	
  

Waage & May 1983), extrinsic forcing factors such as human disturbances, or non-linear 83	
  

responses of species to a changing environment (Higgins et al. 1997; Bjornstad & 84	
  

Grenfell 2001). The second class of models we examined, non-linear regression, provides 85	
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an approach for fitting a flexible model without specifying a linear form for the lag 86	
  

structure.  Two types of non-linear regression models were included in this class: 87	
  

generalized additive models (GAMs; Wood 2006) and local regression models (e.g. 88	
  

‘loess’; Cleveland & Devlin 1988).  The third class of models we examined, non-89	
  

parametric time-series methods, treats complex lag-structure in data by allowing the lag 90	
  

structure to have a non-linear and non-parametric form. Several non-parametric time-91	
  

series models were included in this class: projection models (Sugihara, Grenfell & May 92	
  

1990; Sugihara & May 1990), neural networks (Lek et al. 1996), kernel regression, 93	
  

Gaussian process models and random forest regression (Cutler et al. 2007). 94	
  

 The properties of these parametric and non-parametric time-series methods have 95	
  

been studied using data from other disciplines (reviewed by Stock & Watson 1999; De 96	
  

Gooijer & Hyndman 2006). However, time-series data in the biological sciences present a 97	
  

unique set of challenges. First, population data are relatively short (typically  < 25 data 98	
  

points; Collen et al. 2009) compared to the thousands of data points in financial, 99	
  

environmental and engineering time series. Second, population data are influenced by the 100	
  

presence of observation errors, resulting from uncertainty in measurement, sampling and 101	
  

detection rates. Unlike other fields, it is often difficult to conduct replicated survey 102	
  

experiments that could be used to estimate the observation error variance. As a result, the 103	
  

magnitude of the observation error variance is generally unknowable.  104	
  

 The first objective of our study was to use a meta-analysis framework to compare 105	
  

the short-term forecasting performance of parametric and non-parametric univariate 106	
  

models using our dataset of 2379 vertebrate population counts and indices. Large datasets 107	
  

of population time series have been used to evaluate population dynamics questions (for 108	
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example, Hilborn & Liermann 1998; Knape & de Valpine 2012) and meta-analyses of 109	
  

forecasting performance have been performed in other fields (Stock & Watson 1999), but 110	
  

to date, no large-scale forecasting meta-analysis has been carried out for ecological data, 111	
  

with the exception of (Stergiou & Christou 1996), who compared methods for predicting 112	
  

fisheries catches.  However, catches may not translate well to forecasts at the population 113	
  

level because catches reflect a combination of population abundance, market prices, and 114	
  

the behavior of fishers. For similar reasons, extending meta-analysis results from other 115	
  

fields to ecological data is difficult because different modeling approaches perform 116	
  

differently for different types of data. For example, Toth, Brath & Montanari (2000) 117	
  

found that in predicting rainfall, neural network time-series models offered an advantage 118	
  

over ARIMA models, while the opposite appears to be true for macroeconomic data 119	
  

(Stock & Watson 1999). A further complication of previous meta-analyses is that as 120	
  

methods have evolved, older published studies include only a subset of the tools and 121	
  

models currently available. 122	
  

 The second objective of our analysis was to examine correlations between 123	
  

forecast accuracy and biological or statistical covariates (life-history characteristics, time-124	
  

series length and variability). For example, our expectation was that longer time series 125	
  

with low levels of variation are associated with forecasts with low errors. We first 126	
  

explored this question on a taxonomic level and looked at whether certain classes of 127	
  

forecasting models work particularly well for particular taxonomic classes of organisms 128	
  

(birds, mammals, and fish).  We then used a subset of our time series for which we had 129	
  

detailed biological covariates and explored whether certain attributes of species’ life 130	
  

histories – such as growth rate, age at maturity, mean adult size or weight, trophic 131	
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position – make the abundance of these species easier to forecast.  Such an analysis can 132	
  

guide biologists towards those forecasting models that tend to perform better for 133	
  

particular taxa. 134	
  

 135	
  

Methods 136	
  

Time-series data 137	
  

We compiled a database of 2379 univariate time series of aquatic and terrestrial 138	
  

vertebrates worldwide (Table 1). Only time series with at least 25 continuous 139	
  

observations (no missing values) were included. Most of the time series were population 140	
  

counts or indices of abundance, but we also included time series of marine fish 141	
  

production (recruits per spawning stock biomass) in our database. We assembled bird and 142	
  

mammal abundance time series from the Living Planet Index (LPI) Database, the North 143	
  

American Breeding Bird Survey (BBS), and the Royal Society for the Protection of Birds 144	
  

(RSPB), salmon spawner abundance data from published literature (Holmes & Fagan 145	
  

2002; Dorner, Peterman & Haeseker 2008), the National Marine Fisheries Service (Ford 146	
  

2011) and StreamNet, and marine fish productivity from the RAM Legacy database 147	
  

(Ricard et al. 2011).  Time series were filtered to only include those collected from a 148	
  

consistent survey of some type. 149	
  

The LPI Database (Loh et al. 2005; Collen et al. 2009) is a database of worldwide 150	
  

population time series, collated from published scientific literature and other global 151	
  

databases, especially the Global Population Dynamics Database (NERC Centre for 152	
  

Population Biology 2010) and the Pan-European Common Bird Monitoring Scheme 153	
  

(Pan-European Common Bird Monitoring Scheme 2011). The North American BBS 154	
  

Page 8 of 43Oikos



For Review
 O

nly

	
   8	
  

(Sauer et al. 2011; Risely et al. 2012) is monitoring program by the U.S. Geological 155	
  

Survey's Patuxent Wildlife Research Center and Environment Canada's Canadian 156	
  

Wildlife Service.  It provides regional population estimates from standardized roadside 157	
  

route surveys for North American breeding birds. The RSPB breeding bird data were 158	
  

compiled by the RSPB from data collected by the Statutory Conservation 159	
  

Agencies/RSPB annual breeding bird scheme, the Rare Breeding Birds Panel, and 160	
  

RSPB’s own bird monitoring programs.  These data consist of estimated population sizes 161	
  

for 61 rare or scarce breeding bird species in the United Kingdom based on censuses of 162	
  

known breeding sites. Our Pacific Northwest salmon data consist of yearly spawner 163	
  

counts of Chinook (Oncorhynchus. tshawytscha), pink (O. tshawytscha), chum (O. keta), 164	
  

coho (O. kisutch), and sockeye salmon (O. nerka) in British Columbia, Canada and 165	
  

Washington, Oregon, and California, USA collected as part of state and provincial 166	
  

monitoring programs. The RAM Legacy database includes time series of fish biomass 167	
  

and productivity (recruits/spawning stock biomass) for marine fishes around the globe. 168	
  

We only included productivity time series in our database because the RAM Legacy adult 169	
  

spawning biomass time series are smoothed output from stock assessment models. 170	
  

 171	
  

Biological covariate data 172	
  

To test whether certain groups of species are more predictable than others, we 173	
  

assembled biological covariates for species in our three largest datasets: marine fish 174	
  

productivity, bird counts and salmon abundance. For species in the marine fish 175	
  

productivity dataset, we assembled maximum age, mean adult length, relative weight, 176	
  

and trophic level information from RAM Legacy and FishBase (Froese & Pauly 2000). 177	
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Relative weight is a proxy for the girth of each species, calculated as the residuals of log 178	
  

length-log weight regressions. Weight by itself was not included as a covariate because 179	
  

weight and length are highly correlated. For the bird species in the BBS, RSPB and LPI 180	
  

datasets, we assembled mean adult weight, generation length, and trophic level 181	
  

information from the LPI database and BirdLife International. For the database of adult 182	
  

salmon counts, we assembled mean length of spawning adults and trophic level for each 183	
  

species from FishBase (Froese & Pauly 2000). 184	
  

 185	
  

Time-series models 186	
  

We tested the forecasting performance of 49 univariate time-series models. These 187	
  

models can be classified into three groups: ARIMA models, regression models and non-188	
  

parametric models. We summarize the models below and more details, including the R 189	
  

functions to implement each model, are available in the SI.  190	
  

1. ARIMA models 191	
  

 ARIMA stands for autoregressive integrated moving average and is a model that 192	
  

combines autoregressive (AR), differencing (I), and moving average (MA) components.  193	
  

An AR model of logged-abundance (𝑌!)  takes the form 194	
  

𝑌! = 𝑏!𝑌!!! + 𝑏!𝑌!!!  +  . . .+  𝑏!𝑌!!! + 𝑒! 

A MA model is similar but instead of Y being autoregressive, the error term (et) is 195	
  

modeled as autoregressive.  A model that combines both AR and MA components is 196	
  

ARMA, and if the differences (Yt-Yt-1, Yt-Yt-2, etc.), rather than Y, are treated as the 197	
  

response, the result is an ARIMA model.  All of these models can be written in 198	
  

ARIMA(p, d, q) form in terms of three parameters: p, the number of autoregressive 199	
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terms, d, the degree of differencing, and q, the number of moving average terms.  See 200	
  

Ives, Abbott & Ziebarth (2010) for a discussion of ARIMA models used in ecology and 201	
  

the SI for more details. 202	
  

The most basic ARIMA model we considered was a random walk model, denoted 203	
  

ARIMA(p = 0, d = 1, q = 0), with and without drift. We also considered state-space 204	
  

versions of these models (Holmes 2001; Lindley 2003; Holmes et al. 2007), which 205	
  

include an observation model in addition to the process model. Potentially unrealistic 206	
  

assumptions made by the simple random walk are that (1) the mean trend is constant 207	
  

through time, (2) stochastic fluctuations through time are independent and temporally 208	
  

uncorrelated, and (3) that population change is not density-dependent.  To relax 209	
  

assumptions (2) and (3), we fit a range of different ARIMA models to include temporally 210	
  

correlated errors and mean-reversion (density-dependence).  Random walks with density-211	
  

dependence (Gompertz random walks; Dennis et al. 2006), are ARIMA(1,0,0) with a 212	
  

constant, random walks with autocorrelated errors are ARIMA(1,1,0), random walks with 213	
  

smoothed errors (MA) are ARIMA(1,0,1), and exponentially smoothed time series 214	
  

(Hyndman et al. 2002) are ARIMA(0,1,1). We fit a range of ARIMA models, varying p, 215	
  

d, and q from 0 to 2. All models are listed in Table 2 in the SI.  Finally to relax 216	
  

assumption (1), we fit stochastic level models with the random walk drift parameter itself 217	
  

modeled as a random walk.  218	
  

2. Linear and non-linear regression 219	
  

 We explored three types of parametric regression methods.  The first was simple 220	
  

linear regression of logged abundance or productivity against time with temporally 221	
  

uncorrelated errors.  Using a moving average model, ARIMA(0,0,1), we also fit a linear 222	
  

Page 11 of 43 Oikos



For Review
 O

nly

	
   11	
  

regression with autocorrelated errors.  Second we fit local regression models (Cleveland 223	
  

& Devlin 1988), which fit local polynomial models to a specified number of neighboring 224	
  

data points. Lastly, we evaluated non-linear regression using GAMs (Wood 2006) with 225	
  

the degree of smoothness selected by cross validation. GAMs model the expected value 226	
  

of a data point as a function of a link function and splines, whereas local regression uses a 227	
  

moving window approach to sequentially fit polynomial splines to batches of data. All 228	
  

parametric models were fit with Gaussian errors to log transformed data. 229	
  

3. Non-parametric methods 230	
  

 We tested a variety of non-parametric methods: kernel regression, neural 231	
  

networks, Gaussian process models, projection models and random forest regression.  232	
  

Non-parametric kernel regression models use a kernel function to weight the importance 233	
  

of neighboring points. Neural network time-series methods (Toth, Brath & Montanari 234	
  

2000; Thrush, Coco & Hewitt 2008) estimate 'hidden layers' as the sum of logistic-235	
  

transformed inputs to relate historical observations to future states (we considered up to 3 236	
  

hidden layers).  Gaussian process models estimate the covariance between pairs of 237	
  

neighboring observations but do not impose a parametric form for the errors nor a 238	
  

specific lag structure.  A related non-parametric approach is projection methods (S-MAP 239	
  

and Simplex projection) which map the response value Yt as a function of lagged 240	
  

abundances, Yt-1, Yt-2,…. S-MAP (Sugihara 1994) and Simplex projection (Sugihara, 241	
  

Grenfell & May 1990) have been successful at forecasting non-linear ecological time 242	
  

series (Hsieh, Anderson & Sugihara 2008; Glaser et al. 2011). Simplex uses only a few 243	
  

neighboring points to make predictions, while S-MAP uses a distance-weighting method. 244	
  

We implemented both approaches while automatically selecting the lagging dimensions 245	
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for each. As a final method, we tested random forest regression (Cutler et al. 2007), 246	
  

which uses lagged abundances as the predictors and uses decision trees to optimize the 247	
  

predictive ability. Lagged abundances at 1 to 5 time steps were used as predictors and 248	
  

automatically selected from decision trees with up to 5 nodes. 249	
  

 250	
  

Model fitting and projection 251	
  

Each time series was log-transformed to achieve approximate normality and to 252	
  

account for population growth being a multiplicative process. Time series were detrended 253	
  

as part of the fitting process for stationary ARIMA models (but the trend was included in 254	
  

model forecasts).  The models were fit to the entire time series minus the last 5 time 255	
  

steps; this is the ‘training’ data.  The last 5 time steps were held out to gauge predictive 256	
  

performance. All models were fit in R using add-on packages (R Core Development 257	
  

Team 2010); code and functions are provided in the SI.  From the fitted models, we 258	
  

forecasted the next 1 to 5 years using the prediction functions supplied with the 259	
  

corresponding R packages (or our own function for S-MAP and Simplex projection). 260	
  

 261	
  

Evaluation of forecast performance 262	
  

 Though forecast performance can be improved in some situations with ensemble 263	
  

forecasting from multiple models (Newbold & Granger 1974; Raftery et al. 2005) or by 264	
  

combining information across time series (Hsieh, Anderson & Sugihara 2008; Ward et al. 265	
  

2010), our goals were to evaluate the performance of individual models and to identify 266	
  

which models (or model classes) are best on average across large datasets, following the 267	
  

approach of (Geweke, Meese & Dent 1983). Model performance in prediction (or 268	
  

Page 13 of 43 Oikos



For Review
 O

nly

	
   13	
  

explanation) can be viewed through the lens of the bias-variance tradeoff, Error = 269	
  

Variance + Bias2 + Irreducible error, where bias decreases and variance increases with 270	
  

model complexity, and irreducible error represents the unexplained variation (Burnham 271	
  

and Anderson 2002). When comparing the performance of multiple models across 272	
  

multiple time series from diverse environments and taxa, scale invariant metrics need to 273	
  

be used because different time series have different scales of variation. Thus, scale-274	
  

dependent metrics like root mean square error (RMSE) should not be used (Hyndman & 275	
  

Koehler 2006). A variety of scale-invariant measures of forecasting accuracy exist.  We 276	
  

used the mean absolute scaled error (MASE) recommended by (Hyndman & Koehler 277	
  

2006). MASE allows comparison of predictive accuracy across datasets with different 278	
  

scales of variation and is less sensitive to extreme values and outliers.  279	
  

For a single time series, the absolute scaled error (ASE) for a prediction 𝑌! at time 280	
  

t after the training data (the portion of the time-series used for fitting) is 281	
  

𝐴𝑆𝐸! =
𝑌! − 𝑌!

1
𝑛 − 1 𝑌! − 𝑌!!!!

!!!

 

where Yt is the observed value at time-step t (1 to 5) after the end of the training data 282	
  

(Hyndman & Koehler 2006). ASE values are calculated independently for each 283	
  

forecasting model. The absolute error is scaled by the mean absolute error within the 284	
  

training data, !
!!!

𝑌! − 𝑌!!!!
!!!  , where Yi is the i-th observation within the training data 285	
  

and n is the number of training observations. To calculate MASEt for a given model the 286	
  

ASEt values from all time series are averaged. A general property of MASE is that as 287	
  

time-series length increases, forecasts using a random walk without drift will converge to 288	
  

a MASE of 1. For short time series, such as those used here, the same random walk 289	
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model will produce MASE values higher than 1, because the small-sample mean absolute 290	
  

error (the denominator in the ASE equation) is an estimate of the large-n mean absolute 291	
  

error. Thus, with short time series, we compare MASE values to the MASE from the 292	
  

random walk without drift model (termed ‘RW-MASE’). This will be some value greater 293	
  

than 1 for short time series. When a model has a MASE less than RW-MASE, it indicates 294	
  

that (1) there is structure in the data beyond that implied by a single random-walk process 295	
  

and (2) the model successfully models that structure to give a better forecast.  MASE 296	
  

values higher than RW-MASE indicate that the model is either over-fitting the data or 297	
  

fitting an improper model to the data.  298	
  

 We computed MASE for 1- to 5-step ahead predictions. For each model and each 299	
  

time series, we predicted the future values of the times series at t=1 to 5 past the end of 300	
  

the training data, giving us 𝑌!,,… ,𝑌!. With these and the observed values, 𝑌!,… ,𝑌!, we 301	
  

computed the ASE and MASE statistics for each model. 302	
  

 303	
  

Identifying covariates useful in prediction 304	
  

 We conducted a secondary analysis to explore which statistical and biological 305	
  

covariates were correlated with better predictive accuracy (lower ASE values).  For this 306	
  

analysis, we used only time series for species with covariate information: birds (n=890) 307	
  

from the BBS, RSPB and LPI datasets, marine fish (n=133) from the RAM Legacy 308	
  

productivity dataset, and salmon (n=289) from our combined salmon dataset. In addition 309	
  

to biological covariates, we included the following descriptive statistics as covariates:  310	
  

time-series length, variance of the lag-1 differences, lag-1 autocorrelation (calculated as 311	
  

the ACF of differenced observations), mean trend, current abundance relative to the 312	
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maximum observed (a measure of depletion), and the ratio of observation to process 313	
  

variance as estimated by a state-space random walk with drift model.  314	
  

For the response variable, we used the natural log of the average ASE statistic 315	
  

from the GAM model for forecasts 1 to 3 time steps ahead: 316	
  

ASE =
𝑌! − 𝑌!!!!

!!!!! /3
1

𝑛 − 1 𝑌! − 𝑌!!!!
!!!

 

Here, 𝑌! is the estimate for time t from the GAM model fit to a single time series and Yt is 317	
  

the actual observed value at time t.  ASE values 1 to 3 time steps ahead were averaged 318	
  

because using an ASE value for one time step alone is highly sensitive to outliers.  Using 319	
  

ASE reduced the effect of outlier values.  We show the results using the ASE values using 320	
  

𝑌! from the GAM model, however we did the analysis with ASE computed with 𝑌!  values 321	
  

from the ARIMA models, and results were similar.  Separate linear regressions of 322	
  

covariates against ASE were used for the bird, marine fish productivity, and salmon time 323	
  

series to prevent results from being dominated by the taxa with greater sample size.  324	
  

Stepwise regression with AIC as a model selection tool was used to identify covariates 325	
  

with higher explanatory power.   326	
  

 327	
  

Results 328	
  

 We summarized the forecast accuracy of different classes of models using the 329	
  

mean absolute scaled error (MASE) statistic (Hyndman & Koehler 2006). This metric 330	
  

allows forecast accuracy for different datasets to be compared on a similar scale and 331	
  

combined into a single number, thus allowing us to evaluate forecast performance 332	
  

integrated over multiple time series. Examining MASE across taxonomic groups (birds, 333	
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marine fish productivity, salmon counts, mammal abundance), we found that GAMs and 334	
  

low dimensional ARIMA models (of various types including AR and ARMA, but 335	
  

excluding pure MA models) produced short-term forecasts with the best predictive 336	
  

accuracy.  No particular ARIMA model stood out; rather, the well-performing ARIMA 337	
  

models were characterized by simplicity (few estimated parameters) and a strong 338	
  

connection between the forecast and the last observed value.  The worst performing 339	
  

methods included linear regression, neural network models, S-MAP projection and local 340	
  

regression (Fig. 1). Although GAM and simple ARIMA models performed best, their 341	
  

MASE statistics were similar to that of a random walk without drift (the baseline model) 342	
  

for birds, mammals, and marine fish productivity, and their predictions became steadily 343	
  

worse for 2, 3, and 4 time steps forward (Fig. 1). ARIMA models only outperformed the 344	
  

baseline random walk when applied to data from highly cyclic salmon species.  For some 345	
  

salmon species, 2- and 4-step ahead forecasts were just as good as 1-step ahead forecasts 346	
  

(Fig. 2).  These results were particularly true for pink and sockeye salmon – species 347	
  

whose life histories cause regular population cycles with even-numbered periods. For 348	
  

these two cyclic species, some non-parametric methods (e.g. Simplex projection and 349	
  

random forest regression) did as well as the ARIMA models (Fig. 2), presumably because 350	
  

they capture the lagged structure in the time series. While the ARIMA models in Fig. 1 351	
  

do not include lags greater than 1, they are able to model lag-2 cycles via negative 352	
  

autocorrelation between t and t-1.  Detailed results for all models are given in Table S2 in 353	
  

the SI. 354	
  

 Results from our analysis of covariates and forecasting performance identified 355	
  

biological and statistical covariates associated with better forecasts (lower errors), 356	
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however the covariates selected depended on the taxa.  For the marine fish productivity 357	
  

dataset, we found that species with larger maximum lengths and larger maximum ages 358	
  

were associated with improved forecasts (Table 2). In terms of the biological effect size, 359	
  

we found the effects of length and maximum age to be equivalent (Fig. 3).  We also 360	
  

found that an increasing ratio of observation to process variance was correlated with 361	
  

lower forecast error – meaning that when observation variance contributed a larger 362	
  

proportion of the total variance, the relative influence of process variance was smaller, 363	
  

and the forecasts tended to have lower error (relative to the variance in the time series). 364	
  

For the bird dataset, the only biological variable associated with better forecasts was 365	
  

trophic level; the positive relationship indicates that higher trophic level species in our 366	
  

dataset were associated with lower forecast errors. Two statistical covariates were also 367	
  

associated with better forecasts for birds: decreased total variance in the time series and 368	
  

increased autocorrelation (Table 2). No significant biological or statistical predictors 369	
  

were found for the combined salmon datasets, possibly because the small number of 370	
  

species included (five) provided low resolution.  Although these results are for forecasts 371	
  

from the GAM model, we found similar covariates when we used forecasts from the 372	
  

ARIMA models. This is not surprising since the forecasts (and ASE or MASE values) 373	
  

from the GAMs and ARIMA models are correlated.  374	
  

 375	
  

Discussion and Conclusions 376	
  

 Historically, the majority of ecological time series analysis has focused on 377	
  

identifying explanatory processes (competition, density dependence, Allee effects). These 378	
  

model selection analyses have used statistics such as Type I error rates, or model 379	
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selection tools like AIC to identify models that balance the explanatory ability of models 380	
  

with predictive ability (this is the principle the parsimony; Burnham and Anderson 2002). 381	
  

Less work has been done to investigate the predictive or forecasting ability of statistical 382	
  

models in ecology. Short-term forecasts are becoming widely used in population biology, 383	
  

and in this paper, we sought to identify specific classes of models that (1) are flexible 384	
  

enough to fit a range of population processes, from declines to density dependence, and 385	
  

(2) have low prediction error. These characteristics are particularly important for species 386	
  

at risk, or species that are commercially valuable (such as fish populations).  In data-rich 387	
  

situations, population forecasts might be improved by including biological mechanisms 388	
  

and dynamics (though including mechanisms may also yield worse fits; Perretti et al. 389	
  

2013). In data-poor situations, a time series of estimates of abundance or biomass is often 390	
  

the only information available.  An ever-increasing array of modeling approaches can be 391	
  

used to make short-term forecasts using only time-series data and have been used in other 392	
  

disciplines, however the performance of these approaches may be quite different for 393	
  

animal population data given its typically noisy and short nature. Our meta-analysis of 394	
  

vertebrate time series included species from aquatic and terrestrial ecosystems and 395	
  

diverse data types: we included highly variable data (marine fish), low variability data 396	
  

(birds, mammals), data with cyclic dynamics (salmon counts), and data across a gradient 397	
  

of species longevity.  398	
  

For forecasting species without strong cyclic dynamics (birds, mammals, marine 399	
  

fish), we found the best performers to be GAMs and ARIMA models, which includes 400	
  

random walks with drift, models with temporally correlated or smoothed errors, state-401	
  

space models, and ARIMA models with a lag-1 correlation. However, averaged over all 402	
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non-cyclic species, both small and short-lived and large and long-lived, the ‘best’ models 403	
  

for these non-cyclic species only did as well or slightly better than a random walk 404	
  

without drift (Fig. 1; Table S2 in SI).  Effectively, this means that the forecast involving 405	
  

the fewest estimated parameters, which effectively simply uses the last observation at 406	
  

time t, was the best prediction of the value of the population at time t+k (k=1:5).   This 407	
  

highlights the cost of trying to estimate even the trend (drift), much less more complex 408	
  

lag structure, when using short, noisy time series with unknown levels of observation 409	
  

error. That these models did not strongly outperform the baseline random walk without 410	
  

drift was surprising since time series from all taxa in our analysis showed evidence for a 411	
  

lag-1 negative autocorrelation (Fig. 4). Such negative autocorrelation is common in 412	
  

population data and can be generated by age-structured demography (especially for 413	
  

semelparous species, such as salmon), sex-ratios, density-dependence, and observation 414	
  

errors.  However for short time series, we found that estimation of these lag terms is very 415	
  

costly, much like Ives, Abbott & Ziebarth (2010) found, and that estimation of the 416	
  

observation error variance also comes at a high cost, an issue also discussed by Holmes et 417	
  

al. (2007).  In the context of bias-variance tradeoff, these more complex models might fit 418	
  

a training dataset well, but will have low predictive power when applied to out of sample 419	
  

data (Burnham and Anderson 2002). 420	
  

The other models types, other than ARIMA and GAMs, however, did 421	
  

considerably worse than baseline random walk without drift (and worse that ARIMA and 422	
  

GAM models). Linear regression and neural network models did especially poorly, likely 423	
  

due to the fact that their forecasts are not tied directly to the last observation.  S-MAP, 424	
  

Simplex and random forest regression also did poorly for birds, mammals and marine 425	
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fish, possibly because these methods are more data intensive as they involve sampling 426	
  

from the lag-p differences in the data and thus may be especially affected by low sample 427	
  

size.   428	
  

For the salmon time series, in contrast, we found that all ARIMA models 429	
  

outperformed the baseline random walk without drift. Time series of adult salmon 430	
  

abundance are often characterized by strong and regular cyclic patterns, producing 431	
  

negative correlation in the lag-1 errors. When we looked at the individual salmon species, 432	
  

we saw that the better performance of the ARIMA models was driven mainly by better 433	
  

performance for pink, sockeye, and chum salmon.  Though patterns vary regionally, these 434	
  

three species are characterized by regular cyclic behavior (Ruggerone et al. 2010). 435	
  

GAMs, neural networks, Simplex and random forest models also did especially well for 436	
  

these cyclic species, though these same models performed worse than the baseline 437	
  

random walk when applied to less cyclic salmon species.  The unusually good 438	
  

performance of neural networks, Simplex and random forest models for species with 439	
  

strong cycles highlights the ability of these non-parametric approaches to model complex 440	
  

structure in data.   441	
  

Most of the results from our analysis of biological covariates associated with 442	
  

better prediction match intuition; across taxa, bird and mammal population abundance 443	
  

was generally forecasted with better accuracy than fish abundance or productivity (Fig. 444	
  

3), and within taxa, species that are larger, older, or occupy higher trophic levels are 445	
  

generally easier to predict than smaller, fast growing species (Table 2). Smaller species, 446	
  

such as sardine or anchovies in our data, are conventionally associated with more r-447	
  

selected life history types and more eruptive population dynamics. The average 1- to 3-448	
  

Page 21 of 43 Oikos



For Review
 O

nly

	
   21	
  

step ahead ASE statistics were larger for these species, suggesting that a random walk 449	
  

with no drift would provide as good of a forecast as any more complicated model.  450	
  

However, for species that were larger, were at a higher trophic level, or had larger 451	
  

maximum ages, use of a GAM or any of the low-dimensional ARIMA models improved 452	
  

forecasts.  This suggests that low-dimensional models could also provide better than 453	
  

random-walk forecasts for the non-cyclic species but in general only for the subset of 454	
  

these species with larger size and higher trophic level. 455	
  

The baseline model used in our analysis was a simple random walk without drift.  456	
  

For this model, the t-step ahead forecast is simply the last observed value.  No additional 457	
  

model parameters are estimated for the actual forecast, though the calculation of the ASE 458	
  

(the prediction error) uses an estimate of the total variance (as do all models).  The failure 459	
  

of the more complicated time-series models to provide short-term predictions with lower 460	
  

error than the random walk without drift emphasizes 1) the cost of estimating parameters 461	
  

in the face of noise and 2) the cost of basing short-term predictions on parameters, like 462	
  

the trend over the whole time series, which may be more associated with long-term 463	
  

dynamics rather than short-term behavior.  For short population time series, we can 464	
  

recommend the use of more complex forecasting models only when time series have 465	
  

strong internal structure (e.g. the cyclic dynamics in salmon) or have lower variability 466	
  

and higher temporal autocorrelation (larger species with higher maximum ages or higher 467	
  

trophic level).  In summary, fitting models with many parameters and the flexibility to 468	
  

model complex structure may be tempting, but this involves estimating structure from 469	
  

few data points. We found that estimation of even one or two parameters imposes a high 470	
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cost with little benefit for short-term forecasts of population abundance for species 471	
  

without obvious cyclic population dynamics. 472	
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Figure	
  Legends	
  609	
  

Figure	
  1.	
  Natural	
  log	
  of	
  MASE	
  statistics	
  for	
  13	
  models,	
  for	
  prediction	
  at	
  t=1	
  to	
  4.	
  	
  610	
  

‘Reg’	
  =	
  ordinary	
  least-­‐squares	
  regression,	
  ‘MA’	
  =	
  moving	
  averaged	
  errors	
  611	
  

ARIMA(0,0,1),	
  ‘RW’	
  =	
  random	
  walk	
  without	
  drift	
  ,	
  ‘ARMA’	
  =	
  ARIMA(1,0,1)	
  with	
  a	
  612	
  

constant,	
  ‘Exp’	
  =	
  exponentially	
  smoothed	
  ARIMA(0,1,1)	
  ,	
  ‘ARcor’	
  =	
  AR	
  model	
  with	
  613	
  

temporally	
  correlated	
  errors	
  (ARIMA(1,1,0)),	
  ‘ArSS’	
  =	
  state-­‐space	
  RW	
  with	
  drift	
  614	
  

model,	
  ‘GAM’	
  =	
  generalized	
  additive model, ‘Loc’ = weighted local regression , ‘NN’ = 615	
  

neural network model, ‘SMAP’ = distance weighted non-parametric prediction, ‘Smp’ = 616	
  

Simplex, ‘RF’ = random forest. Horizontal dashed lines correspond to the MASE from 617	
  

the RW model without drift (RW-MASE). Number of time series for each dataset: n=214 618	
  

(marine fish), n=289 (salmon), n=1322 (birds), n=46 (mammals).  These models shown 619	
  

were selected to summarize the overall behavior for model classes.  The results for all 620	
  

individual models are in Table S2. 621	
  

	
  622	
  

Figure	
  2.	
  Natural	
  log	
  of	
  mean	
  absolute	
  square	
  error	
  (MASE)	
  statistics	
  for	
  13	
  models,	
  623	
  

applied	
  to	
  different	
  time	
  series	
  of	
  salmon	
  over	
  prediction	
  intervals	
  1	
  to	
  4.	
  	
  See	
  Fig.	
  1	
  624	
  

for	
  the	
  model	
  descriptions	
  for	
  the	
  model	
  acronyms	
  on	
  the	
  x-­‐axis. Horizontal dashed 625	
  

lines correspond to the MASE from the RW model.  Number of time series for each 626	
  

species: n=28 (pink, O. gorbuscha), n=40 (chum, O. keta), n=5 (coho, O. kisutch), n=61 627	
  

(sockeye, O. nerka) and n=183 (Chinook, O. tshawytscha).	
  628	
  

	
   629	
  

Figure	
  3.	
  Biological	
  effects	
  of	
  covariates	
  (Table	
  2)	
  that	
  were	
  correlated	
  with	
  changes	
  630	
  

in	
  the	
  absolute	
  scaled	
  error	
  (ASE)	
  statistic	
  from	
  the	
  GAM	
  model,	
  averaged	
  over	
  631	
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forecasts	
  of	
  1	
  to	
  3	
  time	
  steps.	
  The	
  expected	
  improvement	
  in	
  ASE	
  is	
  calculated	
  as	
  the	
  632	
  

ASE	
  statistic	
  divided	
  by	
  the	
  ASE	
  statistic	
  at	
  the	
  mean	
  of	
  each	
  covariate	
  (e.g.	
  mean	
  633	
  

trophic	
  level	
  of	
  2.5	
  for	
  birds),	
  100×𝐴𝑆𝐸!/𝐴𝑆𝐸! .	
  The	
  solid	
  line	
  represents	
  the	
  634	
  

expected	
  value,	
  and	
  the	
  shaded	
  region	
  represents	
  the	
  95%	
  confidence	
  intervals.	
  The	
  635	
  

darkness	
  of	
  the	
  gray	
  scale	
  is	
  proportional	
  to	
  the	
  normal	
  density.	
  636	
  

	
  637	
  

Figure	
  4.	
  Distribution	
  of	
  autocorrelation	
  values	
  for	
  each	
  of	
  the	
  datasets	
  included	
  in	
  638	
  

our	
  meta-­‐analysis.	
  These	
  values	
  represent	
  the	
  ACF	
  at	
  lag	
  1	
  of	
  differenced	
  values.	
   	
  639	
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Figure	
  1.	
  640	
  

	
  641	
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Figure	
  2.	
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Figure	
  3.	
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Figure	
  4.	
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Table	
  1.	
  Summary	
  of	
  time	
  series	
  datasets	
  included	
  in	
  the	
  meta-­‐analysis	
  652	
  
Dataset	
   Time	
  

series	
  
Organism	
   Source	
  

US	
  BBS	
  bird	
   414	
   Birds	
   Sauer	
  et	
  al.	
  2011	
  
UK	
  RSPB	
  bird	
   61	
   Birds	
   Risely	
  et	
  al.	
  2012	
  

LPI	
   1162	
   Birds,	
  fish,	
  
mammals	
  

Loh	
  et	
  al.	
  2005;	
  Collen	
  et	
  
al.	
  2009	
  

RAM	
  
Recruits/spawner	
  

214	
   Fish	
   Ricard	
  et	
  al.	
  2011	
  

WA,	
  OR	
  salmon	
   44	
   Fish	
   Ford	
  et	
  al.	
  2010	
  
CA	
  salmon	
   155	
   Fish	
   Holmes	
  &	
  Fagan	
  2002	
  
BC	
  salmon	
   90	
   Fish	
   Dorner	
  et	
  al.	
  2008	
  

  653	
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Table 2. Regression parameters that have negative effects are associated with reduced 654	
  
MASE (improved forecasts over random walks). Regression coefficients are shown, with 655	
  
standard errors in parentheses. The quantity 𝜎!"#! /𝜎!"#!  represents the ratio of observation 656	
  
to process variance, 𝜎! represents the total variance of the time series deviations 657	
  
(𝑌!!! − 𝑌!) within the training data, and 𝜌  represents the square root of the lag-1 658	
  
autocorrelation in the raw training data. 659	
  

Fish Birds 

ln (age) -0.187 (0.111) Trophic level 
-0.092 
(0.050) 

ln (length) -0.282 (0.152) Ln (𝜎!)  
0.065   

(0.187)    

ln (𝜎!"#! /𝜎!"#! ) -0.012 (0.003) 𝜌  
-0.248    
(0.117)   

	
  660	
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Supporting Information 

 
Summary of models included 

 

1. Random walk with drift 

 �� � ���� � � � ��;  ��~
��
���0, �� 
 

The drift term is u. This is a process error only model, with errors that are temporally 

independent. 

 

2. Random walk with autocorrelated errors 

 �� � ���� � � � ��;  ��~
��
���� ⋅ ����, �1 � ���� 
 

This is a process error only model, with errors that are temporally correlated (�1 � 	� � 1). 
 

3. State space random walk model 

 

Process equation: �� � ���� � � � ��;  ��~
��
���0, �� 
 

Observation (or ‘data model’) equation: �� � �� � ��;  ��~
��
���0, ��  
 

While the process model is a random walk, the total variance is broken up into a process 

component (representing natural stochasticity) and observation error component (resulting from 

imperfect observations and sampling error) (Lindley 2003). 

 

4. Generalized additive models (GAMs) 

 

Our implementation of GAMs only used time as a covariate, so the model was not 

autoregressive. The basic form is 

  �!"�#� � $% � &�'(
��  
 

where the function g() is a link function (we used log), $% is an intercept, and the function f() is a 
smoothing function, or set of polynomial regression splines. The degree of smoothness was 

selected by cross validation (Wood 2006).  

 

5. Neural network model 

 

The neural network time series model is autoregressive, but non-linear, 

 

��)* � $% �+$, -�%,, �+��,, ∙ ����/���*0
/1� 2*

,1�  
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where the structure of the network is controlled by the embedding dimension (m) and time delay 

(d). The activation function g() was assumed linear, and all other parameters represent weights or 

coefficients. Because of relatively short time series, we constrained m = 1:3, and d = 1:2. 

 

6. ARIMA models 

 

AR models treat xt as autoregressive. The p term is the degree of lag included in the model: 

 

AR: �� � 3����� � 3����� 	� 	…	�	35���6 � ��; ��~
��
���0, �� 
 

MA models have treat the errors, et, as autoregressive. The q term is the degree of lag included in 

the autoregressive model for the errors.  A MA model with no AR component would be: 

 

MA: �� � �� � 7����� � 7�����	�	. . . �	75���5;  ��~
��
���0, �� 
 

An ARMA model is a time series model with both the AR and MA components.  ARMA models 

may also include a constant.  For example, AR(1) with constant would be  

 

AR(1)+constant: �� � 3�9��� � : � ��; ��~
��
���0, �� 
 

If b1 is set to 1, this is a random walk with drift. 

 

An ARIMA model includes both the AR and MA components but also specifies whether the raw 

data, Yt, or lag-d differences are being modeled.  An ARIMA model is denoted ARIMA(p, d, q).  

Thus a ARIMA(0,2,1) model would mean: 

 

ARIMA(0,2,1): �� � ���� � �� � 7�����;  ��~
��
���0, �� 
 

It should be noted that most ARIMA models---the random walk with drift model being a major 

exception---are stationary, meaning they do not have a long-term temporal trend.  When the time 

series has a trend, ARIMA models are used to model the residuals of a regression of that time 

series.  We used the Arima()function in the forecast package in R which takes care of 

estimating the linear trend and fitting the residuals with the specified stationary ARIMA model.  

This can also be done using the base arima() function in R by passing in xreg=1:n as a 

covariate. 

 

7. Exponentially smoothed time series 

 

The most basic exponentially smoothed (or weighted) moving average time series models are 

ARIMA(p = 0, d = 1, q = 1),  

 ;� � ∑ �1 � =�=,��;��, � ��>,1� ;  ��~
��
���0, ��;  |=| � 1  (Shumway & Stoffer 2006) 
 

Where zt is the detrended data, Yt-(a-bt), and a+bt is the linear trend (estimated simultaneously 

with the ARIMA model for the residuals). 
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8. Local regression 

 

Local regression represents a linear model that is fit piecewise, in a moving window procedure, 

through a time series, and the prediction at a given time point is a function of data in the past and 

future, 

 

 �@� � &��� � ��; 		��~
��
���0, �� 
 

The function f() typically takes two arguments: a nearest neighbor or bandwidth argument, 

specifying how much of the dataset to use (0-100%), and a parameter or function controlling the 

exponential decay between points. For each dataset in our analysis, we used cross validation to 

select the nearest neighbors and polynomial (1:3). The parametric version of this model was 

implemented using locfit(), and a non-parametric version of the model was implemented with a 

kernel regression estimator using the npreg() function.  

 

9. Gaussian process regression 

 

The objective of Gaussian process regression is to make prediction while conditioning on a 

covariance matrix, B, and previously observed residuals. 
 �@� � &��� � ��; 		��~C��'(D��(�'�	E��
���0, B� 
 

All data points are assumed to have arisen from an unknown covariance function, and unlike 

other methods (e.g. local or non-parametric bandwidth regression), the correlation between 

points is not modeled as a function of the distance between them in time, but in terms of their 

relative values (e.g. biomass or abundance at time t and t+1). 

 

10. Random forest regression 

 

Random forest uses an ensemble prediction from ntrees different regression trees (we have used 

ntrees = 500). Each tree uses a bootstrap of the data, and a randomly chosen subset of the predictor 

variables. This is done to minimize the correlation among predictions from different trees, which 

will tend to decrease predictive error for ensemble forecasting methods. For predictor variables 

we have used a basis-expansion using the lag-operator, and lags 1-10.  

�@� � 1E�FGGH + �@�,/IJKLLM
/1�  

where �@�,/ is the prediction from the i-th tree. Each tree starts with the following prediction: �@� � 1E+�,I
,1�  

The tree then searches among available variables and finds the variable and split that maximizes 

the reduction in root-mean-squared error. This process is repeated until a particular node has 5 or 

fewer observations.  

 

11. Simplex  
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The goal of simplex is to predict the dynamics of a variable without using a parametric equation, 

and hence potentially avoiding problems associated with parametric models that occur when 

dynamics are highly state-dependent. Simplex does this by identifying nearest neighbors using a 

Euclidean distance metric defined in a d-dimension space generated using the lag-operator.  

�@� � 1N � 1 + O�P/� ∙ �/��Q
/1*)�  

where d is the embedding dimension, f is the prediction interval, Di is a Euclidean distance in d-

dimensional lag-space: 

P/ � R+S�/�, � ���,T�*
,1�  

and I(Yi-d,...,Yi-1) is an indicator variable that identifies d + 1 nearest neighbors in the Euclidean 

distance Di, i.e., equals one if distance Di is one of the d + 1 lowest distances. The embedding 

dimension d is then selected using cross-validation.  

 

12. S-MAP 

 

S-MAP has a similar goal to Simplex, and typically uses the embedding dimension previously 

selected using Simplex. However, it has an additional parameter θ representing the degree of 

state-dependent dynamics in a time series. Instead of nearest neighbors, it calculates a weight γi 

for each point i using the distance defined for Simplex:  �/ � 7 ∙ P/∑ P/I,1�  

This weight is then used to take a weighted average of the dynamics of all points.  �@� � 〈1, ���Q , … , ���Q�*〉 W X 
where × is the matrix multiplicative operator and C is the solution to a weighted linear model: X � Y�� W Z 
where A and B are formed from the lagged variables, and the inverse of A is accomplished using 

the singular-value decomposition: Z � [ ∙ \�� 
where · is the pairwise multiplication operator and x-t is the vector of the time series excluding 

observation xt, and Y � 〈[ ∙ 1, [ ∙ �Q�]���, … , [ ∙ �Q�*)��]���〉 
and lf(Y-t) is the lag operator of order f for the vector Y-t. 
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Table S1. Model summary and the code / functions used to fit them in existing packages in the R 

programming environment. 

 

Model R package (R function in package) Parametric 

Random walk forecast (rwf) Y 

State-space random walk stats (StructTS), MARSS (MARSS) Y 

GAMs mgcv (gam) Y 

Neural network time series tsDyn (nnetTs) N 

Exponentially smoothed 

time series 

forecast (ets) Y 

Local regression locfit (locfit) Y 

Kernel / bandwidth 

regression 

np (npreg) N 

ARIMA forecast (Arima), stats (arima) Y 

Gaussian process kernlab (gausspr)  N 

Random Forest randomForest (randomForest) N 

SMAP, Simplex Code by Jim Thorson; https://r-forge.r-

project.org/R/?group_id=1316 

N 
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Table S2. Table of 1-step ahead MASE statistics for 49 models in our analysis.  R packages and 

functions used are listed in Table S1.  Stationary ARIMA models (those not denoted RW), are fit 

to detrended data, but the forecast from those models includes the trend. 

Model 

Marine fish 

Productivity Salmon Birds Mammals 

GAM (gam) 1.768 1.040 0.969 1.087 

neural network (1,1) 1.850 1.152 1.420 2.191 

neural network (1,2) 1.736 1.222 1.197 1.560 

neural network (2,1) 1.729 1.171 1.418 2.258 

neural network (2,2) 2.109 1.273 1.217 1.451 

neural network (3,1) 1.788 1.199 1.434 1.815 

neural network (3,2) 2.093 1.413 1.297 1.720 

RW no drift - ARIMA(0,1,0) without constant 1.431 0.982 0.976 1.062 

RW with drift - ARIMA(0,1,0) with constant 1.449 0.994 0.994 1.159 

Exp smooth with trend, ARIMA(0,1,1) 1.471 0.957 0.932 1.277 

Exp smooth without trend, ARIMA(0,1,1) 1.473 0.966 0.940 1.277 

Structural time series (freq=1) 1.429 0.905 0.904 1.136 

Structural time series (freq=2) 1.474 0.962 0.940 1.151 

Local regression 2.490 2.333 1.940 2.356 

Kernel/bandwidth regression 1.545 1.018 0.961 1.146 

ARIMA(1,0,1) 1.414 0.965 0.986 1.175 

Gompertz; ARIMA(1,0,0) 1.381 0.976 1.037 1.091 

ARIMA(2,0,1) 1.430 0.997 1.000 1.212 

ARIMA(1,0,2) 1.478 1.027 1.009 1.136 

ARIMA(2,0,2) 1.481 1.021 1.005 1.212 

MA model; ARIMA(0,0,1) 1.731 1.118 2.112 1.711 

ARIMA(0,0,2) 1.695 1.068 1.715 1.477 

ARIMA(2,0,0) 1.386 0.993 1.005 1.175 

ARIMA(1,1,1) 1.414 0.913 0.915 1.164 

ARIMA(1,1,0) 1.399 0.942 0.933 1.103 

ARIMA(2,1,1) 1.407 0.936 0.920 1.214 

ARIMA(1,1,2) 1.426 0.935 0.923 1.215 

ARIMA(2,1,2) 1.445 0.981 0.951 1.217 

ARIMA(0,1,1) 1.422 0.893 0.911 1.174 

ARIMA(0,1,2) 1.455 0.934 0.934 1.205 

ARIMA(2,1,0) 1.402 0.940 0.923 1.208 

ARIMA(1,2,1) 1.421 0.958 0.907 1.189 

ARIMA(1,2,0) 1.731 1.279 1.208 1.290 

ARIMA(2,2,1) 1.422 0.965 0.910 1.173 

ARIMA(1,2,2) 1.445 0.950 0.901 1.295 

ARIMA(2,2,2) 1.452 0.963 0.936 1.183 

ARIMA(0,2,1) 1.435 0.994 0.967 1.191 

ARIMA(0,2,2) 1.476 0.901 0.897 1.240 

ARIMA(2,2,0) 1.626 1.183 1.107 1.269 

Gaussian process (freq=1) 1.691 1.042 1.730 1.597 
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Gaussian process (freq=2) 1.716 1.014 1.706 1.570 

Gaussian process (freq=3) 1.749 1.014 1.731 1.396 

Gaussian process (freq=4) 1.743 1.029 1.706 1.586 

State-space RW with drift 1.482 0.928 0.966 1.295 

State-space RW no drift 1.464 0.909 0.915 1.155 

Simplex 1.578 0.990 1.337 1.321 

S-MAP 1.658 1.291 1.483 2.156 

Random Forest regression 1.562 0.988 1.124 1.197 

linear regression 1.886 1.094 1.549 1.925 
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