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“The fact that the body is lying down is no reason for 
supposing that the mind is at peace. Rest is… far from restful.” 

Seneca (~60 A.D. (1969)) 
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Abstract 

 

Traditionally, the focus in cognitive neuroscience has been on so-called evoked 

neural activity in response to certain stimuli or experiences. However, most of the 

brain’s activity is actually spontaneous and therefore not ascribed to the processing 

of a certain task or stimulus – or in other words, uncoupled to overt stimuli or motor 

outputs. In this thesis I investigated the functional role of spontaneous activity with a 

focus on its role in contextual changes ranging from recent experiences of 

individuals to trial-by-trial variability in a certain task. I studied the nature of 

ongoing activity from two perspectives: One looking at changes in the ongoing 

activity due to learning, and the other one looking at the predictive role of 

prestimulus activity using different methodologies, i.e. EEG and fMRI. Finally, I 

ventured into the realm of inter-individual differences and mind-wandering to 

investigate the relationship between ongoing activity, certain behavioural traits and 

neuronal connectivity. 
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Chapter 1 General introduction 

1.1 Spontaneous and evoked activity  

Traditionally, the focus in cognitive neuroscience has been on so-called evoked 

neural activity in response to certain stimuli or experiences. However, most of the 

brain’s activity is actually spontaneous and therefore not ascribed to the processing 

of a certain task or stimulus – or in other words, uncoupled to overt stimuli or motor 

outputs. Possibly, the existence of ongoing intrinsic activity was first noted by Hans 

Berger when he introduced electroencephalography for humans in 1929 (Berger, 

1929), asking whether “it [is] possible to demonstrate the influence of intellectual 

work upon the human electroencephalogram, insofar as it has been reported here?” to 

conclude subsequently that “[o]f course, one should not at first entertain too high 

hopes with regard to this, because mental work, as I explained elsewhere, adds only a 

small increment to the cortical work which is going on continuously and not only in 

the waking state”. Four years later, Bishop (1933) reported the potential 

physiological significance of the ongoing activity describing his experiments with 

rabbits. He observed cyclic changes in the excitability in visual cortex during 

stimulation of the optic nerve. Summarising his findings, he stated that “[…] we 

would look upon the cortex as being in constant activity, the physiological activity of 

the whole network of neurons bearing some direct relationship to the ‘present state’ 

of the animal’s complex behavio[u]r which is sometimes referred to as his ‘mental 

state’”. 

Indeed, ongoing activity occurs throughout the brain and its existence is manifested 

in the variability of cortical responses in repeated responses to physically identical 
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conditions or stimuli. In the past, this variability had simply been labelled as noise 

and scientists got rid of it by averaging over repeated trials (Gerstein, 1960; Zohary 

et al., 1994). However, during the last two decades an increasing number of 

neuroscientists recognised that ongoing neural activity is not mere noise, but plays a 

fundamental role in stimulus-driven processing (Arieli et al., 1996; Tsodyks et al., 

1999) and behavioural variability indeed (Hesselmann, Kell, Eger, et al., 2008; Coste 

et al., 2011; Kleinschmidt et al., 2012). 

I investigated the characteristics of the ongoing brain activity
1
 focusing on its 

functional role and its role in contextual changes, where contextual changes can be 

differences in the experience of individuals (e.g. learning-related changes) or can be 

related to trial-by-trial variability.   

1.2 The study of spontaneous activity 

Why study ongoing brain activity? Contrary to the focus on evoked activity in 

neuroscience, spontaneous neural activity dominates the brain’s energy consumption 

(Attwell and Laughlin, 2001; Mintun et al., 2001; Attwell and Iadecola, 2002). The 

energy consumption during rest exceeds task-related increases in neural metabolism, 

which are usually < 5 % (Raichle and Mintun, 2006). Thus, the majority of 

neuroscientific studies are focused on a minor component of brain activity. Maybe it 

is time for an adjustment or alteration in the neurosciences, shifting towards an 

                                                 
1
 In the literature, different terms have been used to describe ongoing neural activity – as compared 

to evoked responses – among which are “resting state activity”, “endogenous activity”, 
“spontaneous activity”, and “autonomous activity”. I use the term “ongoing activity” and 
“spontaneous fluctuations” interchangeably and refer to activity not evoked by an external stimulus 
or task.  
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experimental approach that is indeed focusing on the factor that uses the lion’s share 

of the brain’s energy, namely ongoing or spontaneous neural activity.  

Although ongoing brain activity has been studied using electrophysiological and 

neuroimaging methods, its physiological origin and cognitive consequences are not 

yet fully understood. Crucially, any clarification is difficult by its very nature, 

because any study that addresses the functional significance of spontaneous 

fluctuations inevitably requires a primary task-context in order to probe perceptual 

and / or behavioural consequences of the fluctuations (Hesselmann, Kell, and 

Kleinschmidt, 2008). Attributed roles of ongoing brain activity span processes at 

different levels of neural activity and range from the traditional view of “intrinsic 

noise” over low-level physiological processes and uncontrolled mental activity to a 

monitoring of the environment (Mantini and Vanduffel, 2013). In conclusion, one of 

the most intriguing questions in the neurosciences might be related to the functional 

significance of the brain’s “intrinsic noise”.      

1.2.1 Electrophysiological research of ongoing activity 

The brain is a noisy system whose processing parts – the neurons – receive a large 

number of fluctuating inputs which in turn generate spike patterns. These often 

appear very irregular and much of the activity is spontaneous.  

1.2.1.1 Cortical states and response variability 

Cortical states are determined by the states of individual neurons and the states of 

individual neurons are in turn related to the state of their neighbours. Possibly the 

ground-breaking study investigating spontaneous activity and its relation to the large 

variability of evoked responses to repeated presentations of the same stimulus, is the 
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work by Arieli et al. (1996). They showed that single trial responses in cat visual 

cortex can be predicted by the linear summation of the deterministic response and the 

preceding ongoing activity, concluding that ongoing activity plays a noteworthy role 

in cortical function and for cognitive processes. Given the observation that ongoing 

fluctuations influence cortical processing, one might wonder how these two types of 

brain processes interact. In order to answer this question, the relation between the 

activity of single neurons and the dynamics of the network in which they are 

embedded has been explored. Using single-unit recordings and real-time imaging, 

Tsodyks et al. (1999) showed that the firing rate of a spontaneously active single 

neocortical neuron depends on the instantaneous spatial pattern of ongoing 

population activity of a larger cortical area. The spatial patterns of population activity 

recorded during spontaneous firing and those when driven by the optimal input were 

very similar. Moreover, the correspondence between evoked neural activity and the 

structure of an input signal seems to mature with age due to a shift in the dynamics of 

spontaneous activity (Fiser et al., 2004). These results suggest that evoked neural 

activity in response to sensory stimulation might represent modulated and triggered 

ongoing neural circuit dynamics, instead of the structure of the input itself. On a 

more theoretical level, aspects of neuronal responses that are often considered as 

“noise” might be essential components of the way in which information is 

propagated or represented in neurons (Ermentrout et al., 2008). 

Furthermore, the spatio-temporal structure of spontaneous activity has been shown to 

be highly coherent over different networks and in multiple species (Chiu and Weliky, 

2001). This coherent spontaneous activity of neurons involves a set of dynamically 
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switching cortical states similar to the well-known orientation maps (Kenet et al., 

2003).          

Taken together, the traditional belief that neural activity is primarily driven by 

sensory input from the environment might be out-dated. Instead, spontaneous activity 

of single neurons and their networks seems to play a crucial role for the cortical 

processing following a sensory stimulus. Correspondingly, this observation might 

explain the well-established response variability observed after the repeated 

presentation of physically identical stimuli (Henry et al., 1973; Vogels et al., 1989; 

Azouz and Gray, 2008). The study of response variability is an important tool used to 

examine the role of spontaneous activity related to the question of whether it carries 

predictions about sensory stimuli. Specifically, the investigation of so-called 

prestimulus activity occurring prior to stimulus presentation has become a standard 

approach, based on the assumption that predictions – if any – are expressed shortly 

before stimulus onset.     

However, the linear relationship between spontaneous and evoked activity as 

proposed by some studies (Arieli et al., 1996; Azouz and Gray, 2008) has been 

challenged using neuroimaging methods (e.g. Hesselmann, Kell, & Kleinschmidt, 

2008; Schölvinck et al., 2012) and might indeed differ across the brain. Recently, it 

has been shown that evoked activity across a large part of the human cortex interacts 

negatively with ongoing activity (He, 2013). Consequently, a higher prestimulus 

baseline resulted in less activation – or more deactivation – leading to a decreased 

trial-to-trial variability of cortical activity after stimulus onset. Thus, measuring 
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across-trial variability might provide a new approach to interpret neuroimaging 

experiments using trial-based data.    

1.2.1.2 Predictive coding and predictive timing 

Independent of how spontaneous activity interacts with evoked responses, its 

existence and functional influence as described above begs the question of why it is 

there in the first place. One possible explanation for its existence is the concept of 

predictive coding. The basic idea is that the brain possesses internalised 

representations of the world which it uses to “predict” what happens in the 

environment thereby inferring the most likely cause of sensory events (Friston, 

2005). In other words, the brain might generate hypotheses about the potential causes 

of upcoming sensory events and compares these hypotheses with incoming sensory 

information (Summerfield et al., 2006). The difference between the two – the so-

called prediction error – is then propagated forward throughout the cortical 

hierarchy; internal representations might be adjusted subsequently. Lately, the theory 

around predictive coding has been extended by the notion of predictive timing 

(Schroeder and Lakatos, 2009; Arnal and Giraud, 2012), which exploits the temporal 

regularities or associative contingencies (e.g. the temporal relation between two 

inputs) to infer the occurrence of forthcoming sensory events. In short, predictive 

timing is the process by which uncertainty about the temporal occurrence of events is 

minimised such that their processing and detection are facilitated (Jones et al., 2002; 

Nobre et al., 2007). During the last decade, both accounts – predictive coding and 

predictive timing – have been supported by several studies providing evidence for 

the idea that the hypotheses – or predictions – generated by the brain might be 

embodied in the spatial and temporal structure of spontaneous activity.  
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One proposed neurophysiological substrate of the operations described in the 

framework of predictive coding (i.e. directional message-passing) are cortical 

oscillations, i.e. those observed as ongoing activity. Both, gamma and beta 

oscillations (see 2.4 for a description of frequency bands) have been shown to play a 

role in predictive coding. For instance, gamma activity scales with prediction errors 

(Arnal et al., 2011) and has been implicated in the evaluation of sensory predictions, 

possibly depending on the match between bottom-up input and expectations 

(Herrmann et al., 2004). Beta activity has been associated with error-related effects 

as well, but in a different direction of processing than gamma, i.e. downstream from 

prediction error generation (Fujioka et al., 2009; Iversen et al., 2009). Combining 

these findings, gamma and beta could underlie the information flow in opposite 

directions, i.e. forward versus backward (for a review see Wang, 2010). Thus, 

prediction errors might be transmitted in a feed-forward manner using the gamma 

frequency channel, while predictions and their reconsiderations could be propagated 

by the beta channel in a backward direction (Chen et al., 2009; Wang, 2010).  

With regard to predictive timing, low and mid-frequency oscillations have been 

identified as important. Their interactions during temporal expectations support a 

functional cooperation between these oscillations in predictive timing (Saleh et al., 

2010). For instance, the anticipation of sensory events resets the phase of slow, delta-

theta activity before stimulus presentation and the predictive alignment of these 

oscillations (in an optimised excitability phase) results in faster stimulus detection 

(Lakatos et al., 2008). Also, reduced early sensory responses are observed in 

response to stimuli that are implicitly expected based on their temporal regularity 

(Costa-Faidella et al., 2011). Furthermore, neural and perceptual responses for 
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temporally unpredictable stimuli are modulated by the phase of alpha oscillations at 

which stimulation occurs (Busch et al., 2009). However, how the oscillations at the 

different low frequency bands interact during predictive timing of sensory events 

remains to be solved.  

In summary, there are several lines of electrophysiological research providing 

evidence which supports the idea that spontaneous activity has certain predictive 

power for subsequent neural responses to upcoming sensory stimuli. 

1.2.2 Neuroimaging research of ongoing activity 

The crucial difference between electrophysiological methods and neuroimaging 

using functional MRI lies in the temporal resolution: while dynamically switching 

cortical states can be accessed with single cell recordings for example, functional 

MRI is restricted to a much broader timescale. Nevertheless, the technique has been 

used to study spontaneous activity for almost twenty years based on the pioneering 

work of Biswal et al. (1995), who first observed correlations of low frequency 

fluctuations in the resting brain between different regions involved in a simple motor 

task. He concluded that these might be a manifestation of functional connectivity in 

the brain, contrary to the traditional view of the brain as being driven by transient 

environmental demands. Similar to other neuroscientific methods, functional 

neuroimaging has spent most of its infancy with studies of evoked responses to 

sensory, cognitive and motor events (Posner and Raichle, 1994). Therefore, it took 

several years before the examination of ongoing activity became a major topic 

among neuroscientists using functional MRI. 
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1.2.2.1 Resting state fluctuations 

The presence of low-frequency fluctuations in the blood oxygen level dependent 

(BOLD) signal (see 2.3.2) of functional MRI is a well-established finding in 

neuroimaging. Recent studies have identified these fluctuations as a potentially 

important manifestation of spontaneous neuronal activity, which is indeed organised 

in distinct patterns – often referred to as resting state networks (De Luca et al., 2005; 

Fox and Raichle, 2007; Corbetta, 2012), which will be described below (see 1.2.2.4). 

Several observations made about resting state fluctuations appear to become known 

principles. First, their spatial organisation is preserved in humans under anaesthesia  

(Greicius et al., 2008) and during early stages of sleep (Larson-Prior et al., 2009), as 

well as in monkeys (Vincent et al., 2007) and rats (Lu et al., 2007). More than that, 

the fluctuations in ongoing activity show a high consistency and reproducibility 

across participants and sessions (Damoiseaux et al., 2006; Chen et al., 2008; Meindl 

et al., 2010; Wang et al., 2010), a high test-retest reliability (Shehzad et al., 2009; 

Wang et al., 2010) and a high reproducibility across different analytic approaches 

(Long et al., 2008; Franco et al., 2009). Second, the strength of coherence between 

different regions exhibiting ongoing activity varies with different parameters among 

which are age (Fair et al., 2008), experience (Lewis et al., 2009) and disease (Zhang 

and Raichle, 2010). For instance, it has been argued that disruption in the resting 

state coherence between different nodes might be a sensitive early biomarker for 

certain diseases, such as Alzheimer’s (Zhang and Raichle, 2010). Third, the slow 

global fluctuations that are observed in the BOLD signal at rest can be of the same 

magnitude as signal changes in response to task-related paradigms (Damoiseaux et 

al., 2006). Fourth – related to the previous aspect and extending the 
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electrophysiological findings discussed above in 1.2.1 – they contribute significantly 

to the variability in evoked signals (Fox et al., 2006) and the variability of the 

associated behavioural response (Fox et al., 2007). Last – but certainly not least – the 

frequency distribution of the spontaneous fluctuations is significantly different from 

BOLD fluctuations observed in water phantoms (Zarahn et al., 1997).  

Taken together, the aforementioned studies and findings have provided insight into 

the intrinsic functional architecture of the brain. However, the mechanisms 

underlying these resting-state fluctuations are still controversial.  

1.2.2.2 Vascular basis 

A possible explanation for the observed global anatomy of spontaneous activity – 

given its reproducibility – which is not linked to neural architecture, could be based 

on vascular mechanisms. All voxels in the brain show a global level of coherence 

between each other. Thus, the origin of the observed spontaneous fluctuations might 

lie in changes of blood flow. One possible explanation is linked to so-called draining 

veins, which exhibit a form of “blood stealing” throughout the tissue whereby active 

regions generate blood flow increases at the expense of other nearby regions. 

Alternatively, further poorly understood mechanisms of vascular regulation could 

play a role (Buckner et al., 2008). Indeed, changes in respiration and intracranial 

pressure are known to influence blood flow and blood oxygenation in the brain; the 

BOLD signal measured during functional MRI is based on hemodynamic measures 

of blood flow and only indirectly linked to neural activity (see 2.3.2). Variations in 

heart rate and respiration are known to contribute to fMRI resting-state fluctuations 

(Wise et al., 2004; Birn et al., 2006). The highest power of spontaneous fluctuations 
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is below 0.1 Hz (Cordes et al., 2001), which is beneath normal breathing frequency. 

Nevertheless, the aforementioned variations in respiration rate and depth are 

observed at these low frequencies (Birn et al., 2006) and correlate with the BOLD 

signal acquired during rest. In particular, these correlations overlap with the areas 

characterised as the default mode network (see 1.2.2.4 for a detailed description of 

this particular resting state network) (Birn et al., 2006).  

Finally, with regard to the potential role of vascular coupling for spontaneous 

fluctuations, two aspects are worth mentioning. First, resting state networks can also 

be identified using measures of resting glucose metabolism, i.e. without relying on 

vascular coupling at all (Vogt et al., 2006). Second, confounds in resting-state data 

due to cardiac and respiratory effects are now addressed by sophisticated methods 

(Glover et al., 2000; Birn et al., 2008), which will be described in 2.3.4.   

1.2.2.3 Neural basis 

Knowing that part of the spontaneous fluctuations depend on non-neuronal 

physiological factors, it needs to be clarified what the neural basis of the signals is. 

Indeed, an effort has been made to determine the electrical correlates of the fMRI 

BOLD signal (see Khader, Schicke, Röder, & Rösler, 2008; Logothetis, 2008 for 

summaries of this work involving different perspectives). The conclusion drawn 

from this work is that the BOLD signal is best correlated with local field potentials 

(LFPs). Probably the most cited study in this line of research observed that the power 

of LFPs recorded in monkey visual cortex fluctuates at a similar timescale to the one 

of spontaneous fluctuations measured by fMRI, i.e. the previously mentioned < 0.1 

Hz (Leopold et al., 2003). Similar to the long-distance coherences observed in 
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resting-state activity, the fluctuations observed by Leopold et al. (2003) show a high 

coherence across electrode pairs without any changes due to cortical distance. 

Comparable fluctuations have been observed using intracranial electrocorticography 

(ECoG, i.e. surface electrodes) recordings in humans (He et al., 2008; Nir et al., 

2008). Importantly, recordings of neuronal electrical activity either from the scalp 

with electroencephalography (EEG) or from the surface of the brain with ECoG 

always encompass a summation of a population of LFPs. One possibility to analyse 

fMRI resting-state fluctuations and its underlying neural activity is the simultaneous 

recording of EEG and fMRI (Goldman et al., 2002; Laufs et al., 2003; Mantini et al., 

2007). Conventionally, LFPs are described according to their frequency components 

and two of these components have been associated with spontaneous BOLD 

fluctuations: First, fluctuations in the power of higher frequencies (Leopold et al., 

2003), which are associated with cognition (Donner et al., 2009; Uhlhaas et al., 

2010), and second, fluctuations that approximate those present in the spontaneous 

BOLD signal, commonly summarised as slow cortical potentials (SCPs) (Rockstroh 

et al., 1989; He et al., 2008; Raichle, 2011). Increasing evidence supports the idea 

that spontaneous BOLD fluctuations are most correlated with LFP activity in the 

SCP range (Lu et al., 2007; He et al., 2008; He and Raichle, 2009), while the spatial 

patterns of coherence are maintained across different levels of consciousness ranging 

from wakefulness to rapid eye movement (REM) sleep and slow wave sleep (He et 

al., 2008). For instance, alpha power (see 2.4 for a description of frequency bands) is 

negatively correlated with spontaneous BOLD fluctuations in occipital cortex, as 

well as in inferior frontal and superior parietal regions (Goldman et al., 2002; Laufs 

et al., 2003; Moosmann et al., 2003). The latter regions are commonly active during 
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rest and are known to be involved in the default mode network (see 1.2.2.4 for a 

detailed description of this network). The less persistent correlation of power in the 

higher frequencies (i.e. the spatial correlation with the BOLD signal is only observed 

during wakefulness and REM sleep) is in line with the known role of these 

frequencies for consciousness awareness (Fries, 2009).    

One way to analyse simultaneously acquired EEG and fMRI data is to use so-called 

independent component analysis (ICA). It is used for BOLD data in order to identify 

different networks and to correlate these subsequently with different frequency bands 

of the EEG data. In doing so, Mantini et al. (2007) found multiple resting-state 

networks in the BOLD data, which correlated with different frequency bands of the 

EEG data. 

Finally, Shmuel and Leopold (2008) used intracortical neurophysiological recordings 

in combination with fMRI to investigate the relationship between spontaneous fMRI 

and LFP signals as directly as possible. They found strong correlations between the 

spiking rates (of the neurons close to the recording electrode) and slow fluctuations 

in the fMRI signal, as well as with slow power changes in the multi-unit activity (> 

100 Hz) and LFP band of higher frequencies (25 – 80 Hz).  

In summary, a large number of studies using different methodological approaches 

including simultaneous measurements of fMRI and neuronal activity have 

established the presence of a coupling between slow fluctuations in the BOLD signal 

measured with fMRI and underlying fluctuations in the neural activity across 

multiple regions, frequencies and states of consciousness. Thus, modulations in both 

signals possibly share the same origin – which might be subcortical in nature. Future 
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studies are required to determine the origin the slow fluctuations in spontaneous 

activity.   

1.2.2.4 Functional networks 

Independent of the underlying mechanisms of spontaneous brain activity, the 

organisation of the commonly observed low-frequency fluctuations of spontaneous 

activity organised into specific and distinct patterns is a robust finding. A number of 

so-called resting state networks has been discovered since the pioneering study of 

Biswal et al. (1995). Thus, the large-scale sensory-motor network reported back then 

was only the first one of multiple networks observed during rest and exhibiting a 

high similarity to task-activated networks. Comparable relationships have been found 

for other modalities, such as visual, auditory and language processing networks 

(Lowe et al., 1998; Hampson et al., 2002; van de Ven et al., 2004). For instance, 

regions in intraparietal sulcus, frontal eye field, and middle temporal cortex that are 

commonly recruited during visuospatial attention or oculomotor tasks also form a 

functional network at rest different from the classical “visual” network including V1 

to V4. Probably the most famous of the these networks is the so-called default mode 

network (DMN), which had been first described by Raichle et al. (2001) and which is 

most consistently found across experiments (Anticevic et al., 2012; Mantini and 

Vanduffel, 2013). Raichle’s et al. (2001) idea of a baseline – or  default state of the 

brain – stems from a common finding in positron emission tomography (PET) and 

functional MRI studies, i.e. the observation that a certain set of brain regions shows 

decreases in activity independent of a particular task and with little variation in their 

location across a wide range of tasks (Shulman et al., 1997). Shulman et al. (1997) 

provided the first formal characterisation of task-induced activity decreases. Based 
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on their finding, the idea of a default state of brain function distinct from the sates 

involved in sensory and executive functions (i.e. in attention-demanding, goal-

directed behaviours) has been established (Buckner et al., 2008). By use of a 

generally accepted quantitative circulatory and metabolic definition of brain 

activation, the authors established criteria for a baseline state characterised by the 

absence of activation. In the meantime, the default mode network has been studied 

extensively, see Buckner et al. (2008) for a review. Anatomically, it is considered to 

encompass certain key regions among which are posterior cingulate cortex (PCC), 

left and right inferior parietal cortex, and ventromedial prefrontal cortex (vmPFC). In 

addition, lateral temporal cortex, dorsal medial prefrontal cortex (dmPFC) and the 

hippocampal formation have been associated with the default mode network 

(Buckner et al., 2008).  

In general, resting state patterns of coherence characterised as “resting state 

networks” take patterns of anatomical connectivity in the human (Zhang et al., 2008) 

and the monkey brain (Vincent et al., 2007) into account, but are not restricted to 

these anatomical connections. Therefore, the absence of monosynaptic connections 

between certain brain regions does not exclude the existence of functional 

connectivity as for instance expressed in the networks of resting state coherence 

(Raichle, 2011). 

1.3 The functional role of spontaneous activity 

Having discussed the existence and potential neurophysiological basis of 

spontaneous fluctuations and their networks observed during rest, I will now focus 

on their functional role. As mentioned earlier, traditionally, ongoing activity has been 
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often considered as “intrinsic noise” that can be averaged over trials in order to get to 

the essence of the “real signal”. Even in view of the structural regularities, i.e. the 

organisation into networks, it could still be possible that intrinsic functional 

connectivity merely reflects some “noise” that happens to have a non-random 

structural connectivity carrying the described form of spatial patterns. In support of 

this notion, computational and empirical studies have shown a correspondence 

between intrinsic functional and anatomical connectivity (Sporns et al., 2000; 

Greicius et al., 2009). However, at the level of the entire brain and involving a 

systematic quantitative analysis, the match is not impeccable. Honey et al. (2009) 

found that structural connectivity could predict the empirically observed functional 

connectivity only to a limited extend. Leaving potential limitations during data 

collection and analysis – which could cause the deficiencies of predicting functional 

from structural connectivity – aside, an alternative hypothesis has been put forward: 

If structural connectivity merely forms the backbone of functional connectivity, it 

has to be influenced and shaped by additional context-dependant modulations 

(Sadaghiani, Hesselmann, et al., 2010).      

Although this hypothesis might be contradictory given the high consistency of spatial 

patterns of ongoing activity across different levels of consciousness and context as 

mentioned in 1.2.2.3, several lines of research have accumulated evidence supporting 

the hypothesis that ongoing brain activity is indeed context sensitive. Thus, even 

though functional connectivity patterns are persevered qualitatively in a range of 

states, including light and deep sleep (Horovitz et al., 2008, 2009; Nir et al., 2008), 

as well as severe disorders of consciousness such as vegetative state (Boly et al., 

2009), they do express quantitative changes. For example, functional connectivity in 
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the DMN decreases with the degree of consciousness in healthy individuals (i.e. 

between wakefulness, deep sleep and a state of physiological unconsciousness 

(Horovitz et al., 2009), as well as in patients (i.e. between minimally conscious state, 

vegetative state and coma) (Vanhaudenhuyse et al., 2010). As a last counter-

argument to the idea of ongoing activity as mere “noise”, I refer to the finding that 

the reduction in connectivity between regions of the DMN, i.e. frontal and posterior 

areas, during sleep is anatomically selective. Therefore, it is very unlikely that 

intrinsic connectivity only reflects a change in the level of “noise” that is propagated 

through an anatomically connected network (Sadaghiani, Scheeringa, et al., 2010).    

In the following, I focus on the different lines of research supporting the idea that 

ongoing activity is context-sensitive and also can influence behaviour.       

1.3.1 Perceptual domain 

The perceptual impact of prestimulus activity fluctuations has been investigated in 

different perceptual paradigms. For example, Boly et al. (2007) used a 

somatosensory detection task and found that prestimulus activity in a large 

distributed network determined whether stimuli close to perceptual threshold were 

detected or not on a single trial basis. Regions involved in the predictive system 

included the thalamus, dorsal anterior cingulate cortex (dACC), parieto-frontal areas 

and inferior frontal gyrus. These are all regions that are commonly active in response 

to a wide range of (cognitive) tasks (Smith et al., 2009a; Corbetta, 2012). In contrast, 

prestimulus activity in regions that have been coined as “task-negative” belonging to 

the DMN, i.e. posterior cingulate (PCC), parahippocampal and lateral parietal 

components, was higher for trials that were missed by participants. These results 
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support the concept of a simple dichotomy between “task-positive” and “task-

negative” networks whose activity either facilitate or deteriorate perception. 

However, more recent findings revealed a more complicated picture highlighting that 

context plays an important role predicting whether the ongoing activity in a certain 

brain area plays a role for subsequent perception of a stimulus – or not. Sadaghiani et 

al. (2009) used a free-response, auditory detection task and examined whether 

prestimulus activity was predictive of when participants perceived auditory stimuli at 

individual detection threshold. A rather complex picture was observed: comparing 

detections and misses, the former ones were preceded by higher activity in early 

auditory cortex as well as in a network including thalamus, anterior insula and 

dACC; misses were preceded by higher activity in the so-called dorsal attention 

system, including frontal and parietal areas. Thus, two task-positive networks 

showed opposite effects. In addition, regions of the DMN were more active prior to 

hits, not misses. The time courses of prestimulus effects in the different networks 

were distinct, underlining the idea that the two observations were probably not mere 

mirrored effects. These results highlight the complexity of ongoing activity – which 

is not only organised in spatially defined networks. Mora than that, these networks 

are independently organised and context sensitive. In other words, the context – 

including specific sensory features and cognitive faculties – of a perceptual decision 

impacts to what extent ongoing activity in different networks determines stimulus 

processing and eventually perception.  

In line with this observation, several researchers have speculated that a perceptual 

task involving choices – compared to all-or-none detection tasks – might affect 

prestimulus activity in a more localised way, i.e. restricted to a certain area that is 
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task-relevant compared to more general brain networks related to attention or 

memory. Two linked fMRI studies have provided evidence for this idea. First, 

increased prestimulus activity in fusiform face area (FFA), a region that has been 

previously related to the processing of faces, was observed when perceiving a face 

compared to a vase in a paradigm using Rubin’s ambiguous vase-face figure (Rubin, 

1915; Hesselmann, Kell, Eger, et al., 2008). Second, prestimulus activity in human 

MT+, an area crucial for motion processing located in the middle temporal cortex, 

was higher in trials when participants detected coherence in a random dot stimulus 

paradigm compared to trials when they did not (Hesselmann, Kell, and Kleinschmidt, 

2008). The difference was found comparing trials that were physically identical, i.e. 

at a coherence level that resembled the individual detection threshold of coherence 

(see Chapter 5 for a more detailed description of these findings that were used as the 

basis of the study described there).  

In addition to the studies using fMRI, several EEG and MEG studies have provided 

additional support for the functional role of ongoing brain activity for perception. 

Suffering from poorer spatial resolution, these studies provide the benefit of 

identifying specific oscillations bands. For instance, using MEG, visual 

discriminability has been shown to decrease with an increase of certain low 

oscillations, i.e. in the so-called alpha band (see 2.4 for a more detailed description of 

frequency bands), in occipital-parietal cortex (van Dijk et al., 2008). Comparable to 

the findings in the fMRI literature, a free-response task revealed a rather complicated 

picture of different frequency bands being important for perceptual outcome. Using 

EEG and a somatosensory threshold detection task, Linkenkaer-Hansen et al. (2004) 

found that prestimulus fluctuations at medium power levels of several frequency 
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bands over somatosensory cortex resulted in highest detection rates and shortest 

reaction times. In contrast, over parietal electrodes the best behavioural performance 

was associated with the highest power in the same frequency bands. In addition to 

power analyses of oscillations, the phase of slow oscillations has been shown to have 

certain predictive power for perceptual outcome, e.g. in visual threshold detection 

tasks (Thut et al., 2006; Busch et al., 2009; Mathewson et al., 2009). Thus, the cortex 

might go through different states of excitability – so-called microstates – which can 

differ in speed, depending on the oscillation whose phase is important (Monto et al., 

2008; Busch et al., 2009; Mathewson et al., 2009). 

The predictive nature of prestimulus activity with regard to perception has also been 

shown looking at electrode recordings in monkeys (Supèr et al., 2003). Recording 

from primary visual cortex, it has been observed that reported stimuli were preceded 

by higher and more correlated neural activity compared to not-reported ones. The 

authors concluded that the strength of neural activity and the functional connectivity 

between different neurons in primary sensory areas contributes to perceptual 

processing. More precisely, visual cortex needs to be in a suitable state to result in 

subsequent stimulus detection.   

In conclusion, numerous lines of research using different techniques and 

methodological approaches have presented supporting evidence to the idea that 

variability in perceptual performance can be – partly – explained by the variability in 

intrinsic – ongoing – processes in the brain; different signals measuring brain activity 

directly or indirectly can be used to forecast perception in the human and primate 

brain.   
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1.3.2 Motor domain 

The functional role of ongoing activity has also been investigated with regard to 

motor activity and behaviour. In a series of two studies, Fox et al. (2007, 2006) 

showed first that trial-to-trial variability of finger movement-related activity in motor 

cortex can be largely attributed to fluctuations in ongoing activity (Fox et al., 2006), 

and second, that variability in behaviour depends on spontaneous activity as well 

(Fox et al., 2007). In order to do so, they used a simple button press task with the 

right index finger and a trick in order to disentangle evoked from ongoing activity. 

They exploited the fact that right and left somatomotor cortex exhibit correlated 

spontaneous activity (Biswal et al., 1995; Cordes et al., 2000) and that button presses 

with one hand do not result in evoked responses in ipsilateral motor cortex. More 

precisely, they used activity in the right motor cortex as a proxy of spontaneous 

activity in the left motor cortex (activated by the right hand button presses). In doing 

so, they showed that 40 % of the trial-to-trial variability in the BOLD response in left 

motor cortex can be ascribed to spontaneous activity. Based on the additional 

observation that the trial-by-trial evoked activity did not depend on whether the 

spontaneous activity in a given trial was high or low, they concluded that both types 

of activity are superimposed in a linear way. The second study made use of the same 

paradigm, but distinguished button presses according to their strength, i.e. trials were 

rated as either soft or hard button presses. Subtracting right motor cortex estimates of 

spontaneous activity from the activity measured in left motor cortex eliminated the 

apparent difference between responses to soft and hard button presses. In doing so, 

the study showed that 74 % of the relationship between spontaneous force variability 

and BOLD activity in left motor cortex can be explained by spontaneous activity 
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fluctuations. In sum, spontaneous activity influences trial-to-trial variability on the 

neuronal and behaviour level in response to a simple motor task.                   

On a different level, Ramot et al. (2011) confirmed a link between resting state 

activity and spontaneously emerging subconscious oculomotor behaviour. The 

behaviour they looked at, is a type of eye movement that occurs spontaneously and 

subliminally whenever we close our eyes (Allik et al., 1981; Collewijn et al., 1985). 

However, the neuronal mechanisms and functionality of these spontaneous eye 

movements are largely unknown. The findings that spontaneous fluctuations in the 

BOLD signal were correlated to the amplitude and velocity of these eye movements 

and that the neuronal activity was linked to coordinated motor programs (involving 

oculomotor neurons and muscles), provide further evidence for the idea that neuronal 

activity related to movement and associated behaviour is influenced by spontaneous 

activity in the brain.     

1.3.3 Cognitive domain 

The distinction between perceptual, motor and cognitive tasks is not straight-

forward, because usually experimental tasks involve all three domains to a certain 

and varying degree. Often, the cognitive level is considered as the “highest” one, 

involving specific brain regions, so-called higher cognitive brain areas compared to 

primary sensory and motor areas. Given the difficulty of separating domains, I will 

introduce this paragraph with some studies bridging the gap between perception, 

movement and cognition using inhibitory control. Inhibitory control refers to the 

ability to suppress planned or ongoing processes, which might be related to 

movements or cognition. Using a monotonous task and MEG, Mazaheri et al. (2009) 
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showed that false alarms were preceded by higher alpha band power in visual areas 

and bilateral somatosensory cortices compared to correct withholds. An EEG study 

that looked at single-trial EEG topographic analyses to avoid averaging out effects 

that might get lost in the more typical ERP analyses (see 2.4.1), found supporting 

evidence for the idea that fluctuations in the ongoing activity immediately preceding 

stimulus presentation contribute to behavioural outcomes in an inhibitory control 

task (Chavan et al., 2013). They used an auditory spatial go no-go task and observed 

that a specific configuration of the EEG voltage field manifested itself before correct 

rejections, but not before false alarms. Using source estimation on the EEG 

topography, a fronto-parietal network was identified. These results support the idea 

that prestimulus brain activity also influences behavioural outcomes in an inhibitory 

control task. Furthermore, the identification and involvement of the fronto-parietal 

network suggests that the state-dependency of sensory-cognitive processing includes 

high-order, top-down inhibitory control mechanisms.  

Until now, there are only a few “purely” cognitive control studies investigating the 

relation between ongoing brain activity fluctuations and inter-trial variability in 

evoked responses. However, the same picture emerges, confirming the crucial role of 

ongoing activity for evoked neural responses as well as behavioural outcome. For 

instance, Coste et al. (2011) used the Stroop task with colour-word interference and 

fMRI to show that prestimulus activity in several task-relevant brain regions  

(including dorsal anterior cingulate, dorsolateral prefrontal cortex and ventral visual 

areas) predicted subsequent response speed. Furthermore, this effect scaled with the 

Stroop effect size, i.e. it was only significant in participants who exhibited 

behavioural interference.  
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Another approach in the realm of the study of ongoing activity is focused on the 

relation between clinical phenomenon and changed patterns in resting state 

connectivity. For instance, a recent review identified 16 fMRI studies that 

investigated the use of resting-state fMRI in major depression (MD) and concludes 

that this research has yielded insight into the pathophysiology of depressive 

symptoms. Foremost, the role of the cortico-limbic mood regulating circuit and the 

interaction between task-positive and -negative networks in MD are emphasised (L et 

al., 2012).      

Yet another methodological approach looks at the functional role of intrinsic 

connectivity on cognition by examining specific patterns and their capability to 

change in response to certain cognitive experiences. As soon as after one scanning 

session using fMRI, i.e. a time span that most likely does not include any gross 

anatomical changes, intrinsic functional connectivity has been reported to be 

sensitive to visuo-motor learning (Albert, Robertson, and Miall, 2009), episodic 

memory (Tambini et al., 2010), as well as language tasks (Waites et al., 2005; 

Hasson et al., 2009). To conclude, the functional context of a task seems to interact 

with the appearance of intrinsic activity and motivates further experimental 

investigation of the functional significance of ongoing activity and associated 

changes of it. 

However, the aforementioned studies are commonly criticised for the possibility that 

they might confuse “true intrinsic” activity with echoed traces of the previous 

experiences, i.e. opening the possibility that the observed changes are some kind of 

memory trace. Naturally, this leads to the question what “true intrinsic” activity 
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might be – or whether it exists at all. More precisely, this criticism can be applied to 

any measurement of ongoing activity: whenever resting state activity is measured – 

be it during wakefulness, during sleep or during anaesthesia – it will always include 

the so-called task-unrelated mind-wandering (Mason et al., 2007; see Chapter 6 for a 

more detailed description of mind-wandering) that occurs either with or without 

awareness of the individual (Smallwood, McSpadden, et al., 2007). Therefore, the 

very nature of ongoing activity cannot be considered to lack context (Sadaghiani, 

Hesselmann, et al., 2010). Accordingly, the only possibility to isolate “pure” ongoing 

activity would require that it possesses a unique spatial and temporal form. As 

outlined in 1.2.2.4 this does not appear to be physiologically plausible, i.e. no such 

qualities have been recognised with confidence. More than that, this debate and the 

question of whether the disputed dissociation of ongoing activity from “other” brain 

activity is indeed justified or reasonable, leads to the ultimate question about the 

function of ongoing activity. 

Given the observation that ongoing activity does not simply represent unconstrained, 

spontaneous cognition – either called daydreaming, mind-wandering or stimulus-

independent thought (Antrobus, 1968; McGuire et al., 1996; Mason et al., 2007) – it 

seems to reflect a more fundamental or intrinsic property of the brain’s functional 

organisation. In particular, the observation that spatially coherent, spontaneous 

BOLD activity is present under anaesthesia and during sleep renders it unlikely that 

the observed patterns of coherence organised in functional networks are solely the 

result of unconstrained, conscious cognition or mental activity (Christoff et al., 2009; 

Raichle, 2011). Recently, it has been shown that patterns of low-frequency 
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oscillations in the BOLD signal are even modulated by the content – or nature – of 

free thought during rest (Doucet et al., 2012). 

Given the research results described in this chapter, one possible function of ongoing 

activity is the facilitation of responses to external stimuli. Thus, a balance on the 

global level – similar to the balance of excitatory and inhibitory inputs at the single 

neuron level that determine the responsiveness of neurons – might be present on a 

more global level of brain function: opposing forces could enhance the precision of a 

wide range of processes (Raichle and Snyder, 2007). Indeed, some of these more 

global effects that involve balance have been reported. For example, the so-called 

Sprague effect has been first demonstrated in the visual system of the cat (Sprague, 

1966).      

A more progressive and more expanded view on the functional role of ongoing 

activity is the notion of predictive coding (see 1.2.1.2) in the context of the 

experimental investigation of spontaneous fluctuations in the brain. Combining the 

mentioned electrophysiological findings and the neuroimaging results outlined 

thereafter, the proposal of the brain a Bayesian interference machine that generates 

predictions about the future (Olshausen, 2003; Kersten et al., 2004) appears 

plausible. Most simplistically, the suggestion entails that the brain is shaped by 

experiences (i.e. stimuli) to represent a best guess, i.e. prior, about states of the 

environment and – on a cognitive level which holds for humans and some other 

species – to make predictions about future states of the environment.
2
  

                                                 
2 The question about the initial set of priors equipped with at birth – or even before that – is another 
interesting one, but shall not be discussed here. 
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In sum, I propose that the function of ongoing activity is closely related to cognition 

and that this relation is present during “rest” and during “active states”, i.e. it is 

characteristic for the brain.   

1.4 Conclusions 

Although the majority of neuroscientists still focus much of their research activities 

on evoked responses, a growing community of researchers is investigating or taking 

into account the role of spontaneous or ongoing brain activity. Across all 

neuroscientific disciplines ranging from single cell recordings in the cat to clinical 

studies in humans, the importance of spontaneous neural activity is now appreciated 

and the results add to a rapidly expanding body of research aimed to understand how 

the brain instantiates behaviour
3
. Raichle and Snyder (2007) even mention the 

“requirement to establish a framework upon which the study of intrinsic brain 

activity is incorporated into the work devoted to evoked activity”.  

Methodologically, the study of slow fluctuations (i.e. < 1 Hz) in neural membrane 

polarisation has been shown to be of particular interest. In particular, these 

frequencies correspond to the ones of spontaneous fluctuations in the BOLD signal 

and their functional consequences seem to be relevant for the understanding of the 

well-known variability in task-evoked activity, as well as behavioural performance 

variability.  

                                                 
3
 Here, “behaviour” refers to any mental expression, i.e. a thought is also considered to be a certain 

type of behaviour. 
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1.5 This thesis 

My interest within the study of the functional role of spontaneous activity is focused 

on its role in contextual changes ranging from recent experiences of individuals to 

trial-by-trial variability in a certain task. Therefore, I studied the nature of ongoing 

activity from two perspectives: One looking at changes in the ongoing activity due to 

learning, and the other one looking at the predictive role of prestimulus activity using 

complementary methodologies, i.e. EEG and fMRI. Finally, I ventured into the realm 

of inter-individual differences and mind-wandering to investigate the relationship 

between ongoing activity, certain behavioural traits and neuronal connectivity. 
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Chapter 2 Methods – measuring spontaneous activity 

2.1 Introduction 

As mentioned in Chapter 1, several different methodological approaches and 

techniques can be used to acquire and analyse ongoing brain activity and some of 

these have been employed in this thesis. This chapter describes the central issues in 

recording and analysing the data presented, including fMRI and EEG. Other 

techniques that have not been used here, like electrophysiological recordings in non-

human species, are not described to avoid confusion. First, the difference between 

group studies, lesion studies and inter-individual difference studies is given. Second, 

a concise overview of the two techniques, i.e. fMRI and EEG, is given and more 

specific issues related to measuring spontaneous activity are described. With regard 

to fMRI, this includes a description of the use of stochastic dynamic causal 

modelling for resting state data.  

2.2 Group versus inter-individual differences versus lesion studies 

The most common approach to investigate a neuroscientific question in humans 

using either EEG or fMRI is to perform a group study. In case of the simplest design 

this entails that healthy volunteers who participate in the study are either randomly 

assigned to a group, i.e. in case of a between subject design, or do perform two or 

more experimental tasks or conditions, i.e. in case of a within subject design. For 

instance, a group study testing for the benefits of a certain drug might randomly 

assign half of the sample to a group that first takes the drug and then a placebo, and 

the other half to the reverse order. The gold standard is the so-called double blind 
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design, where both participant and the experimenter (who interacts with the 

participant) are “blind” to the experimental condition, i.e. drug versus placebo. A 

combined between- and within-subject design is also possible. This allows testing for 

an effect of different dependant variables between and within participants.  

One particular form of a group study involves the study of so-called experts, i.e. one 

group is then comprised of individuals that can perform the studied task(s) 

particularly well (due to genetic advantages and/or due to intense training). 

In comparison to group studies in healthy individuals, clinical studies investigate a 

sample of patients that show a certain pattern of disease or malfunctioning. Usually, 

these are then matched, e.g. for variables like age, gender, education and lifestyle, 

with healthy control participants.  

A complementary experimental approach is the study of inter-individual differences. 

In contrast to group studies, which are based on the assumption that the taken sample 

is representative of the underlying population and which therefore treat differences 

between individuals as a source of “noise” that needs to be averaged out, these 

differences are the main interest for this approach. In the field of differential 

psychology this is a – or the – standard approach to study topics like personality and 

different types of intelligence. However, only more recently this approach has gained 

popularity in neuroimaging studies, often linking brain structure to behaviour or 

personality traits (Kanai and Rees, 2011). More precisely, inter-individual variability 

from basic to higher cognitive functions including perception, motor control, 

memory, aspects of consciousness and the ability to introspect can be predicted from 

structural MRI studies, using voxel-based morphometry (VBM) (Irle et al., 2010; 
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Kanai et al., 2010; Schwarzkopf et al., 2011) and diffusion tensor imaging (DTI) 

(Forstmann et al., 2010), as well as from neural activity measured with fMRI (Wig et 

al., 2008; Bishop, 2009), EEG (Klimesch, 1999) or positron emission tomography 

(PET) (Gerretsen et al., 2010). Therefore, it has been proposed that these differences 

can be used to link human behaviour and cognition to brain anatomy and function 

(e.g. Kanai and Rees, 2011). 

Probably the most debated aspect with regard to group and inter-individual 

difference studies is the group – or sample size respectively – that is needed for a 

study, i.e. required to show a certain effect. Even though this question is fundamental 

for any experiment carried out – not only in neuroscience – there are not many 

publications about the topic (Lenth, 2001). The so-called effect size is a measure of 

the strength of the deviation from the null hypothesis and usually refers to the 

estimate of an unknown true effect size based on the collected data (Friston, 2012). 

One common way to classify effect sizes is to rank them as small, medium and large 

(Cohen, 1988). Friston (2012) extended this classification to include trivial effect 

sizes. Essentially, these refer to statistically highly significant effects that are 

however grounded in “an uninformed overpowered hypothesis test”. Based on an 

analysis of effect sizes in classical inference – which is most often used to report 

results in neuroscience – Friston (2012) suggests that the optimal size for a sample is 

between 16 and 32 participants. This argues against the more recent trend of group 

studies in functional neuroimaging to increase sample sizes due to both editorial 

requirements and large cohort studies (e.g. Lohrenz, McCabe, Camerer, & 

Montague, 2007).      
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Last, there is the option of a case study which is commonly used in psychology and 

clinical medicine. Sigmund Freud conducted some of the most famous and detailed 

ones at the beginning of the 20
th

 century, including Little Hans (Freud, 1909a) and 

The Rat Man (Freud, 1909b). In human neuroscience, case studies are mostly lesion 

studies, i.e. an individual shows a certain and very specific brain anomaly that cannot 

be easily compared to a healthy brain. Probably the most famous case is HM and the 

study of human memory. HM had both of his medial temporal lobes removed and 

subsequently suffered from intense amnesia (Penfield and Milner, 1958). The 

benefits, e.g. potential causal inferences can be drawn, and shortcomings, e.g. 

experimental control, of the lesion study approach have been outlined elsewhere (e.g. 

Kosslyn & Intriligator, 1992).  

2.3 Functional Magnetic Resonance Imaging (fMRI) 

2.3.1 Overview 

Magnetic resonance imaging (MRI) is a non-invasive method used to create detailed 

images of the body including the brain by using a strong magnetic field and radio 

frequency pulses. Instead of creating images of organs and tissues, functional MRI 

measures blood flow in the brain to detect areas that are active. The technique detects 

changes in blood oxygenation and flow, which are a consequence of neural activity.  

To understand functional MRI, one needs to know how MRI works and how it uses 

the magnetic properties of tissue: Everywhere in the brain are hydrogen atoms acting 

as small magnets and rotating around their own axis. When placed in the strong 

magnetic field (B0) present in the MRI scanner they stop rotating randomly and align 
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with B0. The trick of MRI is to apply a second magnetic field using radio frequency 

pulses that cause the hydrogen atoms to wobble around their own axis. This 

movement creates a changing magnetic field around the atoms that in turn creates an 

electric current. This current constitutes the measured signal of MRI, arising from the 

whole head. More precisely, when the radio frequency pulse is switched off again, 

the hydrogen atoms relax, going back to the state of alignment with B0. Crucially, 

this relaxation differs between different tissue types, i.e. hydrogen atoms in fat, white 

matter, grey matter or cerebrospinal fluid have different relaxation times. There are 

two different relaxation processes that are measured with MRI. First, so-called T1-

weighted images focus on the “righting” of tilted hydrogen atoms during the 

realignment with B0. This process is influenced by surrounding non-excited 

molecules. Second, a T2-weighted image is based on the so-called “dephasing” of 

the rotating atoms, which refers to the falling out of synchrony between different 

atoms. Mostly, this dephasing is due to the loss of energy to nearby atoms, but can 

also be influenced by local field inhomogeneities. If the latter factor is taken into 

account as well, one speaks about T2*-weighted images. These are the ones acquired 

with fMRI. Localisation within the three-dimensional space of the brain is achieved 

via the use of different gradients alongside the radio frequency pulses. Essentially, 

these gradients generate a magnetic field with different field strength that is changing 

gradually along three axes: one gradient selects a single slice of the brain and two 

additional gradients divide the slice into rows and columns allocating so-called 

voxels. These are essentially cubes of brain tissue from which the signal is collected.  

FMRI measures differences in magnetic properties that are related to neural activity. 

Now, the link to the beginning of this section can be made: Active brain regions 
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require more blood that transports oxygen and glucose to the active region. 

Importantly, oxygenated and deoxygenated haemoglobin have different magnetic 

properties: Oxygenated haemoglobin is diamagnetic and causes no signal loss. For 

unknown reasons the supply of oxygenated haemoglobin to activated regions is 

larger than the actual local consumption. Therefore, the proportion of oxygenated to 

deoxygenated blood is greater. Due to less deoxygenated haemoglobin, dephasing is 

reduced and a stronger fMRI – or blood oxygen level dependant (BOLD) – signal is 

obtained (see 2.3.2). In other words, the BOLD signal is the absolute amount of 

oxyhaemoglobin; the cerebral blood volume (CBV) has to overrule the 

hyperoxygenation of the haemoglobin. This makes fMRI an indirect measure of 

brain activity that uses blood flow as a proxy. It has a low temporal resolution, 

because the response in blood flow lags behind the increase in neural activity and 

typically peaks between 6 to 8 s after the neural response. The spatial resolution is 

determined by the applied gradients defining the voxel size and is usually somewhere 

between 1 and 3 mm, also depending on the field strength of B0.     

Also, BOLD contrast fMRI is a relative measure, because activations need a 

comparison to a so-called control condition. For instance, if one wanted to localise 

the brain activation due to moving dots, one could compare a condition of moving 

dots to a display of static dots. The choice of the control condition is critical: Ideally 

it should only differ in the parameter of interest (for instance in this case the 

movement). Typically, fMRI experiments are event-related, blocked or mixed. An 

event is defined as a short stimulus that is presented to the participant in the scanner, 

whereas a block is usually constituted of several stimuli that are either identical or 
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belong to the same category. The BOLD signal of one block will then be compared 

to a control block consisting of several control stimuli.     

2.3.2 The BOLD response 

The shape of the BOLD response is characterised by a small initial dip about 1 to 2 s 

after stimulus onset, a peak at 6 to 8 s poststimulus presentation and a second small 

dip thereafter, the so-called poststimulus undershoot (Chen and Pike, 2009). The 

hemodynamic response differs between regions, participants and stimulus 

presentation rate, but shows a high within-region and -participant stability (Miezin et 

al., 2000).   

The neural mechanisms that underlie the BOLD response as well as the precise 

mechanisms of neurovascular coupling are not yet fully understood. Glutamate, the 

main excitatory neurotransmitter, has been identified as a key player in the coupling 

between blood flow and neurons. When glutamate binds to postsynaptic receptors it 

causes a calcium influx which activates nitric oxide synthase which triggers the 

making of nitric oxide (NO). NO leaves the neuron and dilates smooth muscles 

located around arterioles. This allows more blood to flow to the activated area 

(Stefanovic et al., 2007). When binding to receptors on astrocytes, glutamate 

stimulates the production of arachidonic acid and the release of vasodilatory 

prostaglandins (Takano et al., 2006); vasodilation triggers increased blood flow to 

the active brain area.  

As mentioned above, the transported blood delivers an excess of oxygen, i.e. more 

than is eventually consumed by the neurons. Although it is still debated why this 

might be the case, several potential explanations have been put forward. For 
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example, Fox et al. (1988) proposed that increases in brain activity are supported by 

the non-oxidative glucose metabolism (i.e. glycolysis).   

Maybe the most studied question with regard to the origin of the BOLD signal is its 

relation to electrophysiological measures. Only if this relationship is understood, 

neuroscientists are able to compare neuroimaging studies using fMRI with the results 

of electrophysiological studies. For instance, there is evidence that the BOLD 

response is correlated to neuronal spiking activity. Comparing single unit data from 

recordings in monkeys with human fMRI measurements from the motion-sensitive 

area V5/MT (hMT+), Rees et al. (2000) showed that an increase in motion coherence 

led to an increase in BOLD responses (in humans) and neural firing rates (in 

monkeys). However, a subsequent study using simultaneous fMRI and 

electrophysiological recording in monkey visual cortex suggests that the BOLD 

contrast mechanism may more reflect the input and intracortical processing of a 

given brain area, rather than its spiking output; the BOLD signal seems to be slightly 

more correlated to the local field potential then to spiking activity (Logothetis et al., 

2001). 

2.3.3 How to collect resting state data 

In contrast to the typical collection of fMRI data during which the individual in the 

scanner performs a certain task that is usually projected on a small screen, resting 

state data is acquired differently. In fact, ongoing activity encompasses the brain 

activity that is not assignable to any given task. Therefore, during collection of 

resting state data any input due to sensory stimulation should be minimised. Two 

main approaches are used by researchers: Participants are either asked to fixate on a 
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central fixation point throughout the scan or to close their eyes without falling asleep. 

In both cases, it is helpful to tell the participant to try to relax without thinking about 

anything in particular. Of course, this is an instruction that can hardly be controlled 

for. In any case, the second option of the above is preferable, given that the 

participants can be trusted not to fall asleep. Having said so, there is no consensus as 

to whether the precise experimental setup has a significant impact (Marx et al., 2004; 

Horovitz et al., 2008; Bianciardi, Fukunaga, van Gelderen, Horovitz, de Zwart, and 

Duyn, 2009). For instance, the stability of resting state network patterns through 

various sleep states has been shown to be quite stable, but weaker during deep sleep 

(Fukunaga et al., 2006; Horovitz et al., 2009). During data collection, the pulse is 

usually measured, which helps to monitor the physiological state of the participant. 

In addition, breathing can be measured using a specific respiration belt. These 

variables can add noise to the signal and should therefore be controlled for (see 

1.2.2.2).  

The duration of resting state scans differs and commonly ranges between 5 to 10 min 

(Cole et al., 2010). The chosen duration depends on the planned analysis. While Van 

Dijk et al. (2010) suggest that 5 min are near-asymptotic with regard to correlation 

map stability, it appears questionable whether this generalises to analyses that 

involve a more advanced analysis of connectivity using higher-dimensional 

independent component analysis (ICA) (Kiviniemi et al., 2009; Smith et al., 2009a), 

for example
4
. Typically, standard scanning parameters are used including repetition 

time, echo time, slice thickness, field of view, and matrix size.     

                                                 
4
 For these analyses the degree of partial temporal correlation between subsystems increases. Thus, 

the ability to delineate them is reduced and more data helps to do so. 
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2.3.4 Pre-processing and noise correction 

Most of the usual pre-processing steps used for task-related BOLD fMRI data are 

useful for resting state data (Beckmann et al., 2005; Birn et al., 2006). These include 

realignment of all scans, coregistration to the structural scan of the individual, 

normalisation to a template brain, smoothing, and correcting for head movements 

and physiological noise modelling these as regressors during model estimation. 

Depending on the used head coil, a bias correction taking inhomogeneities in the 

magnetic field into account might be useful as well.  

In addition, there are a number of differences that are worth mentioning. First, high-

pass temporal filtering that is usually applied to task-fMRI data might remove parts 

of the relevant resting state frequency information. Spontaneous BOLD fluctuations 

have an increasing power at lower frequencies, because they exhibit a 1/f distribution 

(Fox and Raichle, 2007). Thus, a more conservative correction is necessary to 

guarantee keeping the power at low frequencies. High-pass filtering is usually 

performed at 0.01 Hz (Biswal et al., 1995); frequencies above 0.1 Hz mainly relate to 

cardiac and respiratory factors (Cordes et al., 2001). Thus, spontaneous data acquired 

with fMRI is often also low-pass filtered at 0.1 Hz leaving a frequency range 

between 0.01 and 0.1 Hz. Indeed, this range has been shown to be the one in which 

functional resting state networks are present (Cordes et al., 2001).          

Crucially, a large portion of the measured BOLD signal at rest can indeed be 

attributed to spontaneous BOLD activity. However, artefacts contributing to the 

signal can be of instrumental or physiological origin. In addition to “real” 

spontaneous activity, low-frequency changes in the signal might also be caused by 
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slow changes in head position, physiological parameters and environmental 

conditions like slow drifts in gain and resonance frequency (Bianciardi, Fukunaga, 

van Gelderen, Horovitz, de Zwart, Shmueli, et al., 2009). Their relative impact has 

been investigated using a high field strength scanner, i.e. 7 Tesla
5
 (Bianciardi, 

Fukunaga, van Gelderen, Horovitz, de Zwart, Shmueli, et al., 2009). As mentioned 

above, low-frequency drifts due to scanner instability contribute to the measured 

BOLD signal of spontaneous fluctuations (34.7 %), as well as variations in breathing 

(8.6 %) and cardiac activity (6.6 %). Thermal noise plays a huge role for individual 

voxel data, but cancels out during averaging, because it is uncorrelated between 

different voxels. In total, about half of the signal (50.1 %) can therefore be attributed 

to underlying neuronal activity of interest. These non-neuronal physiological signals 

can interfere with the interpretation of resting state fMRI data (Birn et al., 2006)  

Fortunately, the noise components related to changes in physiological variables, 

including respiration and heart rate, can be taken care of using the correction method 

RETROICOR (Glover et al., 2000). It uses the data monitored during scanning by 

help of the aforementioned breathing belt and a pulse oximeter. This data can then be 

modelled using a MATLAB toolbox (Hutton et al., 2011). It calculates a time series 

representing the change in respiration from the mean respiratory waveform by taking   

the standard deviation at each time point over a 6-second sliding window and 

convolves it with the so-called respiratory response function (Birn et al., 2008). The 

resulting respiration volume per unit time (RVT), and basis sets of sine and cosine 

Fourier series components extending to the 5
th

 harmonic (i.e. 10 regressors) for the 

cardiac phase and 3
rd

 harmonic (i.e. 6 regressors) for the respiratory phase are used to 

                                                 
5
 Thus, precise numbers given here should be considered with care; they might differ for lower field 

strengths of 1.5 T or 3 T more commonly used in standard fMRI settings. 
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model the physiologic fluctuations. This results in a total of 17 regressors which are 

subsequently added to the first level analyses of each participant’s data.  

Another potential problem when using ICA is the observed spatial and spectral 

overlap between some artefactual components and resting state networks. They 

might even mix and form parts of the same components in the final decomposition 

(Birn et al., 2008). However, in most cases this overlap seems to be distant enough in 

order to delineate regions belonging to networks like the DMN and those affected 

strongly by respiratory fluctuations. This result holds on the single subject basis and 

at the group level. 

Finally, the last pre-processing step that might be included in the analysis of fMRI 

resting-state studies is the subtraction of spontaneous BOLD fluctuations observed in 

the whole brain, the so-called global signal. The underlying assumption concerning 

global signal removal is that the shared BOLD fluctuations are due to physiological 

factors. There are two ways of taking this into account, thereby ensuring that the 

mean BOLD signal across the brain is the same in every scan (Fox et al., 2009). 

Either, the global signal can be added as a linear regressor or multivariate scaling can 

be used. The scaling is very alike to the approach that is used in task-related studies, 

i.e. proportional scaling. It removes inter- and intra-session variance in the global 

signal (Gavrilescu et al., 2002).   

Although, the extraction of functional networks from the data can be improved using 

global signal removal (Fox et al., 2009), it has been shown that this process can 

induce spurious negative correlations between resting state networks and might result 

in false positives, i.e. observed anticorrelations (Fox et al., 2005). Thus, observed 
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results could turn out to be an artefact caused by global signal removal (Murphy et 

al., 2009). Nonetheless, the nature of the global signal has been shown to be indeed 

“global”, and not restricted or amplified in systems showing anticorrelations. Its 

removal can lead to an improved correspondence between resting-state correlations 

and anatomical connectivity (Fox et al., 2009).   

In sum, global signal correction should be applied with caution, especially when 

anticorrelations are observed subsequently. 

2.3.5 Functional connectivity analyses of resting state data  

As in any other fMRI study, further analyses after pre-processing are guided by the 

specific type of question that is investigated. In the following, I will describe four 

different approaches of how to use resting state data, all of which look at functional 

connectivity. The first one is the seed-based approach. Studies that investigate the 

relation between spontaneous BOLD activity and any type of behaviour usually 

focus on one or several brain areas (Hesselmann, Kell, and Kleinschmidt, 2008; 

Hesselmann, Kell, Eger, et al., 2008). The main benefit of using a seed-based 

approach in these cases is to be able to ask a straightforward question about 

connectivity and to generate a direct answer. Due to its simplicity it has been used 

widely (Cordes et al., 2000; Hampson et al., 2002; Greicius et al., 2003; Fransson, 

2005; Margulies et al., 2007; Vincent et al., 2007). A seed-based analysis is 

performed by first extracting the time course of an a priori seed voxel or region of 

interest (ROI). Subsequently, this time course is used to determine the temporal 

correlation between the extracted signal and the time courses of all other voxels in 

the brain (Fox and Raichle, 2007). In order to do so, the data is either used as a 
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regressor in a linear correlation analysis or in a general linear model (GLM) analysis. 

The latter one is used in case the model is augmented with confound regressors of no 

interest, e.g. physiological and movement regressors. This results in voxel-wise 

functional connectivity maps of co-variance with the seed region (Cole et al., 2010). 

An assessment of test-retest variability of the method has indicated that resting state 

network connectivity relationships are identified with moderate to high reliability 

(Shehzad et al., 2009). However, the technique has several weaknesses.  

First, the influence of structured spatial confounds, e.g. other resting state networks 

than the one under investigation, as well as structured noise, can influence the 

results. Although some of these influences can be (partially) removed by choosing 

the necessary pre-processing steps (see 2.3.4), the presence of residual confounds in 

the seed-region analysis reference time course can negatively influence the resulting 

correlation maps, because the estimated networks might include voxels that describe 

the spatial extent of the artefact. Also, the univariate approach neglects the richness 

of information available within the statistical relationships between multiple data 

points (Cole et al., 2010).  

Second, the selection of time series based on a priori hypotheses restricts potential 

conclusions drawn from the results. One restriction relates to the anatomical 

confinement of measuring network connectivity, and therefore, on resulting 

interpretations of hypotheses on the system level. In principle, there are as many 

possible networks as there are possible seeds, i.e. the interpretation of one spatial 

map as a meaningful system does not measure up to the data. On the biological level, 

the choice of the seed might bias any connectivity findings towards specific, smaller 
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or overlapping sub-systems, compared to larger, distinct networks (e.g. Buckner et 

al., 2008). 

Third and finally, all of these issues depend on the specific choice of the seed. This 

includes researcher-specific aspects like the size of the seed and its location, as well 

as subject-specific issues, like functional localisation and spatial normalisation. 

Testing the potential biases involved in seed-selection performed during seed-based 

analyses, Cole et al. (2010) compared a number of different version of the DMN, all 

derived from different versions of seed-based analyses and one estimated using ICA. 

Independent of the location of the seed voxel, they found significant overlap in the 

extent of the networks. However, particularly in prefrontal, occipital lobes and 

subcortical regions, a large amount of variability in the results – and subsequent 

interpretation – was observed.  

In response to the outlined limitations of seed-bases analyses, several other 

techniques for the extraction of functional networks have been tested. The 

aforementioned ICA is commonly used (van de Ven et al., 2004; Beckmann et al., 

2005; Kiviniemi et al., 2009) and has been used in combination with the more 

traditional seed-based analysis as well (Seeley et al., 2007). After it had been used to 

separate uncorrelated signal wave forms in EEG data for several years, ICA was first 

utilised for the analysis of task-related fMRI data fifteen years ago (McKeown et al., 

1998). Only five years later, if was applied to resting state data (Kiviniemi et al., 

2003). The basic approach is to decompose a two-dimensional data matrix into the 

time courses and associated spatial maps of the respective underlying so-called 

hidden signal sources. In the neuroimaging community, several different approaches 
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implemented in different software packages have been developed and are in use 

(Cole et al., 2010). Importantly, the ICA approach has identified the same networks 

of spontaneous coherence as found with the seed-based analysis approach, including 

the somatomotor network observed in the pioneering resting state connectivity 

experiment (Biswal et al., 1995), sensory systems in visual and auditory cortices, as 

well as those important in higher-level cognitive processes like the DMN. One of the 

pitfalls of the approach is the manner in which the ICA decomposition is obtained: It 

uses an iterative optimisation and the order in which the decomposition is performed 

influences the results.
6
 Consequently, a certain degree of run-to-run variability is 

introduced; therefore, results generated from different ICA analyses can differ 

between analysis runs on the same data. The use of more stringent convergence 

criteria can help to reduce this effect. Also, the investigation of the degree of 

variability can be estimated using specific software (Himberg et al., 2004). Another 

problem is related to the dimensionality reduction that is performed during ICA: The 

selection of the number of components is determined by the person who analyses the 

data. Even though there are algorithms that determine the supposedly optimal 

number of independent components for given data (e.g. Zuo et al., 2010), no single, 

“best” dimensionality or model order for the underlying neurophysiology or multiple 

distributed systems of the brain does exist (Cole et al., 2010). Lastly, the main 

benefit of the seed-based approach is a major shortcoming of the ICA approach: 

Whereas a seed-based analysis assures a result that identifies the brain regions most 

associated – or functionally connected – with the chosen seed, an ICA analysis might 

be separated into a number of sub-networks (which depend on the parameters of the 

                                                 
6
 Originally, ICA used fixed spatial components. However, more recent versions make use of more 

variables thereby decreasing the variability of the obtained results. 
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analysis). Consequently, one might observe a high number of components that are 

difficult to interpret (Tohka et al., 2008).  

The third method used to investigate time series of resting state data is focused on the 

frequency information contained in the data. Indeed, frequency-specific 

characteristics have been studied in parallel to correlation-based methods (Cordes et 

al., 2000). One of the techniques used in order to study these characteristics is the use 

of so-called amplitude of low frequency fluctuations indices (Zang et al., 2007) and 

has been discussed elsewhere (Cole et al., 2010).    

The last approach, which I want to mention shortly, is the regional homogeneity 

method (Zang et al., 2004). The technique is sensitive to the homogeneity within 

clusters that are identified as showing high functional connectivity with a model time 

series within a certain cluster. Temporal variability within a cluster is indexed by a 

homogeneity score. Two advantages of this approach are its insensitivity to potential 

region-to-region or trial-to-trial variability of the hemodynamic response function 

(see 2.3.2) and the fact that no assumptions about the spatial independence of 

identified maps are made. Its two main shortcomings are its local nature, which 

makes the technique vulnerable to different levels of spatial smoothing, and its 

insensitivity to shape differences between clusters. The latter restriction makes it 

difficult to draw any inferences on the distributed nature of resting state networks 

(Zang et al., 2004; Cole et al., 2010).      
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2.3.6 DCM – or: going beyond functional connectivity  

2.3.6.1 Effective connectivity 

A different approach to functional connectivity measurements is the investigation of 

so-called effective connectivity. Generally speaking, there are three different types of 

connectivity that are investigated using neuroimaging: structural connectivity, which 

looks at the presence of axonal connections (using for instance DTI, e.g. Taylor and 

Bushell, 1985), functional connectivity, which has been described above and defines 

statistical dependencies between regional time series of multiple brain regions, and 

effective connectivity. The latter one targets causal (directed) influences between 

neuronal populations (Friston, 1994). Both, functional and effective connectivity are 

dynamic, i.e. context-dependant recruitment and gating of connections has been 

observed over milliseconds. Even structural connectivity changes after development 

has been completed (Friston, 2011).  

Effective connectivity goes beyond descriptive statistical methods and requires a 

causal model. The model defines what is meant by effective direct/indirect causal 

influences, i.e. it describes the interactions between the elements of the neural system 

of interest (Stephan and Friston, 2011). These models are defined by dynamic 

systems theory, a general mathematical framework (Breakspear, 2004; Stephan, 

2004). In this framework, a system is defined by its interacting state variables, which 

are properties that are changing over time. For instance, on the neuronal level the 

type and number of ion channels that open in response to a stimulation determine the 

postsynaptic potential. Basically, these functional relationships are depicted by a 
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number of differential equations
7
 including several parameters (e.g. synaptic 

strength), which determine the type and strength of the causal influences between the 

different state variables (Stephan and Friston, 2011). In case of the brain, a highly 

non-autonomous system
8
, inputs to the system need to be taken into account.  

In sum, the resulting model based on a general state equation that takes state 

variables, inputs and parameters into account delivers a causal description of how 

system dynamics result from system structure (Stephan and Friston, 2011); it 

provides a general model of effective connectivity in neural systems. The 

completeness is given by including (a) when and where external inputs enter the 

system, as well as (b) how the state changes in response to inputs over time as given 

by the structure.    

2.3.6.2 Deterministic dynamic causal modelling
9
  

The notion of using dynamic causal modelling for neuroimaging data has been 

introduced ten years ago (Friston et al., 2003), and is one way of measuring effective 

connectivity. The main difference and advantage of DCM compared to more 

traditional approaches to measure effective connectivity including structural equation 

modelling (SEM) (e.g. McIntosh and Gonzalez-Lima, 1991) and psycho-

physiological interactions (PPI) (Friston et al., 1997) is the fact that it does not 

operate at the level of the measured signal. As described above, the signal measured 

                                                 
7
 Differential equations are used because the described systems are referring to a continuous time. A 

similar approach using discrete timing and difference equations has been used as well (e.g. Harrison 
et al., 2003).   
8
 A system is considered non-autonomous if it exchanges energy, matter or information with its 

environment. 
9
 Before stochastic DCM had been developed, there was only one DCM approach. In order to 

differentiate between different DCM approaches, the “classical” DCM got renamed and is now 
commonly referred to as “deterministic DCM”. 
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in humans during neuroimaging is indirect, but the causal architecture that is targeted 

is at the neuronal level. Thus, two models are required: one that links neuronal 

activity to the measured haemodynamic signal, and one that models neuronal 

population dynamics (Stephan et al., 2004). These models optimally fit the 

parameters to maximise similarity between the predicted (modelled) time series and 

the measured (observed) time series. To my knowledge, DCM is the only approach 

that incorporates an obligatory combination of models of neural dynamics (i.e. the 

state evolution model) and biophysical forward models (i.e. the observation model) 

(Stephan and Friston, 2011).  

As mentioned in 2.3.6.1 and in order to calculate the state evolution model, DCM 

makes use of a neural state equation that takes the system’s state (i.e. the neural state 

variables), the inputs and some parameters that define the functional architecture and 

interactions between brain regions at the neuronal level into account. For each brain 

region, the change of a neural state vector in time is modelled as a single state 

variable by use of a bilinear differential equation. The resulting values represent a 

summary index of neural population dynamics, i.e. mean regional activity. The 

neural dynamics are driven by experimental inputs specific to the respective study. 

They can affect the model in two different ways. On the one hand, they can influence 

specific regions directly (e.g. evoked neural responses in early visual cortex due to a 

visual stimulus) or they can modify the connections between different regions, i.e. 

the coupling or connection strength between brain areas, e.g. after learning has 

occurred or via attentional mechanisms. Usually, the latter ones are of main interest 

for a related scientific question. 
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In order to model haemodynamics (i.e. the observation model), DCM uses the so-

called “Balloon model”, which has been validated (Buxton et al., 1998; Friston et al., 

2000; Stephan et al., 2007). Put shortly, it combines several differential equations 

that use a set of parameters to describe how fluctuations in neural activity cause 

changes in blood flow and volume, as well as the vasodilatory signal and the content 

of deoxyhaemoglobin. The resulting prediction of the BOLD signal is a non-linear 

function of blood volume and the content of deoxyhaemoglobin (Stephan et al., 

2007). 

To summarise, both neural and haemodynamic parameters are estimated on the basis 

of the acquired BOLD data. In order to do so, a Bayesian approach is used (Friston, 

2002). Different priors are used for the haemodynamic parameters and the coupling 

parameters.  

After estimation, the parameters are used to draw inferences about the neural 

mechanisms underlying the task at hand, i.e. whether and if so, where and how the 

experimental design resulted in change(s) of connection strength between different 

regions of the tested network(s). On the group level, comparisons can be performed 

in different ways. Similar to a random effects analysis, the parameter estimates of 

interest can be compared in a classical second-level analysis between individuals, i.e. 

a t-test of the parameter(s) of interest (Smith et al., 2006). Corresponding to a fixed 

effects analysis – and thereby restricting the scope of potential inferences to the 

sample investigated – Bayesian statistics can be used (Garrido et al., 2007).    
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2.3.6.3 Stochastic DCM 

How could DCM be used for resting state data? Essentially, such data does not have 

any input by definition. Also, the endogenous fluctuations in neuronal and vascular 

responses need to be modelled somehow. Stochastic DCM takes care of both of these 

challenges and can be applied to task-driven and resting-state data. It uses variational 

Bayesian generalised filtering, which has been described elsewhere (Friston et al., 

2010; Li et al., 2011). The challenge of stochastic DCMs is trifold: In contrast to 

deterministic DCMs that need to estimate two sets of variables, i.e. the parameters 

and the hyperparameters, stochastic DCMs include a third set of unknown variables, 

i.e. the hidden states. Recently, Li et al. (2011) tested the validity of stochastic DCM 

for the use on fMRI data. They compared results of data with high and low levels of 

physiological noise and proposed that stochastic DCM has face and construct 

validity. They conclude that the ability to model spontaneous fluctuations in hidden 

neuronal states provides a new perspective on the regionally specific generation of 

fMRI signals.  

Regions – or nodes – for the chosen stochastic DCM are extracted in a similar way as 

for a deterministic DCM. The selection of the chosen coordinates can be either based 

on prior hypotheses using anatomical atlases or on functional connectivity analyses. 

The latter one might include distinct clusters from seed-correlation analyses or the 

results of an ICA (see 2.3.5).  

The main challenges of stochastic DCM are related to the selection of the nodes: 

First, strong hypotheses about which ROIs are included in the analysis, which 

topography might be tested and which aspects (e.g. existence of connections versus 
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the modulation of connections) are tested, are required. Second, the definition of 

ROIs in different individuals depends on multiple decisions and is therefore error-

prone and less reproducible.  

2.3.6.4 Model selection  

Model selection is integral to both, deterministic and stochastic DCM. Put simply, 

model comparison – which is involved in almost every form of scientific reporting – 

tries to answer the question which of several alternative models represents some 

observed data best. Two factors should be considered when comparing models: fit 

and complexity. While the first aspect is obvious, the issue of complexity is less 

commonly thought about. However, it is as crucial and can be best explained in the 

context of so-called over-fitting, which occurs when a model gets more and more 

complex, usually fitting noise present in the data. The difficult decision during model 

fitting and subsequent model selection is to decide which fit is just sufficient to 

explain the data in an optimal way without over-fitting the data.  

Model selection between different models within a DCM analysis is based on 

Bayesian model selection (BMS), which compares the Bayes factor of two models 

with each other using an estimate of the log evidence for each model (Stephan and 

Friston, 2011). It is a crucial part during the DCM analysis and is commonly applied 

(e.g. Grol et al., 2007; Kumar et al., 2007; Acs and Greenlee, 2008) before inferences 

about particular parameters are drawn.  

Another approach of using model selection compares two or more subsets of model 

space (Stephan et al., 2009). By choosing the subsets such that they reflect the 

components of the model structure one is interested in, this approach goes beyond 
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the comparison of different models. For instance, one can test whether a certain 

connection is included in the optimal model or whether a specific connection is 

modulated by the experimental condition. The main advantage of this approach is 

that it allows the comparison between large sets of models simultaneously.    

2.4 Electroencephalography (EEG) 

The first human EEG was recorded in 1924 (Berger, 1929). EEG measures electrical 

activity along the scalp or more precisely, it records neuronal voltage fluctuations 

due to ionic current flows. In comparison to fMRI it has a high temporal resolution 

(commonly used sampling rates are between 250 and 2000 Hz), because it measures 

a direct neural signal. However, it suffers from a poor spatial resolution, because the 

electrodes are attached to the scull and the signal measured at each electrode is a 

weighted sum of neuronal activity from different sources. Also, some currents 

produce potentials that cancel each other out.
10

 This challenge of data interpretation 

is called the inverse problem and describes the mathematically impossible task to 

reconstruct a unique intracranial current source for any measured EEG signal. 

Related to this, neuronal activity from subcortical areas can only be measured poorly. 

EEG signals are analysed in terms of rhythmic fluctuations, which are divided into 

frequency bands of brain oscillations: the delta (2 – 5 Hz), theta (5 – 8 Hz), alpha (8 

– 14 Hz), beta (14 – 25 Hz), and gamma (25 – 100 Hz) band
11

. The measured 

fluctuations are attributed to local field potentials between excitatory and inhibitory 

                                                 
10

 The EEG signal really only represents a specific type of neuronal activation, i.e. the activity in 
aligned (elongated) dendrites that are all activated in the same way. In other words, the technique 
depends on a very specific coherent neuronal activation.  
11

 The division between frequency bands (still) differs between different scientific accounts, because 
they are not standardised.  
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states of neural populations. Oscillations are the summated excitatory post-synaptic 

potentials (EPSPs) of several thousands of neurons (Lopes da Silva et al., 1980). The 

raw EEG signal contains various different brain oscillations which can be analysed 

using spectral analysis (e.g. wavelet analysis, Başar et al., 2001). In order to 

characterise an oscillation unambiguously, two more parameters next to the 

frequency are needed, i.e. amplitude and phase.  

The raw EEG power can distinguish between gross changes in state like alertness. 

For example, alpha oscillations are associated with a relaxed, but awake state of the 

participant while beta oscillations are associated with a more alert and active state. 

Even though this analysis in terms of gross changes in state gives certain ideas about 

the mental state of an individual, it does not allow addressing specific, more fine-

grained changes in mental activity. Therefore, its use in the study of moment-by-

moment human cognitive activity is very limited.            

2.4.1 Event-related potentials (ERPs) 

Event-related potentials (ERPs) allow the investigation of short events such as used 

in typical perceptual, motor or cognitive experiments in human neuroscience. The 

basic idea is to time-lock the recording of the EEG to the stimulus onset and to 

average the response over multiple trials. This allows filtering out the brain activity 

unrelated to the presentation of the stimulus; averaging over a large number of trials 

the random activity in the signal approaches zero as the number of trials increases. 

The waves that survive this averaging process reflect deviations from a prestimulus 

baseline and are referred to as ERP components. The amplitude of an ERP 

component is relatively small, ranging from less than 1 to 10 microvolts, in 
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comparison to the raw EEG ranging between 10 to 100 microvolts. The waves 

possess several positive and negative voltage deflections. These are related to a set of 

underlying ERP components (Luck and Kappenman, 2012). Most of these 

components are identified by their polarity (P for positive and N for negative) and a 

number indicating the latency in milliseconds or the position in the waveform 

respectively. For instance, the language-related N400 has a negative polarity and 

occurs around 400 ms after stimulus onset. However, the latencies often encompass 

large intervals, e.g. the P300 may peak between 250 and 700 ms (Luck, 2005).  

Traditionally, ERPs are supposed to be superimposed on ongoing EEG random 

activity (i.e. noise) consisting of an amplitude and a phase distribution unrelated to 

the processing of the stimulus. However, this view has been challenged more 

recently. First, ERPs might represent phase resetting of the ongoing EEG triggered 

by the stimulus which leads to transient time- and phase-locking of frequency-

specific oscillations to the stimulus onset of every trial (Makeig et al., 2004). These 

phase-synchronised oscillations survive the averaging over trials and become visible 

as waves in the average ERP. Second, time-frequency analyses of single trial EEG 

epochs have revealed that EEG does not merely consist of random background noise. 

Instead, event-related changes in the magnitude and phase of EEG oscillations at 

specific frequencies have been observed (Makeig et al., 2004).   

2.4.2 Time-frequency analyses (TFAs) 

Generally speaking, time frequency analysis (TFA) includes those signal processing 

techniques that study a signal in two domains: time and frequency, i.e. the spectral 

and the temporal domain. In order to visualise the results of a TFA, a time-frequency 
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plot or spectrogram is used. This shows the temporal evolution of the spectrum in a 

2D manner, where the color-coding provides information about the power of a given 

frequency band at a given time.  

TFA complements the EEG signal analysis in several ways. First, it takes into 

account that neurons are oscillating. Second, it analyses the signal including the trial-

to-trial jitter, which might contain important information. Third, it allows the 

analysis of longer time periods including prestimulus activity and spontaneous 

signals. With regard to this thesis, the third aspect is of special importance. 

Most commonly, TFA are calculated using Fourier analysis and wavelet analyses. 

The Fourier transform (FT) converts a signal from the time domain to the frequency 

domain (Mitra and Pesaran, 1999). A time-frequency representation of power is 

calculated by use of a sliding time window. This either has a fixed length 

independent of frequency, or a decreasing length with increased frequency. In both 

cases the power is calculated for each time window. Prior to that one or more tapers 

are applied to the data to reduce spectral leakage and to control the frequency 

smoothing. Wavelet transforms co-localise in both domains, i.e. time and frequency, 

and can be used for non-stationary signals like the one acquired with EEG (Mitra and 

Pesaran, 1999; Başar et al., 2001).  

 



71 

 

Chapter 3 Early visual learning induces long-lasting connectivity 

changes during rest in the human brain 

3.1 Introduction 

As outlined in Chapter 1.1, until recently functional MRI (fMRI) studies have 

focused on how brain activity changes with task performance or sensory stimulation. 

However, even at rest – in the absence of a task or stimulation – fMRI signals show 

spontaneous fluctuations that exhibit spatiotemporal correlations in networks of 

functionally connected areas (Biswal et al., 1995; Fox and Raichle, 2007; Raichle, 

2010). These networks continue to covary during sleep (Fukunaga et al., 2006) and 

under anaesthesia (Vincent et al., 2007). They show high consistency and 

reproducibility across subjects and sessions over the short-term and long-term, using 

different variations of independent component analysis (ICA) (Damoiseaux et al., 

2006) and group ICA (Zuo et al., 2010). Their reproducibility in healthy young 

individuals compares to that of activations elicited by motor paradigms (Meindl et 

al., 2010).  Furthermore, there is a close correspondence between the activation 

networks – of almost 30,000 human participants of fMRI studies – with resting state 

networks (Smith et al., 2009b). The interplay between spontaneous and evoked 

activity has been of particular interest. For example, in the visual cortex, spontaneous 

fluctuations determine the variability in cortical responses and perception associated 

with presentation of a simple visual stimulus (Schölvinck et al., 2012). 

The effect of spontaneous fluctuations on evoked responses associated with 

perception raises the complementary question of whether systematic changes in 
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evoked responses, for example present during learning, might subsequently alter 

spontaneous fluctuation. The mechanism I have in mind here is that experience 

dependent (associative) plasticity may change synaptic connections and ensuing 

neuronal activity in the local circuits affected. As the implicit short term and 

immediate long-term potentiation is consolidated the associated changes in 

spontaneous neuronal activity should persist and be measurable in terms of changes 

in effective connectivity. A growing number of studies have investigated this 

adaptive modulation of resting state networks (see 1.3). Changes in spontaneous 

fluctuations have been shown after visuo-motor learning (Albert, Robertson, and 

Miall, 2009), episodic memory tasks (Tambini et al., 2010), and language tasks 

(Hasson et al., 2009). 

Visual learning is one way in which systematic changes in cortical responses and 

perception can be induced. Intensive training on a simple shape identification task 

over several days can change resting state functional connectivity between visual and 

fronto-parietal cortices (Lewis et al., 2009). This indicates that visual learning can 

have lasting effects on spontaneous brain activity through experience dependent 

plasticity. But such effects occur only after several days of training. The early phase 

of visual learning occurs much more rapidly—and is often ignored in typical visual 

learning experiments. However, learning entails a rapid consolidation process that 

starts within a single training session (Seitz and Watanabe, 2005) and that occurs in 

any experiment, independent of modality. The specific changes in spontaneous 

activity in task-responsive brain areas in response to this early learning (that occurs 

in any experiment, independent of modality) perhaps more typical of real-world 

environments (Brovelli et al., 2008; Shtyrov, 2012) remain unknown. With regard to 
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visual learning, both sensory and non-sensory areas (Goldstone, 1998; Seitz and 

Watanabe, 2005; Adab and Vogels, 2011; Shibata et al., 2011), appear to be 

involved. Outside the sensory cortex, single-neuron and functional MRI studies have 

implicated the lateral intraparietal area (Law and Gold, 2008), lateral parietal cortex  

(Kahnt et al., 2011), subcortical structures like the hippocampus (Lee et al., 2005; 

Graham et al., 2006) and the caudate nucleus (Ding and Gold, 2010). Recently, sub-

areas of the medial temporal lobe (MTL) including the parahippocampal cortex and 

subiculum have been implicated in rapid and incidental statistical learning in a visual 

paradigm (Schapiro et al., 2012). While MTL regions and, importantly, the 

hippocampus – including its connections to the striatum – have been traditionally 

linked to memory processes such as memory consolidation (Battaglia et al., 2011), 

their role in perceptual learning has only been examined more recently (Buckley, 

2005). 

Memory consolidation refers to the processes underlying the stabilisation of memory 

traces acquired during initial encoding (Dudai, 2012); where the importance of sleep 

for consolidation is well-established (Wang et al., 2011). Previous studies of changes 

in resting state activity in response to recent experiences (Albert, Robertson, and 

Miall, 2009; Lewis et al., 2009; Tambini et al., 2010) have not examined long-term 

changes in spontaneous fluctuations in the resting state. This is probably due to the 

fact that this requires a more extensive study design. However, I was particularly 

interested in these potential long-term changes as markers of experience dependent 

plasticity induced by the early learning phase. 
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Therefore, I used a paradigm with only one relatively short learning session that 

promoted rapid perceptual learning. I hypothesized that rapid perceptual learning 

would be accompanied by changes in spontaneous activity in brain structures whose 

responses changed during learning. Furthermore, I predicted that resting state 

changes would persist following consolidation. I tested this hypothesis by acquiring 

resting state time-series using functional MRI before and after a standard perceptual 

learning experiment. During the experiment, participants learned to discriminate a 

motion stimulus. I measured brain responses during task learning to identify regions 

whose responses were correlated with the learning in each individual. Crucially, I 

also acquired independent measures of resting state brain activity before and 

immediately after learning. The following day, I repeated the paradigm without the 

learning. I used stochastic DCM to evaluate resting state effective connectivity (Li et 

al., 2011) between regions identified in the learning session. Specifically, I tested for 

learning dependent changes in effective connectivity (during rest) immediately after 

the learning session and after consolidation of these putative changes on the 

following day. 

3.2 Materials and methods 

3.2.1 Participants 

16 right-handed healthy volunteers (7 female, 19 – 33 years of age, mean age 25.4 

years) with normal or corrected to normal vision gave written informed consent to 

participate in the study consisting of two scanning sessions at two consecutive days. 

11 of the 16 participants learned the motion coherence task and were included in the 

data analysis (3 performed at ceiling level and were excluded because I did not 
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expect to see any neural changes in the absence of behavioural improvement; 2 were 

not able to learn the task as disclosed by their persistently low performance). The 

study was approved by the local ethics committee. 

3.2.2 Stimuli and task design 

A random dot motion coherence stimulus was used. The level of dot motion 

coherence was set to 20 %, which is close to the perceptual threshold and has been 

successfully used for naïve participants previously (Vaina et al., 1998). Further 

stimulus parameters were chosen according to the results of a behavioural piloting 

study of 15 participants. All participants performed 25 task and 25 control blocks, 

each consisting of 16 trials. A presentation time of 0.3 s was used in 7 subjects and 

0.4 s in the remainder. The longer presentation time resulted in ceiling performance 

for 6 of the 8 participants. Therefore, I chose a 0.3 s presentation time for the 

scanning paradigm. The following stimulus parameters were used: dot speed: 10 °/s, 

dot life time: 6 frames, response time: 1.5 s, number of dots: 200. White dots were 

presented at maximum contrast in a central circular aperture covering a 3.14 ° visual 

angle on a black background. Participants were asked to focus on a white fixation 

square at the centre of the screen throughout the experiment and no feedback was 

given. 

During trials of the motion task, 80 % of the dots were moving in random directions 

across the screen, while 20 % of the dots were moving coherently to the left or right. 

The coherent direction was chosen randomly. Participants used their right hand and a 

keypad to report the direction of motion; i.e. left or right after the stimulus had 

disappeared. During control trials the dots were static and a little arrow, pointing 
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either to the left or right, replaced the central fixation square. In these trials 

participants reported the direction of the arrow. 

In total, each participant completed 800 trials—400 trials of the motion learning task 

and 400 trials of the control task, divided into 25 blocks of 16 trials each. The 25 

blocks were spread over 5 runs, i.e. the scanner was restarted after 5 blocks – 

allowing participants to rest between runs. Each block of the motion task was 

followed by a block of the control task or vice versa. 

3.2.3 Experimental procedure 

To address potential changes in resting state connectivity due to learning and 

consolidation, participants were scanned on two consecutive days and brain signals 

were measured in four resting state runs: one before task performance, one directly 

after task performance, and two at the second day. These were repeated at the same 

times as the rest runs on the first day. Participants underwent standard retinotopic 

mapping and a V5/MT localizer in the scanner between the two rest runs of the 

second day (see Figure 3-1). Before entering the scanner on day one, participants 

were familiarized with the task, but did not pre-train (to ensure perceptual learning 

during scanning). Task instructions emphasized that accuracy was more important 

than speed when responding. Both scanning sessions lasted about 90 min (see Figure 

3-1 for details), and were separated by 24 h for each participant. During resting state 

runs participants were asked to close their eyes, relax, and to not fall asleep. The 

order of motion and control conditions in the learning task was counterbalanced over 

subjects. 
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3.2.4 Behavioural analysis 

Behavioural data were analysed using inverse efficiency (IE)—a simple measure that 

combines reaction time and accuracy; where IE = mean reaction time / accuracy 

(Graham et al., 2006). Single trial reaction times that deviated from the mean of the 

respective block by more than three standard deviations were excluded. IE was 

calculated for each block (n = 25) and raw values were fitted to an exponential 

function of the form y = ae
−bx

 where a represents the amplitude and b the learning 

rate. The ensuing estimates of inverse efficiency were used as a parametric 

modulator of the stimulus regressors in the first level (within-subject) analysis of the 

functional data acquired during the learning task (see below). These regressors 

modelled learning related adaptation of BOLD responses. 

Figure 3-1 Experimental paradigm. Participants were scanned on two consecutive days for 

about 90 min each day. Two resting state runs were acquired each day, preceding and 

following the learning task or a retinotopic mapping respectively. A structural scan was 

acquired on both days. 
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3.2.5 fMRI data acquisition 

A 3 T Trio MRI Scanner (Siemens Medical Systems, Erlangen, Germany) with a 32 

channel head coil was used to acquire functional data with a standard echo planar 

imaging (EPI) sequence (matrix size 64 × 64; field of view 192 × 192 mm; in plane 

resolution 3 × 3 mm; 32 slices in ascending acquisition order; echo time 30 ms; 

acquisition time per slice 68 ms; TR 2.176 s). Each run of the learning task 

comprised 246 volumes, and each resting state acquisition comprised 276 volumes. 

On both scanning days, B0 field maps were acquired to correct for geometric 

distortions in the EPI images. Also a structural T1-weighted scan was acquired on 

both days (matrix size 256 × 240; field of view 256 × 240 mm; in-plane resolution 1 

mm × 1 mm; 176 sagittal slices of thickness 1 mm; echo time 2.48 ms; acquisition 

time per slice 7.92 ms). During scanning, respiration volume and cardiac pulse were 

measured using a breathing belt placed around the participants' waist and an MRI 

compatible pulse oximeter attached to one of the fingers. These data, together with 

scanner slice synchronization pulses, were sampled using Spike2 (Cambridge 

Electronic Design Limited, Cambridge, UK) and used for physiological noise 

correction. 

3.2.6 fMRI data analysis 

Functional data were analysed using SPM8 

(http://www.fil.ion.ucl.ac.uk/spm/software/spm8/) and DCM12 was used for 

dynamic causal modelling of effective connectivity. To allow for T1 equilibration, 

the first five images of each run were discarded. Pre-processing of the data involved 

mean bias correction, realignment of each volume to the first volume of each run, 
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coregistration of the functional data to the structural data of each day, coregistration 

of the structural scan (and functional volumes) of the first day to that of the second 

day, normalization to the MNI template brain and smoothing by an 8 mm Gaussian 

kernel. The task data were filtered with a standard 128-s cut-off and the resting state 

data were filtered with a 256-s cut-off, high-pass filter to remove low-frequency 

drifts – including differences between runs, while preserving as many of the 

spontaneous fMRI fluctuations as possible (see 2.3.4; Birn, 2007). Physiological data 

(respiration and heart beat) were modelled using an in-house developed MATLAB 

toolbox (Hutton et al., 2011) based on RETROICOR (Glover et al., 2000); see 2.3.4. 

This resulted in a total of 17 regressors. The resulting regressors were included as 

confounds in the first level analysis for each participant. Movement parameters were 

also included as confounds. No global signal regression was performed. 

3.2.6.1 Perceptual learning session 

Regressors modelling the stimuli were formed by convolving boxcar functions 

encoding each condition with a canonical hemodynamic response function – where 

stimulus functions modelling learning blocks were parametrically modulated by the 

fitted values of inverse efficiency (IE). These stimulus functions model perceptual 

learning related changes in responses evoked during the learning task. Contrasts of 

first level parameter estimates were used to perform a random effects analysis over 

participants in the usual way. This involved estimating (contrasts of) parameters 

encoding the effects of interest using a standard linear convolution model at the first 

(within-subject) level (over all five task runs) and then passing the resulting contrast 

images to one sample t-tests at the second (between-subject) level. The resulting 

statistical parametric maps (SPMs) were used to test for differences between the 
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learning and the control task, the learning task and the fixation baseline, and the 

effects of learning (i.e. testing for a parametric modulation of the learning task 

effects). The anatomy toolbox (Eickhoff et al., 2005) was used to anatomically 

designate activated areas. 

3.2.6.2 Psychophysiological interaction analysis 

The peak activation – elicited by the effect of perceptual learning – was used as a 

region of interest (ROI) for the analysis of the resting state data. Time series of this 

ROI were extracted for all four resting state runs and included as regressors in a first 

level general linear convolution model, together with the nuisance regressors. Again, 

resulting contrast images were passed to one sample t-tests at the second (between-

subject) level and the resulting SPMs were used to test for changes in the coupling 

with the region defined during the learning task. More precisely, the four rest runs 

constituted two main effects, i.e. the main effect of day (rest 1 and 2 vs. rest 3 and 4) 

and the main effect of time (rest 1 and 3 vs. rest 2 and 4). The interaction of the two 

effects, i.e. day × time, was used to test for changes in the coupling between the 

learning related ROI and any other brain region (regression slope of regional activity 

on the activity of the ROI). Participant-specific peak coordinates of the learning 

related region were used. The peaks (p < 0.05, uncorrected) were within 16 mm of 

the second-level (between subject) peak and within the specific anatomical region, as 

defined by the SPM Anatomy toolbox (Eickhoff et al., 2005). Together with the 

learning related region, the region showing the most significant psychophysiological 

interaction (over subjects) was used for the subsequent DCM analysis of changes in 

their effective connectivity. 
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3.2.6.3 Dynamic causal modelling  

DCM models neuronal dynamics in terms of directed and reciprocal influences 

among brain regions. Stochastic DCM allows one to model spontaneous or 

endogenous (non-controlled) activity. It does not require any input usually associated 

with experimental manipulation. Two participant-specific ROIs defined by the 

learning task and the psychophysiological interaction analysis were used as the nodes 

for 10 different models of changes in extrinsic connectivity. Regional activity in each 

ROI was summarised with its principal eigenvariate, adjusted for nuisance variables, 

based on voxels within 8 mm of subject-specific peaks. All four runs were 

concatenated into a single time series and parametric modulators were used to model 

learning-related changes in effective connectivity, plus potential consolidation of 

these changes. 

More precisely, run-specific differences – in terms of the (bilinear) modulation of the 

average connectivity over all four rest runs – were modelled with three different 

parametric modulators. First, I modelled non-specific adaptation (i.e. the effect of 

“run”) due to time in the scanner by weighting the four different rest runs 

accordingly by [0 1 0 1]. Second, I added the effects of visual learning – following 

the learning phase – using the following weights [0 1 0 0]. Finally, a consolidation 

model comprised adaptation effects, i.e. [0 1 0 1], and learning effects that persisted 

during the second day with the following weights [0 2 1 1]. Crucially, the learning 

and consolidation models have two bilinear coupling parameters per connection that 

control the relative expression of adaptation and learning (or consolidation) 

respectively. I applied the models of coupling changes, – including a null model with 

no changes in coupling – to different permutations of connections: forward 
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connections from one region to another, backward connections from one region to 

another, and bilateral connections, involving both forward and backward 

connections. This resulted in models with the same extrinsic reciprocal connections 

between two nodes, but different modulations of those connections. All models were 

fitted to the concatenated time series of the rest runs using generalized (Bayesian) 

filtering (Li et al., 2011). To evaluate the relative evidence for each of the 10 models, 

I compared the (variational free energy approximation to) log evidence. I used 

Bayesian Model Selection to select the model with the greatest evidence given the 

data. More precisely, I used relative log evidences, i.e. the model with the least 

evidence was subtracted from each model. This fixed effects model comparison was 

used because I assumed that the same model accounted for the data generated by 

every participant. A difference of three between log evidences – which corresponds 

to a relative evidence (Bayes factor) of about 20:1 – was used as the criterion for 

model selection. 

For quantitative interpretation, the changes in effective connectivity under the 

winning DCM were computed by multiplying the appropriate bilinear parameters 

with the run-specific weights as specified above. Thus, for each participant each 

connection between the two regions included in the model was described by four 

values, reporting the connection strength in each resting run, relative to the first. 

Non-specific adaptation between the first and second scanning day was not 

modelled, because I assumed that resting state connectivity would not show 

cumulative changes over successive days when learning had only occurred on the 

first day. Furthermore, I emphasise that the consolidation model did not simply 
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represent a non-specific change in effective connectivity on the second day: it had to 

change in proportion to the learning-dependent changes on the first day. 

3.3 Results 

3.3.1 Participants showed early rapid learning of the motion task 

Participants completed 400 trials of the motion task and 400 trials of the control task. 

Performance was measured using inverse efficiency (IE). The IE values of each 

block were fitted with an exponential function. See 3.2.4 for details. See Figure 3-2 

for an overview of the learning. The fitted IE values entered the analysis of the 

functional neuroimaging data as a parametric modulation of the stimulus regressors 

in the first level (within-subject) analysis of the learning run.  

 

Figure 3-2 Behavioural learning and hippocampal activation. a) Participants learned the 

motion task. Inverse efficiency (IE) is plotted for every block of the task (n = 25). Data are 

averaged over all participants (n = 11) who learned the task successfully. Error bars show 

SEM. b) Learning activated the hippocampus. The fitted inverse efficiency values of the 

learning task were used for the plotted contrast. Statistics were significant at p < 0.05, FWE 

corrected. Images show activation at p < 0.001 (uncorrected).  
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All participants who learned the task performed (as expected) at ceiling on the 

control task throughout the 25 blocks (mean of all participants over all blocks: 99 % 

correct, range between participants: 97 % to 100 % correct). 

3.3.2 Motion task activated visual, frontal and parietal areas 

After pre-processing, I first identified regions showing activity specific to the motion 

task by contrasting the blocks when participants performed the motion task with the 

fixation baseline. I found a bilateral network of visual areas, including V5/MT, as 

well as inferior parietal and orbitofrontal cortex (all p < 0.05, FWE corrected). See 

Table 3-1 for an overview.  

Next, I examined activations associated with the motion task compared to the static 

control task and found these in the inferior parietal cortex and the right insula cortex 

(all p < 0.05, FWE corrected), as well as in the visual cortex extending into V5/MT 

and medial temporal regions, and in the medial frontal cortex (all p < 0.001, 

uncorrected). See Table 3-2 for an overview. 

Table 3-1 Main effect of the motion learning task compared to baseline. Voxel-level 

statistics are reported at p < 0.05, FWE corrected. BA = Brodmann area, L = left hemisphere, 

R = right hemisphere. 

 MNI coordinates    

 x y y t-value P-value 

BA 18 R − 24 − 94 13 15.43 0.001 

BA18 L 15 − 91 − 2 14.48 0.001 

Fusiform gyrus R 36 29 − 2 11.35 0.011 

Inferior parietal cortex L − 30 − 46 49 10.58 0.021 
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Inferior occipital cortex L/MT − 45 − 67 -2 10.17 0.030 

BA 17/cuneus R 12 − 94 13 10.10 0.032 

Inferior orbital frontal cortex L − 42 20 − 2 9.96 0.036 

Medial occipital cortex L − 42 − 76 7 9.85 0.040 

Inferior parietal cortex L − 27 − 43 40 9.78 0.043 

 

Table 3-2 Main effect of the motion learning task compared to the static control task. 

Voxel-level statistics are reported at 
a
p < 0.05, FWE corrected or 

b
p < 0.0001, uncorrected, 

BA = Brodmann area, L = left hemisphere, R = right hemisphere. 

 MNI coordinates    

 x y y t-value P-value 

Inferior parietal cortex R 36 − 37 34 11.81 0.007
a
 

Insula R 33 29 1 10.12 0.031
a
 

BA 18/19 L − 24 − 79 13 9.31 P < 0.0001
b
 

Inferior parietal cortex L − 36 − 37 40 9.31 P < 0.0001
b
 

Medial cingulate cortex R 9 17 47 8.14 P < 0.0001
b
 

Insula L − 36 20 − 5 7.61 P < 0.0001
b
 

Precentral sulcus R 27 − 7 55 6.91 P < 0.0001
b
 

Medial frontal cortex R 45 35 31 6.78 P < 0.0001
b
 

Inferior frontal gyrus L − 57 14 28 5.86 P < 0.0001
b
 

Caudate nucleus R 15 − 4 19 5.13 P < 0.0001
b
 

 



86 

 

3.3.3 Early learning-related modulation of hippocampal activity during 

task performance 

Using the IE-based parametric regressor, which modeled participant-specific learning 

on the motion task, I tested for regions whose responses adapted with performance. 

This analysis identified the left hippocampus (left subiculum, MNI coordinates (x = 

− 15, y = − 37, z = − 5), t = 9.77, p = 0.04, FWE corrected) (see Figure 3-2b). The 

anatomy toolbox assigned the activation to the left subiculum with a 100% 

probability. None of the motion-activated areas given in Table 3-1 and Table 3-2 

showed any learning related changes (p < 0.001, uncorrected). 

3.3.4 Learning-related changes in connectivity during rest 

Having identified the hippocampus as the key region whose activity changed 

significantly with perceptual learning (as indexed by participant-specific changes in 

performance) I next explored how the resting state connectivity of this region 

changed after learning. I first identified candidate regions whose connectivity with 

the hippocampus changed between resting state runs using a psychophysiological 

interaction analysis (Friston et al., 1997). These regions were then used in a dynamic 

causal model to examine changes in effective connectivity with the hippocampus. 

Using the independently acquired resting state data, I extracted the time series of the 

participant-specific hippocampal peak voxels for all four resting state runs and tested 

for changes in the coupling of the hippocampal region of interest with learning using 

PPIs. 

To test for these changes, I treated the resting state runs as a 2 × 2 factorial design. 

Testing for the interaction between the two main effects of “run” (i.e. run one and 
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three vs. run two and four) and “day” (i.e. run one and two vs. run three and four) I 

found that bilateral striatal loci showed changes in coupling with the hippocampus 

between runs that were significantly greater on the first compared to the second day 

(MNI coordinates (x = − 21, y = 8, z = 2), t = 3.59, p = 0.002, uncorrected; MNI 

coordinates (x = 21, y = 14, z = 4), t = 4.94, p < 0.001, uncorrected). No other 

regions showed a run by day interaction (p < 0.001, uncorrected) and I used the 

striatal region for the dynamic causal modelling. 

3.3.5 Dynamic causal modelling 

My subsequent tests for learning-related changes in effective connectivity (i.e. 

plasticity), and potential consolidation of these changes, were based on Bayesian 

model comparison using stochastic DCM (Li et al., 2011). My models differed in 

terms of when and where changes in connectivity were expressed, i.e. specifically 

characterising the forward and backward connections between the left hippocampal 

and striatal regions identified by the conventional SPM and PPI analyses. My 

hypotheses were not about the existence of connections, but whether there were 

changes in specific connections between these areas across the different rest runs. 

Therefore, I considered four types of models: first a null model without any changes 

in connectivity (null). Second, I considered non-specific adaptation (adaptation), i.e. 

changes due to the main effect of “run”. Third, a learning-specific change expressed 

on and only on the first day at run two was added to the adaptation effect (learning). 

Finally, a consolidation model (consolidation), in which learning-specific changes on 

the first day did not disappear but were consolidated – at half their level – by the 

second day was added to the adaptation effect. Practically, each of these four models 
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was specified with modulatory (bilinear) effects mediated by run-specific inputs that 

had different values between runs but were fixed over the duration of each run. These 

four profiles of coupling changes between runs were applied to different 

permutations of connections; namely, either forward or backward or both forward 

and backward between hippocampus and striatum. This produced ten unique models, 

because the three null models for different architectures were identical. This model 

comparison is quite subtle, in the sense that I tested for the presence or absence of 

changes in the context of full connectivity – not the presence or absence of 

connections per se. 

Fulfilling my predictions of higher evidence for the learning or consolidation models, 

I found the highest log evidence for the consolidation model with a bidirectional 

change in connection strength between the hippocampus and striatum (see Figure 

3-3a for an illustration). Remarkably, this was the winning model for 10 out of 11 

participants (being the model with the second largest evidence for 1 participant; see 

Figure 3-3b).  
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Figure 3-3 Winning model and summed (group) log evidence for all models. a) 

Schematic description of the model with a bidirectional connection between the 

hippocampus and the striatal region. The graphic shows which connections were modified by 

a consolidation pattern (see 3.3 for detailed explanation). b) The model plotted in a) showed 

the highest evidence (marked in red). Plotted is the summed log evidence per model relative 

to the model with the least evidence. The winning model was the same for almost all 

participants (10 out of 11). A = adaptation, L = learning, C = consolidation, null = no 

modification. 

Having established the model with the highest evidence, quantitative changes in 

coupling were computed for each participant using a mixture of the run-specific 

changes as specified above (i.e. adaptation and consolidation) weighted by the 

appropriate run specific (bilinear) parameter estimates. These estimates (see Figure 

3-4) provided a quantitative picture of the changes in coupling and its consistency 

over subjects. Reflecting the characteristics of the winning consolidation model 

effective connectivity changes were largest between the first and second rest run. 

They were smaller but consistent for the two rest runs on the second day of scanning, 

i.e. during rest runs three and four. The same pattern was observed for both 

directions, i.e. from hippocampus to striatum and vice versa. 
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Figure 3-4 Parameter estimates and model fitting reflected consolidation. Parameter 

estimates for the modulation of the intrinsic connection from a) hippocampus to striatum and 

from b) striatum to hippocampus. After a big increase directly after the learning in rest run 2, 

the change in connectivity was preserved at a lower level on the second scanning day for 

both rest runs (i.e. rest runs 3 and 4). Plotted are the average values for all participants who 

learned the task (n = 11), error bars indicate the standard error of the mean (SEM). c) 

Overlay of observed (gray) BOLD time-series during rest with the time-series as predicted 

by DCM (blue). The two regions included in all tested models are shown for a representative 

participant. 

3.4 Discussion 

I investigated the neural correlates of the rapid perceptual learning phase in a 

standard visual paradigm and the relationship between learning related changes and 
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spontaneous fluctuations in resting state activity before and after that learning. I 

showed that a random dot coherence task can be learned by naïve participants within 

one training session. The task activated primarily visual and parietal brain areas. 

Significant learning related changes in neural responses were observed in the 

hippocampus. Furthermore, learning of the task had consequences for resting state 

connectivity: the hippocampal region changed its coupling with the striatum in a 

pattern that could be best explained in terms of consolidation. More precisely, a 

psychophysiological interaction analysis identified learning dependent changes in 

coupling with the hippocampus that were greater than equivalent changes on the 

second day without learning. Dynamic causal modelling of the directed interactions 

between the hippocampal and the striatal region showed that both forward and 

backward connections expressed learning dependent effects that persisted on the 

second day. This even allowed non-specific adaptation between paired runs on the 

two days of data acquisition. 

While it is well known that performance on sensory tasks improves with practice, the 

time course of learning related changes is less established. Unlike mine, many 

studies do not investigate the early phase of learning, which is usually overlooked 

due to a familiarization period. This is particularly true for functional MRI studies. 

While some studies use difficult tasks with training over several days, weeks or even 

months (Blakemore and Campbell, 1969; Kahnt et al., 2011), rapid learning effects 

in a number of visual learning tasks have been reported after as few as 200 trials 

(Fiorentini and Berardi, 1981). Learning of a random dot coherence task, as used in 

this study, can occur after just 300 trials (Vaina et al., 1995). Using the same 2-

alternative-forced-choice paradigm, participants improved their performance in a 
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single session from scoring close to chance to almost perfect. In a follow-up fMRI 

study Vaina et al. (1998) showed an increase in the activation in V5/MT and a 

decreased activation of the cerebellum, when comparing neuronal responses during 

the first task session with responses during the final session. However, the authors 

did not use any participant-specific performance measurement, whereas here I 

specifically identified participant-specific learning-related changes over time. 

In line with several previous studies, my motion learning task activated visual areas 

including V5/MT (Newsome and Salzman, 1993; Rees, Friston, et al., 2000). The 

necessary role of the region for motion perception has been established in macaque 

monkeys and in human patients (Baker et al., 1991; Cowey and Marcar, 1992; Vaina 

et al., 2001), as well as in healthy humans using transcranial magnetic stimulation 

(TMS) (Walsh et al., 1999; Tadin et al., 2011). However, I did not find learning 

related changes (at the relatively conservative statistical threshold employed here) in 

any visual brain area. This might be due to the fact that my group of learners 

comprised only 11 participants. Thus, a potentially small effect in visual areas may 

not have been observed due to a lack of power. Importantly, my main interest here 

was not the specificity of the learning related effects, but the potential changes in 

connectivity during rest. For example, such changes are seen in a fronto-parietal 

network after participants learn a difficult shape identification task (Lewis et al., 

2009). 

My finding that early learning dependent effects were seen in the hippocampus 

supports the idea that sensory learning extends beyond a bottom-up process that is 

restricted to earlier sensory areas related to the representation of sensory stimuli. 
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Together with previous findings, my results suggest that different sensory learning 

tasks have different neural correlates in higher level brain areas. In line with several 

recent studies using electrophysiological and neuroimaging methods, my results are 

consistent with a role of non-sensory areas in visual decisions and learning (Law and 

Gold, 2009; Kahnt et al., 2011). Specifically, the role of the hippocampus as the 

classical area for explicit – or declarative – memory and spatial orientation has been 

challenged. For example, the MTL (including the hippocampus) is involved in tasks 

during which participants are not consciously aware of learned contingencies (Rose 

et al., 2011). Also, several hippocampal and parahippocampal regions including the 

subiculum change their activity in response to temporal regularities; demonstrating a 

role for human MTL in statistical learning and providing insight into the formation 

and evolution of memory representations (Schapiro et al., 2012). 

The “classical” distinction between implicit and explicit learning is not 

straightforward for the motion tasks I used. Implicit learning refers to the incidental 

learning of complex information; i.e., without awareness of what has been learned 

(Sun et al., 2008). However, this definition is not uncontroversial (Frensch and 

Runger, 2003). Typically, three different stimuli structures are used to investigate 

implicit learning: patterns, sequences and functions (Forkstam and Petersson, 2005). 

In comparison, explicit learning has been characterised as a process similar to 

conscious problem-solving used for the control of task variables (Mathews et al., 

1989), which gives rise to concrete and conscious knowledge about regularities in the 

environment (Reber, 1989). It is likely that the early learning phase of my task 

involved both types of learning. Indeed, the mechanism of any hippocampus-related 

learning processes does not appear to be sufficiently described by the established 
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dichotomy between explicit/implicit learning. On the one hand, hippocampal activity 

is associated with perceptual forms of associative learning (Fortin et al., 2002; Van 

Opstal et al., 2008); on the other, hippocampal involvement is seen for implicit 

higher-order sequence information (Lieberman et al., 2004), including visual 

sequence learning (Turk-Browne et al., 2010) and transitive inference tasks (Van 

Opstal et al., 2008). Furthermore, theoretical and empirical work has characterised 

the hippocampus as a fast learning system (Schendan et al., 2003; Colgin et al., 

2008). I exposed my participants to only one learning session. The observed learning 

is thus classified as fast, compared to slow and usually small additional 

improvements over days, weeks or months. 

While the traditional view of the role of the hippocampus has linked it to 

explicit/declarative learning (Penfield and Milner, 1958; Winocur, 1985; Neves et 

al., 2008) the striatum has been associated with implicit/non-declarative learning 

(Reiss et al., 2005; Wilkinson and Jahanshahi, 2007). However, as discussed, the 

classical dichotomy may no longer be tenable for the hippocampus, and may be 

obsolete for the striatum as well: first, my finding that the connectivity between the 

hippocampus and the striatum changes in response to learning during rest is in line 

with earlier findings suggesting that both the hippocampus and the striatum show a 

dynamic interaction during various types of learning (see Packard and Knowlton, 

2002; Poldrack and Packard, 2003 for reviews). Moreover, several neuroimaging 

studies have examined the role of the hippocampus and the striatum during sequence 

learning using fMRI (Gheysen et al., 2011; Rose et al., 2011). These results highlight 

the importance of the MTL system and its connections with the striatum for 

perceptual learning, independent of its nature; i.e. implicit or explicit. My finding 
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that connectivity between the hippocampus and the striatum changes is particularly 

interesting with regard to their role in reinforcement learning. Reinforcement 

learning describes learning by trial and error to act in a way that maximises reward 

(Sutton and Barto, 1998). Previously, several studies have investigated the theoretical 

and empirical relation between perceptual learning and reinforcement signals (Seitz 

and Watanabe, 2005; Smith et al., 2009a). They showed that reinforcement learning 

can account for the learning during performance of a visual decision task (Law and 

Gold, 2009) driven by numerous cortical areas including the striatum (Schultz, 

2007). 

All these findings – including my own results – indicate that some learning related 

changes, and in particular early ones, involve non-sensory areas. These might 

involve an enhanced readout of sensory information as a result of behaviourally 

improved performance. In other words, fast learning may arise from changes in the 

interpretation of the respective sensory representation rather than changes in the 

sensory representation itself. More than that, the distinction between explicit and 

implicit learning systems seems to become more and more outdated (Rose et al., 

2011). 

From a methodological perspective, I present a practical example of the use of 

stochastic DCM for the analysis of fMRI resting state data. Li et al. (2011) 

established the validity of this method and its ability to model endogenous 

fluctuations in hidden neuronal states, thereby providing a new perspective on how 

regionally specific signals in fMRI are generated. Commonly used methods to 

investigate changes in connectivity are often based on correlations, thereby 
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addressing changes in so-called functional connectivity. However, functional 

connectivity does not support any conclusions about directionality, whereas DCM 

allows one to model (context dependent changes in) directed and possibly reciprocal 

connections between brain areas. In addition to deterministic, i.e. “classical” DCM, 

the newer stochastic DCM accommodates random fluctuations in hidden neuronal 

and physiological states. This approach may provide a more plausible perspective on 

how regionally specific signals in fMRI are generated. 

3.5 Conclusion 

In conclusion, I provide empirical evidence to show that the coupling of spontaneous 

fluctuations of a brain region engaged in early learning of a sensory task is changed 

during rest and that these changes persist for at least 24 h. Previously, it has been 

shown that task performance and/or learning leads to changes in the coupling 

between brain regions (Seitz et al., 2005; Stevens et al., 2010). Furthermore, 

performance in a novel perceptual task has been associated with the individual 

variability in functional connectivity during rest (Baldassarre et al., 2012). Here, I 

used recent advances in dynamic causal modelling to examine directed changes in 

brain connectivity in learning-related areas immediately and one day after learning. 

My key finding – that the coupling between a hippocampal and a striatal region are 

best explained by a consolidation model – provides further evidence for the idea that 

spontaneous fluctuations are continuously updated and modified by experience 

dependent plasticity. More generally, my findings support the view that the adult 

brain remains plastic throughout the life-span (May, 2011). 
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Chapter 4 The role of prestimulus activity in visual extinction 

4.1 Introduction 

4.1.1 The phenomenon of visual extinction 

Visual extinction is commonly observed after right parietal damage. Patients with 

visual extinction perceive unilateral stimuli presented either in the left or the right 

visual field, but sometimes miss a stimulus in the left visual field during bilateral 

simultaneous presentation. Awareness of these left visual field stimuli is effectively 

“extinguished” by the stimulus in the right visual field. Visual extinction therefore 

offers a rare opportunity to study the neural correlates of perceptual awareness and 

unconscious processing. 

4.1.2 How does visual extinction relate to spatial neglect? 

The nosology of visual extinction is not clear. It could either represent a component, 

or mild form, of the classical visuospatial neglect syndrome (Vallar, 1993; Heilman 

et al., 1994; Rafal, 1994) or a completely different type of visuospatial attention 

deficit (Umarova et al., 2011). Some data suggest a dissociation between the two 

syndromes (Vallar et al., 1994; Hillis et al., 2006; Vossel et al., 2011), whereas 

others emphasise the similarity, especially when the lesions are clustered in the 

inferior parietal lobule (Posner et al., 1984; Vallar et al., 1994; Rees, Wojciulik, et 

al., 2000; Vuilleumier et al., 2010). Umarova et al. (2011) compared the activation 

patterns of acute stroke patients with neglect and visual extinction during 

visuospatial processing and found an increased activation in the left prefrontal cortex 

only for patients with extinction. These results suggest that visual extinction and 



98 

 

neglect are separate syndromes. However, this study used only unilateral stimuli and 

did not identify the areas involved in the extinction of the left stimulus during 

bilateral stimulation. Interestingly, the right inferior parietal cortex has been 

implicated in the simultaneous processing of bilateral targets (in animal studies 

(Lynch and Mclaren, 1989) and healthy participants (Ciçek et al., 2007). 

4.1.3 Mechanisms of visual extinction 

Several previous studies have investigated the neural mechanisms of visual 

extinction, using bilateral and unilateral stimuli. Essentially, two different 

approaches have been employed. The first approach investigates residual cortical 

processing of the extinguished stimulus by comparing responses in bilateral 

extinguished trials with responses in unilateral right trials; i.e., trials with different 

physical properties that lead to the same behavioural response. Contrasting these 

experimental conditions using fMRI shows that the extinguished stimulus in the left 

visual field activates early visual cortex, as well as the extrastriate visual cortex in 

the damaged right hemisphere, e.g. (Vuilleumier and Rafal, 2000; Driver et al., 2001; 

Rees, Kreiman, et al., 2002; Rees, Wojciulik, et al., 2002; Vuilleumier et al., 2002). 

A cross modal study using the same paradigm with tactile information reported 

activation of primary sensory cortex (S1) in response to extinguished stimuli (Sarri et 

al., 2006). These results provide a potential explanation for the unconscious 

processing assessed using indirect measures such as priming, e.g. (Baylis et al., 1984; 

Berti et al., 1987; Ladavas et al., 1993; Vuilleumier and Rafal, 2000; Driver et al., 

2001; Vuilleumier et al., 2002). 
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The second approach examines the neural correlates of awareness by comparing seen 

and unseen stimuli during bilateral presentation; i.e., trials with the same physical 

properties leading to different behavioural responses. Converging evidence from 

several studies supports the idea that the interplay between posterior visual areas and 

fronto-parietal circuits is crucial for a visual stimulus to reach awareness, e.g. (Driver 

et al., 2001; Rees, Kreiman, et al., 2002; Rees, Wojciulik, et al., 2002). Thus, it has 

been suggested that a pathological bias in attention towards the ipsilesional visual 

field leads to the “extinction” of the contralesional stimulus from awareness during 

bilateral stimulation. This is in line with the observation that the colour and form of 

the extinguished stimulus can still be processed to a certain extent. In short, the 

parietal damage might compromise spatial awareness and responding, rather than 

disrupting early visual processing. 

4.1.4 Prestimulus activity affects perception 

As outlined in Chapter 1, it is well known that ongoing or intrinsic neuronal activity 

influences subsequent evoked responses. Furthermore, prestimulus activity has been 

related to systematic variations in behaviour and thus is functionally significant. For 

example, Fox et al. (2007) found that 74% of spontaneous trial-to-trial variability in 

button press force can be accounted for by ongoing fluctuations in the intrinsic 

activity in somatosensory cortex. Similarly, correlations between ongoing 

fluctuations of brain activity and perception are observed across different paradigms 

and different species (Ress et al., 2000; Giesbrecht et al., 2006; Hesselmann, Kell, 

and Kleinschmidt, 2008; Hesselmann, Kell, Eger, et al., 2008). Fluctuations in 

prestimulus activity in visual areas measured with EEG and MEG influences the 
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detection of upcoming stimuli (Mathewson et al., 2009; Wyart and Tallon-Baudry, 

2009). Specifically, alpha activity in somatosensory areas might play a crucial role in 

optimising neuronal processing, thereby influencing behaviour (Haegens et al., 

2011). In addition, fMRI results suggest that the BOLD signal in a cortical area 

preferentially responding to faces is higher preceding experimental trials that are 

perceived as faces compared to vases using an ambiguous figure (Hesselmann, Kell, 

Eger, et al., 2008). In motion coherence tasks, BOLD signals in motion-responsive 

brain areas are higher before trials that are perceived as showing coherent compared 

to random motion (Hesselmann, Kell, and Kleinschmidt, 2008). Finally, a recent 

fMRI study extended the investigation of fluctuations in ongoing brain activity to the 

domain of cognitive control: prestimulus activity in several task relevant regions – 

including higher cognitive areas – scales with the size of the Stroop effect (Coste et 

al., 2011). In sum, there is strong evidence that endogenous variations in prestimulus 

neuronal activity bias subsequent perceptual decisions. 

4.1.5 Can I analyse visual extinction using prestimulus activity? 

Here, I set out to answer the question of how it is possible that patients with visual 

extinction sometimes see and sometimes miss the left stimulus during bilateral 

stimulation. My strategy was to compare prestimulus BOLD signals before bilateral 

visual stimulus presentation depending on whether the trial was subsequently 

categorised as a “bilateral seen” or as a “bilateral unseen” trial; in other words, 

whether the patient failed to detect the stimulus in the left visual field. I focused on 

visually response areas and used a simple detection paradigm with bilateral and 

unilateral face stimuli. First, I identified visually responsive areas in a patient 
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showing visual extinction. Second, I compared prestimulus activity in these regions 

during bilateral stimulation with and without extinction. Finally, I used DCM 

(Friston et al., 2003) to examine whether changes in the coupling or excitability of 

these regions could explain both prestimulus activity and subsequent differences in 

stimulus bound responses. Specifically, I investigated whether extinction might be 

mediated by a difference in intrinsic (within area), or extrinsic (between areas), 

effective connectivity, i.e. the causal influences that neural units exert over one 

another (Friston, 1994), or sensitivity to neuronal afferents. DCM is the method of 

choice for my question because it tests hypotheses or models that are cast in terms of 

directed connections among neuronal populations. As outlined in 2.3.6, this contrasts 

with less informed approaches – such as functional connectivity – that simply 

measure (undirected) correlations between haemodynamic responses at different 

points in the brain. 

4.2 Materials and methods 

4.2.1 Participant 

One male patient (IPJ) aged 66 with left visual extinction (following a right parietal 

stroke, see Figure 4-2) gave informed consent to participate in the study. The 

participant showed left visuospatial neglect on four standard clinical measures – see 

4.2.2.1. Functional imaging was conducted 3 years and 4 months post-stroke. IPJ was 

suited for in-depth study as he had a structurally intact visual cortex in the right 

hemisphere, despite suffering from enduring visual extinction on clinical 

confrontation and formal computerised testing. However, he showed lower left 
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quadrant visual field impairment. Therefore, all experimental stimuli were presented 

in the upper visual quadrants. 

 

Figure 4-1 The extinction paradigm. (a) Facial stimuli were presented unilaterally in either 

the left or right visual fields (upper row) or bilaterally (lower row). Depending on the 

response of the patient, trials were categorised after scanning as bilateral seen (BS) (lower 

row, left) and bilateral unseen (BU) (lower row, right) trials. (b) Stimuli were presented for 

140 ms (or 120 ms respectively during the later blocks due to learning effects of the patient) 

and were segregated by an intertrial interval ranging between 4 and 20 s. 

 

Figure 4-2 Right parietal lesion. T1-weighted structural MRI scan acquired during the first 

of two scanning sessions where the pre-existing right parietal lesion is clearly apparent. 
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4.2.2 Design and procedure 

The experiment was approved by the local ethics committee. 

4.2.2.1 Neuropsychological testing 

Prior to functional imaging, IPJ was tested for clinical signs of visual extinction by 

confrontation. In addition, he was presented with bilateral, unilateral left and 

unilateral right visual stimuli outside of the scanner to titrate the different parameters 

for the scanning sessions. The criteria defined by Vallar et al. (1994) (i.e. >30% 

misses of left events during bilateral stimulation, but <20% misses of single left 

events during unilateral stimulation) were used. In addition, IPJ performed three 

standard clinical neuropsychological measures to test for signs of visuospatial 

neglect: in the cancellation task, IPJ was presented with an A4 sheet of paper 

containing circles and crosses. Half of these contained a small gap, which had to be 

crossed out (15 on each side, i.e. 30 in total). Typically, patients with neglect fail to 

cancel targets located on the left side of the page. 

During the line bisection task, e.g. Wilson et al. (1987), IPJ was presented with three 

18 cm lines printed in the middle of A4 sheets of paper and was asked to put a mark 

where he thought the middle of each line was. Neglect patients tend to underestimate 

the leftmost side of the line, thus making errors by deviating rightwards from the true 

midpoint. In the lateral preference task, which measures spontaneous lateral 

attentional biases, the patient was shown 10 pairs of virtually arranged, identical, 

left-right mirror-reversed chimeric face stimuli – joining together left and right 

halves of the same face posing different neutral or happy expressions. The patient 

was asked to judge whether the upper or bottom face looked happier. Right 
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hemisphere damaged patients with left neglect typically select the face that is smiling 

on the right side of the display, e.g. Sarri et al. (2010), which is opposite of that for 

healthy participants, e.g. Mattingley et al. (1993). 

4.2.2.2  fMRI paradigms 

After the behavioural data had been analysed, IPJ was tested during two scanning 

paradigms using fMRI (on separate days), which I refer to as the “extinction 

paradigm” and the “stimulus localiser”. During both paradigms he was asked to 

fixate centrally and to respond with the right hand on a keypad. 

4.2.2.2.1 Extinction paradigm (event related design) 

Each trial of the extinction paradigm comprised the presentation of faces on the left, 

the right or both sides. Stimuli were presented for 140 ms (run 1–6) or 120 ms (run 

7–9). The duration was shortened during the last three runs to ensure an equal 

number of bilateral seen (BS) and bilateral unseen trials (BU), as IPJ improved in 

terms of visual detection. His task was to indicate where he saw a stimulus or stimuli 

respectively. The conditions were presented in random order and the inter-trial 

interval was randomised to minimise anticipation, ranging between 4 and 20 s. See 

Figure 4-1 for a visual description of the extinction paradigm. Each run comprised 35 

trials, with 23 bilateral stimulus presentations and 12 unilateral presentations (i.e. six, 

for each side). IPJ completed nine runs divided over two scanning sessions (five in 

the first session), resulting in 207 bilateral and 54 trials for each side respectively. 
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4.2.2.2.2 Stimulus localiser (block design) 

Each trial of the stimulus localiser entailed the presentation of faces, objects or 

scrambled images on the left or right side. To elicit detectable responses in visual 

areas, stimuli were presented for 250 ms with an inter-stimulus interval of 500 ms. 

Based on previous experiments on visual extinction, I used longer stimulus 

presentation times (compared to the extinction paradigm) thereby increasing the 

efficiency or sensitivity of detecting visually responsive areas in the lesioned brain. 

IPJ completed two runs each consisting of 12 blocks during which each stimulus 

(faces left or right, objects left or right, scrambled images left or right) appeared 

twice (i.e. 12 trials per block). Each block was followed by a 6 s break (i.e. blank 

screen). To ensure fixation throughout, the task was to press a button whenever the 

fixation cross turned red. Note that, unlike the event related extinction paradigm, this 

paradigm was a more efficient and longer block design that only presented unilateral 

visual stimuli. This enabled us to identify visually responsive areas for subsequent 

analysis in an efficient way. Furthermore, because I was particularly interested in the 

mediation of extinction in early visual cortex (providing ascending sensory 

information to higher category selective regions), I averaged over all stimuli types in 

the localiser to define functionally preserved visual responses at lower levels in the 

visual hierarchy. 

4.2.2.2.3 Stimuli 

All stimuli were presented at the same location in the upper quadrants of the visual 

field, subtending 4.91 × 6.70 of visual angle. Face stimuli were taken from a face 

database provided by the Karolinska Institute, Stockholm, Sweden (Oosterhof and 

Todorov, 2008), and were cropped, resized, and presented in greyscale. Scrambled 
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images were derived from the object and face images via a random exchange of 

picture elements organised in a 20×20 matrix. 

4.2.3 fMRI data acquisition 

A 3T Trio MRI scanner (Siemens Medical Systems, Erlangen, Germany) with a 

standard head coil was used to acquire functional data with a standard echo planar 

imaging (EPI) sequence (matrix size 64×64; field of view 192×192 mm; in plane 

resolution 3×3 mm; 32 slices in descending acquisition order; slice thickness 3 mm; 

echo time 30 ms; TR 2 s). IPJ attended two scanning sessions separated by 1 week. 

During both sessions, fieldmaps were acquired to correct for geometric distortions in 

the EPI images due to inhomogeneities of the magnetic field. Finally, a structural T1-

weighted scan was acquired during each session (field of view 256×240 mm; in-

plane resolution 1×1 mm; 176 sagittal slices of thickness 1 mm; echo time 2.98 ms). 

Each run included five dummy volumes that were discarded during the data analysis 

to allow for T1 equilibration. 

4.2.4 Data analysis 

4.2.4.1 Behavioural data 

Data from the extinction paradigm were analysed with regard to correct trials and 

reaction times. These were compared among different conditions using repeated 

measures ANOVAs. 

4.2.4.2 fMRI data 

Functional data were analysed using SMP12 

(http://www.fil.ion.ucl.ac.uk/spm/software/spm12/). Pre-processing of the data 
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involved realignment of each scan to the first scan of each run, coregistration of the 

functional data to the structural data of each day and, finally, coregistration of the 

structural scan of the second day, to co-register all the functional images. The 

functional data were smoothed with an 8 mm Gaussian kernel after spatial 

normalisation to the MNI template brain. The data were filtered with a standard 128-

s cut-off, high-pass filter to remove low-frequency drifts (including differences 

between runs), while preserving as much variance due to spontaneous fMRI 

fluctuations as possible (Cordes et al., 2001). Statistical tests were family wise error 

rate corrected (FWE) for multiple comparisons at p < 0.05 or uncorrected at p < 

0.001 across the entire brain. 

4.2.4.2.1 Extinction paradigm 

The time-series of each functional run were analysed using a standard general linear 

model (GLM) including eight regressors for the four conditions or trial types of 

interest: right and left unilateral trials and bilateral trials on which the stimulus was 

seen (BS) or unseen (BU): each condition had two regressors, one for the prestimulus 

baseline and one for the stimulus evoked responses. The prestimulus baseline was 

modelled as a 6 s long period starting 7 s before stimulus onset (allowing a 1 s gap 

between baseline and stimulus presentation). The choice of 7 s was based upon 

informal model comparisons, using models of sustained prestimulus activity starting 

3 s and 5 s before stimulus onset (not reported) and heuristics based upon the 

timescale of fluctuations in resting state fMRI studies. These fluctuations have a 

characteristic length of about 10 s, which places an upper bound on the duration of 

sustained endogenous activity. 
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The evoked responses were modelled as standard event-related stick functions. Note 

that the prestimulus baseline and event related response regressors for each trial type 

were necessaryly correlated, because one precedes the other. However, because the 

haemodynamic response function peaks between 4 and 6 s, the activity modelled by 

the two regressors could be estimated with reasonable efficiency. I did not 

orthogonalise these regressors, which means that any significant prestimulus baseline 

effects discovered cannot be explained by event related differences. 

Stimulus functions were convolved with a canonical haemodynamic response 

function to provide regressors for a standard general linear model (GLM). Movement 

parameters in the three directions of motion and three degrees of rotation were 

included as confounding regressors of no interest. Contrasts of parameters of the 

effect of interests were estimated over all nine task runs. The associated statistical 

parametric maps (SPMs) were used to test for differences in the neural activity 

during the prestimulus period of BS and BU trials. 

4.2.4.2.2 Stimulus localiser 

The time-series of both functional runs were analysed with a standard GLM 

comprising six regressors modelling the effects of faces, objects and scrambled 

images for left and right side, using even-related regressors. Again, movement 

parameters were included as confounding regressors of no interest. Contrasts of 

parameters were estimated over both task runs. The resulting SPMs were used to test 

for differences in the neural responses between right and left visual field stimulation 

to identify regions showing visual responses to lateralised stimuli. 
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4.2.4.2.3 Peristimulus time histograms (PSTH) 

To quantify the time course of the BOLD activity in the regions of interest (ROI) 

showing differences between seen and unseen trials (i.e. BS vs. BU), I estimated 

event related responses in these ROIs using a finite impulse response (FIR) 

convolution model. The parameters of the corresponding GLM report BOLD activity 

in successive time bins of 2 s of peristimulus time (in my case). I evaluated event 

related responses over all nine runs from 7 s before to 9 s after stimulus presentation. 

4.2.4.2.4 Dynamic causal modelling (DCM) 

The standard SPM analyses described above localised (visually responsive) brain 

areas that showed higher activity before BS compared to BU trials. My hypothesis 

was that perception depends upon prestimulus baseline activity and that this activity 

depends upon fluctuations in extrinsic or intrinsic connectivity. In the final analyses, 

I used DCM to determine whether differences in connectivity between seen and 

unseen trials were intrinsic to the visual regions showing prestimulus baseline effects 

and/or in the extrinsic connections between these regions. 

My comparisons of effective connectivity were based on Bayesian model 

comparison using deterministic DCM (Penny et al., 2004). To test for differences in 

effective connectivity I concatenated the data of all nine runs and used three 

regressors: one for the prestimulus baseline of all bilateral trials (using 7 s boxcar 

functions: the duration of the prestimulus period was extended to 7 s, to ensure that 

prestimulus conditions were maintained until the stimulus arrived), one for the 

stimulus onset of all bilateral trials (using a standard event related stimulus function) 
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and one to indicate whether the stimulus was seen or not (i.e. using the same boxcar 

function as for the first regressor but only for BS trials). 

I created 16 models corresponding to a 4 × 4 factorial design with two factors. All 

models included reciprocal extrinsic connections between the two visual areas of 

interest (the areas are referred to as “right” and “left” subsequently), which were 

driven by the prestimulus and stimulus onset effects described in Sections 4.2.2.2.1 

and 4.2.2.2.2. The first factor was extinction-dependent differences in intrinsic 

connections of the two regions (with the four levels: both, left, right, or neither), 

while the second factor was differences in extrinsic connections between those two 

regions (with the four levels: both, left-to-right, right-to-left, or neither). Crucially, 

both the prestimulus and stimulus related driving effects were identical for seen and 

unseen trials. The only difference between seen and unseen trials was mediated by a 

prestimulus effect that modulated connections within (intrinsic) or between 

(extrinsic) the two regions. In other words, the extinction of the left stimulus could 

only be explained by a difference in (intrinsic or extrinsic) connectivity or sensitivity 

to presynaptic inputs that was established before the arrival of the stimulus. 

All 16 models were fitted to the concatenated time series of the extinction runs using 

standard variational Bayesian model inversion. The relative evidence for each model 

was approximated with variational free energy to provide the posterior probability of 

each model (assuming uniform priors over subsets of families of models that were 

compared) (Friston et al., 2003; Stephan et al., 2009). I used a two-step heuristic 

search for the best model: First, I assessed the contribution of changes in intrinsic 

connectivity by assessing the posterior probability for the four different families of 
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intrinsic connection strength changes (effectively averaging over my uncertainty 

about putative changes in extrinsic connections). I then compared the four different 

extrinsic models within the winning intrinsic family. 

Finally, I examined the modulation of connections, i.e. changes in connection 

strength, using the parameter estimates for the intrinsic and extrinsic connections of 

the winning model. Note that in this DCM, the modulatory or bilinear effects are 

modelled by additive changes to the connection strengths. This means that the 

modulatory values alongside the connections in Figure 4-7 should be added to the 

coupling parameters associated with each connection. The ensuing modulation of 

connections by a prestimulus effect presupposes an endogenous fluctuation in the 

local synaptic processes that determine effective connectivity. In other words, the 

prestimulus effect is an effect on coupling strength (quantified by DCM) that causes 

changes in neuronal activity (quantified by SPM). 

4.3 Results 

4.3.1 Patient showed signs of visual extinction 

Four typical clinical neuropsychological measures of neglect were used to test for 

signs of visual extinction. In the cancellation task IPJ missed three targets on the left 

side and none on the right side. In the line bisection task, IPJ's mean deviation error 

toward the right when indicating the middle of the line was 3.3 cm. In the lateral 

preference task the patient chose faces with the smile on the right side in nine out of 

10 cases. During confrontation IPJ missed the stimulus presented in his left visual 
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field in nine out of 10 bilateral trials. He did not miss any of the unilateral left trials. 

Thus, he fulfilled the criteria defined by Vallar et al. (1994). 

4.3.2 Stimulus localiser activated visual areas 

Comparing BOLD signals for stimulus presentation in the left visual field (i.e. 

independent of stimulus type) to those for presentation in the right visual field, I 

found activations in three regions in the right hemisphere (see Table 4-1), including 

primary visual areas and precuneus. The opposite contrast, testing for regions that 

were more active during presentation of a stimulus in the right visual field, revealed 

activation of left primary visual cortex. However, the activation was much more 

confined. See Figure 4-3 and Table 4-1 for detailed results. 

 

Figure 4-3 Stimulus localiser activated visual areas in both hemispheres. (a) Activations 

due to stimulation of the left visual field were confined to the right hemisphere. Images are 

displayed at p < 0.001, uncorrected for illustration purpose. (b) Activations due to 

stimulation of the right visual field were confined to the left hemisphere and showed much 

less distributed pattern. Images are displayed at p < 0.01, uncorrected for illustration 

purpose. 
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Table 4-1 Stimulus localiser activated visual areas. Activations during the stimulus 

localiser left > right are restricted to the right hemisphere, and vice versa. Directions refer to 

visual fields. 
a
Voxel-level statistics, p < 0.05, FWE. 

b
Voxel-level statistics, p < 0.001, 

uncorrected and a clustersize of at least 10 voxels. L = left hemisphere, R = right 

hemisphere, left = left visual field, right = right visual field. 

 MNI coordinates    

Left > right x y y t-value P-value 

R BA 17 (including 

calcarine sulcus) 

 

12 -82 0 6.17  < 0.0001
a
 

R BA 19 / occipital 

medial  

34 -84 14 5.03 = 0.011
a 

      

R Precuneus  10 -74 60 3.94 < 0.0001
b 

      

R Inferior orbital 

frontal  

   

54 44 -12 3.29 = 0.001
b 

 

R Superior occipital  

 

28 -82 46 3.27  = 0.001
b 

 

 

Right > left 

     

L BA 17 (including 

calcarine sulcus) 

-8 -80 -2 4.16  < 0.0001
b
 

     
 

 

4.3.3 Extinction paradigm produced unseen trials 

Averaged over the nine runs of the extinction paradigm, IPJ missed 45% of bilateral 

trials (corresponding to 94 out of 207 trials) – these are the BU trials. There was no 

significant difference between BS and BU trials over the nine runs (F1,8 = .97, p = 

.35). He reported seeing 94 % (50 out of 54 trials) of unilateral left trials, and 98 % 

(53 out of 54 trials) of unilateral right trials. The difference in seen unilateral trials 

was not significant over the nine runs (F1,8 = 4.00, p = 0.08). Average response times 

for the BS trials were longest, with unilateral trials being faster than bilateral trials; 

however, reaction times did not differ significantly between the different trials (F3,24 

= 1.70, p = .20). See Figure 4-4 for the details of the responses and reaction times. 
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Figure 4-4 Behavioural results of the extinction paradigm. Top: Percentages of BS and 

BU trials for all nine runs. Bottom: Reaction times for the four trial types (see text) averaged 

over all nine runs. 

4.3.4 Prestimulus activity in visually responsive areas affects perception 

I identified regions showing higher activity before BS compared to BU trials by 

comparing the BOLD signal between these two conditions in a 6 s prestimulus 

baseline window starting 7 s before stimulus presentation. Crucially, I found an 

overlap with visual areas that were activated by the stimulus localiser in both 

hemispheres: BA 19/ occipital inferior right cortex (MNI x = 36, y = −78, z = −16, t 

= 3.32, p < 0.001 uncorrected) and BA 17/ calcarine sulcus left (MNI x = −4, y = 

−86, z = −8, t = 3.28, p < 0.001 uncorrected). The overlap between the visual 

responses to bilateral stimuli and the localiser stimuli was substantial: 82 % (65 out 

of 79 voxels) of the BS–BU activation in the right hemisphere overlapped with the 

activation due to the stimulus localiser in the right hemisphere, 47 % (69 out of 147 
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voxels) of the BS–BU activation in the left hemisphere overlapped with the 

activation due to the stimulus localiser in the left hemisphere. See Figure 4-5. 

 

Figure 4-5 Visually responsive areas are more active before bilateral seen trials. 

Overlay between lateralised visually evoked responses during the stimulus localiser (yellow) 

and the prestimulus baseline effects revealed by the extinction paradigm (red), showing the 

areas that are more active before BS compared to BU trials. (a) Left hemisphere. (b) Right 

hemisphere. All overlays are displayed at p < 0.005, uncorrected for illustration purpose. 

In addition, an exploratory analysis (using an uncorrected threshold of p < 0.001) 

revealed several regions showing an effect in the same direction, including activity 

differences in the brain stem and parietal cortex. See Table 4-2 for an overview. The 

opposite contrast, i.e. higher activity before BU vs. BS trials, revealed no region that 

would survive FWE correction. The closest was a right inferior frontal area (MNI x = 

54, y = 16, z = 4, t = 3.43, p < 0.001, uncorrected). 
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Table 4-2 Activity differences during the extinction paradigm for the baseline period 

testing for areas that show higher activity before BS compared to BU trials. Voxel-level 

statistics at p < 0.001 uncorrected. 

 MNI coordinates   

 x y y t-

value 

P-

value 

Brainstem right 

 

16 -30 -20 3.54 < 0.0001 

SMA right  4 -22 58 3.39 < 0.0001 

      

Paracentral lobule 

right  

12 -40 52 3.33 < 0.0001 

      

Parahippocampal 

region right 

   

14 -6 -22 3.21 = 0.001 

SMA left 

 

-4 8 54 3.18 = 0.001 

Brainstem left -10 -28 -22 3.16 = 0.001 

      

Rectus left 

   

-10 46 -20 3.11 = 0.001 

Frontal medial left 

 

-44 56 18 3.11 = 0.001 

 

4.3.5 Time-course of responses to seen and unseen trials 

To quantify the prestimulus fluctuations in BOLD responses, I used an FIR model 

for responses in the two visual areas that showed increased activity before BS 

compared to BU trials. Both ROIs show a distinct increase in their haemodynamic 

response before stimulus presentation, which starts to diverge between seen and 

unseen trials as early as 5 s before stimulus onset. See Figure 4-6 for details. 
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Figure 4-6 Peristimulus time courses show difference before stimulus onset. The time 

courses of the two visually responsive areas showed a differential activity during baseline 

before stimulus presentation depending on whether the subsequent bilateral stimulus is seen. 

Plotted are the difference with SD (blue) and the time course for BS (green) and BU (red) 

individually. (a) ROI in right occipital inferior cortex. (b) ROI in left calcarine sulcus. 



118 

 

4.3.6 Perception depends on the coupling between visual areas 

Having identified two visually responsive areas that showed increased activity 

preceding BS trials, compared to BU trials, I next asked whether the connectivity 

within and between those two regions differed before stimulus exposure. The models 

tested differed in terms of where differences in connectivity were expressed 

depending on whether a bilateral trial was seen or not. Sixteen models as described in 

4.2.4.2.4 were fitted and compared in terms of the posterior probabilities. The first 

comparison between intrinsic families showed that I could be 99 % confident that 

there was an effect on intrinsic connections and 73 % confident that both visual areas 

were involved (although there was a 26 % probability that only the left area was 

affected). Following this comparison, I compared the four models within the winning 

intrinsic family (were both intrinsic connections changed). This comparison showed 

that I could be 99 % sure that there was a change in extrinsic connections and 68 % 

confident that both efferent and afferent connections to the lesioned hemisphere were 

involved (although there was a 30 % chance that just the right to left extrinsic 

projection changed). 

Having selected the most plausible model, I looked at the differences in effective 

connection strength between seen and unseen trials. For BS trials, effective 

connectivity within and between the two areas increased. See Figure 4-7 for details. 

Crucially, all intrinsic and extrinsic effective connection strengths were elevated 

prior to seen trials. For the intrinsic connections, this entailed a decrease in self-

inhibition, between 60 % (on the left) and 20 % (on the right). The remarkable thing 

about the changes in extrinsic connectivity is that they (both) change from being 
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mildly inhibitory to being excitatory. Quantitatively, these changes were more 

marked in the right-to-left extrinsic connection. In short, changes in both intrinsic 

(decreased self-inhibition) and extrinsic (from mildly inhibitory to excitatory) appear 

to precede stimuli that are subsequently seen. 

 

Figure 4-7 Differences in effective connectivity before bilateral seen trials. The winning 

model including its inputs (blue), intrinsic and extrinsic connectivity (green) and 

modulations (red) is shown. The numbers describe the parameter weights. Effective 

connectivity was increased for all four intrinsic and extrinsic connections prior to bilateral 

seen trials. Visual left = calcarine sulcus, visual right = inferior occipital cortex. 

4.4 Discussion 

The aim of this case study was to address two questions: Does prestimulus activity in 

visually responsive areas in a patient with visual extinction predict subsequent 

perception (as seen in healthy subjects in other tasks), and do fluctuations in 
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connectivity between these regions determine neuronal and perceptual responses? I 

used a simple detection paradigm with unilateral and bilateral phase presentation. I 

concluded that fluctuations in connectivity between regions that exhibited higher 

activity prior to bilateral seen compared to bilateral unseen trials provide a sufficient 

account of both baseline fluctuations and perceptual reports. This finding is 

consistent with studies of normal subjects. However, care should be taken in 

generalising this conclusion to the normal brain. This reflects the Catch-22 

associated with lesion-deficit studies: I can only study the correlates of extinction in 

the lesioned brain, which means that I cannot exclude the possibility that the 

physiological (fluctuating connectivity) basis of neuronal and perceptual responses is 

itself pathological. Having said this, one could argue that the consilience between my 

results and studies of baseline fluctuations in normal subjects (Fox and Raichle, 

2007; Hesselmann, Kell, and Kleinschmidt, 2008; Hesselmann, Kell, Eger, et al., 

2008) suggests one might find the same changes in connectivity, were it possible to 

study perceptual extinction in the healthy brain. 

4.4.1 Prestimulus activity in visual areas affects stimulus perception 

Our results are in line with previous work on visual extinction and the visual areas 

identified by these. In fact, the two areas that show a higher prestimulus activity prior 

to bilateral seen trials are very close to the visual areas reported by Rees et al. (2002), 

when investigating the unconscious residual cortical processing of the extinguished 

stimulus in the contralesional visual field. I extend the results of previous studies 

showing that visual areas can be activated without leading to awareness, e.g. Sarri et 
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al. (2010) by providing evidence for the idea that activity prior to stimulus 

presentation is indicative for subsequent perception. 

Furthermore, the activations in response to unilateral trials in the present study were 

very similar to the regions reported by Rees et al. (2002) for the same contrast: in 

both cases, responses in the lesioned right hemisphere were greater and more 

widespread than in the left (see Figure 4-3). 

4.4.2 Prestimulus activity in other brain areas might play a role 

In addition to the two visual areas, I identified several brain regions that showed 

signalling differences that were associated with subsequent conscious perception 

during bilateral stimulation; however, these failed to survive correction for a whole 

brain search, i.e. they did not survive FWE correction (possibly reflecting the 

relatively low efficiency of my single case study). Among these areas are frontal and 

parietal regions, which have been identified in previous studies of visual extinction 

(see below). In fact, during stimulus processing the interplay between posterior 

visual areas such as the ones found here and a fronto-parietal network seems to be 

crucial for perceptual awareness, e.g. Vuilleumier and Rafal (2000); Driver and 

Vuilleumier (2001); Rees, Kreiman, et al. (2002); Rees, Wojciulik, et al. (2002). In 

addition, I detected higher prestimulus activity prior to seen bilateral trials bilaterally 

in the brainstem. This evolutionary old part of the brain is known to control 

autonomic functions of the peripheral nervous system and modulate arousal and 

alertness, two criteria that may be important in determining awareness. Indeed, 

alertness levels are known to modulate the severity of spatial neglect (Robertson et 

al., 1998; Malhotra et al., 2006; George et al., 2008) and low alertness has even been 
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linked with neglect-like rightward biases in healthy participants (Manly et al., 2005) 

including in extinction tasks (Matthias et al., 2009). 

4.4.3 Mechanisms behind visual extinction 

I used Bayesian model comparison to investigate potential changes in the coupling 

between the two visually responsive areas identified prior to the stimulus. I found the 

highest probability for models that allowed an increase in both intrinsic and both 

extrinsic connectivity for sensitivity preceding bilateral stimuli that are subsequently 

seen. In case of the intrinsic connections these changes represented a decrease in 

self-inhibition. Remarkably, the extrinsic connections changed from being mildly 

inhibitory to being excitatory. It should be noted, that real extrinsic connections 

between the two areas are both excitatory (using the neurotransmitter glutamate). 

However, in DCM, effective connections can be polysynaptic and an extrinsic 

connection can be effectively inhibitory (presumably by targeting inhibitory 

interneurons). Quantitatively, the changes in effective connectivity were more 

marked in the right-to-left extrinsic connection, i.e. from the lesioned to the healthy 

hemisphere. Crucially, these changes in connectivity for sensitivity were sufficient to 

explain both the differences in baseline activity prior to stimulus onset and the 

perception dependent differences in stimulus bound responses. 

These results suggest that fluctuations in cortical gain or excitability (both to intrinsic 

and extrinsic presynaptic inputs) may underlie the decreased neuronal response and a 

failure to perceive stimuli that are subject to extinction. This is interesting in that 

exactly the same mechanisms – at the synaptic level – are thought to underlie 

attentional modulation, which may be dysfunctional in extinction. Furthermore, they 
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speak to the precision-dependent explanation for detecting signals based upon 

predictive coding; in the sense that precision is thought to be encoded by 

postsynaptic gain (Feldman and Friston, 2010) and that optimising postsynaptic gain 

corresponds to attention. This is important because the many mechanisms 

modulating postsynaptic gain include the classical modulatory neurotransmitter 

systems, originating in the brainstem (see above). A heuristic (and overly simplistic) 

explanation for these results could be as follows: spontaneous fluctuations in 

ascending aminergic and cholinergic neurotransmitter systems result in spontaneous 

fluctuations in the effective gain of neuronal populations in visual cortex, both to 

intrinsic and extrinsic afferents. If the resulting increases precede a stimulus, then the 

neuronal responses evoked by stimulus are amplified and gain access to higher 

hierarchical levels, enabling deeper processing and perceptual inference – and 

subsequent perception. 

4.4.4 Limitations of the study 

In this work, my primary focus was on early visual mechanisms that might underlie 

fluctuations in the perception of stimuli. From this perspective, the current case study 

represents a lesion-deficit model that enables the comparison of seen and unseen 

stimuli and their physiological correlates. Generalising my conclusions – about the 

underlying role of intrinsic and extrinsic connectivity – to the normal brain clearly 

rests on the assumption that both the perceptual and physiological processing of seen 

and unseen stimuli are quantitatively the same in my patient and the normal 

population. 
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One might also argue that my findings would be more plausibly generalised if I had 

been able to reproduce the results using further patients with extinction. This is 

certainly the case and extinction has a reasonably high prevalence. However, despite 

testing several patients with extinction, only the patient reported here was considered 

suitable for fMRI. Although this is a single case study, one can be reassured by the 

fact that fMRI produces an enormous amount of data and the degrees of freedom I 

have used for my analyses were much greater than any conventional group study. 

Having said this, this case study should probably be regarded as proof of principle, 

until reproduced in other people. 

4.4.5 Methodological aspects 

From a methodological perspective, I present a practical example of the use of DCM 

in a patient with a parietal lesion. Frequently used methods to investigate changes in 

connectivity are often based on correlations and address changes in so-called 

functional connectivity, which describes statistical dependencies between spatially 

segregated neuronal events. However, this approach does not support any 

conclusions about directionality or the distinction between intrinsic and extrinsic 

influences. In contrast, effective connectivity is based on a mechanistic model of 

how the observed data were caused and allows the modelling of directed and 

reciprocal connections within and between brain areas. 

Although DCM is an established procedure; for those people less familiar with the 

analysis of fMRI time-series, DCM can be contrasted with alternative procedures: in 

general terms, distributed interactions, as measured by fMRI, can be characterised in 

terms of either functional or effective connectivity (see 2.3.5 and 2.3.6). Functional 
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connectivity refers to the statistical dependence or correlations between observed 

responses (Biswal et al., 1995; Cordes et al., 2001), while effective connectivity 

refers to the underlying and directed connections strengths that cause correlations 

(Friston, 1994). Analyses of effective connectivity generally use DCM, although 

other techniques have been tried (such as structural equation modelling (SEM), 

multivariate/vector autoregressive models (MAR/VAR) and Granger causality, see 

2.3.6.1). DCM is unique in that it incorporates an explicit model of neuronal 

interactions and allows for region specific neurovascular coupling. If these regional 

differences are ignored, they can lead to false inferences about effective connectivity 

(David et al., 2008). DCM is therefore the only approach that allows one to test 

hypotheses about connectivity at the neuronal level. More precisely, it uses a 

neurobiologically plausible model of neural population dynamics and a biophysically 

plausible forward model which describes the transformation from neural activity to 

the measured hemodynamic signal (Goebel et al., 2003; Stephan and Friston, 2011). 

Consequently, it is possible to fit the parameters of the neural and the forward model 

in a way that predicted time series are optimally similar to the observed ones. 

4.5 Conclusion 

In conclusion, I studied a patient with visual extinction after a right parietal lesion 

that spared visual cortex. I was able to extend previous work showing that activations 

in visual, parietal and frontal areas can be observed without awareness, e.g. Sarri et 

al. (2010). In doing so, I have tried to infer the mechanisms that determine whether 

extinction will occur during bilateral stimulation. I found that the prestimulus activity 

in two visual areas in both hemispheres showed increased activity prior to bilateral 
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seen stimuli compared to those that were unseen. In addition, I used DCM to 

examine directed changes in coupling within and between these two areas and found 

that all four intrinsic and extrinsic connections were increased for several seconds 

prior to stimulus onset. In line with previous studies of prestimulus activity and its 

role in perception, my results support the idea that prestimulus activity in distinct 

brain areas is an important determinant of subsequent perception and behaviour. 

 



127 

 

Chapter 5 Effects of ongoing cortical state on ambiguous 

perception 

5.1 Introduction 

The perception of visual images is not a one-to-one mapping of visual inputs to 

particular perceptual representations. Even with exactly the same visual input, one 

can perceive different structures at different times. For instance, the well-known 

Rubin face/vase stimulus demonstrates how perceived shape and meaning can vary 

across time without a change in the incoming sensory information (Rubin, 1915). 

Other well-known examples of this perceptual mutli-stability are the Necker cube 

(Necker, 1832) and the rabbit-duck illusion (McManus et al., 2010) These 

phenomena suggest that the visual system does not operate purely reflexively. 

Instead, whether I perceive a particular interpretation of a stimulus partly depends on 

the current state of the brain at the time sensory information is received. Spontaneous 

fluctuations in brain activity and their functional role have been investigated using a 

wide range of neurophysiological methods (Arieli et al., 1996; Kenet et al., 2003; 

Holcman and Tsodyks, 2006; Fox and Raichle, 2007, see 1.2). For instance, work 

using electrophysiological recordings and neuroimaging has suggested that the often 

unexplained variance in spontaneous activity contributes significantly to evoked 

responses elicited by external sensory stimuli (e. g. Fox et al., 2007; Deco and Romo, 

2008; Sadaghiani et al., 2009; Mennes et al., 2010). 

One paradigm that has been used by visual neuroscientists to understand the role of 

ongoing neuronal fluctuations is the so-called random dot motion coherence task. 
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The stimuli in this task typically involve a set of dots moving within an aperture, see 

Figure 5-1 and Chapter 3. 

 

Figure 5-1 Random dot motion stimulus. Dots are moving in a circular aperture, indicated 

by the arrows. Most of the dots are moving in a random direction, while a certain low 

percentage is moving in the same – coherent – direction.  

Some proportion of the dots move coherently in the same direction whereas others 

move randomly in other directions. When a relatively large percentage (in this study 

over 30 %) of the dots moves coherently in one direction, participants invariably see 

the stimulus as having a coherent motion in a particular direction. With an 

intermediate level of dot motion coherence, however, participants can be equally 

likely to see either coherent motion or non-coherent motion even with exactly the 

same coherence level on different trials. Hesselmann et al. (2008) used fMRI to show 

that prestimulus baseline activity in the motion-sensitive occipito-temporal cortex 

(hMT+) predicts whether participants perceive a random dot stimulus presented at 

perceptual threshold as coherent or random. Higher prestimulus baseline activity in 

hMT+ just before the stimulus biased participants to see an ambiguous stimulus as 

containing coherent motion. However, fMRI has a low temporal resolution and thus 

does not reflect higher frequency fluctuations in activity that may be related to this 

effect. In comparison, EEG and MEG have a high temporal resolution and have been 
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used in similar paradigms to investigate the role of prestimulus activity of different 

frequency bands on perceptual outcomes (e.g. Hanslmayr et al., 2007; Hipp et al., 

2011). In particular, Donner et al. (2007, 2009) found that motor-responses selective 

MEG activity in the beta and gamma frequency ranges predicted participants’ 

reported perceptual outcome in in a comparable design several seconds before the 

actual behavioural choice was made by participants. More precisely, they observed a 

gradual built up of this choice predictive activity during stimulus viewing. However, 

in contrast to other studies using similar perceptual paradigms (e.g. Linkenkaer-

Hansen et al., 2004), they did not find any performance-predictive activity in the 

prestimulus interval comparing errors with correct behavioural choices (Donner et 

al., 2007). This might be due to the fact that their experimental setup was designed 

such that the participants’ baseline state was maximally controlled, thereby 

minimising the contribution of ongoing fluctuations in brain activity and processing 

capacity. First, trials were presented rapidly after each other. Second, stimuli were 

presented for a long duration (2 to 3 s), also reducing the impact of occasional 

differences in ongoing activity before stimulus onset on perceptual judgments. Third, 

participants were not instructed to attend to a specific location prior to stimulus onset 

inducing preparatory activity in the dorsal pathway (Corbetta et al., 2002; Sapir et al., 

2005). In contrast, I was specifically interested in the possible influence of slow 

baseline fluctuations. Therefore, I chose different settings, using a long interstimulus 

interval, a very short presentation time and instructed participants to fixate centrally 

throughout the experiment.          

Crucially, the observed effects mentioned above using functional MRI, EEG and 

MEG are purely correlational. To test for causality, one could use transcranial 
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magnetic stimulation (TMS) that uses specific frequencies to stimulate particular 

brain regions. Prior to such an experiment, it needs to be determined which 

frequencies are important for the perceptual outcome. 

Here, I set out to test whether specific prestimulus signatures of intrinsic oscillatory 

activity predicted perceptual outcome in a random dot motion (RDM) coherence 

task. Following Hesselmann et al. (2008) I used a temporally sparse paradigm in 

which I presented RDM stimuli every 5 to 7 seconds while recording scalp EEG. By 

sparsely arranging stimuli with a random gap between them, I attempted to decouple 

each stimulus from any systematic effects of the immediately preceding stimulus and 

any systematic temporal expectations. Furthermore, by allowing long periods 

between stimuli this allowed for non-stimulus, spontaneous fluctuations in activity to 

occur (and be measurable).  

To capture changes in spontaneous, ongoing electrical brain activity, I subjected the 

prestimulus EEG data on each trial to spectral decomposition to estimate the power 

in various frequency bands. By averaging prestimulus power (in each frequency) 

separately for trials subsequently perceived as coherent and those perceived as 

containing random motion and then comparing these, I could determine whether the 

oscillatory activity in different frequency bands was different just before the two 

different perceptual outcomes. With the high temporal resolution of EEG, I was able 

to estimate the precise timing of the relevant fluctuations as well as characterise the 

type of activity (e.g. frequency band, phase lag) which is not possible with functional 

MRI.  
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I used post-stimulus physiological activity to validate participants’ subjective reports 

of stimulus coherence. Participants had to respond to three types of stimuli with 

different coherence levels, namely with high coherence that was easily detectable, 

with no coherence, and with threshold coherence based on the individually 

determined coherence level that elicited a coherent percept in 50 % of the cases. I 

first compared the event-related potentials (ERPs) elicited by physically different 

stimuli types, i.e. trials with a high coherence versus trials with no coherence, trying 

to replicate the findings of Niedeggen and Wist (1999). I predicted that the same 

differences should be observed comparing the ERPs elicited by physically identical 

trials with a coherence level at individual threshold that elicit distinctive responses, 

i.e. comparing random versus coherent periliminal trials.  

In short, my post-stimulus measures corroborated my participants’ subjective reports 

of how they perceived the ambiguous stimulus on each trial. My analysis of pre-

stimulus oscillations on each trial will assess whether spontaneous fluctuations in 

ongoing brain activity are correlated with the reported perceptual outcome of 

ambiguous stimulus processing. I will assess this across multiple frequency bands of 

the EEG up to a second preceding the stimulus onset. 

5.2 Materials and methods 

5.2.1 Participants and apparatus 

Fifteen healthy right-handed participants (six female, average age of 27.8 years, 

range 21 – 36 years) took part in the EEG experiment. They gave written informed 

consent prior to the experiment and received a remuneration of £ 10 per hour. The 
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experiment was approved by the UCL Research Ethics Committee (Project ID: 

1161/001). Participants were seated in a dark, shielded room with their heads on a 

chinrest. Stimuli were presented on a 1280 x 1024 CRT monitor at a viewing distance 

of 65 cm.  

5.2.1.1  Stimuli 

Stimuli were dynamic dot displays of 500 white squares (size 0.2°) randomly 

distributed on a dark grey circle (23°). Participants were instructed to fixate on a 

central white square (size 1°) throughout the experiment. For 355 ms, stimuli moved 

up- or downward at 14° / s, and with different coherence levels. Noise dots moved in 

a “random walk”. Signal dots had a limited lifetime of six frames. Participants were 

asked to report as quickly and accurately as possible after stimulus presentation. Via 

a button press they indicated whether they had perceived coherent or random motion. 

Responses were given with the left and right hand for either percept; the assignment 

was counter-balanced across participants. 

5.2.1.2   Training and thresholding 

During a piloting study I observed significant inter-individual differences in initial 

task performance. Therefore, I developed a training practice tailored to initial 

performance of every participant which was performed by each participant before the 

EEG data was collected. Every participant completed short blocks of 40 trials (ISI 2 

s), half of which were coherent. The coherence level of coherent trials started at 40 % 

for the first block(s) until the participant achieved at least 80 % correct. 

Subsequently, the coherence level was reduced by 5 % or 10 %. This change was 

determined by the experimenter’s assessment of their performance with better 
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performance leading to the 10 % decrease. As with the first block, this one was run 

until 80 % performance was reached. This procedure was continued until the 

participant reached 80 % correct for a block with a coherence level of 20 %. After 

each trial, written feedback was given on the screen. The number of necessary 

training blocks varied between three and ten blocks between participants.        

After the training, I used the method of constant stimuli (30 trials of 7 different 

coherence levels i.e. 2, 6, 10, 14, 18, 22, and 26 %, presentation order randomised, 

no feedback, ISI 2 s) to determine individual motion coherence thresholds for each 

participant individually (50 % level of a cumulative normal distribution fit; average 

motion coherence threshold across participants 13.7 %, range 6 – 19 %).  

5.2.1.3  Behavioural task during EEG 

During the EEG recording, three motion coherence levels were used, subliminal (0 % 

coherence, 20 trials), periliminal (individually estimated threshold, average 

coherence of 13.7 %, 60 trials), and supraliminal (30 % coherence, 20 trials). 

Between stimuli, the fixation square remained on the screen. The ISI was 5 – 7 s 

given by a uniform distribution, to avoid expectancy effects and allow for the signal 

to stabilise after the motor response and possible eye blinks. All but one participant 

performed four blocks of the task (one did three only due to time constraints). Trials 

were presented in a pseudo-random order such that each coherence condition 

preceded equally often each of the three coherence levels, ruling out unbalanced 

carry-over effects from previous stimuli within each participant’s trial order (Brooks, 

2012). This constraint resulted in blocks of 98 or 99 trials; however, the exact 
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amount of analysed trials inevitably varied between participants due to differences in 

response patterns and the rejection of artefacts during EEG data pre-processing.  

5.2.1.4  EEG data acquisition 

We used a BioSemi ActiveTwo system with 64 active electrodes cap (BioSemi, 

Amsterdam, The Netherlands) in conjunction with LabView BioSemi software to 

acquire the data at a sampling rate of 1024 Hz. There were no filters applied at 

recording other than the digitisation rate. The Common Mode Sense active electrode 

and the Driven Right Leg passive electrode formed the ground during recording and 

these were positioned to the left and right of POz, respectively. In addition, I 

recorded from the nose tip, mastoids, as well as the horizontal and vertical eye 

electrodes.  

5.2.1.5  fMRI data acquisition and analysis 

A structural MRI scan and a functional localiser for hMT were acquired from all 

participants using a 3T Siemens Trio MRI scanner (Siemens Medical Systems, 

Erlangen, Germany) with a standard 32 channel head coil. For the localiser a 

standard echoplanar imaging (EPI) sequence (matrix size 64 x 64; FOW 192 x 192 

mm; in plane resolution 3 x 3 mm; 32 slices in ascending acquisition order; echo 

time 30ms; acquisition timer per slice 69 ms; TR 2.176 s) was used. A structural T1-

weighted scan was acquired on the same day (matrix size 256 × 240; field of view 

256 × 240 mm; in-plane resolution 1 mm × 1 mm; 176 sagittal slices of thickness 1 

mm; echo time 2.48 ms; acquisition time per slice 7.92 ms). 

During the functional localiser, participants looked at both static and moving dots 

(towards or away from the central fixation point) at a low contrast. Individual hMT 
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were identified for each participant using a contrast comparing moving dots with 

static dots. Average coordinates, in MNI space, for let hMT were (-42, -75, 5) and 

for right hMT were (46, -68, 2). See Table 5-1 for individual coordinates. All 

functional images were normalised to MNI space for further processing.   

Table 5-1 Individual MT coordinates. Average and individual MNI coordinates of left and 

right MT for each participant. S9 did not obtain an MRI session and average coordinates 

were used. 

Left MT X Y Z Right MT X Y Z 

Average -42  -75  5  Average 46  -68  2  

S1 -48  -72  -2  S50 42  -68  -4  

S2 -36  -70  4  S52 45  -64  7  

S3 -42  -68  16  S53 50  -66  8  

S4 -44  -80  8  S54 52  -66  2  

S5 -42  -73  7  S55 51  -67  4  

S6 -42  -74  8  S56 50  -64  4  

S7 -40  -70  12  S57 46  -66  4  

S8 -42  -76  4  S58 52  -72  0  

S10 -38  -82  -4  S60 40  -74  0  

S11 -38  -82  4  S61 46  -74  -2  

S12 -48  -66  6  S62 44  -64  -4  

S13 -44  -74  0  S63 46  -68  4  

S14 -36  -82  -2  S64 38  -70  -2  

 

5.2.2 EEG data analysis 

Data were pre-processed in SPM8 (http://www.fil.ion.ucl.ac.uk/spm/software/spm8/, 

Wellcome Trust Centre for Neuroimaging, London, UK) and statistical analysis was 

conducted in Fieldtrip (Oostenveld et al., 2011).  
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5.2.2.1  Pre-processing 

EEG sensor locations were determined using either the default SPM values (seven 

participants) or using individual electrode and fiducial locations obtained in 

Brainsight Neuronavigation (Rogue Research, Montréal) when available (eight 

participants) and then co-registered with the anatomical MRI scan. Data were down-

sampled to 512 Hz and re-referenced to the average of all electrodes. “Bad” channels 

were defined as those with persistent artefacts across approximately more than 20 % 

of trials as identified manually by the authors. To avoid any “bad” channels 

contaminating the average reference, bad channels were identified before re-

referencing. This resulted in excluding eleven channels across four subjects. Eye-

blinks were identified by SPM’s automated blink detection algorithm based on 

activity in the VEOG electrode (placed below right eye). Epochs were created around 

these blinks (-200 ms to 200 ms) and these were passed to a singular value 

decomposition (SVD) to identify principal components associated with blink 

artefacts. Based on the spatial topography of the component, the first one or two 

components were associated with blink artefacts. Sensor data was corrected for the 

detected artefacts by removing the blink-associated component(s) according to the 

Berg method (Berg and Scherg, 1994). The corrected time series was then epoched 

from -1500 ms to 500 ms around stimulus onset and baseline corrected. Removal of 

any remaining artefacts (e.g. muscle, etc.) was performed manually using the 

FieldTrip Visual Artefact Rejection tool by removing channels and trials with 

variance appeared to be outliers.   
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5.2.2.2  ERP analysis 

Event-related potentials (ERPs) in the post-stimulus data were calculated for two 

different comparisons by standard averaging within each of the four conditions for 

each subject: (1) supraliminal coherent versus subliminal random and (2) periliminal 

coherent versus periliminal random trials. After averaging, each ERP was low-pass 

filtered at 30 Hz and baseline corrected to the interval from -200 ms to 0 ms, i.e. 

stimulus onset. Because of a priori observations from previous studies about motion-

associated ERP components (Niedeggen and Wist, 1999; Kuba et al., 2007), 

comparisons between conditions were restricted to an a priori spatio-temporal 

region-of-interest (ROI) comprising posterior electrodes ('P1', 'P2', 'P3', 'P4', 'P5', 

'P6', 'P7', 'P8', 'P9', 'Pz', 'PO3', 'PO4', 'PO7', 'PO8', 'POz', 'O1', 'O2', 'Oz') and post-

stimulus times 100 ms to 500 ms.  Inferential statistics for each comparison were 

conducted across the entire ROI using a dependent-samples cluster-based t-test 

procedure (Maris and Oostenveld, 2007). The cluster-based tests used a cluster-

forming threshold of p = 0.05; 20,000 Monte Carlo permutations; and a weighted 

cluster mean statistic (weight = 1, emphasising peak intensity) (Hayasaka and 

Nichols, 2004). This procedure provides weak control of family-wise error rate 

(FWER) across the ROI with no assumptions about the auto-correlations in the data 

(Groppe et al., 2011).  

5.2.2.3  Prestimulus analysis 

Prestimulus spectral power was computed, for each trial, in two broad bands with 

parameters specific to each band. Low frequency (2 – 30 Hz) power was estimated 

from -1.0 s to -0.1 s using a 500 ms Hanning window in 12 ms steps and a frequency 

resolution of 2 Hz. High frequencies (25 – 100 Hz) were analysed using the SPM 
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multitaper method with a 5 Hz frequency resolution, a window length of 400 ms, 

time steps of 12 ms and a time bandwidth of 7. Raw resulting power values were 

used. The resulting trial-by-trial time-frequency maps were averaged across trials 

within each condition and participant.  

5.3 Results 

5.3.1 Behavioural results 

On average, participants perceived periliminal trials as coherent in 51 % of trials 

(range 35 – 70 %, STD 12.33). Subliminal trials were correctly perceived as random 

in 91 % of trials (range 69 – 100 %, STD 8.98), resulting in an average false alarm 

rate of 9 %. Supraliminal trials were correctly perceived as coherent in 88 % of trials 

(range 62 – 100 %, STD 10.63). The differences were assessed in a one-way 

ANOVA (F2,39 = 60.04, p < .001). Subsequent post-hoc testing (using Tukey’s test) 

revealed that periliminal trials were significantly different from subliminal (p < 

0.001) and supraliminal trials (p < 0.001); subliminal and supraliminal trials did not 

differ significantly (p = 0.76). The response pattern is shown in Figure 5-2 and 

indicates that participants perceived values at their individual threshold as coherent 

approximately half of the time.  
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Figure 5-2 Response pattern across participants. Percentages of correct responses are 

given for subliminal, periliminal and supraliminal trails indicated by the bold vertical bar 

(darker blue). Whiskers indicate the first and third quartiles of the distribution. Although the 

response bias in some participants led to variability in the range of periliminal trials 

perceived as coherent or random, all participants showed a high sensitivity in their detection. 

Using supraliminal and subliminal trials, D’ was calculated for each participant and 

ranged between 1.88 and 4.07 (average 2.78), reflecting good performance for trials 

were the signal was clearly present (supraliminal) or absent (subliminal) (MacMillan 

and Creelman, 2005). The response bias beta ranged from .23 to 6.8 (average 2.2), 

reflecting the variability in response patterns between participants; beta is a measure 

of the willingness of responding ‘coherent’ for a certain trial and therefore indicates 

how much evidence is needed before participants report ‘coherent’ for any given 

trial. For all participants, arbitrary responses or guessing could be excluded based on 

adequate performance in both subliminal and supraliminal conditions.  

5.3.1.1 Performance and response patterns 

Performance over the time course of the experiment was constant. For each of the 

blocks, the performance over time did not change (F11,3 = .242, p = .867) and there 
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was no interaction between condition and block number (F11,6 = .579, p = .747). The 

response pattern over blocks is shown in Figure 5-3. A decrease in performance due 

to fatigue or an increase due to learning of the task can thus be ruled out. 

 

Figure 5-3 Response pattern over blocks. Response pattern are averaged over participants. 

The percentage of correct responses remained the same over the course of the experiment for 

all trial types, indicating that no effects of fatigue or learning were observed. 

To test for possible carry-over effects of previous percepts across all trials and 

participants, I looked at the pattern of response repetitions (i.e. the probability of 

consecutive “coherent” or “random” responses). My results are in line with those 

reported by Hesselmann et al. (2008): the repetition pattern approximated a 

geometric distribution (goodness-of-fit R2 = 0.97 for coherent percepts, R2 = 0.98 for 

random percepts, see Figure 5-4). This indicates that behavioural reports were 

stochastic in nature and that no carry-over effect from previous trials was observed. 
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Figure 5-4 Response repetitions for random and coherent percepts. Response repetitions 

approximated a geometric distribution. “Coherent” and “random” responses showed a high 

goodness-of-fit, indicating no carry-over effect of percepts from previous trials.    

5.3.1.2 Reaction times 

Median response was 651 ms for supraliminal trials, 655 ms for subliminal trials and 

664 ms for periliminal trials (F2,39 = 0.74, p = .48), indicating that participants did not 

need longer to respond to a particular condition. Next, I compared correct and 

erroneous responses separately using a 2-way ANOVA. Neither stimulus type (F2,74 

= 2.63, p = 0.17), response outcome (F2,74 = 1.38, p = 0.24), nor their interaction 

(F2.74 = 2.63, p = 0.08) had an effect on median RT.  

5.3.2 Event-related potentials 

Based on known motion-associated ERP components, comparisons between (1) 

supraliminal coherent versus subliminal random and (2) periliminal coherent versus 

periliminal random trials were restricted to posterior electrodes. Grand average 

waveforms and significant spatio-temporal clusters were calculated for each 

condition and are shown in Figure 5-5 and Figure 5-6 (see 5.2.2.2). Comparing the 

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12

p
ro

b
a
b
ili

ty
 (

%
) 

response repetition (#) 

Geometric distribution

Coherent percepts

Random percepts



142 

 

ERP waveforms for supraliminal coherent and subliminal random trials (see Figure 

5-5), I found a significant cluster (t = 164.89, p = 0.04) between 217 ms and 357 ms 

after stimulus presentation. During this period, supraliminal trials elicited a more 

negative response. Looking at the individual electrodes, the effect was restricted to 

the left hemisphere (averaged over electrodes PO3, PO7 and P3 and non-significant 

trend in surrounding electrodes). No equivalent significant differences were found in 

right hemisphere electrodes. 

  

The same analysis was performed for periliminal trials comparing those perceived as 

random versus those perceived as coherent. Here, I observed a more negative 

response (t = 437.97, p = 0.01) for trials that were perceived as coherent compared to 

Figure 5-5 Grand averages comparing correct subliminal and supraliminal trials. Top: 

Lines represent the voltage of the significant cluster (see main text) for subliminal trials that 

were perceived as random (orange) and supraliminal trials perceived as coherent (green). 

Bottom: Peristimulus time is plotted against the occipital electrodes included in the analysis; 

comparisons were restricted to post-stimulus times 100 ms to 500 ms (see 5.2.2.2). Red 

signals a significant value for the sample by sample paired t-test between conditions 

(uncorrected).  
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those perceived as random (Figure 5-6) between 207 ms and 500 ms. Note, that these 

trials were physically identical.  

 

Figure 5-6 Grand averages comparing periliminal trials. Top: Lines represent the voltage 

of the significant cluster (see main text) for periliminal trials that were perceived as random 

(orange) and periliminal trials perceived as coherent (green). Bottom: Peristimulus time is 

plotted against the occipital electrodes included in the analysis; comparisons were restricted 

to post-stimulus times 100 ms to 500 ms (see 5.2.2.2). Red signals a significant value for the 

sample by sample paired t-test between conditions (uncorrected). 

5.3.3 Time frequency analysis of prestimulus activity 

Next, I analysed the prestimulus difference between coherent and random periliminal 

trials using time frequency analyses looking separately at low (2 – 30 Hz) and high 

frequencies (25 – 100 Hz). Restricting my analysis to the posterior electrodes, I 

found one positive cluster for the low frequencies spreading over almost all 

electrodes except P8 and P9 (although to very different degrees) (t = 383.92, pcluster = 

0.04) lasting from -824 ms to -262 ms. The cluster included frequencies between 7 – 

15 Hz and was more pronounced in the lateral electrodes. Thus, the cluster indicates 
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a higher prestimulus alpha activity prior to stimulus onset for periliminal trials that 

are subsequently perceived as coherent compared to random ones. See Figure 5-7 for 

an overview of the low frequency results.  

For a similar analysis performed on high frequencies, I found three positive clusters 

that reached significance. The first one (t = 87.78, pcluster = 0.02) was more lateral and 

most pronounced in the right hemisphere including frequencies between 25 – 55 Hz 

and lasted from -412 ms to -157 ms. The second one (t = 80.83, pcluster = 0.02) 

spanned a similar frequency range from 25 – 45 Hz, but was present earlier before 

stimulus presentation, i.e. from -987 ms to -731 ms. Also, it was more medial and 

occipital. The third cluster (t = 73.30, pcluster = 0.02) also included medial electrodes 

and lasted almost up to stimulus onset, i.e. -205 ms to -109 ms, from comprising 

quite a broad range of frequencies from 35 – 95 Hz. See Figure 5-8 and Figure 5-9 

for an overview of the high frequency results.  

One cluster comparing prestimulus activity between supraliminal coherent and 

subliminal random trials was found, i.e. a negative cluster in the low frequency 

domain (t = -541.48, pcluster = 0.01) spanning frequencies between 13 – 18 Hz and 

lasting from -859 ms to -109 ms. No significant results were found in the high 

frequency domain (lowest p = 0.44). This is in line with the assumption that 

perception in these conditions should be mostly based on post-stimulus instead of on 

prestimulus factors. 
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Figure 5-7 Low frequency prestimulus analysis. Higher activity in the alpha range was 

found for coherent compared to random periliminal trials. One positive cluster was observed 

including frequencies from 7 – 15 Hz. Single diagrams show separate channels (indicated by 

the number in the upper left corner) arranged in a similar way to scalp topography. X-axis: 

prestimulus time (sec), y-axis: frequency (Hz).  

 

 

    

Figure 5-8 High frequency prestimulus analysis. Higher activity in the beta band was 

found for coherent compared to random periliminal trials. Two positive clusters were 

observed including frequencies from 25 – 55 Hz. Single diagrams show separate channels 

(indicated by the number in the upper left corner) arranged in a similar way to scalp 

topography. X-axis: prestimulus time (sec), y-axis: frequency (Hz). 



146 

 

 

Figure 5-9 High frequency prestimulus analysis. Higher activity in the gamma band was 

found for coherent compared to random periliminal trials. One positive cluster was observed 

including frequencies from 35 – 95 Hz. Single diagrams show separate channels (indicated 

by the number in the upper left corner) arranged in a similar way to scalp topography. X-

axis: prestimulus time (sec), y-axis: frequency (Hz). 

5.4 Discussion 

The aim of this study was to address the question of whether specific signatures of 

intrinsic oscillatory activity prior to stimulus presentation predicted perceptual 

outcome in an ambiguous random dot motion coherence task. In order to do so I used 

three different types of random dot stimuli, i.e. one with high coherence easily 

detectable by all participants (supraliminal), one with no coherence (subliminal) and 

one at threshold coherence based on individual detection thresholds (periliminal). I 

verified my experimental approach by showing that the ERPs elicited by physically 

different stimuli show the well-documented N2 effect, a motion-induced negativity 

peaking around 200 ms after stimulus onset found in posterior (occipital) electrode 

sites (Niedeggen and Wist, 1999; Kuba et al., 2007; Martin et al., 2010). I observed 

the same pattern comparing periliminal trials that were perceived as coherent to those 

perceived as random and this corroborated the subjective reports of my participants. 

My time-frequency analysis of the prestimulus data revealed that both low and high 

frequencies play a role for the subsequent perceptual outcome of periliminal trials. I 

found four positive clusters, one in the alpha band, two in the beta band and one in 
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the gamma band, showing temporally specific higher power in different frequency 

bands in the prestimulus interval of periliminal trials that were perceived as coherent 

versus those perceived as random.   

5.4.1 ERP results 

To validate my experimental approach I first compared the resulting ERPs elicited by 

trials that were coherent versus those that are random, i.e. physically different 

(supraliminal versus subliminal) and physically identical trials (periliminal random 

versus periliminal random). I observed a negativity post-stimulus for coherent trials 

confirming the importance of the so-called N2 effect, which is considered to be the 

main motion-specific ERP (Kuba et al., 2007). However, my N2 effect was observed 

slightly later than the one reported in the literature. This difference might be 

explained by the different nature of my stimuli compared to those used by Niedeggen 

and Wist (1999) and others. Ours involved a full stimulus onset, rather than a change 

from a static to a moving dots display. This difference caused several other early 

ERP components associated with luminance onsets and therefore might delay 

motion-related components. Regardless, my ERP results support the interpretation 

that periliminal coherent and random stimuli received different post-stimulus 

processing despite having exactly the same visual input.  

5.4.2 Alpha band oscillations  

My time frequency analysis of prestimulus intervals of periliminal trials revealed one 

positive cluster in the typical alpha range between 8 and 12 Hz indicating a higher 

alpha power prior to trials perceived as coherent compared to random ones. The 

cluster was quite lateralised over the posterior electrodes, was observed early before 
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stimulus presentation (starting at -824 ms) and did disappear before stimulus onset 

(at -262 ms). Spontaneous cortical activity is known to express alpha oscillations that 

are manifested as a visible peak in power spectra of EEG (Berger, 1929; for review, 

see Klimesch et al., 2007). Moreover, alpha oscillations have been observed during 

spontaneous conditions and prestimulus intervals. However, the role of alpha power 

during these intervals remains a controversial topic. The power in this frequency 

band has been shown to be positively (Linkenkaer-Hansen et al., 2004; Zhang and 

Ding, 2010) or negatively (Thut et al., 2006; Hanslmayr et al., 2007; Romei et al., 

2008) correlated with psychophysical performance
12

. Crucially, the studies reporting 

a positive correlation between alpha power and stimulus detection used weak stimuli 

similar to my periliminal trials during which participants indicated the detection of a 

coherent motion in 50 % of the cases. Thus, my findings are in line with the idea that 

ongoing alpha oscillations in sensory cortices prior to stimulus presentation can 

augment the processing of weak sensory stimuli.  

5.4.3 Beta band oscillations 

In addition to higher power in the alpha band preceding periliminal trials that were 

perceived as coherent, I also found two clusters in the beta range, typically defined as 

the range between 12 and 30 Hz. Both clusters were in the higher end of beta, but 

showed a distinct pattern in terms of distribution and timing. The earlier cluster 

(from -987 ms to -731 ms) prior to stimulus onset) was more medial and very 

occipital, whereas the later cluster (from -412 ms to -157 ms) prior to stimulus onset 

was more lateral and more pronounced in the right hemisphere. My findings are in 

                                                 
12

 A potential explanation for directional differences has been provided by local field potential (LFP) 
recordings showing that the laminar origin of the oscillatory source might be a distinguishing factor 
(Bollimunta et al., 2008; Mo et al., 2011).  
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line with the idea that beta band coherence is important for perceptual decisions in 

different modalities, e.g. visual (Piantoni et al., 2010), tactile (van Ede et al., 2010) , 

and sensorimotor (Engel and Fries, 2010). More precisely, my findings provide 

further evidence for the theory that beta band oscillations are an index of visual 

perception, showing the most prominent effect between different motion percepts 

over occipital-parietal areas (Piantoni et al., 2010). In fact, it has been proposed that 

long-range communication in neural networks of synchronised beta oscillations 

mediate neural communication and predict perception (Donner et al., 2007; 

Senkowski et al., 2007; Hipp et al., 2011), i.e. facilitating perception and reporting of 

a stimulus (Donner and Siegel, 2011). In contrast to the findings of Donner et al. 

(2007), I find that prestimulus beta band power is predictive of the behaviourally 

reported outcome. Importantly, I aimed to promote the potential influence of 

spontaneous fluctuations, whereas Donner at al. tried to maximally control 

participants’ baseline activity. In particular the two studies differed in their 

interstimulus interval, stimulus presentation time and fixation instructions.  

In conclusion, the observed increased beta band activity found here might indicate 

enhanced top-down attention to coherently perceived trials, thereby leading to an 

improved detection of coherent motion.   

5.4.4 Gamma band oscillations 

I also found one significant cluster in the gamma range (from -205 ms to -109 ms), 

commonly defined as the frequency range from 25 to 100 Hz. This cluster 

encompassed a large range of frequencies and lasted until stimulus presentation. 

Previously, high-frequency activity in the human visual motion pathway has been 
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suggested to play a role for the encoding of visual motion intensity. Using MEG, 

Siegel et al. (2007) have shown that activity in the gamma range increases with 

visual motion strength and that this activity originates from visual areas involved in 

motion processing. Moreover, enhanced gamma band activity in contralateral motor 

cortex has been shown to predict participant choices in a visual motion detection task 

several seconds before stimulus presentation (Donner et al., 2009). I underline the 

importance of prestimulus gamma band activity for perceptual choices in general – 

and coherent motion detection in particular – by showing that prestimulus gamma in 

visual brain areas is also predictive of subsequent motion detection.  

5.4.5 Conclusion and future direction 

Here, I provide evidence that alpha, beta and gamma oscillations indicate a specific 

state of “readiness” associated with the detection of coherent motion of a participant, 

and that the increased power of these oscillations prior to stimulus presentation 

exhibit a specific temporal and spatial pattern predicting motion detection on a single 

trial basis.   

However, using EEG or any other neuroimaging method, no causal inferences about 

the measured signal can be made. It is possible that the oscillatory patterns are mere 

epiphenomena of the underlying cognitive mechanisms or driven by an unobserved 

aspect of brain activity that is driving both my results here and the fluctuations in 

perception. In humans, transcranial magnetic stimulation (TMS) is the only 

technique that is used to perturb specific brain regions of healthy individuals. 

Repetitive TMS (rTMS) can be applied to entrain neural populations with a 

distinctive frequency (Thut et al., 2011) allowing to test the functional role of 
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oscillatory synchrony. Thus, rTMS could be used to assess the functional role of the 

observed oscillations. Targeting visual areas, rTMS should be used at the different 

observed frequencies – possibly individually defined – to stimulate the cortex prior 

to stimulus presentation. The same stimuli as described here could be used. Thus, if 

for example beta band coherence functionally biases perception towards coherently 

seen stimuli, I would expect to see a higher rate of coherently perceived periliminal 

trials after rTMS pulses at a frequency between 12 and 30 Hz. This condition could 

be compared to a control frequency, stimulation at a control site, as well as sham 

rTMS. Using this strategy, it could be established whether oscillatory activity in 

specific frequency bands plays a causal role for coherent motion perception.          
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Chapter 6 The relationship between mind-wandering, creativity 

and neuronal coupling 

6.1 Introduction 

The mind tends to wander off, often jumping between thoughts related to past or 

future experiences. According to some estimates, this introspection occupies up to 

half  of our awake time (McMillan et al., 2013). This tendency to leave the 

constraints of the perceptual moment and entertain internally generated, spontaneous 

thoughts is called mind-wandering – sometimes referred to as task-unrelated thought 

(Levinson et al., 2012) or daydreaming (McMillan et al., 2013). It occurs during all 

kinds of mental activities (Killingsworth and Gilbert, 2010), preferably during those 

where vigilance might be low; e.g. driving or reading (Smallwood, McSpadden, and 

Schooler, 2008; Galéra et al., 2012). Mind-wandering usually leads to compromised 

performance of an external task (Smallwood et al., 2003; Smallwood, Fishman, et al., 

2007). Even though it is not directed toward an external task, it has been considered 

as a goal-driven process – that might serve multiple adaptive functions, such as 

future planning and the resolution of prescient issues (Smallwood and Schooler, 

2006).  

Mind-wandering is both a stable and a transient aspect of an individual: Previous 

studies have linked the tendency to mind-wander to character traits and states, such 

as the disengagement in a sustained attention task (Smallwood et al., 2004). The 

propensity to mind-wander seems to be a stable cognitive characteristic that predicts 

performance and difficulties in daily life and in the laboratory (McVay et al., 2009), 
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happiness (Killingsworth and Gilbert, 2010) and the scores for the Big Five 

personality traits (Zhiyan and Singer, 1997), such as ‘openness’.  

One particular trait of interest, with regard to mind-wandering, is creativity. Several 

lines of research have linked mind-wandering to enhanced creativity, especially for 

problems that have been encountered previously. For an overview, see Baird et al. 

(2012). Baird et al. (2012) were the first to study mind-wandering during a so-called 

incubation task. An incubation task involves a period during which the individual 

refrains from task-related thought in the process of problem solving and either 

engages in an alternative task, or simply rests. Even though there are plenty of 

anecdotes about Eureka moments occurring during unrelated trains of thought, the 

scientific investigation of this – potentially crucial – source of inspiration is difficult. 

Using an incubation task and a validated creativity task, the Unusual Use Task 

(UUT), Baird et al. (2012) showed that creative problem solving for previously seen 

items increased, if participants performed an undemanding external task during the 

incubation period. These increases were observed in comparison to individuals who 

did not perform any task and those who performed a more demanding task. The 

group performing the undemanding task also showed higher scores of mind-

wandering. Thus, engaging in a simple external task – that allows the mind to wander 

– facilitates creative problem solving.  

The most challenging issue, when studying mind-wandering, is how to measure its 

prevalence. In addition to the usual confounds related to participants’ reports (e.g. 

questionnaires), mind-wandering often occurs without awareness (Schooler et al., 

2011) and is interrupted by verbal sampling. In reading studies, eye movements, 
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fixations and blinks are a good indicator of attentional lapses that are characteristic of 

a wandering mind (Smallwood, McSpadden, and Schooler, 2008; Smilek et al., 

2010). However, they might be confused with a lack in understanding that requires 

the re-reading of a certain part of the text. In other behavioural and neuroimaging 

studies, two methods have been used to quantify the extent an individual is, or has 

been, engaged in mind-wandering: either a post-task enquiry about the extent of 

mind-wandering or experience sampling is used. The latter method is applied at 

different times throughout the task and can either measure fluctuations of mind-

wandering over a longer period or separate samples can be combined to provide a 

more robust estimate. Because mind-wandering can occur with and without 

awareness, experience sampling can include a second question about the awareness 

of thought content; i.e. asking whether the individual was aware of whether the mind 

was wandering. 

The neural substrates of mind-wandering are only beginning to be unravelled. Mind-

wandering is associated with activity in the DMN and an individual’s report of her 

tendency to mind-wander is correlated with activity in the same regions (Mason et al. 

2007). Thus, thought sampling outside of the scanner and tasks that had been 

practiced to different levels can be used to investigate the relationship between brain 

activity, mind-wandering and task novelty. Christoff et al. (2009) extended these 

findings, proving the first study that employs experience sampling to measure mind-

wandering during fMRI. Indeed, it seems as if mind-wandering is a unique state, 

during which regions of the DMN and task-active or executive network regions are 

recruited. Furthermore, the activity in the two complementary networks seems to be 

strongest when individuals are not aware of their wandering minds. The construct of 
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mind-wandering as a unique mental state – that may allow otherwise divergent brain 

networks to cooperate – has been further supported more recently: the generation and 

maintenance of an internal thought can activate DMN regions, as well as a frontal-

parietal control network helping to sustain and buffer internal trains of thoughts 

against disruption from outside (Smallwood et al., 2012). In conclusion, the 

distinction between DMN and task, attentional or executive networks is not an 

“either or” one, where one is silent when the other one shows increased activity. It 

rather seems to be the case that the different networks are capable of integrating 

seemingly disparate reports of their role in goal-directed behaviour and mind-

wandering (Esterman et al., 2012).  

In this study, I was interested in establishing the missing neurobiological link 

between creativity and mind-wandering. My hypothesis was that there is phenotypic 

variation over individuals that predisposes them to being more or less creative – and 

that this variation is reflected in the coupling between intrinsic brain networks 

associated with introspection; i.e. the DMN, and task related networks respectively. I 

therefore measured this coupling in terms of effective connectivity among distributed 

cortical regions using fMRI. I hypothesised that subject to subject variations in the 

coupling between the two networks would be correlated either with (i) a creative 

trait, (ii) state dependent measures of creative problem solving as assessed before and 

after scanning or (iii) both. To distinguish between the phenotypic trait of creativity 

and the states of creative thinking, I measured creativity based upon the participants’ 

personal history and performance on the standard UUT task during scanning. If there 

is a creative phenotype, I hoped to see significant correlations between subject 

specific creativity scores and coupling between their brain networks. Conversely, if 
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creativity is a state dependent product of distributed processing, I hoped to see 

correlations between measures specific to the resting state (such as performance on a 

creativity task and mind-wandering during the resting state) and connectivity. 

Finally, I hypothesised that the creative trait will be expressed in terms of state 

dependent measures either at the behavioural or the physiological level. In other 

words, subjects who are more creative will show greater mind-wandering and 

creativity performance, with or without physiological correlates. In summary, my 

aim was to establish a link between creativity, creative task performance and mind-

wandering at the behavioural level, and to validate these constructs by showing that 

one or more of these behavioural phenotypes is associated with physiological 

coupling between the DMN and a task-active network. 

6.2 Materials and methods 

My paradigm was designed to measure the interactions or coupling between the 

default mode and task positive or executive networks in the brain. I therefore used 

fMRI to identify notes belonging to the DMN that were activated by the incubation 

task, i.e. an incidental target detection task. Furthermore, I was interested in the state 

dependent effects of this coupling and creativity. I therefore assessed creativity in 

terms of the improvement in the UUT before and after the incubation task. Scanning 

was performed during the incubation period involving experience sampling and 

subsequently to the UUT during a block task contrasting the same incidental target 

detection task as used during incubation. The block task was used to identify task-

responsive regions. The two scans are hereafter referred to as incubation task (i.e. 
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between the two UUT sessions) and block task (i.e. after the UUT) respectively (see 

Figure 6-1). 

 

Figure 6-1 Experimental paradigm. Participants first practiced the attention task used for 

the incubation and the block task. After the first UUT, they performed the incubation task in 

the scanner and after the second UUT they performed the block task in the scanner. The 

whole experiment lasted about 2 hours. 

6.2.1 Participants 

26 right-handed healthy volunteers (9 male, 20-46 of age range, mean age 25.0 

years) with normal or corrected to normal vision gave written informed consent to 

participate in the study – comprising a combined scanning and behavioural session 

lasting for approximately two hours. One participant was excluded from the analysis 
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because she fell asleep during scanning and another participant was excluded 

because she had a Beck Depression Inventory (BDI) (Beck et al., 1996) score of 41 

and on subsequent questioning confirmed that she had been diagnosed as being 

clinically depressed. The study was approved by the local ethics committee.  

6.2.2 Stimuli and task design 

We employed an incubation paradigm, during which participants were scanned while 

performing an undemanding attentional task that was used to trigger mind-wandering 

(Baird et al., 2012). During this task numbers between one and nine were presented 

centrally for 1 s on the screen followed by a 1 s fixation / response period. 8 % of the 

trials were targets; i.e. coloured numbers, whose occurrence had to be indicated via a 

button press. Also, experience sampling reports of mind-wandering were collected 

during fMRI scanning using thought probes (Christoff et al., 2009). These provided 

subjective reports of mind wandering. Each probe asked the participants two 

questions about their mental state directly preceding the probe. The first question 

asked to what extend the participants’ attention had been focused on the task. The 

idea of mind-wandering as "any thoughts that are unrelated to the task" was 

explained prior to the experiment; examples of thoughts that are related to the past, 

the future, worries or other people were also provided. The second question asked to 

what extend the participants had been aware of where their attention was focused. 

“No awareness” was defined as not recognising that mind-wandering had occurred 

until the moment the probe was presented (Schooler et al., 2004; Smallwood, 

McSpadden, et al., 2007; Smallwood, McSpadden, Luus, et al., 2008). Examples for 

this kind of situation were given prior to a training session of the task. Participants 
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answered using a 7 - point Likert scale, ranging from “completely on task” to 

“completely off task” for the first question, and from “completely aware” to 

“completely unaware” for the second question. The scale direction was 

counterbalanced across participants. The 26 targets – comprising 8 % of all trials – 

and the 12 probes occurred pseudo-randomly following a Poisson distribution at 

moments the participants could not predict.         

The UUT, a widely used measure of convergent thinking (Guilford, 1967), was used 

to test creativity immediately before and after scanning during the incubation period. 

I selected the UUT because it has been shown to yield robust and consistent 

incubation effects (Ellwood et al., 2009; Sio and Ormerod, 2009), compared to 

divergent-thinking tasks, like the Remote Association Task that are more prone to 

empirical inconsistencies (Vul and Pashler, 2007). During the UUT I asked 

participants to generate as many unusual uses as possible for common objects in a set 

amount of time: i.e. 2 min per object. Each object was presented together with its 

normal use, e.g. "brick, used for building". Handwritten answers were provided on 

separate pieces of paper for each item.  

6.2.3 Experimental procedure 

To address potential correlations between neuronal connectivity and behavioural 

measures related to mind-wandering and creativity, participants underwent a single 

two hour experiment combining behavioural tasks and neuroimaging using fMRI. All 

participants were naïve to the task. First, they received the above explanation about 

the attentional task used during the incubation period and for the block task. The test 

run (12 min) included the probes. All participants were offered an additional test run; 
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all confirmed that they had received sufficient practice and understood the task after 

the first round. Subsequently, they received a short explanation of the UUT – by 

means of an example object; e.g., "newspaper, used for reading" and had the chance 

to ask questions about the task. Then, every participant received the same four words 

one by one (i.e. brick, key, pencil, bedsheet) finishing the first round of the UUT 

prior to scanning. After completion of the incubation task in the scanner, participants 

completed eight words of the UUT outside of the scanner; including the objects they 

already saw prior to scanning, as well as four new ones (i.e. brick, chair, key, shoe, 

pencil, safety pin, bedsheet, button). Then participants were scanned again 

performing the block task that contrasted the same attentional task as used during the 

incubation task with fixation periods. Finally, a series of questionnaires were 

completed by each participant: the Beck Depression Inventory (BDI) (Beck et al., 

1996), the Creative Achievement Questionnaire (Carson et al., 2005), and the 

Daydreaming Frequency subscale of the Imaginal Process Inventory (IPI), which 

accesses an individual’s propensity to mind-wander (Singer and Antrobus, 1972).  

6.2.4 Behavioural analysis 

6.2.4.1 UUT  

To access creative fluency, responses to the UUT were rated by two independent 

raters blind to condition as either valid or invalid. The inter-rater classification of 

non-redundant responses, rated according to the manual of the UUT (Guilford et al., 

1960) was highly reliable (alpha = .95). For each individual, the scores of the two 

raters were averaged. Based on the scores for each item the total improvement was 

calculated per subject for old words. For new words, total scores were counted, 
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because – by definition – improvement scores cannot be calculated for a single 

sample. 

6.2.4.2 Thought probes 

The scores of the thought probes during the incubation task, ranging between one 

and seven, were averaged for each of the two questions resulting in a “mean mind-

wandering” and a “mean awareness” score per subject. Standard deviations of these 

two scores were also calculated.  

6.2.4.3 Target detection 

For the targets of the incubation task and the block performance (% correct) and 

mean reaction time were calculated.    

6.2.5 fMRI data acquisition 

A 3 T Trio MRI Scanner (Siemens Medical Systems, Erlangen, Germany) with a 32 

channel head coil was used to acquire functional data with a standard echo planar 

imaging (EPI) sequence (matrix size 64 × 74; field of view 192 × 192 mm; in plane 

resolution 3 × 3 × 2 mm; 48 slices in ascending acquisition order; echo time 30 ms; 

acquisition time per slice 70 ms; TR 3.36 s). The incubation task comprised 226 

volumes, and the block task comprised 126 volumes. After both scanning sessions, 

B0 field maps were acquired to correct for geometric distortions in the EPI images. 

Also a structural T1-weighted scan was acquired (matrix size 256 × 240; field of 

view 256 × 240 mm; in-plane resolution 1 mm × 1 mm; 176 sagittal slices of 

thickness 1 mm; echo time 2.48 ms; acquisition time per slice 7.92 ms). During 

scanning, respiration volume and cardiac pulse were measured using a breathing belt 

placed around the participants' waist and an MRI compatible pulse oximeter attached 
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to one of the fingers. These data, together with scanner slice synchronization pulses, 

were sampled using Spike2 (Cambridge Electronic Design Limited, Cambridge, UK) 

and used for physiological noise correction. 

6.2.6 fMRI data analysis 

6.2.6.1 Pre-processing 

Functional data were analysed using SPM12 beta 

(http://www.fil.ion.ucl.ac.uk/spm/software/spm12/) and DCM12 was used for 

dynamic causal modelling of effective connectivity. To allow for T1 equilibration, 

the first five images of each scanning session were discarded. Pre-processing of the 

data involved mean bias correction, realignment of each volume to the first volume 

of each run, coregistration of the functional data to the structural data, normalisation 

to the MNI template brain and smoothing by an 8 mm Gaussian kernel.  

6.2.6.2 Block task 

The block task data were filtered with a standard 128-s cut-off. Regressors modelling 

the task blocks were formed by convolving boxcar functions encoding the condition 

with a canonical hemodynamic response function. Movement parameters were 

included as confounds in the first level analysis for each participant. No global signal 

regression was performed. A standard contrast of the first level parameter estimates 

was used to perform a random effects analysis over participants in the usual way. 

This involved estimating (the contrast of) parameters encoding the effect of interest 

using a standard linear convolution model at the first (within-subject) level and then 

passing the resulting contrast images to a one sample t-test at the second (between-

subject) level. The resulting statistical parametric map (SPM) was used to test for 
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task-active regions. The anatomy toolbox (Eickhoff et al., 2005) was used to 

anatomically designate activated areas. 

6.2.6.3 Incubation task 

The data of the incubation task were filtered with a 256-s cut-off, high-pass filter to 

remove low-frequency drifts, while preserving as many of the spontaneous fMRI 

fluctuations as possible (Birn, 2007). Because I wanted to model data showing 

physiologically relevant resting-state (i.e. low frequency) dynamics from regions of 

the DMN, I used a similar approach to that described in Fransson (2005). Therefore, 

I modelled fluctuating haemodynamic signals with a discrete cosine basis set 

consisting of 189 frequencies characteristic of resting-state dynamics (0.0078 – 0.1 

Hz) (Biswal et al., 1995; Fox and Raichle, 2007; Deco et al., 2011), using a general 

linear model. Physiological data (respiration and heart beat) were modelled using an 

in-house developed MATLAB toolbox (Hutton et al., 2011) based on RETROICOR 

(Glover et al., 2000). This resulted in a total of 17 regressors. The resulting 

regressors were included as confounds in the first level analysis for each participant. 

Movement parameters were also included as confounds. Global signal regression was 

performed.  

6.2.6.4 ROIs 

Task active regions were extracted from the block task data: i.e. the peak voxels at p 

< 0.05, FWE corrected, of clusters larger than 10 voxels were used as ROIs for the 

DCM analysis. Participant-specific coordinates of these ROIs were defined as the 

closest maximum to the group peak voxels within the specific anatomical region, as 

defined by the SPM Anatomy toolbox (Eickhoff et al., 2005). 
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DMN ROIs were identified using a contrast across all discrete cosine basis set 

regressors and the resulting SPM was masked by the anatomical masks of four 

classical DMN regions; i.e. ventromedial prefrontal cortex (vmPFC), posterior 

cingulate cortex (PCC), as well as left and right inferior parietal lobule (Mantini and 

Vanduffel, 2013). Individual coordinates were defined as the peak responses in the 

respective brain area (again using the SPM Anatomy toolbox, as well as the WFU 

Pickatlas (Maldjian et al., 2003) for those regions not labelled by the SPM Anatomy 

toolbox). Having identified the nodes or ROIs corresponding to the task-active 

network and the DMN, regional summaries of activity were used for subsequent 

dynamic causal modelling of effective connectivity within and between the two 

networks.  

6.2.6.5 Dynamic causal modelling  

DCM models neuronal dynamics in terms of directed and reciprocal influences 

among brain regions. Stochastic DCM allows one to model spontaneous or 

endogenous (non-controlled) activity. It does not require any input usually associated 

with experimental manipulation. Six subject-specific ROIs defined by the block task 

and the incubation task data using discrete cosine basis set functions were used as the 

nodes for a fully connected model for each participant; i.e. with bidirectional 

extrinsic connections between all regions. Regional activity in each ROI was 

summarised with its principal eigenvariate (adjusted for nuisance variables) based on 

voxels within 8 mm of subject-specific peaks. The models were fitted to the time 

series from the incubation task using generalised (Bayesian) filtering (Li et al., 

2011). The resulting estimates of effective connectivity between task active and 

default nodes were then used to summarise neuronal coupling on a per subject basis. 
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At the between subject level, I used standard multiple linear regression methods to 

characterise any differences in coupling between the DMN and the task positive 

regions and the behavioural (state or trait) measures; i.e. mean mind wandering and 

mean awareness during the incubation task, UUT improvement for old words, UUT 

scores for new words, frequency of daydreaming (questionnaire), and creative 

achievement (questionnaire). These associations were tested using analysis of 

covariance (ANCOVA), with effective connectivity estimates as independent or 

explanatory variables and behavioural measures as dependent or response variables. 

6.3 Results 

6.3.1 Behavioural results 

Target detection during the block task was 100 % for all participants; mean reaction 

time was 0.80 s (range 0.75 – 0.84 s). Mean target detection during the incubation 

task was 98.4 %; mean reaction time was 0.82 s (range 0.78 – 0.85 s). These results 

indicate that all participants paid attention during task performance.  

Mean mind-wandering score during the incubation task was 4.14 (range 1.75 – 5.75), 

while mean awareness was 3.69 (range 1.75 – 6.33). These results indicate that 

participants showed substantial inter-individual variation – as required for the tests of 

association between the various measures at the between subject level (see Figure 

6-2).  
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The following correlations between behavioural measures and questionnaires were 

observed. Mean mind-wandering and mean awareness (and their standard deviation 

over the 12 probes) during the incubation task were positively correlated (r = 0.75, p 

= 0.00002). The more people mind wandered, the more they were aware of the fact 

that their thoughts were wandering off. In addition, mean mind-wandering scores 

Figure 6-2 Inter-participant differences in mind-wandering and 

awareness. Participants mind-wandering and awareness scores (averaged over 

the 12 probes) spanned the whole response space indicating substantial 

variability over participants.  
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were positively correlated with the frequency of daydreaming in general as indicated 

by the frequency of daydreaming subscale of the IPI (Singer and Antrobus, 1972) (r 

= 0.45, p = 0.03). This provides a validation of experience sampling in this paradigm 

and suggests that participants who daydream more in general, also showed more 

mind-wandering during the experiment.  

The average total improvement for old UUT words was negatively correlated with 

mean awareness during the incubation task (r = -0.40, p = 0.05) indicating that 

participants who were less aware of whether they were mind-wandering or not, 

showed significantly higher improvements for the creativity task.  

Furthermore, I found a positive correlation between scores of the creative 

achievement questionnaire and the general frequency of daydreaming (questionnaire) 

(r = 0.42, p = 0.05) providing evidence for the notion that individuals who daydream 

more are more creative.  

For the scores of the new UUT words, I observed a positive correlation with the 

amount of daydreaming in general (questionnaire). However, this correlation did not 

reach significance, but showed a trend (r = 0.38, p = 0.08), indicating that individuals 

who are more creative in a more general sense (i.e. for new problems) might 

daydream more in general. In summary, there were strong correlations among state 

dependent measures of mind-wandering and creativity and between trait measures – 

with trend correlations between state and trait measures. The key question now is 

whether these measures could be predicted by neuronal coupling as measured during 

incubation. 
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6.3.2 Imaging results 

6.3.2.1 Task-active regions 

After pre-processing, I used the block task to define regions that are responsive to the 

undemanding attentional task used for the incubation period. I found bilateral 

fusiform gyrus (left: -44, -68, -18; right: 40, -66, -16), both at p < 0.05, FWE 

corrected, with the constraint of clusters larger than 10 voxels (see Figure 6-3). 

Individual coordinates were determined using the methodology outlined in 6.2.6.4 

and are shown in Table 6-1. 

Table 6-1 Individual coordinates of task related activation in the fusiform gyrus. 

Individual coordinates were extracted from the block task data and defined as the closest 

maximum to the group peak voxels within the specific anatomical region.  

 Left fusiform Right fusiform 

Participant X Y Z X Y Z 

Group -44 -68 -18 40 -66 -16 

1 -44 -60 -16 46 -64 -18 

2 -42 -64 -18 44 -56 -16 

3 -38 -60 -16 38 -60 -16 

4 -44 -60 -16 38 -80 -18 

5 -38 -56 -20 34 -64 -12 

6 -52 -50 -24 40 -60 -16 

7 -42 -56 -16 44 -60 -16 

8 -32 -70 -14 42 -60 -16 

9 -34 -58 -12 32 -46 -18 

10 -36 -46 -12 42 -56 -24 

11 -34 -62 -12 36 -58 -12 

12 -38 -60 -16 38 -68 -18 

13 -50 -60 -22 34 -62 -12 

14 -38 -58 -16 42 -52 -18 

15 -42 -76 -20 34 -70 -20 

16 -42 -54 -18 40 -52 -16 

19 -46 -64 -18 48 -64 -18 

20 -38 -60 -16 40 -64 -20 
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21 -46 -62 -18 50 -60 -16 

22 -34 -62 -12 40 -64 -18 

23 -42 -60 -16 38 -68 -18 

24 -40 -60 -16 40 -62 -18 

25 -38 -58 -20 46 -56 -20 

26 -44 -62 -18 36 -58 -12 

 

 

Figure 6-3 Task activations in the fusiform gyrus. The attention task activated bilateral 

fusiform gyrus, p < 0.05 FWE corrected.  

6.3.2.2 DMN regions 

Having identified bilateral fusiform gyrus as the key regions that show task-related 

activation during the attention task (using the data of the block task), I next identified 

the ROIs of the DMN, using the timeseries from the incubation task – model with a 

discrete cosine basis set. 

6.3.2.3 Stochastic DCM 

My subsequent tests for correlations between effective connectivity and behavioural 

measures used (within subject) effective connectivity estimates from stochastic DCM 



170 

 

in a (between subject) classical ANCOVA. My hypotheses were not about the 

existence of connections, but whether coupling between the task positive and DMN 

nodes could predict: (i) measures of mind-wandering during the incubation task, (ii) 

improvements during the UUT or (iii) creative achievement. Therefore, I calculated 

three different ANCOVAs for each behavioural measure, examined whether these 

were significant and identified the connections that were driving any significant 

associations. 

Only the CAQ gave significant results (p = 0.013, uncorrected), which were mainly 

driven by two connections: from PCC to left fusiform gyrus (68.5) and from PCC to 

right fusiform gyrus (-60.5). Two other connections showed a moderate contribution: 

IPL to left fusiform gyrus (45.3) and fusiform right to IPL right (-37.3). See Figure 

6-4 for the correlation and contribution of the different connections. These 

contributions correspond to the regression coefficients implicit in ANCOVA, when 

regressing creativity on effective connectivity. In brief, higher connection strength 

from DMN nodes to the left fusiform node relative to the right fusiform node 

indicates that participants are likely to report more creative traits. 
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Figure 6-4 Correlation between creativity and brain connectivity. Left: CAQ scores were 

correlated with the predictive score of the coupling. Right: The sixteen connections between 

regions of the DMN and the task-positive network showed a different contribution to the 

correlation shown on the left side. The first two are from PCC to left fusiform and from PCC 

to right fusiform respectively. 

6.4 Discussion 

I was interested in establishing the missing neurobiological link between creativity, 

mind-wandering and neural coupling. Therefore, I tested the hypothesis of whether 

there is a phenotypic variation in creativity traits over individuals. I hoped that this 

variation would be reflected in the coupling between intrinsic brain networks 

associated with introspection, i.e. the DMN, and task-related processing respectively.  

I found that behavioural measures of state and trait creativity indeed were correlated 

with the tendency to mind-wander or the awareness about it respectively during an 

incubation task, as well as the general tendency to mind-wander or daydream in life. 

On the neuronal level, I found that the coupling between the two networks was 

correlated with the creative trait as measured by creative achievement, but not with 

state-dependent measures of creative problem. Thus, my results indicate that there is 
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a creative phenotype that is reflected in the coupling between the two brain networks. 

Furthermore, this creative trait was expressed in terms of another behavioural trait, 

namely the tendency to mind-wander during daily life. Thus, I established a link 

between creativity, creative task performance and mind-wandering at the behavioural 

and neurophysiological level.     

6.4.1 Behavioural results 

I used an undemanding incubation task and a standard behavioural creative problem 

solving task to address convergent thinking and measured state creativity in two 

ways. First, the ability to find creative solutions to “old problems”; i.e. objects that 

had been encountered previously, and second the ability to find creative solutions to 

“new problems”; i.e. objects that participants did not see before. With regard to the 

measurement of mind-wandering during the incubation task, I used experience 

sampling asking participants at random time-points to measure whether their minds 

were wandering and their awareness of this wandering. This approach allows a much 

more accurate picture of the mental state of participants than a simple questionnaire 

administered after the task (Christoff et al., 2009; McVay et al., 2009). I was 

particularly interested in the distinction between mind-wandering and the awareness 

of mind wandering. Earlier studies have shown a clear dissociation between those 

two processes (Smallwood, McSpadden, et al., 2007; Christoff et al., 2009; Schooler 

et al., 2011). 

Another distinction provided by my ratings is between task-independent and 

stimulus-independent thoughts. According to this distinction, mind-wandering is 

only present if thoughts are independent of stimulus and task; i.e., a mere distraction 
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of the task at hand triggered by a sudden noise or some background drumming does 

not fall into the category of mind-wandering (Stawarczyk et al., 2011). I confirmed 

and extended the findings of Baird et al. (2012), who showed that individuals who 

mind wandered more during an incubation task showed improved creative problem 

solving for revisited items, but not for new items. However, they only used a post-

task questionnaire to assess mind-wandering during the task. Such a measure runs 

into the risk of ignoring large parts of the data, because of the recency effect 

(Ebbinghaus, 1913; Baddeley and Hitch, 1993). Furthermore, the authors did not 

distinguish between mind-wandering and awareness. Here, I found that the 

performance on old problems of the UUT task was negatively correlated with mean 

awareness about where an individual’s attention was focused. In other words, the less 

we are aware of where our mind is, the better our results on a state dependant 

measure of creativity. Also, I observed a positive correlation between the mean 

amount of mind-wandering and the mean awareness scores indicating that 

individuals who mind-wander more are – on average – more aware about whether 

their mind is occupied with things outside of the external world. However, the 

strongest neural activations are observed for periods of mind-wandering without 

awareness (Christoff et al., 2009). 

My trait measurement of creativity was correlated with my trait measurement of 

mind-wandering; providing evidence for the idea that individuals who mind-wander 

more are more creative in general. Crucially, my trait measurement of creativity 

neither tested for creative performance in a practical and direct way like the UUT or 

non-verbal tasks included in the Torrance Test of Creative Thinking (TTCT) 

(Torrance, 1962), nor did it ask participants about how creative they think they might 
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be. Both accounts suffer from uncertainties that can either distort performance and/or 

accuracy of how creative somebody truly is. In order to get a valid measurement of 

creativity I addressed creative achievement over the life span including areas from 

scientific success to cooking and painting. In summary, my results are in line with 

the previous literature establishing a link between mind-wandering and creativity, 

where individuals who are more creative tend to mind-wander more often 

(Dijksterhuis and Meurs, 2006; White and Shah, 2006; Sio and Ormerod, 2009; 

Baird et al., 2012).  

6.4.2 Imaging results  

On the neuronal level, I have established a link between the coupling of two intrinsic 

networks that are usually associated with very diverse contexts; namely, mind-

wandering and task-execution. I show that the coupling between these two networks 

is increased (in the left hemisphere) for participants who show a more creative 

phenotype. This correlation was mostly driven by two connections, namely from 

PCC to bilateral fusiform gyrus.  

Until now, the neural basis of mind-wandering has only been investigated in very 

few studies. Because of the difficulty with measuring mind-wandering and its 

proneness to individual judgements, recency effects and other confounds, it is 

difficult to compare even these studies. One finding, that has been observed with 

consistency is the involvement of the DMN network in the process of mind-

wandering (Christoff et al., 2009; Stawarczyk et al., 2011; Esterman et al., 2012), as 

well a task-activated network; e.g., the dorsal attention network (DAN) (Esterman et 

al., 2012) or the executive network (Christoff et al., 2009). However, all previous 
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studies were based on activation studies and did not investigate the potential role of 

coupling between these two networks. I provide the first evidence showing that 

coupling between these two networks is indeed linked to a creative phenotype. The 

PCC is one of the core regions of the DMN (Shulman et al., 1997; Raichle et al., 

2001) and might form –  together with the subregion of PFC involved in the DMN – 

the core of the DMN (Raichle et al., 2001). Furthermore, this region has been 

described as a tonically active brain region that is constantly gathering information 

about the external world – and possibly the internal one (Raichle et al., 2001). In 

light of these considerations, the PCC might also be the most strongly involved in the 

modulation of purely task-active regions, like the fusiform gyrus. In short, it might 

provide a bridge between task positive and task negative during mind-wandering.   

6.4.3 Limitations  

There are a few limitations of this study that should be mentioned. First, the 

individual scores provided by the experience sampling are subject to several sources 

of uncertainty. Even though, all participants received a detailed explanation of the 

task and performed a training session, I cannot address individual decision criteria 

determining their ratings. For instance, two individuals might be in the exact same 

state in terms of the amount they are mind-wandering (at least theoretically), but 

might rate this condition to a different degree. These decision criteria depend on both 

state and trait variables. As mentioned earlier, mind-wandering is not an on-off 

condition, which can also be confused by purely task-unrelated thoughts that are 

related to other external stimuli, like scanner noise or an itching nose (Stawarczyk et 

al., 2011).  
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Second, creative achievement depends on age. A first year student simply does not 

have that many years to publish papers, win acting prizes or write a book. Even in a 

relatively restricted age range sample like mine, this factor needs to be taken into 

account. 

Third, I used the mean of the twelve experience sampling ratings of mind-wandering 

and awareness in order to get a robust summary measure. However, by doing so I 

lost the fluctuations in mind-wandering throughout the incubation period. Previous 

work has pointed out that within subject differences in the amount of mind-

wandering and awareness lead to differences in the neural activity of brain regions of 

the DMN and task-executive regions (Christoff et al., 2009). Of course, taking such 

an approach leaves the arbitrary decision about which time interval to look at; in 

other words, how early or late prior to the experience sampling imaging data should 

be included in the analysis.            

Last, the definition of ROIs always brings certain limitations, because they depend 

on several variable settings that add noise. The location and size of each ROI were 

chosen carefully in this study, but choices often depend on empirical values that 

might not be appropriate for the study at hand. 

6.5 Conclusion 

In conclusion, I have established a link between creativity, creative task performance 

and mind-wandering on the behavioural level and validated these constructs by 

showing that creativity is associated with physiological coupling between the DMN 

and a task-active network stimulated during a standard incubation task. 
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Chapter 7 General discussion 

The underlying neurobiology of spatially and temporally correlated patterns of 

ongoing brain activity is still poorly understood (Schölvinck et al., 2013). Also, its 

function and purpose have been much debated during the last years (Boly et al., 

2009; Honey et al., 2009; Sadaghiani, Hesselmann, et al., 2010; Raichle, 2011). The 

work presented here is one line of research targeted to understand the interaction 

between spontaneous brain activity and behaviour, both on fast and a longer temporal 

scale. These include prestimulus intervals both in the healthy and the lesioned brain, 

as well as learning experiences and behavioural phenotypes. In sum, this work is one 

of the numerous small steps on the way to gain deeper insight into the functioning of 

the brain as a whole including its extensive network of functional connections.    

7.1 Overview of findings 

Using functional imaging to measure spontaneous fluctuations in resting state 

activity, I first demonstrated that long-lasting changes in neuronal coupling can be 

accompanied by changes in resting state activity. Using early visual learning in a 

random dot motion coherence task, I expanded the knowledge about the link between 

spontaneous fluctuations in resting state activity and experience-dependant plasticity 

and learning. Participants in this project showed fast visual learning within one 

scanning session; the used task primarily activated visual and parietal brain areas. 

However, learning related changes in neural activity were present in the 

hippocampus. Crucially, even this rapid learning affected resting state dynamics both 

immediately after the learning as well as 24 h later. More precisely, the hippocampus 
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changed its coupling with the striatum in a way that was best explained as a 

consolidation of early learning related changes.  

In order to examine the causal influence of spontaneous fluctuations on perception, I 

proceeded with a case study of an individual with a unilateral right parietal damage 

and visual extinction. Patients with visual extinction following right-hemisphere 

damage sometimes see and sometimes miss stimuli in the left visual field, 

particularly when stimuli are presented simultaneously to both visual fields.  

Awareness of left visual field stimuli is associated with increased activity in bilateral 

parietal and frontal cortex. I used this knowledge to investigate the outstanding 

question of why patients see or miss these stimuli. In order to do so, I again used 

functional MRI. This time I was able to show that prestimulus activity affects 

perception in the context of visual extinction following stroke. Measuring 

prestimulus activity in stimulus-responsive cortical areas during an extinction 

paradigm allowed me to compare prestimulus activity on physically identical 

bilateral trials that either did or did not lead to visual extinction. The significantly 

increased activity prior to stimulus presentation was observed in two areas that were 

also activated by visual stimulation: the left calcarine sulcus and right occipital 

inferior cortex. Furthermore, I established that effective connectivity within and 

between these areas was enhanced prior to stimulus presentation for bilateral seen 

trials. In summary, I provided evidence for the idea that differences in ongoing 

neural activity in visually responsive areas prior to stimulus onset affect awareness in 

visual extinction, and that these differences are mediated by fluctuations in extrinsic 

and intrinsic connectivity.  
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Having established the causal link between prestimulus activity and subsequent 

perception in visual extinction, I looked at the predictive power of prestimulus 

activity from a different and temporally more fine-grained angle using EEG and 

spectral analysis. Employing a similar random dot motion coherence task than in the 

first study, I demonstrated that alpha, beta and gamma oscillations seem to indicate a 

very specific brain state of “readiness” associated with the detection of coherent 

motion of a participant. By sparsely arranging stimuli every few seconds while 

recording scalp EEG, I was able to decouple each stimulus from any systematic 

effects of the preceding one and allowed for spontaneous fluctuations to occur. My 

analysis revealed that spontaneous fluctuations in ongoing activity are indeed 

correlated with the reported perceptual outcome of ambiguous stimulus processing. 

The increased power of the different oscillations bands prior to stimulus presentation 

exhibit a specific temporal and spatial pattern predicting motion detection on a single 

trial basis.    

Finally, I investigated the link between a specific behavioural phenotype related to 

creativity, creative task performance and mind-wandering on the behavioural level, 

and validated these constructs by showing that the trait aspect of creativity is 

associated with physiological coupling between the DMN and a task-active network 

stimulated during a standard incubation task. Mind-wandering had previously been 

indicated as an “activity” that stimulates activity in opposing intrinsic brain 

networks, namely the DMN and task-active regions. Therefore, studying this 

omnipresent behaviour of humans seems to allow bridging the two worlds of 

ongoing and task-related brain activity. Pairing the incubation task with the 

investigation of trait and state measurements of creativity I was able to gain insight 
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into the neurophysiological basis of the relation between creativity and mind-

wandering – a link that had only been investigated on the behavioural level before. 

In summary, I have advanced the understanding about the functional role of 

spontaneous activity in general and its role in contextual changes in particular. Not 

only can learning – occurring as quickly as over one session – change resting-state 

activity and connectivity, but also is the spontaneous prestimulus activity predictive 

of behavioural outcomes in the lesioned and the healthy brain. Using EEG and fMRI, 

as well as spectral analyses and DCM to analyse connectivity, I showed that this 

predictive value manifests itself in a complex picture of oscillations and connectivity 

patterns. Finally, inter-individual differences in creativity and mind-wandering are 

also reflected in neuronal connectivity between networks implicated with an “idle” 

and an “active” brain.     

7.2 Implications of this research 

The main method used in this thesis is fMRI together with one EEG project. 

Therefore – within the scientific field studying ongoing brain activity – the 

implications drawn from the work presented here are focused on these two methods, 

with an emphasis on fMRI. In particular, it has contributed to the understanding of 

two aspects of ongoing activity, namely the observation that it predicts perception 

and that it is modulated by recent (learning) experiences as well as trait variables.   

7.2.1 Ongoing activity predicts perception 

Both, fMRI and EEG studies, have provided evidence for the idea that spontaneous 

activity predicts perception (on overview has been given in 1.3). This influence is 
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usually studied looking at the EEG or BOLD signal that precedes the actual 

presentation of the target stimulus, namely the prestimulus interval. Depending on 

the method used, this interval needs to be chosen with care and might be subject to 

inter- and intra-individual differences. There are no established standards yet as to 

how to define these intervals for any given technique or modality. Therefore, most 

studies seem to apply whatever works best in terms of their data. In Chapter 4 and 

Chapter 5 of this thesis, I present further data on two very different timescales that 

underline the importance of ongoing activity for subsequent behavioural perceptual 

outcomes. The results in Chapter 4 extend the findings observed in healthy brains 

and provide the first causal insight in the phenomenon of visual extinction. Further, 

the findings described in Chapter 5 provide the first detailed spectral description of 

the prestimulus interval preceding a random dot motion coherence task.  

Previously, it has been argued about whether the interaction between ongoing and 

evoked brain activity is linear or not (Biswal et al., 1995; Senkowski et al., 2007; 

Becker et al., 2011; Schölvinck et al., 2012; He, 2013). Given the omnipresent nature 

of ongoing activity and the frequent ignorance of the majority of neuroscientists 

about it, I would like to emphasise the importance of taking it into account. Even 

though most neuroscientists have heard about spontaneous fluctuations of brain 

activity by now, there are no standard methods yet outlining how to control for it 

when studying task-evoked responses. Therefore, it is most often simply ignored. 

However, this might lead to wrong conclusions and is highly advised against.  
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7.2.2 Ongoing activity is modulated by learning and trait variables 

The other direction of the two-way relationship between ongoing activity and 

behaviour, namely the potential of recent experiences such as learning as well as 

inter-individual trait differences to modulate ongoing activity and coupling patterns, 

was examined in Chapter 3 and Chapter 6. Chapter 3 provides the first demonstration 

that a (visual) learning task performed for as short as one session does not solely 

affect the activity in brain regions that are sensitive to the learning experience, but 

also leads to changes in the coupling between these regions. This change is preserved 

after 24 h, possibly excluding the possibility that the effect is merely a replay effect. 

This finding confirms the multifaceted pattern of variables that are all able to 

influence the pattern of ongoing activity present in our brain at any given moment.  

Exploiting the observation that people who are more creative seem to mind-wander 

more, I established a three-way interaction between two behavioural and one 

neurophysiological measurement(s) providing evidence for the idea that individuals 

who are more creative exhibit a different pattern of neuronal coupling between two 

complementary intrinsic brain networks. These two findings contribute to the 

literature concerning the “formability” of ongoing activity due to short- and long-

term behavioural measures, including learning (Albert, Robertson, and Miall, 2009; 

Smith et al., 2011) and traits like illness, mental diseases and addiction (Baliki et al., 

2011; Liao et al., 2012; Yang and Tsai, 2013).  
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7.2.3  Cause and effect: the interplay between ongoing and evoked 

activity 

Having established a bidirectional interaction between ongoing brain activity and 

behaviour in the widest sense, i.e. including phenotypic variations, one might start to 

wonder about the “chicken-and-egg question” about this relationship. In other words: 

if ongoing activity can be shaped by certain experiences, to what extent is it possible 

to exploit this effect such that one “trains” one’s own activity to an extent that would 

in turn trigger a certain way of stimulus processing. This thought experiment creates 

an endless loop of interactions difficult – or impossible – to disentangle. In other 

words, the thought experiment asks which factors shape ongoing and evoked activity 

in the first place. Ultimately, the answer to this question might be about the nature 

versus nurture debate – where it has to be established to what extend our genes shape 

the patterns of ongoing activity in a (relatively
13

) predetermined way. This would 

need to be compared to the extent to which ongoing activity can be modified by 

experience or environmental influences respectively. Like for any other trait or 

behaviour that is supposedly influenced by “nature and nurture” a rather complicated 

entanglement might be observed, leaving the scientist once more with an unsolvable 

puzzle of interactions. Thus, one potential conclusion would be to simply give up. 

However, the other one is to take steps of reasonable size looking at parts of the 

puzzle by taking one piece at a time in order to gain further insight into the complex 

dynamics of ongoing brain activity and its manifestation on the behavioural level – 

keeping in mind that each single step is only part of the bigger puzzle.  

                                                 
13

 The word “relatively” is added here just for completeness, because epigenetic changes can be 
caused by environmental causes leading to modified gene expression. 
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Indeed, a small number of researchers have started to follow this direction and have 

for instance shown that ongoing activity also varies with age, and that this variation 

might correlate with changes in performance (Wenger et al., 2004; Colonnese and 

Khazipov, 2012; Vaden et al., 2012). Very recently, Harmelech and colleagues 

(2013) proposed a Hebbian-like rule for the changes in connectivity during rest after 

a single neurofeedback session. Similar to the changes I described in Chapter 3, they 

observed persistent changes after one day. Furthermore, these changes reflect the 

level of the regions’ prior co-activation, i.e. during the neurofeedback session. 

Crucially, the effect was present on a single participant level. Such an observation 

might open the possibility to use ongoing activity as a kind of diagnostic window 

into an individual’s history of prior brain activations.    

7.3 Outstanding questions and conclusion 

In this thesis, I have touched upon outstanding issues in the field of ongoing brain 

activity. The presented results contribute to the field, but also stimulate further 

experiments to explore these themes in the near future. 

7.3.1 Timescale of changes in ongoing activity and its relation to 

structural changes 

In Chapter 3 I showed that changes in the coupling between two brain regions in 

response to a visual learning experience as short as one session were present directly 

after the session during rest and were pertained 24 h after the experiment. To the best 

of my knowledge, this was the first study to report changes in coupling in ongoing 

activity at two different time points post-experiment. Only a very few studies have 
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started to explore the question of changes in ongoing activity in response to 

(learning) experience (see 1.3 for a summary of these), and even fewer have looked 

at long-term changes, i.e. the temporal profile of changes in resting state activity 

(Harmelech et al., 2013). Probably the most studied and therefore advanced field 

with regard to long-term changes in the human brain is the field of learning, more 

specifically motor learning. Indeed, it is known that functional, as well as structural 

(Scholz et al., 2009; Johansen-Berg, 2010; Tomassini et al., 2011) brain networks 

change after a new skill has been acquired. However, it is largely unknown if and 

how the rapid functional changes observed in the task related activity might sustain 

longer term changes in structure. In other words: what is the relationship between 

short-term and long-term motor memory in the human brain? Although the 

aforementioned role of resting state functional networks has been demonstrated 

previously (Miall and Robertson, 2006; Albert, Robertson, and Miall, 2009), a 

potential link between functional and structural changes has only been proposed 

recently (Taubert et al., 2011; Vahdat et al., 2011). In particular, Taubert et al. (2011) 

provided evidence that the learning of a complex motor task leads to truly long-

lasting changes in functional resting-state networks. Even after six weeks, changes 

and further modulations of the fronto-parietal network connectivity in accordance 

with individual performance improvements were reported. These changes seem to be 

tightly correlated with the structural changes observed in grey matter. Thus, ongoing 

brain activity seems to be functionally relevant for morphological adaptions in the 

human brain. 

Interestingly, this relationship appears to be – just like the one between ongoing 

activity and behaviour (as described in 7.2.3) – bidirectional: structural properties, 
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including the length, number, and spatial location of white matter streamlines are 

indicative of and can be inferred from the strength of resting-state (as well as task-

based) functional correlations between different brain regions (Hermundstad et al., 

2013).  

Taken together, the temporal nature of changes in ongoing activity and its influence 

– or predictive role – for subsequent structural changes have just begun to be 

investigated. However, the increasing number of more recent studies taking both 

adaptive mechanisms – namely in functional and structural data – into account is 

promising to provide further insights in the near future. 

7.3.2 Origin and scale of ongoing activity 

In this thesis, I have investigated ongoing activity from two complementary 

perspectives using EEG and fMRI. This provided insights into its functional role on 

two different time-scales and allowed me to make inferences about relevant spectral, 

temporal and spatial patterns. Using fMRI and BOLD in three of the four studies 

described here, I focused on ultra-slow fluctuations in spontaneous activity in areas 

of the cerebral cortex. These fluctuations are dominated by very low temporal 

frequencies that follow a 1/f-like power distribution (Cordes et al., 2001). These 

fluctuations are also present in electrophysiological recordings, especially in gamma-

band local field potential power (Schölvinck et al., 2010). The limited temporal 

resolution of fMRI can be addressed by using EEG or electrophysiological 

recordings to examine a potential overlap between spectral, spatial and temporal 

patterns. Here, I demonstrated a rather complex spectral pattern that can be involved 

in prestimulus activity predicting the behavioural outcome in a random dot motion 
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coherence task. Using an almost identical task in an fMRI paradigm revealed an 

equally complex picture of adaptations in coupling between brain regions involved in 

the learning process. But what is the relation between spontaneous brain activity at 

these different temporal and spatial scales? 

Electrophysiological data of single neurons demonstrate that network activity on 

much smaller temporal and spatial scales can be shaped by spontaneous activity as 

well. For instance, the spontaneous firing of single neurons is correlated to the 

instantaneous spatial pattern of spontaneous population activity in neighboured 

neurons (Tsodyks et al., 1999). These spontaneously emerging spatial patterns in 

population activity in visual cortex resemble the well-known orientation maps (Kenet 

et al., 2003) suggesting that they might be shaped by intra-cortical connectivity. 

Taking this finding one step further, it might be the case that neurons in visual cortex 

fire to a certain degree in accordance with spontaneously emerging states – instead of 

simply responding to visual input from outside. In conclusion, the ongoing activity of 

single neurons and neuronal populations measured with EEG, as well as the 

haemodynamic activity measured with the BOLD contrast using fMRI, have a stable 

spatio-temporal structure – a finding that should prompt future studies in the field.    

Having started to establish the relationship between structural and functional changes 

on a rather large scale as outlined in the previous paragraph, the connection between 

fast switching spontaneous cortical states described here and the ultra-slow 

fluctuations observed with fMRI remains obscure. Further research is needed to 

determine whether they share a common origin. Answering this question will include 

studies that trigger changes in the spontaneous activity on both scales, probably 
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involving behavioural measures related to the functional relevance of ongoing 

activity.  

7.3.3 Conclusion or: The function of ongoing activity 

The core interest of this thesis is the functional role of ongoing activity and I have 

already discussed its dynamics in detail, especially in light of the research questions I 

addressed in Chapter 3. I want to finish with a more general summary-like 

description of what research into ongoing activity has revealed so far about its 

function – emphasising that the brain seems to be doing “a lot” when it was 

traditionally assumed that it was doing “nothing at all” when observed at “rest”. In 

other words, the observed activity during rest – when the mind usually starts to 

wander off – is not simply due to control mechanisms of automatic functions such as 

breathing and heart rate. In fact, the active networks appear to be quite similar to 

those observed during task performance. Thus, by studying these networks – that 

seem to consume the major share of energy used by the brain (Raichle and Mintun, 

2006) – one can discover brain connectivity and how this might change in response 

to certain influences, such as age or disease. The mere observation, that ongoing 

activity is constantly present but modifiable suggests that it has to be important 

somehow. 

However, what is the ultimate function of this ubiquitous activity? Several potential 

answers have been proposed. First, it might be one of the processes involved in 

memory consolidation (Albert, Robertson, Mehta, et al., 2009). Given its dynamic 

nature in response to certain learning experiences, it might be part of the neuronal 

correlate of so-called wake-dependant changes. These are involved in the 
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consolidation process, which includes sleep-dependent changes as well. Several 

animal studies have provided supportive evidence for the idea of an immediate 

replay of sensory experience in visual cortex and hippocampus (Foster and Wilson, 

2006; Han et al., 2008). These patterns of recent sensory experiences in subsequent 

spontaneous activity might help to consolidate experiences into stable cortical 

modifications by contributing to short-term memory processes. Thus, understanding 

how ongoing activity is affected by learning might provide insight into the 

mechanisms and pathways responsible for determining in what way memories are 

consolidated during wakefulness, as well as during sleep.  

Second, ongoing activity could serve some kind of maintenance function that helps 

to keep the brain’s connections running when these are not in direct use, comparable 

to a car whose engine should be started once in a while to avoid failure. Similarly, it 

might help to maintain relationships between areas that are often active together to 

perform certain tasks, e.g. visual, auditory or cognitive tasks. In other words, the 

ongoing activity might help to organise and coordinate neural activity via supporting 

cortical network structures (Salinas and Sejnowski, 2001; Buzsáki and Draguhn, 

2004).   

A third suggestion was related – I use the past tense deliberately, because it is no 

longer considered a valid suggestion – to the quest for the neuronal correlates of 

consciousness. In the very early days of the study of ongoing activity, Greicius et al. 

(2003) suspected that they would find insight into the neural underpinnings of a 

critical but poorly understood component of human consciousness variably referred 

to as “a conscious resting state” during which real-time ongoing conscious 
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processing occurs. However, the finding that the same networks of ongoing activity 

are also present in altered states of consciousness such as sleep and anaesthesia led to  

the same researchers discarding this idea about a link between ongoing activity and 

conscious processing (Greicius et al., 2008; Boly et al., 2009; Vanhaudenhuyse et al., 

2010).   

Yet another alternative proposed for the function of ongoing activity is related to the 

theory of predictive coding (see 1.2.1.2). In this framework, ongoing activity helps to 

prime the brain to respond to future (sensory) stimuli (Engel et al., 2001; Pouget et 

al., 2003). Instead of an idle brain that is waiting for some input, the supporters of the 

predictive coding framework propose that the cycling activity in the networks 

exhibiting spontaneous fluctuations might help the brain to utilise past experiences to 

inform upcoming decisions, such as the perception of coherently moving dots. 

Electrophysiological recordings in cat visual cortex show that ongoing activity can 

predict subsequent neural responses to stimuli and the synchronous fluctuations 

between pairs of neurons observed prior to stimulus onset are indicative for the 

subsequent response latency (Fries et al., 2001). In favour of the predictive coding 

hypothesis, supporters have proposed that such a mode of operation would save a lot 

of energy. It is computationally demanding to calculate everything on the fly. Thus, 

the use of ongoing patterns that are guessing what might happen next can reduce the 

computational demand posed on the system. Furthermore, it can change perception 

as shown in the work presented here, for example. In other words, the brain might try 

to minimise surprise in order to be prepared for what occurs or happens next.   
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Of course, the possibility that all ongoing activity is simply an emergent property – a 

by-product – of the brain being alive remains. In other words, it might simply be 

there because of electric currents due to the brain being alive. These currents are 

naturally restricted by the anatomical connections providing them with a non-random 

structure.     

In any case, it might be the case that all of these hypotheses are valid or true to a 

certain extent – because they are not mutually exclusive. The work presented here 

provided support for the first and fourth emphasising the bidirectional connection 

between ongoing activity and behaviour – where both can modify each other. I want 

to finish with a quote from Chris Miall, a researcher involved in the study of the 

dynamics of ongoing brain activity: “Whatever resting activity is doing, its existence 

certainly proves one thing: The brain only rests when you’re dead.” (Smith, 2012) 
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