UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Identification of criticality in neuronal avalanches: II. A theoretical and empirical investigation of the driven case

Hartley, C; Taylor, TJ; Kiss, IZ; Farmer, SF; Berthouze, L; (2014) Identification of criticality in neuronal avalanches: II. A theoretical and empirical investigation of the driven case. Journal of Mathematical Neuroscience , 4 , Article 9. 10.1186/2190-8567-4-9. Green open access

[thumbnail of Hartley_Identification_criticality_neuronal_avalanches.pdf]
Preview
Text
Hartley_Identification_criticality_neuronal_avalanches.pdf

Download (2MB) | Preview

Abstract

The observation of apparent power laws in neuronal systems has led to the suggestion that the brain is at, or close to, a critical state and may be a self-organised critical system. Within the framework of self-organised criticality a separation of timescales is thought to be crucial for the observation of power-law dynamics and computational models are often constructed with this property. However, this is not necessarily a characteristic of physiological neural networks-external input does not only occur when the network is at rest/a steady state. In this paper we study a simple neuronal network model driven by a continuous external input (i.e. the model does not have an explicit separation of timescales from seeding the system only when in the quiescent state) and analytically tuned to operate in the region of a critical state (it reaches the critical regime exactly in the absence of input-the case studied in the companion paper to this article). The system displays avalanche dynamics in the form of cascades of neuronal firing separated by periods of silence. We observe partial scale-free behaviour in the distribution of avalanche size for low levels of external input. We analytically derive the distributions of waiting times and investigate their temporal behaviour in relation to different levels of external input, showing that the system's dynamics can exhibit partial long-range temporal correlations. We further show that as the system approaches the critical state by two alternative 'routes', different markers of criticality (partial scale-free behaviour and long-range temporal correlations) are displayed. This suggests that signatures of criticality exhibited by a particular system in close proximity to a critical state are dependent on the region in parameter space at which the system (currently) resides.

Type: Article
Title: Identification of criticality in neuronal avalanches: II. A theoretical and empirical investigation of the driven case
Open access status: An open access version is available from UCL Discovery
DOI: 10.1186/2190-8567-4-9
Publisher version: http://dx.doi.org/10.1186/2190-8567-4-9
Language: English
Additional information: Copyright © C. Hartley et al.; licensee Springer 2014. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > UCL GOS Institute of Child Health
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > UCL GOS Institute of Child Health > Developmental Neurosciences Dept
URI: https://discovery.ucl.ac.uk/id/eprint/1429029
Downloads since deposit
92Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item