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Key factorsdetermining the energy rating of
existingEnglishhouses

AndrewStone, David Shipworth, Phill Biddulph and Tadj Oreszczyn
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LondonWC1H0NN,UK

E-mail: andrew.stone@ucl.ac.uk, d.shipworth@ucl.ac.uk, p.biddulph@ucl.ac.uk and t.oreszczyn@ucl.ac.uk

In the UK, the Standard Assessment Procedure (SAP) is used to rate the energy performance of existing dwellings

whenever they are let or sold. This study investigates which of the inputs to SAP account for the most variance in

energy rating across existing gas central heated houses in England. Data from the English Housing Survey (EHS)

2009 are used to generate a representative set of dwellings and variance-based global sensitivity analysis is then

applied to assess each input’s contribution to the variance in the calculated ratings. It is demonstrated that heating

system efficiency, external wall U-value and dwelling geometry account for 75% of the variance of the energy rating

of gas central heated houses in England. This suggests that improving heating system efficiencies and wall U-values of

the worst performing dwellings will go a long way towards improving their energy rating and potentially reducing

their energy consumption. It is also demonstrated that dwelling geometry has a much bigger influence on the

calculated carbon emissions (accounting for 80% of the variance) than it does on the SAP energy rating (accounting

for 30%), meaning that significant improvements in energy rating might not be accompanied by significant reductions

in carbon emissions.

Keywords: building stock, energy rating, global sensitivity analysis, household energy, housing stock, modelling,

Standard Assessment Procedure (SAP)

Introduction
All existing dwellings in the UK must be given an
Energy Performance Certificate (EPC) whenever they
are sold or let. The EPC includes two indicators of
the dwelling’s energy performance: the Energy Effi-
ciency Rating (EER), which is a non-dimensionalized
indicator of the financial cost of the dwelling’s energy
use; and the Environmental Impact Rating (EIR),
which is a non-dimensionalized indicator of the
carbon emissions associated with the dwelling’s
energy use. These ratings are produced using a calcu-
lation procedure known as the Standard Assessment
Procedure (SAP).

SAP is also used to assess whether new dwellings
comply with energy efficiency-related building regu-
lations (Part L1A) and is the calculation methodology
used in other UK government energy efficiency pro-
grammes. For example, EPCs calculated using SAP
form part of the assessment process for the Green
Deal scheme (the Green Deal assessment also includes
an Occupancy Assessment that use a dwelling’s

measured energy consumption to estimate the benefits
of upgrade measures). SAP is therefore one of the key
tools in use by the UK government to evaluate the
energy performance of dwellings.

A recent study (Fuerst, McAllister, Nanda, & Wyatt,
2013) found evidence of a positive correlation
between higher EPC ratings and higher dwelling price
per m2, finding that dwellings with the highest energy
ratings sold for 14% more per m2 than dwellings
with the lowest rating. This provides evidence that
the EPC rating system is helping to price energy effi-
ciency into the housing market and that there is a
real cost to dwelling owners of having a low EPC
rating.

In the context of existing dwellings, SAP is effectively
being used as a tool to incentivise dwelling owners to
improve the dwelling’s energy efficiency (as dwellings
with low ratings may be perceived as undesirable
when let or sold), as well as a tool for assessing the
appropriateness of various upgrades (e.g. in the
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Green Deal scheme). The goal of this paper is to under-
stand which inputs into the SAP calculation procedure
are the biggest cause of the observed variation in
energy ratings across UK dwellings, and thereby gain
insight into which interventions might be the most
effective in improving a building’s energy rating and
also which interventions the SAP methodology is
indirectly promoting. An understanding of the most
important factors in determining the energy rating
may also give some guidance on which inputs should
be determined the most accurately when performing
an energy rating assessment.

No attempt is made in this paper to assess SAP’s suit-
ability as a legislative tool; this has been discussed
recently, e.g., by Kelly, Crawford-Brown, and Pollitt
(2012). Nor is any attempt made in this paper to
assess how well the energy ratings calculated using
the SAP methodology correlate with real-world
energy use (e.g., see Kelly, 2011, for a discussion of
this; and de Wilde, 2014, for a more general discussion
of the gap between predicted and measured energy
performance).

This study investigates which of the inputs to the SAP
calculation process explain the variance in energy
rating across the existing gas central-heated English
houses, which account for approximately 68% of the
English dwelling stock (81% of UK dwellings are
houses, 90% of UK dwellings have central heating,
93% of UK dwellings are gas heated; DECC, 2012).
In this paper the word house is used to describe a dwell-
ing with a complete heat loss ground floor and a com-
pletely exposed roof, consistent with the definition
used in SAP. The variation in energy rating is quanti-
fied by applying variance-based global sensitivity
analysis (Saltelli, Tarantola, Campolongo, & Ratto,
2004). Data from the English Housing Survey (EHS)
2009 are used to develop probability distributions for
each input based on existing houses; a Monte Carlo
technique is then used to quantify the effect of the
input distributions on the model output.

The next section gives a brief overview of SAP. Pre-
vious studies that address its sensitivity are then
reviewed. Next the sensitivity indices used in this
study are introduced, as well as the scheme developed
to produce Monte Carlo samples representative of
English houses (where it is demonstrated that corre-
lations between some of the variables have an impor-
tant influence on the distribution of the model
output). The sensitivity indices for each input are
then produced and the implications discussed.

Overview of SAP
SAP is a simplified physics-based calculation of a
dwelling’s energy performance under standardized

conditions of occupancy and climate. It does not incor-
porate any use of measured energy data. Different ver-
sions of SAP can vary significantly in terms of core
algorithms, e.g. SAP 2005 was an annual calculation
based around degree-days as compared with SAP
2009 which uses a monthly calculation with an explicit
thermal capacity. This study uses SAP 2009 version
9.90, which is described fully in BRE (2010). A
bespoke implementation of SAP 2009 coded in the
Python language (http://www.python.org) has been
used in this study.

SAP is derived from BREDEM (Building Research
Establishment Domestic Energy Model), a well-
known model used to calculate the energy use of indi-
vidual UK dwellings (Anderson et al., 2002). SAP is
designed as an energy rating tool, whereas BREDEM
is a general-purpose dwelling energy model. The
main differences between SAP and BREDEM are that
SAP uses standardized occupant behaviour assump-
tions (such as heating demand temperatures and
heating periods), and standardized climatic inputs
representative of average UK values, instead of values
specific to the region in which the dwelling is located.
A consequence of this is that these fixed parameters,
which have been found to have a high sensitivity in pre-
vious studies of BREDEM-like models, are not assessed
in this study.

The core thermal dynamics calculation of SAP 2009 is
based on ISO (13790:2008) and is a two-zone, quasi-
steady-state, one-node lumped capacitance building
model. The dwelling’s thermal mass is characterized
by the thermal mass parameter (with units of kJ/
m2 K). Monthly mean internal temperatures are calcu-
lated from mean external temperature, internal and
solar heat gains, heat gain utilization factor, heat
losses through the fabric, the heating system hours of
operation, the heating system characteristics and the
dwelling’s thermal mass.

Coupled with the thermal response model are a set of
empirical algorithms for calculating the performance
of a range of heating systems. Heating systems are
characterized by responsiveness, control type and a
temperature adjustment factor:

. Responsiveness is a measure of how quickly the
heating system brings the dwelling to the set-
point temperature when it is switched on, e.g.
hot water radiators will tend heat a space faster
than an under-floor heating system. In SAP 2009,
buildings with a more responsive heating system
will also cool down faster than buildings with a
less responsive system (physically this is because
after being switched off under-floor heating will
tend to stay warm for longer than radiators, and
so slow the cooling of the dwelling). In SAP, the
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times between which the temperature set-point is
maintained are fixed, so a slower heating system
must be activated earlier to achieve the tempera-
ture set-point by the specified time. The effect of
the shorter ramping up and ramping down
period of more responsive systems is a lower
average internal temperature and consequently a
lower dwelling heat loss.

. Control type determines the temperature differ-
ence between the two thermal zones. It character-
izes how well controlled the temperature is in areas
other than the living space. For example, in dwell-
ings with one thermostat, which is common in the
UK, the temperature of other areas in the dwelling
is not directly controlled by the heating system.

. The temperature adjustment factor is applied to
the calculated mean internal temperature and
therefore increases or decreases the heat loss
depending on the type of heating system (e.g.
boiler-based systems without thermostatic temp-
erature controls are assumed to result in 0.68C
warmer temperature than systems with thermo-
static control).

SAP also specifies a set of equations for calculating the
number of occupants and various sources of internal
heat gain based on the dwelling floor area. It provides
standard factors for converting fuel consumption to
CO2 emissions. So although the core of SAP is rela-
tively simple and physics based, SAP and BREDEM
are a complex combination of a physics-based calcu-
lation, empirical-based relationships plus expert judge-
ments that have been developed and refined over a
period of three decades.

SAP calculates two different energy ratings for existing
dwellings: the EER, which is related to the dwelling’s
annual energy cost; and the EIR, which is related to
the dwelling’s annual emissions. EER is scaled such
that a rating of 100 corresponds to zero net annual
energy cost, with higher values representing lower
annual costs; EIR is scaled such that a rating of 100
corresponds to zero net annual CO2 emission, with
higher values representing lower annual CO2 emission.
These ratings are then converted into a letter grade
from A to G, with A being the most energy efficiency
and G the least (Table 1).

As well as the official EER and EIR, SAP calculates the
dwelling’s carbon emissions (in tonnes of CO2 per
year), energy cost (£/year) and primary energy con-
sumption (kWh/year). These may be evaluated in
absolute terms or relative to the dwelling floor area.
The carbon emissions, energy cost and primary
energy consumption are all closely related to each
other – all are calculated by multiplying the dwelling’s
fuel consumption by appropriate factors (e.g. in SAP

natural gas is assumed to have a cost of 3.1 p/kWh, a
primary energy factor of 1.02 and emissions of
0.198 kg CO2/kWh). As all the dwellings in this
study use the same heating system fuel, the emissions,
cost and primary energy consumption will be heavily
correlated with each other (there will be some differ-
ences due to the split between gas and electricity con-
sumption). This study therefore presents results for
the EER and EIR and for the gross and per floor area
carbon emissions.

Previous sensitivity analyses of SAP
Sensitivity studies of building energy models are often
approached from the point of view of building design
uncertainty: given a proposed design, what is the
effect of uncertainty in the design parameters (e.g.
due to tolerances in material properties, or climatic
variables)? Or alternatively from a design optimiz-
ation/robustness perspective: given a proposed
design, which variable is the performance most sensi-
tive to and how might those parameters be manipu-
lated either to improve the predicted performance or
to reduce the risk of underperformance?

These studies are typically performed with detailed
dynamic building thermal simulation programmes (as
they are usually interested in the detailed behaviour
of a proposed design or sometimes existing building).
Lomas and Eppel (1992) present a detailed comparison
of three sensitivity techniques applied to a detailed
thermal model of a simple single-zone example build-
ing, which using the terminology of Lomas and Eppel
are as follows:

. Differential sensitivity analysis (DSA), where the
input variables are varied a small amount one at
a time in order to calculate the local partial deriva-
tive of the model output with respect to each input.
The limitations of this approach, which is called
One-At-a-Time (OAT) using another paper’s

Table 1 StandardAssessment Procedure (SAP) rating bands

Rating Band

1^20 G

21^38 F

39^54 E

55^68 D

69^80 C

81^91 B

92 or more A

Energy rating of existing English houses
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terminology (Saltelli & Annoni, 2010), are dis-
cussed below.

. Monte Carlo analysis (MCA), in which a series of
model runs are performed, and for each run each
model input is set to a value selected at random
from a specified probability distribution. The
result of this is the distribution of model outputs
expected due to the assumed input distributions.
In the way in which MCA is applied by Lomas
and Eppel (1992) it is not possible to rank the
inputs in terms of their contribution to the
output distribution: the result of the analysis is
simply the total sensitivity of the model output.
This paper uses a similar analysis technique,
except that the approach used here takes the analy-
sis a step further and relates the variance of the
model output back to individual model inputs, so
that inputs can be ranked in order of importance.

. Stochastic sensitivity analysis (SSA), in which
inputs are varied at each time step of the
dynamic thermal model solution. As the model
under consideration in this paper is quasi-steady-
state, this approach is not applicable.

The comparison in Lomas and Eppel (1992) notes that
DSA produces individual sensitivities for each input
and the total sensitivity of the output, at the expense
of assuming that the system must be linear and addi-
tive, whereas MCA produces only total sensitivity
information but without imposing additional assump-
tions (a linear system is one in which changes in the
output are directly proportional to the changes made
to the inputs; an additive system is one in which the
sum of effects of changing individual inputs one at a
time from a base value is the same as changing all the
inputs simultaneously, i.e. there are no interactions
between variables). As will be explained below, the
technique used in this paper is based on MCA and pro-
duces both individual and total sensitivities without
making assumptions of the underlying model.

This study takes a slightly different approach to many
previous studies as it addresses the sensitivity of the
SAP model output across an entire stock of existing
dwellings (i.e. gas central-heated English houses). The
target of the study is the model itself rather than a
specific dwelling design, however the same basic prin-
ciples apply.

The factors affecting the SAP energy rating of individ-
ual houses have not previously been explicitly assessed,
however three recent papers have explored the sensi-
tivity of BREDEM-based housing stock models. It
seems reasonable to expect broadly similar sensitivity
results for individual dwellings as for a full housing
stock as many of the input variables are monotonic
with the output, and stock models are linear super-

positions of individual building models. For example,
increasing boiler efficiency will always decrease emis-
sions calculated by the model, all else being equal.
Some variables, however, are not monotonic (such as
glazing area – increased glazing area both increases
solar heat gains and dwelling heat loss, so that depend-
ing on other dwelling properties there may be an
optimum value for this input), and the relative effect
of the variables on individual dwellings versus the
entire stock may be different.

Firth, Lomas, and Wright (2010) present a model of
the UK residential stock, the Community Domestic
Energy Model (CDEM), which is based on modelling
47 dwelling archetypes, designed to be representative
of the entire stock. A DSA is conducted on the 27
model inputs, from which it is determined that the
model is most sensitive to heating demand tempera-
ture, heating period, dwelling size, gas boiler efficiency
and wall U-values. For example, the normalized sensi-
tivity coefficient of heating demand temperature is
determined as 1.55, meaning that at 1% increase in
heating demand temperature (in 8C) across the stock
would result in a 1.55% increase in emissions. Simple
tests were conducted to show that the model was
roughly linear with respect to the input variables
(over the range of inputs considered) and that for
small changes in the input variables (1% changes) the
model was additive. It is noteworthy that temperatures
were measured in degrees Celsius for this analysis as
opposed to degrees Kelvin. If the average external
temperature were, hypothetically, 08C, then a 1%
change would be zero, and the misleading conclusion
could be reached that the model is insensitive to
changes in external temperature.

Cheng and Steemers (2011) present a similar study using
a different BREDEM-based UK housing stock model,
the Domestic Energy and Carbon Model (DECM).
DECM uses models of the 16 194 dwellings surveyed
in the English Housing Condition Survey 2007 data.
Their results largely match the results of Firth et al.
(2010), with the most important variables being mean
internal temperature of the living area, total floor
area, external air temperature, gas boiler efficiency,
and wall and window U-values. They find evidence
that DECM is linear over approximately a +10%
range of the input variables, and develop curves for pre-
dicting the effects of larger changes in the input vari-
ables; however they find that the model is in general
not additive for changes in inputs larger than 1%.

Hughes, Palmer, Chang, and Shipworth (2013) present
a sensitivity analysis of the Cambridge Housing Model
(CHM), which is largely similar to the model of Cheng
and Steemers (2011), except that it uses SAP 2009 as its
building model (compared with SAP 2005 in Cheng &
Steemers, 2011; Firth et al., 2010). As well as calculat-
ing the normalized sensitivity coefficient, their study
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performs an MCA to assess the combined effect of the
input variable uncertainty on the model output;
however the relative effects of the individual variables
are not assessed in the Monte Carlo section of their
study.

All three studies suggest that the mean internal temp-
erature, dwelling size, heating efficiency and U-values
are important factors in determining the output from
BREDEM. The mean internal temperature is not an
input that can be directly manipulated in SAP,
however it is expected that the other variables will be
important in determining the output from SAP.

Local versus global sensitivity
The studies of Firth et al. (2010), Cheng and Steemers
(2011), and Hughes et al. (2013) are a form of local
sensitivity analysis (apart from the MCA performed
in Hughes et al.): they assess the sensitivity of the
model to deviations in the model inputs in the region
of a predefined point, the base case. As is usual in a
local sensitivity analysis, both studies use a ‘best
guess’ of the correct value of each input and examine
the effects of departures away from this point. This
provides useful information about the sensitivity of
the model in the region of the base case. However,
except in the case of linear, additive models, the local
sensitivity of each model input will change depending
on the assumed base case. As shown in Cheng and Stee-
mers (2011) and Hughes et al. (2013), their BREDEM
stock model is non-linear and non-additive (except for
very small changes in the inputs). Even though the local
sensitivity was evaluated over a large range for each
input variable, the DSA method used in these studies
only changes one variable at a time away from the
base case, and this can be shown to explore a surpris-
ingly small region of the input space.

The DSA method has also been called the One-At-a-
Time (OAT) method (Saltelli & Annoni, 2010). Saltelli
and Annoni (2010) develop an upper bound for how
much of the solution space the DSA method can
explore, even if each input variable is varied over its
maximum possible range. Their approach shows that
in the case of a model with two inputs, at most
78.5% of the solution space can be explored, but
that this rapidly drops as more variables are added.
For three dimensions, at most 52.4% of the solution
space can be explored by varying a base case model
one input at a time. For 12 dimensions no more than
0.0326% of the solution space can be explored using
the OAT approach.

If the model’s sensitivity to its inputs varies signifi-
cantly across the input space (where the input space
is defined by the maximum possible ranges that have
been assigned to each input), then the result of a 12-

dimensional, one-at-a-time local sensitivity analysis
becomes heavily influenced by the values that were
chosen as the base case around which the variation is
conducted and the results of the analysis are anchored
to the original choice of the base case.

Global sensitivity analysis assesses the sensitivity of the
model output to variation of the model inputs indepen-
dently from any assumed base case value (Saltelli et al.,
2004). A simple but inefficient way of doing this would
be to repeat the one-at-a-time local sensitivity analysis
for many different base cases, in effect performing an
MCA of the sensitivity measures. The resulting sensi-
tivity measures would then depend only on the distri-
butions assumed for each input, not on any
individual base case selected. The next section
describes the variance-based global sensitivity indices
that are used in this study.

Variance-based sensitivitymeasures
This study uses variance-based global sensitivity
indices to evaluate the relative importance of the SAP
model inputs (in the context of modelling gas central-
heated English houses). The sensitivity indices used in
this study are not new and are well documented in
several previous publications: the method used in this
study closely follows that of Saltelli et al. (2010). The
overall approach is illustrated in Figure 1.

Each model input is assigned a probability distribution
based on the occurrence of that input in the stock of gas
central-heated English houses. As a result, the model
output also has an associated probability distribution.
The aim of variance-based global sensitivity analysis is
to determine how the model inputs contribute to the
variance of this output distribution. If the output of
interest is the EER, for example, then the probability
distribution of the model output will be the same as
the distribution of the EER across the stock, and the
goal of the sensitivity analysis is to determine how
the model inputs contribute to the variance in the EER.

If an input variable is fixed to a known value instead of
being assigned a probability distribution, then the var-
iance of the output distribution will be reduced. In the
extreme case where all the model inputs are fixed, the
model output has zero variance, i.e. it is a single fixed
value. Generally the magnitude of the reduction in var-
iance due to fixing a particular model input will depend
on the value that the input is fixed to, so the expected
variance is defined, which is the remaining variance
in the output averaged over all the values to which
the input could be fixed (taking into account the prob-
ability of each input value occurring).

Let the model be represented as Y = f (X), where Y is
the model output and X = (X0, X1, . . . , Xk) is a

Energy rating of existing English houses
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vector of k random variables representing the model
inputs. The variance of the model output is denoted
V(Y).

The sensitivity index of Y to Xi is then defined as (Salt-
elli et al., 2004):

Si =
V(Y) − E(V(Y|Xi))

V(Y)

where V(Y|Xi) is the remaining variance of Y after
variable Xi has been fixed to a certain value; and
E(V(Y|Xi)) is the expected value of this variance
across all possible values of Xi. So Si is the expected
reduction in the variance of the model output if
input i is fixed. Si will always be scaled from 0 to 1,
and the larger Si, the more that input contributes to
the variance of the output. Hence, this is a good
measure for determining which of the input variables
would most reduce variance in the model output if
they were fixed to their correct value (Saltelli et al.,
2004). Other names for this measure include the
importance factor, correlation ratio and first order
effect.

The Si’s will sum to less than or equal to 1 in the
case of uncorrelated model inputs. If the model is
purely additive, i.e. there are no interaction effects
between the variables, then the Si’s will sum to
exactly 1.

The second sensitivity index used in this study is the
total sensitivity index, which is defined as (Saltelli

et al., 2004):

ST,i = 1 − V(E(Y|X−i))

V(Y)

The notation E(Y|X−i) means the expected value of Y
given that all inputs apart from Xi have been fixed.
The V(E(Y|X−i)) term is therefore the variance
expected to remain if all inputs other than Xi were
fixed (sometimes referred to as the bottom marginal
variance). ST,i is therefore 1 minus the proportion of
V(Y) that would be left if all variables apart from Xi

had been fixed (Saltelli et al., 2004). This sensitivity
index therefore includes the effects of interactions
between variable Xi and other variables. In additive
models with uncorrelated inputs, ST,i will equal Si. If
the model is non-additive, ST,i will be larger than Si.
ST,i is a good measure to use when deciding which (if
any) of the model inputs can be set to fixed values
without significantly changing the output of the
model, i.e. for removing unimportant inputs from the
model (Saltelli et al., 2004). If ST,i is close to 0, then
the variable is not influential.

These sensitivity indices are model free as they make no
assumptions about the underlying model: the model
does not need to be additive and there is no assumption
of linearity or assumption that the model output is
monotonic to model inputs.

In the case of uncorrelated inputs, these sensitivity
indices can be calculated efficiently using Monte
Carlo-based estimators (Saltelli et al., 2010). As will
be discussed in the next section, care has been taken
to select a set of factors that can be treated as if they

Figure 1 Overall calculation approach
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are uncorrelated, so that these efficient estimators can be
used. The exact estimators used are presented below.

Generating the input distributions
The probability distribution assigned to each input is
the probability distribution of that input across the

gas central heated subset of the English housing
stock. The EHS is the main data source in this study.
The EHS includes a physical survey of approximately
16 600 dwellings, of which approximately 12 500 are
houses, and is published annually (in this work data
from the 2009 survey have been used). The data
recorded in the EHS do not correspond exactly to the

Table2 StandardAssessmentProcedure (SAP) inputsvaried in the sensitivity analysis, the factors intowhich theyare grouped, the range
of possible values (excluding the highest and lowest 2.5%), and themedian value

ID SAP input Sensitivity study factor Percentile Median Unit

2.5th 97.5th

0 Total £oor area geometry 44.2 243.6 90.1 m2

1 Number of storeys geometry 1 4 2 ^

2 Storey height geometry 2.2 2.9 2.5 m

3 Roof heat loss area geometry 27.4 125.0 48.2 m2

4 External wall area geometry 27.4 198.8 84.7 m2

5 Ground £oor heat loss area geometry 27.4 125.0 48.2 m2

6 Party wall area geometry 0.0 149.9 30.2 m2

7 Glazing area (for each orientation) geometry 8.3 64.0 23.2 m2

8 Living area fraction geometry 0.1 0.3 0.2 ^

9 RoofU-value Uroof 0.1 2.3 0.4 W/m2 K

10 External wallU-value Uextwall 0.4 2.5 1.6 W/m2 K

11 Ground £oorU-value Ugnd£oor 0.0 0.9 0.7 W/m2 K

12 GlazingU-value glazing____type Single glazing (13%); double glazing (87%)

13 Percentage of windows draught stripped glazing____type

14 Glazing g-value glazing____type

15 Glazing light transmittance glazing____type

16 Thermal mass parameter thermal____mass____parameter 103.2 509.5 232.9 kJ/m2 K

17 Fraction of low energy bulbs low____energy____bulb____ratio 0.0 1.0 0.2 ^

18 Number of open £ues N£ues 0 2 0 ^

19 Number of intermittent fans and passive vents Nfansandpassivevents 0 (67%); 1 (18%); 2(4%); 3(6%); 4(5%)

20 Number of £ueless gas ¢res N£uelessgas¢res 0 1 0 ^

21 Floor in¢ltration £oor____in¢ltration 0.1 0.2 0.2 ach

22 Window frame factor frame____factor 0.7 0.8 0.7 ^

23 Main heating system e⁄ciency main____sys____e¡y 50.0 91.3 65.0 %

24 Main heating system control type heating____control____type 1 (51%); 2(48%); 3(1%)

25 Main heating system temperature adjustment temperature____adjustment 20.15 0.60 0.00 C

26 DHWcylinder volume hw____cylinder____volume None (51%); 110 L (27%); 140 L (17%); 210 L
(3%); 245 L (1%)

27 Cylinder insulation type hw____cylinder____insulation____type Jacket (26%); factory applied (71%); none
(3%)

28 Cylinder insulation thickness hw____cylinder____insulation 0 150 25 mm

29 Cylinderstat has____cylinderstat Yes (75%); no (25%)

Notes: For category variables the probability for each category has instead been listed.
Cylinderstat ¼ thermostat for domestic hot water cylinder.
DHW ¼ domestic hot water.

Energy rating of existing English houses
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inputs required for an SAP calculation (e.g., the survey
does not measure U-values; they must instead be
assumed based on dwelling age, which is recorded in
the survey). In this study the methodology described
in CAR & UCL (2012) is used to generate the required
inputs. Table 2 lists the SAP inputs generated, and indi-
cates the ranges of values extracted from the EHS
dataset. Table 3 lists the inputs that are set to fixed
values throughout this study, in most cases because
the study is restricted to gas-heated houses, but in
some cases due to a lack of available data (e.g. in the
absence of better information, it is assumed that all
houses have two external doors).

Each dwelling in the EHS dataset represents several
hundred dwellings in the UK, however the distribution
of surveyed dwelling types does not exactly match the
distribution of dwelling types in the English housing
stock, as certain types are over-sampled in order to
achieve adequate sample sizes. The survey therefore
includes a weighting factor for each of the surveyed
dwellings which must be used to reproduce correctly

stock-wide distributions. These weightings are
included in the generated probability distributions so
that an extra weighting step is not required during
the sampling process.

Some of the inputs in Table 2 are strongly correlated
with each other, e.g. floor area and external wall area.
Neglecting these correlations has the potential to skew
the results of the MCA. For example, consider the
case of floor area and external wall area. Houses with
a large floor area tend to have a large wall area, hence
these variables are correlated with each other. In
general, a UK house with a larger floor area is likely to
have a higher energy use than a house with a smaller
area; and a house with a larger external wall area is
likely to have higher energy use than a house with a
smaller wall area. The effect of these two variables
being correlated across the housing stock therefore is
to produce more extreme values in the output, increas-
ing the output variance. If this correlation were ignored
and a stock were generated with the correct distri-
butions of floor area and wall area except that they
were uncorrelated with each other, then the spread in
the model output would be reduced and the variance
in the model output would be reduced.

It is possible to calculate the sensitivity indices
described previously in the presence of this type of cor-
relation by using a Monte Carlo sampling scheme that
preserves the correlations, e.g. using replicated Latin
hypercubes (McKay, 1995), but this significantly
increases the complexity of the procedure and also
complicates the interpretation of the resulting indices
(since in the presence of correlations between the vari-
ables, fixing one variable to a known value will affect

Table 3 StandardAssessment Procedure (SAP) inputs set to
¢xed values in the study

SAP input Fixed value

External door area 2∗1.89 m2

Party £oor area 0

Party ceiling area 0

Party wallU-value 0.2 W/m2 K

External doorU-value 3 W/m2 K

Thermal bridging y-value 0.15 W/m2 K

Ventilation system Naturally ventilated

Number of chimneys 0 (it is assumed that most chimneys
qualify as £ues)

Structural in¢ltration Masonry wall ^ 0.35

Draught lobby exists? Yes

Number of sheltered
sides

2

Window over-shading Average over-shading

Glazing orientation East/west

Main heating system
type

Gas boiler

Main heating system
emitter type

Radiators, responsiveness ¼ 1

DHWsystem Main heating boiler

Water heating e⁄ciency Same asmain system e⁄ciency

Is primary pipework
insulated?

No

Secondary heating
system type

None

Note:DHW ¼ domestic hot water.

Figure 2 Plot of the absolute value of the Spearman rank
correlation coe⁄cient between each of the input variables. x-
and y-axes’ values refer to the variable identi¢cations shown in
Table 2. The inputs corresponding to the glazing type and
geometry factors are highlighted by the dashed squares
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the sensitivity of the output to the correlated variables).
It is therefore simpler to choose the inputs such that
there are no correlations.

Figure 2 shows the Spearman rank-order correlation
coefficient between each pair of variables, where the
x- and y-axes’ values show the variable identification
(ID) from Table 2, and the colour scale shows the
absolute value of the correlation coefficient. The two
groups of correlated variables highlighted on the plot
are the glazing type variables and the building geome-
try variables.

The glazing g-value, light transmittance, U-value, and
presence or absence of draught stripping are all corre-
lated. This is unsurprising as these inputs are all gener-
ated according to the window type specified in the EHS
data. This makes physical sense as these properties are
all more or less determined by the number of panes of
glazing present (though coatings and different thick-
nesses of the layers can cause variations). A new
input is therefore defined called glazing_type which
can take the value ‘single’ or ‘double’, according to
the relative frequency of occurrence of single- and
double-glazing in the EHS stock. The glazing proper-
ties are then all set according to the randomly selected
value of the glazing_type.

The variables describing building geometry are also
unsurprisingly correlated with each other. It is possible
to devise a set of geometry inputs that are less corre-
lated with each other (e.g. glazing ratio is less corre-
lated with floor area than is glazing area), but no set
of inputs that were adequately uncorrelated could be
found in this study. Instead the geometry from each
of the houses in the EHS dataset is taken as a whole.
A new integer variable called geometry is defined and
used to select between the EHS geometries. For
example, if geometry is assigned the value 100, then
the geometry of the 100th house in the EHS dataset
will be used for the generated house. Table 2 shows
which SAP inputs are driven by the geometry variable.
The variable is weighted so that different geometries
occur with the same relative frequency as they do in
the EHS dataset. In this way the correlations between
the geometric inputs are preserved at the expense of
being unable to ascertain the relative importance of
the individual geometric variables.

A few other variables are quite strongly correlated, e.g.
wall U-value, number of passive vents and floor infil-
tration (variable IDs 10, 19 and 21). This is because
these variables are derived in whole or in part from
the age of the dwelling indicated by the EHS data.
Also the thermal mass parameter (variable 16) is corre-
lated with some of the geometric inputs. This is
because the thermal mass parameter is calculated in
part from the internal exposed areas. These inputs
are treated as uncorrelated for the purpose of this

study, which, as will be shown in the next section,
does not significantly affect the calculated distribution
of emissions.

To avoid confusion, the term factor is used to refer to
the parameters varied in the sensitivity analysis, versus
input which refers to the input values required to
perform an SAP calculation. The final model inputs
are derived from the assigned values of the factors,
and in the case of the geometry and glazing_type
factors several model inputs are determined based on
the factor’s assigned value.

The next section verifies that the sampling scheme
described above adequately replicates the distribution
of energy ratings that arises from running the EHS
dataset directly through the SAP model.

Comparing theMonte Carlo sampleswith
EHS data
As this study analyzes the variance of the output of the
SAP calculation procedure, it is important that the gen-
erated samples produce the same output distribution as
would be obtained by using the EHS dataset directly,
i.e. that the Monte Carlo samples adequately represent
the characteristics of the surveyed gas central heated
houses.

Figure 3 shows the cumulative probability distribution
of the CO2 emissions of the gas central heated houses
in the EHS stock compared with a Monte Carlo-gener-
ated stock where all the SAP inputs were allowed to
vary independently, and with a Monte Carlo stock
where the sensitivity analysis factors were varied inde-
pendently (so that the model inputs related to the geo-
metry factor, for example, will be correlated as they are
in the EHS stock). The Monte Carlo stocks consist of
1000 houses each, as this is sufficient to detail accu-
rately the overall output distribution. Visually the
uncorrelated factors case is much closer to the original

Figure 3 Distribution of dwelling CO2 emissions for the English
Housing Survey (EHS) stock and the Monte Carlo-generated
stock with (a) uncorrelated model inputs and (b) using the
geometry and glazing-type factors to produce correlated inputs

Energy rating of existing English houses
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EHS distribution than the uncorrelated inputs case.
The uncorrelated inputs distribution shows fewer
extreme values (the slope of the curve around the stee-
pest part is steeper for the uncorrelated case), as
expected.

The Kuiper test (Press, Teukolsky, Vettering, & Flan-
nery, 1992) is a standard statistical test for assessing/
testing whether two datasets are likely to be drawn
from the same underlying distribution. Testing the
null hypothesis that the distribution of CO2 emissions
produced by the generated input samples is the same
as that produced by the EHS data, a Kuiper test stat-
istic of 0.0514 is obtained, and there is a 0.17 prob-
ability of a statistic this large arising from a sample
of size N ¼ 1000 drawn from the EHS data (larger
values of the test statistic indicate bigger differences
between the two distributions). The null hypothesis
is therefore accepted. In other words, the chosen
parameterization of the model inputs has not signifi-
cantly affected the calculated distribution of CO2

emissions.

The 19 grouped factors are therefore used in the Monte
Carlo calculation of the sensitivity indices, rather than
treating all 29 SAP inputs individually.

Calculating the sensitivity indices
As discussed previously, in order to calculate the sensi-
tivity indices Si and ST,i, the two terms E(V(Y|Xi)) and
V(E(Y|X−i)) must be determined. Saltelli et al. (2010)
present an efficient method for estimating these quan-
tities. Two sets of N dwellings are generated using
the Monte Carlo approach outlined above. The
larger N, the more accurate the end result will be,
but the more model evaluations will be required. The
two sets of dwellings are denoted A and B; these can
be thought of as matrices with one row for each of N
dwellings and one column for each input. Another set
of dwellings is generated for each model input, AB,i,
which is the same as A, except that the ith
column has been replaced with values from column i
of B. The notation f (Aj) means the result of the
SAP calculation for the jth dwelling in A. Saltelli
et al. then give estimators for each of the terms
required:

E(V(Y|Xi)) = V(Y) − 1

N

∑N

j=1

f (Bj)(f (AB,ij) − f (Aj))

V(E(Y|X−i)) = V(Y) − 1

2N

∑N

j=1

(f (AB,ij) − f (Aj))
2

Bespoke Python code was implemented to perform
these calculations.

The calculated sensitivity indices are themselves uncer-
tain due to the limited numerical accuracy of Monte
Carlo methods. It was found that using N ¼ 30 000
gave a reasonable balance between accuracy and calcu-
lation time, so that the total number of SAP calcu-
lations was 60 000 plus an extra 30 000 for each
model input.

Sensitivity results
Tables 4 and 5 show the calculated Si’s and ST ’s for
the EER, EIR, modelled emissions and modelled
emissions per unit floor area. The same three vari-
ables, geometry, heating system efficiency and exter-
nal wall U-value, are identified as the most
important for all four outputs. The Fuerst et al.
(2013) study of the impact of EPC rating on dwelling
house price also found evidence that older dwellings
tend to have lower EPC ratings. This is consistent
with the results presented here as older dwellings
will tend to have a lower heating system efficiency
and worse external wall U-values.

In all cases, the Si’s for these three variables sum to
more than 0.75, indicating that over 75% of the var-
iance in the model output can be attributed to these
variables. This means that over 75% of the variance
in EER and EIR rating for existing gas central-heated
English houses is explained by geometry, wall U-
value and heating system efficiency.

To illustrate this, the model estimate of the median
EER for the stock included in this study is 62.8 with
90% of houses falling in the range 48.1–73.5. The
equivalent median and range for EIR are 52.6 and
38.9–64.7, respectively (Table 6). If the heating
system efficiency and external wall U-value are fixed
to their median values of 68% and 1.6 W/m2 K, and
the dwelling geometry is fixed to match a house with
a floor area matching the median stock floor area of
88.3 m2, then the resulting median EER is 59.4 with
90% of houses being in the range 52.3–63.2, and the
median EIR is 48.5 with 90% in the range 42.0–
52.7. A grading band in SAP is on average 14.3
points wide (ranging from 20 points for grade G to 8
points for grade A), so the range of 10.9 points from
52.3 to 63.2 is less than a typical grade (though in
this case the range 52.3–63.2 sits across the boundary
between grades D and E).

Similarly for carbon emissions, the model estimate of
the median carbon emissions for the stock included
in this study is 5094 kg CO2/year, with 90% of
houses falling in the range 3090–9945 kg CO2/year.
Fixing the heating system efficiency, external wall U-
value and geometry as above results in median dwell-
ing emissions of 5208 kg CO2/year and 90% of
houses fall in the range 4788–5797 kg CO2/year, or

Stone et al.

734

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 C

ol
le

ge
 L

on
do

n]
 a

t 0
3:

15
 1

2 
D

ec
em

be
r 

20
14

 



28.1% to 11.3% of the median value. Note that geo-
metry is relatively much more important for total
carbon emissions than for EER and EIR, because
EER and EIR are both normalized to the dwelling
floor area, which tends to reduce the importance of
the geometry inputs.

Fixing the next four variables to their median values,
roof U-value (median ¼ 0.395 W/m2 K), thermal
mass parameter (median ¼ 238 kJ/m2 K), ground
floor U-value (median ¼ 0.707 W/m2 K) and hot
water cylinder insulation thickness (median ¼

25 mm) further reduces the range, with the median
EER now being 59.5 and 90% of houses in the range
55.6–62.4 and the median EIR being 48.8 with 90%
in the range 44.8–51.6.

This means that 90% of houses with the specified geo-
metry, heating system efficiency, external wall U-
value, roof U-value, ground floor U-value, thermal
mass parameter and hot water cylinder insulation
thickness will have an EER and EIR grade of D. The
other model inputs are therefore unimportant in deter-
mining the grade for these houses. The exact range of

EER and EIR remaining is specific to the values at
which the seven factors are fixed, but it illustrates
how a relatively small number of factors account for
the majority of the variance in the rating.

The sum of the first-order sensitivity coefficients com-
pared with the total sensitivity coefficients gives some
indication of the additivity of the model. The sums of
the first-order sensitivity coefficients for the outputs
are in the range 0.94 and 0.98 and total sensitivity is
in the range 1.03–1.05. This indicates that there are
some interactions between the variables within the
model, but not so large as to dominate the results.
This matches the previous findings of Cheng and Stee-
mers (2011) that their BREDEM-based stock model
was additive for small changes in the input variables.

Note how the sensitivity indices account for the expected
distribution of the model inputs. For example, external
wall U-value and roof U-value both act on the model
in the same way: as a term in the fabric heat loss. It
might therefore be expected that the sensitivity of the
model to these two inputs would be similar. However,
according to the stock generated from the EHS data,

Table 4 First-order and total sensitivity coe⁄cients for EnergyE⁄ciency Rating (EER) and Environmental Impact Rating (EIR)

Factor EER EIR

Si St Si St

main system e⁄ciency 0.3157 0.3236 0.3308 0.3326

U-value external wall 0.2305 0.2548 0.2394 0.2571

geometry 0.2199 0.2641 0.2195 0.2508

U-value roof 0.0768 0.0979 0.0745 0.0883

thermal____mass____parameter 0.0184 0.0214 0.0170 0.0186

U-value ground £oor 0.0158 0.0183 0.0176 0.0196

hw____cylinder____insulation 0.0145 0.0131 0.0135 0.0128

glazing type 0.0109 0.0138 0.0109 0.0136

heating____control____type 0.0096 0.0133 0.0115 0.0137

temperature____adjustment 0.0074 0.0078 0.0065 0.0070

low____energy____bulb____ratio 0.0055 0.0055 0.0024 0.0026

has____cylinderstat 0.0040 0.0059 0.0044 0.0060

hw____cylinder____insulation____type 0.0038 0.0052 0.0039 0.0054

Nfansandpassivevents 0.0022 0.0015 0.0022 0.0016

N£ues 0.0022 0.0027 0.0019 0.0029

£oor____in¢ltration 0.0011 0.0011 0.0016 0.0012

hw____cylinder____volume 0.0009 0.0023 0.0011 0.0022

frame____factor 0.0002 0.0002 0.0002 0.0002

N£uelessgas¢res 0.0001 0.0001 0.0001 0.0001

Total 0.9394 1.0524 0.9590 1.0363

Energy rating of existing English houses
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roof U-values are on average lower than external wall U-
values (median ¼ 0.4 versus 1.6 W/m2 K) and roof heat
loss areas are smaller than external wall heat loss areas
(median ¼ 48.2 versus 84.7 m2). The sensitivity indices
for external wall U-values are therefore significantly
higher than for roof U-values.

The sensitivity to the low energy lighting input is larger
for EER than for EIR (the total sensitivities are 0.0055

and 0.0026, respectively). This is because in SAP elec-
tricity is 3.7 times more expensive than gas and has
associated emissions of 2.6 times that of gas, so for
gas-heated dwellings the electricity consumption
accounts for a larger portion of the EER, which is
cost based, than the EIR, which is emissions based
(and therefore inputs that directly affect electricity con-
sumption will tend to be more important for the EER
than the EIR).

Table 5 First-order and total sensitivity coe⁄cients for gross CO2 emissions (kg/year) and emissions per squaremetre (kg/m2/year)

Factor Gross emissions (kg/year) Emission per squaremetre (kg/
m2/year)

S0 St S0 St

geometry 0.8107 0.8405 0.3583 0.3940

main system e⁄ciency 0.0817 0.0930 0.2835 0.2894

U-value external wall 0.0598 0.0740 0.2153 0.2421

U-value roof 0.0081 0.0101 0.0281 0.0329

glazing type 0.0049 0.0053 0.0124 0.0132

heating____control____type 0.0036 0.0047 0.0115 0.0125

thermal____mass____parameter 0.0028 0.0043 0.0078 0.0088

hw____cylinder____insulation____type 0.0013 0.0009 0.0052 0.0053

temperature____adjustment 0.0012 0.0022 0.0050 0.0066

U-value ground £oor 0.0011 0.0010 0.0025 0.0032

hw____cylinder____insulation 0.0010 0.0010 0.0055 0.0054

has____cylinderstat 0.0007 0.0010 0.0052 0.0056

Nfansandpassivevents 0.0005 0.0003 0.0015 0.0016

N£ues 0.0004 0.0005 0.0041 0.0027

£oor____in¢ltration 0.0003 0.0004 0.0012 0.0010

low____energy____bulb____ratio 0.0003 0.0005 0.0017 0.0018

hw____cylinder____volume 0.0003 0.0002 0.0013 0.0013

N£uelessgas¢res 0.0001 0.0000 20.0001 0.0001

frame____factor 0.0000 0.0000 0.0003 0.0002

Total 0.9788 1.0397 0.9503 1.0279

Note: The small negative value is not physically possible and is caused by the numerical error in theMonte Carlo integration.

Table 6 E¡ect on themedian and range of the Energy E⁄ciencyRating (EER) andEnvironmental Impact Rating (EIR) of setting themost
important model factors to ¢xed values

EER EIR

Median 5th percentile 95th percentile Median 5th percentile 95th percentile

No factors ¢xed 62.8 48.1 73.5 52.6 38.9 64.7

Top three factors ¢xed 59.4 52.3 63.2 48.5 42.0 52.7

Top seven factors ¢xed 59.5 55.6 62.4 48.8 44.8 51.6
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Conclusions
The results of the previous section demonstrate that the
factors with the largest contribution to the observed
variance in energy rating are geometry, heating
system efficiency and external wall U-value. Together
these account for just over 75% of the variance in
energy rating. However the remaining variance rep-
resents a fairly large range in energy rating. Fixing
the next four most important factors, roof U-value,
ground floor U-value, thermal mass parameter and
hot water cylinder insulation thickness, was shown to
reduce the expected remaining variance to around
10% of the total observed variance, to a point where
most houses that share common values for those
seven parameters are likely to share the same EER
and EIR grades (fixing the seven most important
factors is equivalent to fixing 15 out of 30 of the SAP
input variables considered in this study).

The sensitivity of a particular input is a measure of how
much the observed variation in that input across the
stock affects the model output. A high sensitivity there-
fore indicates either that the model is very sensitive to
that input or that there is a wide range in observed
values of that input across the stock (or a combination
of these). Conversely, a small sensitivity coefficient indi-
cates either that the model is not sensitive to the value, or
that there is little variation in the input across the stock.

To the extent to which SAP is an accurate description
of energy use in UK houses, these results are useful
when thinking about energy upgrades to existing
houses. If the goal is to reduce carbon emissions, then
according to the results presented in this study the
areas with the largest scope for improvement in the
existing housing stock are heating system efficiency
and external wall U-value (though this study looks
only at gas-heated houses: alternative fuel heating
systems may be of interest in an energy upgrade
project). This matches well with what is already
known: improving boilers and insulating external
walls are effective strategies; however these results
indicate that there may still be considerable scope for
improvement in the existing stock (though it will not
be technically possible or financially viable to
upgrade all existing houses). This study therefore con-
firms that to the extent that an energy rating influences
dwelling owner behaviour, the SAP energy rating
methodology does encourage the upgrade of wall insu-
lation and improved efficiency of heating systems.

Interestingly the glazing type (single- versus double-
glazing) appears relatively far down the list of
important factors. This is likely to be because of the
prevalence of double-glazing across the housing stock
(90% of UK dwellings have some level of double-
glazing; DECC, 2012). Since a large number of dwell-
ings will therefore have the same value for this model

input, it becomes unimportant in determining the vari-
ation of the energy rating across the stock. This indicates
that there is now much less scope for improving the per-
formance of the existing stock by upgrading windows.

The results also show that dwelling geometry is a very
important factor, with over 80% of the variance in
annual CO2 emissions being caused by geometric
inputs. This is not something that can easily be
changed for existing dwellings, but is something that
could be looked at closely for new dwellings. This
result might also have implications for adding exten-
sions to existing dwellings. Of interest is the difference
in importance of the dwelling geometry between gross
CO2 emissions, where it accounts for over 80% of the
variance, and EER and EIR, where it accounts for
around 20% of the variance. EER and EIR are both
normalized by dwelling floor area, so as to avoid pena-
lizing large dwellings; however this does mean that
energy ratings have a different sensitivity to the key
variables than the output that we really want to
control, which is carbon emissions (or perhaps total
energy cost, which will be closely correlated with
carbon emissions). Designing dwellings to achieve a
better EER and EIR by improving heating system effi-
ciency and wall U-value therefore might not result in
dwellings with significantly lower CO2 emissions if
the dwelling geometry remains unchanged. It is not
very practical to suggest controlling dwelling floor
area, which is controlled by market forces and expec-
tations other than energy consumption, but a closer
study of the variables encapsulated by this factor
might provide useful guidelines. The approach used
in this paper combined all the geometry-related vari-
ables in order to avoid the complications arising from
having correlated inputs in the MCA. A logical next
step would be to repeat this analysis using an approach
such as replicated Latin hypercube sampling (McKay,
1995) in order to understand which of the geometry
variables have the largest impact.

This study has shown the importance of correlations
between the SAP input variables. Any future Monte
Carlo study of SAP (and it seems reasonable to
extend this result to BREDEM) risks underestimating
the extremes of dwelling emissions if these correlations
are not accounted for.

As the input distributions used in this study were
derived from a stock of existing dwellings, the sensi-
tivity results presented are only valid in that context.
The probability distribution of many of the inputs for
new-build dwellings will be significantly constrained
compared with the stock as a whole, as modern build-
ing regulations place strict limits on many aspects of
new buildings. It would be interesting to repeat this
study using input distributions more appropriate to
new dwellings in order to understand which design
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parameters are most critical in meeting or exceeding
building regulations.

The EHS dataset, in combination with assumptions
from sources, has been used as the basis for determin-
ing the distribution of dwelling properties across the
stock. Like any survey, the EHS has uncertainties
arising from sampling errors, weighting errors and
instrument errors which introduce variable levels of
inaccuracy and imprecision across the variables
measured. The effect of this will be to cause the input
distributions drawn from the survey to differ from
the real distributions. This has not been accounted
for in this study. In general the effects of random
measurement errors should cancel out when the input
probability distributions are derived, but any systema-
tic measuring error will obviously affect the estimate
distribution and may therefore affect the sensitivity
results. In particular, the age bands used in the EHS
survey group all post-1990 dwellings into the same cat-
egory, so that new-build dwellings, which will likely
have much improved energy performance, are not
well represented in the EHS stock.

This analysis has not included the effect of renewable
energy systems attached to the dwelling. Primarily
this is because the EHS dataset from 2009 predates
the UK’s Feed-in Tariff scheme and so renewable
energy systems were relatively rare in the stock (and
hence contributed little to the variance in energy
rating across the stock). With the recent growth in
photovoltaic systems in the UK, it would be interesting
to repeat this analysis when a more recent dataset
becomes available to assess what impact that has had
on improving the energy rating of existing dwellings.
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