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Supplementary Methods 

Methodological details are provided below in sections that correspond to the major steps outlined in 

Supplementary Fig. S4. 

 

CLIMATE SCENARIOS 

The procedure for generating an annual time series of climate variables comprised three steps: First, 

MAGICC/SCENGEN 5.3 (www.cgd.ucar.edu/cas/wigley/magicc), a coupled gas cycle/aerosol/climate 

model used in the IPCC Fourth Assessment Report1, was used to generate an annual time series of 

future climate anomalies (2010 – 2100) using an ensemble of five atmosphere-ocean general 

circulation models (GCMs). Fordham et al.2 have highlighted the advantages of working within the 

MAGICC/SCENGEN framework, rather than using GCM data from the Coupled Model 
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Intercomparison Project 3 (CMIP3) archive. GCMs were chosen according to their superior skill in 

reproducing seasonal precipitation and temperature across North America. Model performance was 

assessed following already published methods3. The five GCMs were: UKMO-HadCM3 (UK); 

CGCMA.31(T47) (Canada); MRI-CGCM2.3.2 (Japan); ECHAM5/MPI-OM (Germany); IPSL-CM4 

(France). Model terminology follows the CMIP3/AR4 multi-model data archive. Four of these models 

have been shown elsewhere to have good retrospective skill in reproducing recent climates at a global 

scale, as well as for North America2. GCM skill assessment results can be quite different depending 

on the variable considered, the region studied, the month or season examined, or the comparison 

metric used3. However, ensemble forecasts that include five or more GCMs tend to be more robust to 

GCM choice4. 

Second, climate anomalies were downscaled to an ecologically relevant spatial resolution 

(~800m x 800m)5, using the “change factor” method, where the low-resolution climate signal 

(anomaly) from a GCM is added directly to a high-resolution baseline observed climatology (we used 

PRISM 1971-2000 normals6)7. Bi-linear interpolation of the GCM data (2.5 x 2.5 º longitude/latitude) to 

a resolution of 0.5 x 0.5º longitude/latitude was used to reduce discontinuities in the perturbed climate 

at the GCM grid box boundaries2. One advantage of this method is that, by using only GCM change 

data, it avoids possible errors due to biases in the GCMs baseline (present-day) climate3. 

Third, we generated 19 bioclimate variables8 from monthly estimates of minimum temperature, 

maximum temperature, and mean precipitation generated by the above steps. From these 19 

variables we selected 7 to use in the models based on reasoning as to the physiological/life history 

requirements of the species, and analysis of correlations between variables (the selected variables 

have relatively low correlations: maximum 0.84, mean 0.31). The 7 selected variables were: 1. 

Maximum Temperature of Warmest Month, 2. Minimum Temperature of Coldest Month (these two 

variables represent extremes of temperature, each of which is expected to have a direct physiological 

role in survival and reproductive success); 3. Annual Precipitation (the overall amount of precipitation 

each year is expected to be a good measure of suitability for amphibians and reptiles); 4. Precipitation 

of Driest Quarter (many amphibians and some reptiles are stressed by extended periods with little 
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rain, so the amount of rainfall during the driest part of the year is expected to be important); 5. Mean 

Temperature of Wettest Quarter (the wettest quarter is often associated with maximum amphibian and 

reptile activity, so temperatures during this period are likely to be important for these poikilothermic 

animals); 6. Temperature Seasonality (standard deviation *100), 7. Precipitation Seasonality 

(Coefficient of Variation; amphibians and reptiles have the capacity to become highly specialized to 

local climatic conditions, especially at low latitudes, so these two measures of temperature and 

precipitation variability are expected to be important). 

 

ECOLOGICAL NICHE MODELING 

Species’ occurrence data 

We obtained occurrence data from NatureServe9, which represents an international network of 

biological inventories, known as Natural Heritage Programs or Conservation Data Centers, in all 50 

U.S. states, Canada, Latin America and the Caribbean. Most of the records come from field survey 

data that were georeferenced using topographic maps, imagery, or GPS units. Even for the few 

museum records in the data set, the localities were georeferenced by state biologists with an intimate 

knowledge of local geography. These data are commonly used for legal reviews and state policy 

making, so the accuracy is expected to be very high. NatureServe’s standards and methods are 

extensively documented: see www.natureserve.org/prodServices/heritagemethodology.jsp; 

www.natureserve.org/prodServices/eodata.jsp. For detailed metadata concerning the specific dataset 

used in this study contact Jason McNees (Jason_McNees@natureserve.org) or Richard Pearson 

(Richard.Pearson@ucl.ac.uk). For contractual reasons that reflect the need to protect sensitive 

information regarding the precise location of rare, endangered, and commercially valuable species, we 

do not make the raw species occurrence data freely available here. 

Thirty-six species of North American amphibians and reptiles were selected for inclusion in the 

study (Supplementary Table S1) based on the following criteria: 1. A variety of life history traits; 2. 

Relatively stable taxonomy; 3. >12 occurrence records (final dataset: min = 13, max = 1723, mean = 

318, median = 109.5); 4. Distributions that are not close to the northern extent of the study region, to 



 

4 
 

avoid cases whereby the distribution is predicted to shift largely out of the study region under future 

climate. As environmental predictors, we used maps of land cover, hydrography and land surface form 

in addition to the climate layers described above (Supplementary Table S2). 

All analyses were undertaken at the species level, based on widely accepted taxonomy as 

recognized by the Committee on Scientific and Standard English Names of Amphibians and Reptiles 

of North America North of Mexico (www.ssarherps.org/pages/comm_names/Index.php) as well as 

recent species descriptions (for example, the recent split of desert tortoise into Gopherus agassizii and 

Gopherus morafkai10). Although subspecies are recognized in the NatureServe dataset, this only 

means that they are taxonomically valid as subspecies, not that they represent real evolutionary units. 

Any listed subspecies by definition is not a species. Future genetic work will either demonstrate that 

these are distinct species, or that they represent minor geographic variation. We therefore lumped 

occurrence records for subspecies to the species level. 

NatureServe uses the term Element Occurrence (EO) to refer to an area of land and/or water in 

which a species or natural community is, or was, present. The EO’s represent a great deal of 

processing from the underlying oberservation data (termed ‘Source Features’), including accounting 

for spatial uncertainty. An EO should have practical conservation value as evidenced by potential 

continued (or historical) presence and/or regular recurrence at a given location. For species, the EO 

often corresponds with the local population, but when appropriate may be a portion of a population 

(e.g., long distance dispersers) or a group of nearby populations (e.g., metapopulation). Since EOs 

are polygons, we randomly subsampled occurrence records within EOs for use in the ecological niche 

models (ENMs). Eighty-eight percent of the polygons are <1km2 (68% are <0.1km2), so the majority 

are of comparable size to our grid cell resolution; however, 12% are larger than 1km2, and there is a 

very small fraction (0.007%) that are >100km2. The number of occurrences that we sampled per EO 

was the square root of the polygon's area, with a minimum sample of 1 (for EOs <1km-sq). For each 

species, we randomly sampled 50 replicate datasets and ran separate ENMs for each replicate 

dataset. Final habitat suitability predictions represent consensus (average value per grid cell) across 

the 50 runs. 
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We deleted all records where the last observation year was pre-1990. This was necessary to 

avoid temporal mismatch between the occurrence records and the environmental variables that were 

derived from remote sensing (see below). Because of this, in some cases the distributions on which 

our models are based are more restricted than in IUCN assessments. 

 

Land cover 

Land cover data were obtained at 30m resolution from the MRLC National Land Cover Database 

(www.mrlc.gov/), which is based on remotely sensed data. We use multiple years – 1992, 2001, and 

2006 – and associated species’ EOs with the nearest year (based on the last year of record) when 

running the models. For 1992, we used the retrofit product (www.mrlc.gov/changeproduct.php) 

because of incompatibility between classes between the different years. This limited us to the 8 

categories of Anderson level 1. For each class, we generated a variable describing the proportion of 

the class within each 1km resolution cell. We did not use the MRLC Anderson Level 1 class ‘open 

water’ because this is relatively crude in comparison to the separate hydrography variables we 

generated, described below. Land cover for 2006 was used for all projections under future climate. 

 

Hydrography 

Given the importance of proximity to water for many of the species we studied, we characterized the 

availability of standing water (e.g., lakes, ponds, swamps) and moving water (e.g., streams, rivers, 

springs). Variables were generated using the US National Hydrography Dataset (NHD; nhd.usgs.gov). 

The NHD was rasterized (converted from vector data to grid cells) at 25m resolution. The two 

variables we generated were: 1. the proportion of each 1km resolution cell that is within 200m of 

standing water (i.e., a lake, pond, reservoir, swamp or marsh); and 2. the proportion of each cell 1km 

resolution cell that is within 200m of moving water (i.e., a stream, river, area of complex channels, 

canal, spring or seep). Two hundred meters was selected as appropriate to represent the maximum 

distance a species’ is likely to travel regularly to access water, based on information regarding 

species’ home ranges and distance moved to find water. 
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Land surface form 

Slope and aspect can be important factors for amphibians and reptiles. Reptiles tend to bask on 

south-facing slopes that are neither too shallow nor too steep to maximize exposure to the sun. 

Amphibians tend to prefer cool, moist localities on north-facing slopes. We generated two variables 

based on the National Elevation Dataset (http://ned.usgs.gov), which is derived from multiple data 

sources including LiDAR and SRTM. The elevation data is at 30m resolution and we applied a 5x5 low 

pass filter to smooth artifacts. The two variables were: (1) the proportion of each 1km resolution cell 

that is south-facing (SE to SW) and with a slope of 20-60 degrees; and (2) the proportion of each 1km 

resolution cell that is north-facing (NW to NE) and with a slope of 20-60 degrees. 

 

 

Maxent Ecological Niche Models 

We predicted the distribution of environments suitable for species’ occurrence using the maximum 

entropy method (Maxent)11. Maxent is a machine-learning method that characterizes ecological niches 

based on associations between species’ occurrence records and environmental information11–14. We 

used a correlative rather than physiologically based species distribution model because correlative 

models implicitly incorporate any process, biotic and abiotic, that is statistically associated with the 

environmental variables and are thus less likely to overestimate the potential range15. Previous 

applications of mechanistic models to lizards in North America have shown overprediction of current 

ranges and larger range shifts under climate change than predicted by correlative models16,17, so our 

selection of a correlative approach is conservative. We selected a single model rather than using an 

‘ensemble’ approach that combines multiple models18 because ensemble approaches make it 

impractical to undertake detailed parameterization and exploration of individual models (it is preferable 

to apply a single method that has been carefully parameterized and for which model behavior is well 

understood) and because the computational demands for running even a single ENM were very high 

in our analyses (for each species we ran 90 annual time steps for 2 climate scenarios and each final 
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model was a consensus (average) from 50 replicates so as to account for uncertainty in the species 

occurrence data). In particular, we used Maxent because: 1. It has been shown to perform well in 

comparison with other methods19; 2. It requires only species’ presence (not absence) data; 3. It 

enabled us to carefully select a regularization parameter for each species to avoid over-fitting; 4. It 

enabled us to explore response curves for individual variables for each species, to ensure biologically 

realistic models; 5. Model predictions beyond the range of training data (i.e., when extrapolating20) are 

constrained by clamping11, ensuring that we have a clear understanding of model behavior in these 

cases; 6. various graphical techniques for understanding model behavior and reliability, including the 

extent of extrapolation, have been developed21 and are available in the free Maxent software 

(www.cs.princeton.edu/~schapire/maxent). 

Maxent models were calibrated using the 1971-2000 baseline climate and then projected to the 

annual time slices for 2010-2100. We used all seven bioclimate variables for each species since those 

variables were carefully selected from a larger set as being relevant for our species of interest. 

However, to avoid fitting models with an unnecessarily large number of variables, the most relevant 

land cover, hydrography, and land surface form variables were selected individually for each species 

based on knowledge of life history traits and demography as gleaned from the literature and expert 

opinion (see section Demographic Models, and Supplementary Table S2). Land cover, hydrography, 

and land surface form variables were kept static in the simulations, following ref.22. 

The extent of the study region for selecting background points for model calibration was set for 

each species individually. Selection of an appropriate study region should exclude regions that the 

species has been unable to disperse to23. Thus, for each species we selected 10,000 background 

points randomly from within ecoregions that incorporate an EO (or part of an EO) for that species (i.e., 

background points were not selected from any ecoregion that does not include at least part of an EO). 

Thus, we use ecoregions to approximate the geographical bounds within which each species has had 

the opportunity to disperse to available environments. We used the Environmental Protection 

Agency’s level III ecoregions of North America (www.epa.gov/wed/pages/ecoregions/na_eco.htm) and 

we used the 2006 land cover data for generating predictor variable data for the background points. 
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We did not implement a correction for sampling bias24 on two grounds: 1. an important quality of 

the EO data are that individual observation points are grouped into EO’s, guided by information on 

mobility and life history, which removes clustering due to uneven distribution of sampling effort25; and 

2. the entire study region of North America has been extensively surveyed through the NatureServe 

network and associated data sources (e.g., museum collections). 

For each species, we assessed model performance using 4-fold cross-validation for 5 (out of 50) 

replicate datasets. We tested regularization values of 0.5, 1, 2, and 5, and selected the regularization 

value that gave the highest mean AUC score across the replicates and cross-validation partitions 

(Supplementary Table S1). 

Maxent models were run using the World Geodetic coordinate system (WGS 1984) so as to 

match the climate data (the MAGICC/SCENGEN method requires decimal degrees). The Maxent 

output grids were then projected to Albers Equal Area Conic (North America) for coupling with the 

population models and for all subsequent analyses. 

 

BURN-IN AND ASSESSMENT PERIODS 

The occurrence locations are used to determine the initially occupied patches (as described below). 

However, although the study region has been extensively surveyed, occurrence data may not be 

complete (because site surveys may fail to find a species even though the species does use the site). 

Starting simulations with incomplete patch occupancy would lead to an artificial increase in simulated 

population sizes. To avoid this, we ran the simulations for a 10-year burn-in (or spin-up) period to let 

the unoccupied patches that are within dispersal distance of known occupied patches become 

occupied (Supplementary Fig. S5). This period begins with 1990 since that was the first year for the 

occurrence records (last observed occurrence must be 1990 or later, see above). We then used the 

next 10 years, 2000-2010, as an assessment period. All the predictor variables used in the analysis of 

extinction risk (i.e., random forest and boosted regression tree analyses, see below) were estimated 

from the simulation outputs for the assessment period. The assessment period ends and the modeled 

annual time slices begin with 2010 (see above). Habitat maps for the 20-year burn-in plus assessment 
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periods were generated by simple linear interpolation26. Since our baseline climatology is centered 

around 1985 (1970-2000), we ran the linear interpolation for 24 years, starting with the 1970-2000 

prediction (ostensibly 1985) and ending with the predicted map for 2010. 

 

LINKING HABITAT AND DEMOGRAPHY 

The potential patch structure (number, size, and spatial arrangement of patches) and its change 

through time for each species were specified based on the time series of habitat suitability maps (see 

above) using the Spatial Data module in the RAMAS GIS software package27,28. We defined a patch 

as the area of habitat that potentially supports one subpopulation of the modeled species. We use the 

term ‘potential’ to emphasize that even if an area may have enough contiguous suitable habitat to form 

a patch, it may remain unoccupied for a portion of, or the entire, duration of the simulation if it is too far 

from the occupied patches for the species to disperse to, or if other factors (such as demographic 

stochasticity) cause frequent local extinctions of the subpopulation occupying that patch. Each patch 

consists of a cluster of grid cells that have habitat suitability values above a threshold and that are 

within a neighborhood distance of each other27. 

We set the habitat suitability threshold29 for each species such that no more than 20% of known 

occurrence locations were excluded from the map of all potential patches at the first time step. 

Neighborhood distance, based on home range size, determines the minimum number of contiguous 

map cells needed to consider an area a patch. For our purposes, all species in these models had a 

neighborhood distance of one cell since the spatial resolution of our habitat maps were already larger 

than the home ranges of the species we considered. To determine which patches were occupied at 

the start of the simulation, we overlaid the map of all potential patches at the first time step with a map 

of the occurrence records buffered by a radius equal to the midpoint between the low and high values 

for the maximum dispersal distance (Dmax, described below). The carrying capacity function for 

patches was based on the total habitat suitability (sum of the habitat suitability values for all grid cells 

constituting a patch). We then scaled this function such that the initial abundance for all occupied 

patches at the beginning of the simulation for each species was within the estimated current 
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abundance range. The use of ENMs to predict the upper limit of local abundance has been examined 

in previous studies30–33. The scaling parameter, once established for the first time step, was held 

constant for all subsequent time steps. Once the potential patch structure for each year was 

determined within a given climate scenario, we used the Habitat Dynamics module in RAMAS GIS to 

link this dynamic patch structure to the life history parameters of the population model (described in 

the next section). This method of using projected temporal changes in habitat to create 

metapopulation models with dynamic spatial structure has been used to model changes due to natural 

disturbances, succession, timber harvest34–36, as well as climate change37–41. 

 

DEMOGRAPHIC MODELS 

We modeled population dynamics by drawing multiple sets of population parameters to create specific 

realized population models. The population parameters were sampled from a "generic life history 

model" (GLH model) associated with each species. Each GLH model, described below, is an age- or 

stage-structured, density-dependent, stochastic model designed to encompass the full set of life 

history parameters characteristic of a particular group of species. For each GLH model, the 

characteristic range of parameter values was determined based on data from the literature and was 

specified as a set of uniform distributions with upper and lower bounds. We developed six GLH 

models, for North American snakes, lizards, tortoises, turtles, small salamanders, and large 

salamanders.  

The GLH modeling approach has two advantages. First, it avoids the need to obtain species-

specific demographic parameters, which are rarely known. Second, it enables us to generalize our 

results concerning traits that increase risk of extinction due to climate change beyond the 36 species 

for which we developed ENMs. A disadvantage is that we are not able to make species-specific 

predictions of extinction risk, or rank these 36 species in terms their vulnerability to climate change. 

Therefore, our aim with the GLH models is twofold: First we estimate the average risk of extinction we 

expect for species with life histories similar to these six groups for which we developed GLH models. 
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Second, we determine the life history and spatial characteristics that make species vulnerable to 

extinction due to climate change. 

We developed each GLH model with an age or stage structure representative of species in that 

group. Because species in these groups are generally polygynous with similar survival rates for males 

and females, shortage of males is unlikely; thus, all models are female-only (in one case with lower 

male than female survival, this is justified further). The number of age/stage classes ranged from 3 (for 

lizard GLH) to 35 (for large salamander GLH). We represented the main aspects of demography in 

each GLH model with 4 or 5 sets of independent parameters that were estimated as intervals. These 

distributional parameters included vital rates (survival rates and fecundities), temporal variability in 

vital rates, strengths of density dependence, dispersal rates, and spatial correlations. The lower and 

upper bounds of these parameters are described for each GLH in the sections below. 

We used Latin hypercube sampling (LHS)42 to create the specific realized population models 

from GLH models, and we set the number of LHS partitions to 10 times the number of independent 

parameters in each GLH. Thus, for each combination of species, GLH model and climate change 

scenario, we created 40 or 50 different specific realized population models representative of the 

appropriate life history strategy. To enhance our power to isolate the effects of climate change, we 

used the same values for demographic parameters across the two climate change scenarios and the 

"no climate change" scenario (i.e., we sampled and used only one set of parameters for the 3 

scenarios under the same combination of species and GLH model). 

Although our analysis does not allow making projections specific to any of the 36 species, each 

specific realized population model we randomly sample is a plausible species-specific model.  Thus, 

although each randomly sampled model does not represent any particular species, thus we consider 

the ensemble of models (not any single model) we sample for each GLH model to be representative of 

the group of species (not any particular species) with that life history. 

Temporal environmental stochasticity is incorporated by sampling annual survival rates and 

fecundities from random log-normal distributions. Demographic stochasticity is modeled by sampling 
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the annual number of survivors from a binomial distribution and number of offspring from a Poisson 

distribution. For further details of the demographic modeling, see ref.28. 

Each specific realized population model has an explicit spatial structure (i.e., the number, size, 

and spatial arrangement of patches) that is based on the habitat suitability maps (see Linking habitat 

and demography above).  Thus, in addition to within-population parameters described in the 

subsections below, each GLH model also includes parameters that characterize spatial relationships.  

These parameters relate to dispersal and the spatial (among-population) correlation of variability in 

survival rates and fecundity. 

The following subsections detail the aspects of the six GLH models that relate demographic 

structure, density dependence, and variability (stochasticity).  In addition to these within-population 

aspects, each GLH model also includes parameters that characterize spatial relationships.  These 

parameters relate to dispersal and the spatial (among-population) correlation of variability in survival 

rates and fecundity. 

For dispersal, we used the following function to calculate the dispersal rate (m) from one 

("source") population to another ("target") population, as a function of the distance (D, in km) from the 

center of the source population to the edge of the target population: 

m = a exp(-D/b), if D<=Dmax 

m = 0, if D>Dmax 

where a, b, and Dmax are model parameters described for each GLH model below.  

For spatial correlation, we used the following function to calculate the correlation coefficient 

between the two populations as a function of the distance (D, in km) between their geographic 

centers: 

 corr = exp(-D/b) 

where b ranges from 500 to 1200 for all GLH models. These values were estimated by fitting the 

above function to data on the correlation of weather variables between pairs of randomly selected 

points in the US, and the distances between the pairs of points. The weather variables were annual 

maximum temperature and total annual precipitation, and were extracted from the PRISM dataset6. 
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The correlations were calculated based on 20 years of weather data for each location. A total of 57 

locations were used, resulting in 1596 correlation values (and associated distances). 

 

Small Salamander GLH Model 

This GLH model is based on the ecology of North American small-bodied salamanders in families 

such as Ambystomatidae (mole salamanders) and Plethodotidae (lungless salamanders), with total 

body length less than about 25-30 cm. Most species in this group breed in pools of water; the larvae 

develop in these pools and emerge as adults to disperse in the surrounding forest. There is often a 

high rate of return to the same breeding pools. 

 

Density dependence 

Density dependence in larval stage is well documented43–47. Because the mechanism is often resource 

limitation, the model includes Scramble (Ricker) type density dependence. Density dependence 

affects fecundities only (because larval survival is incorporated into fecundity; see below). The 

maximum growth rate at low population size (Rmax) can be directly estimated from one study in which 

a population was monitored as it was growing from a small abundance48. In the exponential phase of 

this population growth, the average finite rate of increase (lambda) was estimated as 2.5 by fitting an 

exponential growth model to the first 6 years of the data. Rmax was also estimated indirectly from a 

number of time series as the intercept of ln(R) vs. N relationship, which gave Rmax values ranging 

approximately from 1.1 to 4.6. Although this method may give biased estimates, applying it to a large 

number of time series gave a rough idea of the range of Rmax values among species. Based on this 

analysis, we set the range of Rmax values to 1.5 – 3.5. 

 

Demographic structure 

The model is a female-only, age-structured matrix model with 5 annual age classes, based on pre-

reproductive census. Thus, fecundity is in terms of juveniles per female in the previous breeding 

season, and the first age class is juveniles that are almost 12 months old. Age of first reproduction is 
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varied between 2 and 4 years. There are species in this group that breed at 2 years49, 3 years50,51, or 4 

years52. Annual survival rate is estimated as 0.6 52,53. Fecundity is set to make the dominant 

eigenvalue of the stage matrix to be approximately 1.0, so that the stage matrix applies to a population 

close to its carrying capacity. The population growth rate at each time step is then determined by the 

density dependence relationship as described above. With this approach, fecundity is set to be 

between 0.667 and 1.86, depending on the age of first reproduction (see above). 

 

Variability  

The populations of species in this group are often highly variable. Based on data in ref.52 (their fig. 2 

and their table 5), we estimated the coefficient of variation (CV) as 0.7 for fecundity and 0.2 for female 

survival rate54. When values are used in the age-structured model described above, the coefficient of 

variation of population size of one replicate trajectory through time is approximately 0.5, which is 

consistent with the median CV of population size in time series of salamanders55–57. The CV of 

population size in these time series ranged from approximately 0.3 to greater than 1. To represent this 

range of among-species variability, we used values for CV of survival ranging from 0.1 to 0.4, and CV 

of fecundity ranging from 0.4 to 1.4. 

 

Dispersal 

Most individuals remain within a few hundred to 1000 m of the breeding pond58,59. However, this is 

mostly movement within a biological population. Dispersal between populations is based on the 

dispersal-distance function developed in ref.60 (their fig. 3), with a=0.264, b=0.35, and Dmax=2.5km. 

To represent among-species variability, we used b=0.2 and 0.5, for low and high dispersal, 

respectively. 

 

Large Salamander GLH Model 

This GLH model describes the population demography of large-bodied salamanders, modeled after 

Hellbenders (Cryptobranchus). 
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Demographic structure 

Although males seem to have lower survival rate, sex ratios are often male biased. In addition, the 

mating system is polygynous, with several females laying eggs under the same nesting rock, to be 

fertilized and defended by the same male. Thus, shortage of males is unlikely, and a female-only 

model is justified. The model is a female-only, age-structured matrix model with 35 annual age 

classes, based on pre-reproductive census. Thus, fecundity is in terms of juveniles per female in the 

previous breeding season, and the first age class is juveniles that are almost 12 months old. 

 

Age of first breeding is 7-8 years61. Age-specific survival rates are based on ref.62 (their fig. 4) and 

ref.61 (their fig. 3). Age-specific fecundity rates are based on data from ref.63 (their fig. 3); we assume 

50% of females breed, 50% of hatchlings are female (i.e., 1:1 sex ratio), and 1.7% of eggs hatch and 

survive the 1st year (to make lambda=1). The resulting stage matrix was then modified to obtain low 

and high values for fecundity and survival rates, in order to simulate a range of populations from 

declining (lambda=0.9) to increasing (lambda=1.1), at low population sizes (as described below, 

Ceiling model prevents a positive trend after carrying capacity is reached).  The declining populations 

are intended to represent species, such as the Hellbender, that seem to be deterministically declining, 

at least in parts of their range, due to changes in habitat quality (in the case of the Hellbender, water 

quality and sedimentation). 

 

Variability  

We could not find information on variability, which is typical of long-lived species. Variability in vital 

rates is expected to be lower than the shorter-lived small-bodies salamanders (described above). 

Thus, based on the small-bodies salamander generic model, we used values for CV of survival 

ranging from 0.05 to 0.2, and CV of fecundity ranging from 0.2 to 0.7. 

 

Density dependence 
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Males defend territories and fights between individuals, even cannibalism, are common, suggesting 

density dependence. However, there is no long-term census data, and most populations are declining 

due to habitat loss and degradation, making it impossible to estimate density dependence even if 

census data existed. Therefore, a simple Ceiling model27 was used. 

 

Dispersal 

Dispersal is reported to be up to 3.5 km64, suggesting longer dispersal distances than small-bodied 

salamanders, although a lower proportion might be dispersing63. Thus, we used a=0.2, b=0.6 to 1.0, 

and Dmax=3.5km. 

 

Density 

Density estimates include 0.8–1.2 per ha65 and 1-6 per ha63. Because of recent decreases in habitat 

quality, we based density estimates on the 2005 study. However, both of these densities were 

measures in the optimal habitat of streams and at a higher spatial resolution (1 ha) than the maps we 

are using. The density at 1-km2 resolution should be much lower, even when the probability of 

occurrence in the 1-km2 cell is close to 1.0, because only a small portion of the cell (perhaps 1%) 

would be the actual stream habitat. Based on this assumption, we used 1.0 km-2 in cells with suitability 

value of 1.0. 

 

Turtle GLH Model 

Demographic structure 

Among the nine turtle species considered in this study, age to sexual maturity varied from a low of 

approx. 6 to 10 yrs. for the eastern box, ornate box, and bog turtles to a high of approx. 15 to 18 yrs. 

for the Blanding’s turtle66. Therefore, we developed an age structured, female-only model with 11 age 

classes, including 10 pre-reproductive age classes and one composite stage class for reproductive 

adults. We deemed a female-only model appropriate, as most turtle species exhibit sperm storage and 

multiple paternity67 and therefore, low male abundance is unlikely to limit reproductive output. 



 

17 
 

We parameterized the stage matrix according to pre-breeding census. Thus, fecundity was 

computed as the product of annual clutch size (accounting for clutch frequency), nest survival, and 

hatchling overwinter survival. Mean juvenile survival rates (ages 1 to 10) for freshwater turtle species 

vary from approximately 0.5 to 0.7868, and mean adult survival rates vary from 0.93 and 0.9769–71. We 

selected survival rates consistent with a turtle with 11 year age to sexual maturity (largely based on 

ref.72), with juvenile survival rate (age 1 to 10) of 0.75 and adult survival rate of 0.96. The model 

resulted in a generation time of 35 years. The model was initialized at carrying capacity. Therefore, we 

set the fecundity such that the dominant eigenvalue of the stage matrix was approximately 1.0, so that 

the stage matrix applied to a population close to its carrying capacity. The population growth rate at 

each time step was then determined by the density dependence relationship as described below. 

 

Density dependence  

Studies have indicated that nesting success may decrease with increasing population density via 

predator attraction to high-density nesting sites and competition for space on nesting beaches73,74 (but 

see ref.75). Density dependence may also affect hatchling survival rate, as hatchlings and other early 

age classes are more vulnerable to density dependent effects such as predator search efficiency and 

low food availability76. We selected a scramble-type (Ricker) density dependence function which 

affects fecundities in a stage matrix parameterized for pre-reproductive census. Thus, fecundity is a 

product of annual egg production, nest survival, and hatchling survival. 

To compute a range of Rmax values for the turtle GLH model, we first selected a low and high 

range for maximum egg production, nest survival, and hatchling survival based on a literature review 

for the nine turtle species considered in this study. Annual egg production for these species ranged 

from a low of approx. 3.5 eggs for the bog turtle77 to approx. 20 eggs for the Alabama red bellied 

turtle78. Because we used a female-only model, we halved these numbers assuming an equal sex 

ratio, obtaining annual egg production values of 1.75 to 10. Studies of turtle nesting success have 

found that 80% to 95% of eggs hatch successfully in the absence of predation79. Nest predation rates 
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can be high (see section on variability below), but our model assumes that nest predation is largely 

density-dependent and therefore, that nest predation rates are low at low population densities. 

Assuming a background nest predation rate of 10%, we set baseline maximum nest survival to 

0.7 and 0.85, respectively. Maximum hatchling survival rate is likely to be at or below juvenile survival 

rates (0.5 to 0.78; see above); lacking more information, we set this parameter equal to juvenile 

survival rate for the low and high scenario. Using the above low and high estimates, we then 

computed maximum fecundity as the product of these three parameters (annual egg production, nest 

survival, and hatchling survival), yielding a range from 0.857 to 6.63. Finally, we computed Rmax as 

the eigenvalue of the “low” and “high” transition matrices using this fecundity term, keeping all other 

transition matrix elements constant, obtaining Rmax of 1.006 to 1.10. 

 

Variability  

Based on ref.80, we set standard deviation of juvenile and adult survival rates as 0.015 to 0.025, for 

low and high values, respectively. Stochastic fluctuations in annual fecundity are likely to be much 

higher, but are poorly understood. Refs.72 and 81 reported that nest survival varied from 0 to 64% with 

a mean of 23 to 44% annually over 27 years of rigorous surveys for Blanding’s turtles and Snapping 

turtles. We computed the expected standard deviation in fecundity given uniform random variation in 

nest survival from 0 to 64%, holding annual egg production and hatchling survival constant at “low” 

and “high” levels. This method yielded low and high standard deviation estimates of 0.23 and 1.44, 

respectively. 

 

Dispersal 

Average dispersal distances are quite low for most freshwater turtles. In a 6-month study of Bog 

Turtles, 75% of all observed net displacement distances were <20m, whereas only 2% were >100m82. 

In about one year, radio-tracked False Map Turtles (Graptemys pseudogeographica) moved an 

average of about 0.3 to 0.4 km83. Maximum dispersal distances of 1.4 km were reported for Blanding's 

Turtles84,over 3 km (over 2 years) and 3.9 km (over 4 years) were reported for Wood Turtles84, 2.7 km 
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for Bog Turtles82, and 4 to 5 km (over 3 years) for False Map Turtles (Graptemys 

pseudogeographica)83. Turtles displaced up to 0.8 km usually returned within days84. In a long-term 

mark-recapture study of a Diamondback Terrapin population (Malaclemys terrapin), dispersal rate 

(transition probabilities) between neighboring sites (separated by 0.5 to 1.0 km) varied mostly from 1% 

to 20%85. In Peninsula Cooter (P. peninsularis), average net displacement was about 0.5 km for most 

juveniles and adults, but 27% of males moved over 1 km84. Based on these data, we used a dispersal 

distance function with wide ranges for each parameter. Based on center-to-edge distances (in km), we 

varied maximum dispersal distance (parameter Dmax) from 1 to 3 km, average dispersal distance 

(parameter b) from 0.2 to 0.5, and maximum dispersal rate (parameter a) from 0.1 to 0.5. 

 

Tortoise GLH Model 

This GLH model is mostly based on the ecology of the Gopher Tortoise and Desert Tortoise. 

 

Density dependence 

The main mechanism of density dependence seems to be reduced growth. High densities (and often 

habitat destruction, i.e., a lowering of carrying capacity) lead to lower amount or quality of forage, 

which leads to slower growth and consequently slower maturation (e.g.,86,87). Dependence of growth 

on density or resource levels have been studied for other species of tortoises as well (e.g.,88). 

Thus, we developed a size-structured model (see Demographic structure), parameterized for 

population densities at carrying capacity, in which proportion of growth to survival in each stage 

increases as densities decrease. In order to use this with the statistical analysis we designed, it was 

necessary to standardize the input by making it based only on Rmax. Thus, for a given Rmax, the 

program calculates MaxGroAcc, the proportion of the diagonal element in each column of the matrix 

(except the first) to shift to the sub-diagonal element at N=0. At each time step, the proportion 

transitioning to the subsequent stage is calculated as MaxGroAcc*(1-N/K), where N and K are the 

population size and the carrying capacity, respectively, at that time step. Thus, when N is small, 

almost the entire diagonal element shifts to sub-diagonal. If N=K, none of it does. If N>K, then shift is 
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negative (i.e., some of the sub-diagonal element shifts to the diagonal). Because the stage matrix is 

unchanged when N=K, it is necessary that the stage matrix is parameterized to reflect a population at 

equilibrium. Thus, the stage matrix is adjusted to have an eigenvalue of 1.0. Considering the long 

generation time of the species, we set Rmax from a low value of 1.05 to a high value of 1.15. The 

initial abundance was set equal to the carrying capacity. 

 

Demographic structure 

The stage matrix is based on size classes and parameterized following ref.89. The generation time is 

about 20 years at equilibrium density (i.e., when N=K), but changes with density. High densities lead 

to slower growth and consequently slower maturation (see above), increasing generation time. 

Conversely, lower densities lead to faster growth and shorter generation times. 

 

Variability  

Ref.89 give a range of 0.08 to 0.23 for the SD of total survival rates from a stage (i.e., transition to the 

next stage plus remaining in the same stage). Considering that these estimates include measurement 

error and spatial variability89, temporal variability is likely to account for much less than half of total 

observed variability. In addition, in our model, the variability for total survival is divided between 

variability for growth and variability for remaining in the same stage. Therefore, for SD of growth, we 

used a range of values from 0.005 to 0.025, except for the largest size class (which does not have a 

growth parameter), and the next largest size class, which has a mean value of only 0.016. For SD of 

the probability of remaining in the same stage, as well as for fecundity, we used a range of values 

from 0.015 to 0.075. This range includes the SD values used elsewhere: based on expert opinion, 

ref.90 used standard deviations of 3.5%, 3%, 1% and 0.5%, for annual mortality of 0, 1, 2, and 3+ year 

age classes. 

 



 

21 
 

Dispersal 

Species of the genus Gopherus rarely move more than 2 miles from their hatching spot during their 

lives, though there are a few exceptions91. In G. agassizii, daily distance travelled ranged from 11 to 

64 m, and some individuals traveled as much as 800 m in two months92. Ref.93 summarized distances 

travelled based on several sources, with a range of 1.3 to 7.3 km over 16 days to 5 years. Dispersal 

distances are somewhat lower for G. polyphemus, with monthly distance travelled ranging from 4 to 79 

m, and some individuals travelling as much as 744 m in 4 days94, and 460 m in a year91,95, and 

displaced individuals moving 1 to 2 km. 

Based on these data, we used a dispersal distance function with wide ranges for each 

parameter. Based on center-to-edge distances (in km), we set the ranges for maximum dispersal 

distance (parameter Dmax) from 2 to 7 km, for average dispersal distance (parameter b) from 0.5 to 

1.0, and for maximum dispersal rate (parameter a) from 0.1 to 0.5. 

 

 

Snake GLH Model 

This GLH model is based on demographic characteristics for North American snakes in the Colubridae 

and Viperidae families. Species in this group occupy a range of habitat types from aquatic to desert. 

Some in this group are ovoviviparous while some are oviparous.  

 

Density dependence 

Although they are generally thought to be non-territorial, some species have non-overlapping home-

ranges, and cannibalism is observed in some snakes96. Thus, we deemed logistic (scramble) type 

density dependence appropriate. This is also supported by the strong relationship between growth 

rate and population in time series data from ref.97 (their fig 1, for two separate populations) and ref.98 

(their fig. 6). Based on these data, Rmax was estimated to range from 1.8 to 2.5. Although this method 

may sometimes give biased estimates, the consistency and strength of the relationships give 

confidence that this is a representative range of Rmax values. However, previous PVAs for snakes 
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used either no density dependence99,100 or assumed a ceiling model with the carrying capacity (ceiling) 

based on expert opinion101 and capacity of hibernacula (adults only)102,103. Because of this among-

species variability, we used a relatively wide range of values for Rmax from 1.2 to 2.5.  

 

Demographic structure 

We used a model with 4 age classes; the fourth age class was a composite age class for individuals 4 

years old and older. Age of first reproduction was set at 3 years, because most snakes in this group 

reach maturity between 1.5-4 years of age68. Snakes generally have a 1:1 sex ratio at birth, and the 

mating system is polygamous, so a female-only model is appropriate. Annual survival rates vary from 

about 0.4 (for Green snake)104 to about 0.6 (for Pacific coast garter snake)98 to about 0.8 (for Eastern 

indigo snake)105. So, a range from 0.4 to 0.8 was used for survival, negatively correlated with a 

corresponding range for fecundity so as to keep the eigenvalue=1, as consistent with initial abundance 

being equal to carrying capacity.  

 

Variability 

Based on ref.106 (their table 3), standard deviation of annual survival rate is estimated to be 0.08. 

Based on ref.98 (their fig. 1), the coefficient of variation of fecundity is estimated as 0.65, and the 

standard deviation (based on fecundity of long generation time) as 0.2. Several studies report census 

data, with coefficient of variation of population size ranging from 20% to 60%97,98,104,106–108. We used a 

range of standard deviations from 0.06 to 0.09 for survival and 0.1 to 0.3 for fecundity to obtain 

approximately this range of variability in size of simulated population trajectories. 

 

Dispersal 

In Oregon Gartersnakes, juvenile males have been observed to move the longest distances (mean 73 

m/mo, max 628 m/mo), adult females move the shortest (mean 11 m/mo, max 40 m/mo), and adult 

males and juvenile females move intermediate distances (mean 38-48 m/mo, max 321-329 m/mo)109. 

Other studies indicated snake populations genetically connected at distances of 7-20 km 110, 
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potentially exchanging 1.5-2 individuals per year at a distance of about 20 km111, and dispersing at 

rates ranging from 0.004 to 0.3 among 3 populations that are 3-6 km apart112. Based on these data, 

we used a dispersal distance function, based on center-to-edge distances (in km), with maximum 

dispersal distance (parameter Dmax) ranging from 10 to 20 km, and average dispersal distance 

(parameter b) ranging from 3 to 5, and max dispersal rate (parameter a) ranging from 0.1 to 0.5. 

 

Lizard GLH Model 

This GLH model is based mostly on species in genus Gambelia, because the only lizard that fit our 

selection criteria was in this genus. 

 

Density dependence 

Although density dependence in genus Gambelia or family Crotaphytidae is not well studied, it is 

known that males are territorial113–116, and two instances of adult predation on hatchlings have been 

recorded116. In general, density dependence in lizards is well documented117–119; effects on both 

survival and fecundity have been noted, so our model includes effects on all stage matrix parameters. 

Because the mechanism is often resource limitation, the model includes Scramble (Ricker) type 

density dependence. The maximum growth rate at low population size (Rmax) was inferred from a 

study in which a population was monitored as it was growing from a small abundance116. In this study, 

the population growth rate was 1.4 to 2.5 depending on the time period over which it is calculated and 

whether juveniles are included or not.  

 

Demographic structure 

The model is a female-only, age-structured matrix model with 3 annual age classes, based on pre-

reproductive census. Thus, fecundity is in terms of juveniles per female in the previous breeding 

season, and the first age class is individuals that are almost 12 months old.  

Age of first reproduction is 1 year. Based on survivorship estimates of ref.116, survival rates were 

calculated as 0.218, 0.702, and 0.494, for 0, 1, and 2-year olds, respectively. Based on figs. 5 and 6 of 
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ref.116, clutch size is set at 3, 4, and 4.5 eggs for 0, 1, and 2-year olds, respectively; sex ratio is set at 

50% females and proportion of females is set at 0.8. Fecundity is calculated as the product of average 

number of clutches per breeding female, clutch size, sex ratio, proportion breeding, and zero-year old 

survival rate. Average number of clutches per breeding female is set to 1.554 to make the dominant 

eigenvalue of the stage matrix to be approximately 1.0, so that the stage matrix applies to a population 

close to its carrying capacity. The population growth rate at each time step is then determined by the 

density dependence relationship as described above. With this approach, fecundity is set to 0.407, 

0.543, 0.611 for 0, 1, and 2-year olds, respectively. 

 

Variability 

There is only one time series (discussed above) from which variability of vital rates can be estimated. 

Based on this, the population growth rate (lambda) has a CV of about 0.5. However, this likely 

includes substantial measurement or sampling variability, and demographic stochasticity, as well as 

natural variability. We used CV of mortality and fecundity of 0.1 to 0.2 and 0.2 to 0.8, respectively. This 

resulted in CV of growth rate at equilibrium of 0.22 to 0.45.  

 

Dispersal 

Most individuals in Gambelia wislizenii move <1 km (ref. 120), but this is mostly movement within a 

biological population. Maximum dispersal of 2.8 km is recorded for a juvenile male120. Dispersal 

between populations is based on the dispersal-distance function with a=0.1 to 0.3, b=0.2 to 0.5, and 

Dmax=2.8km. 

 

METAPOPULATION SIMULATIONS 

Combining each specific realized population model (sampled from a GLH model) with one of the 36 

species-specific spatial structures resulted in a metapopulation model whose spatial structure 

changed in time as a result of changes in habitat.  Each of these metapopulation models started the 

simulation with several occupied patches.  The metapopulation size at each time step (year) was 
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defined as the total number of individuals in all patches at that time step.  Extinction was defined as 

the metapopulation size reaching zero before or in the year 2100.  Extinction risk for each model was 

calculated as the proportion of replicates (see below) going extinct. 

We created two sets of population models for each spatial model: First, each of the 36 species-

specific spatial structures (for each of the 3 scenarios) was modeled with the correct (matching) life 

history type of the species (e.g., Indigo snake matched to snake life history). Second, each species-

specific spatial model was run with a randomly selected GLH model that is mis-matched from the 

species on which the spatial model was based (e.g., Indigo snake with tortoise life history). Our 

comparison of extinction risk under climate change versus under no climate change (i.e., estimated 

mean extinction risk of 23±7% under the Policy scenario, 28±7% under the Reference scenario, and 

<1 percent without climate change; Standard Errors calculated by treating individual ENMs (species) 

as independent sampling units) included only the matched simulations since the aim was to estimate 

extinction risk for the set of species included in the study. However, both matched and mis-matched 

simulations were included in the subsequent analyses in which we aimed to identify variables that can 

predict climate-related risk (i.e., Figs. 1 and 2). Our reasoning behind including the mis-matched 

simulations was two-fold: 1. to minimize the influence of species as a predictor (i.e., to reduce the 

‘species-effect’ of highly correlated or dependent variables); and 2. to enhance the coverage of life 

history parameter space for each unique patch structure. We explored the robustness of this 

reasoning by examining the effect of including versus excluding the mis-matched simulations on 

correlations between variables. After removing very weak correlations (Pearson r < 0.2 for matched 

simulations), the mean difference in correlation ([absolute matched] – [absolute matched and mis-

matched]) was 0.045, ranging from -0.1 to 0.3, indicating an overall reduction in correlation when mis-

matched simulations are included. This finding is strengthened when considering only the 9 variables 

identified as most important by RF analyses: mean Pearson r reduced by 0.11 when mismatches were 

included. The greatest reductions in collinearity were achieved for pairs comprising a demographic 

and spatial variable. In many cases, scatterplots of predictor variables demonstrate that the mismatch 

simulations fill gaps in parameter space, likely making the resulting models more robust and 
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generalizable, and improving power to detect interactions between spatial and life history variables as 

drivers of climate-related risk (Supplementary Fig. S6). 

With two GLH models (matched and mis-matched) for each of the 36 species, 3 scenarios of 

climate change, and 40-50 specific realized population models sampled for each of these, we ran a 

total of 9,720 metapopulation models, implemented in RAMAS Metapop28. Each of these models was 

run with 1000 replicates in order to incorporate environmental and demographic stochasticity and 

estimate extinction risk. Each replicate was run to simulate dynamics for 110 years, starting in 1990 

and ending in 2100. Thus, a total of 1.1 billion time steps (years) were simulated. The first 20 years of 

each simulation comprised the burn-in period; data from this period were not used in estimating the 

model outputs; however, predictor variables were estimated only from this period (see below and 

Supplementary Fig. 5). 

 

ANALYSIS OF EXTINCTION RISK DUE TO CLIMATE CHANGE 

We focused on two simulation results (response variables): 1. extinction risk; and 2. increase in 

extinction risk due to climate change. Extinction risk was calculated as the proportion of the 1,000 

replicates that had reached a total metapopulation size of zero by the end of the simulated period. For 

the analysis of the importance of life history traits and spatial factors, the response variable used was 

the increase in extinction risk due to climate change, which was calculated as the difference in 

extinction risk under a climate change scenario (Policy or Reference) and under the no climate change 

scenario for each specific realized population model. Because we held the values selected in the LHS 

constant across the three scenarios (as explained above), this difference is an estimate of the 

increase in extinction risk that is attributable to climate change. 

In the statistical analyses, we focused on increase in extinction risk due to climate change for 

two reasons. First, the increase due to climate change is most relevant given that our main focus is 

the impact of climate change. Second, our models do not incorporate other types of change (such as 

land-use change) because these are difficult to project and attempting to incorporate them would 

result in larger uncertainties. It is worth noting that the average extinction risk predicted under the no 
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climate change scenario is small but not zero (about 0.3% in 100 years). Thus, we believe that the 

results are realistic for range-restricted species that are not threatened by habitat loss and other 

immediate threats. 

For all species, we extracted a standard set of 76 predictor variables. These variables included 

demographic variables, spatial variables, as well as recent trends in these variables. Demographic 

variables included population size, age of first reproduction, generation time, variability in survival and 

fecundity. Spatial variables included occupied area, number of patches (subpopulations), and various 

measures of connectivity and fragmentation. All of these variables were based on information from the 

assessment period; the demographic and spatial variables were estimated for the year 2000, and the 

trend variables were estimated from the simulated ten-year period 2000 to 2010 (Supplementary Fig. 

5). The trend variables included trends in occupied area, population size, number of patches 

(subpopulations), and various measures of connectivity and fragmentation. Because the demographic 

structure (age vs. stage; number of age/stage classes) differed among the GLH models, we 

synthesized the input data on demographic structure in two main variables: generation time and the 

population growth rate. 

As described in the main text, 21 predictor variables (Table 1) were selected from the larger set 

for inclusion in the statistical analysis of extinction risk. Criteria for selecting predictor variables for 

extinction risk (i.e., Random Forest and Boosted Regression Tree analyses) included: 1. limiting the 

inclusion of pairs of variables that are highly correlated; 2. ensuring that estimates of each variable 

could, in practice, be obtained for real species in a typical assessment situation; and 3. measurable in 

the present day, or based on recent trends, rather the being reliant on future predictions from models 

(see Main Text). Thus, we examined correlations between candidate predictor variables and in cases 

where two variables that are commonly used for IUCN Red List assessments were found to be 

strongly correlated, we selected only one of the variables. For example, we found high correlation 

(r2=0.95) between (log) occupied area and (log) extent of occurrence (range area, estimated as the 

area of the minimum convex polygon that includes all occupied patches), and therefore selected only 

one of these variables (occupied area) for inclusion in the analyses.  
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The extraction of predictor and response variables from the simulations, as explained above, 

resulted in a data table with 9,720 rows (one for each model) and columns for each response and 

predictor variable. We next used Random Forest (RF) and Boosted Regression Tree (BRT) analyses 

to assess which variables best predict extinction risk due to climate change, and how well they can 

predict, as explained below. 

 

RANDOM FORESTS AND BOOSTED REGRESSION TREES 

Random Forests with conditional inference trees was implemented using the R package “party”121–123. 

For conditional inference trees, the splitting variable is the one with the strongest association (lowest 

p-value) with the response variable based on permutation tests. The splitting threshold is also 

determined based on minimizing the p-value of a non-parametric permutation test, such that the 

method does not make any distributional assumptions. We produced 5,000 conditional trees, each 

using a random subset of 50% of the data (sampled without replacement), with each split of each tree 

based on a different random subset of 5 variables. Our selection of the number of conditional trees 

and number of variables in each subset followed tests with alternative parameterizations and 

recommendations from the literature124. Importance of each predictor variable was determined by 

computing the prediction error of each tree for the out-of-bag sample (i.e., set of observations set 

aside for validation and not used in constructing the trees), and assessing the degree to which out-of-

bag prediction error increases when the values of that predictor variable are randomly shuffled 

(effectively eliminating the information contributed by that predictor variable)125. The importance of a 

predictor variable therefore accounts for the main effects of that variable as well as its interactions with 

other variables.  We do not present absolute values of variable importance (see Fig. 1a) because 

these should not be interpreted or compared over different studies125. Predictions were made by 

averaging across all trees in the forest. 

Boosted Regression Tree models were implemented using the “gbm” and “dismo” packages in 

R8,126,127. In contrast to the RF algorithm, in which each tree is generated independently of other trees 

and predictions are performed as an average across all trees, the BRT model consists of a very large 
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number of trees added together in sequence, with each successive tree fit to the residuals from the 

previous trees in the sequence. To maximize model stability by ensuring that no single tree dominates 

the model, we applied a shrinkage term (learning rate) of 0.005 to each component tree. We 

implemented 5 splits in each component tree.  As for the RF algorithm, each component tree was built 

using a random subset of 50% of the training data (sampled without replacement). Unlike RF, all 21 

predictor variables were treated as candidates for defining the split criterion at each parent node. Also 

unlike RF, the split criterion was based on minimizing deviance and therefore we specified a Gaussian 

distribution for the residuals. All parameterizations were selected following tests and recommendations 

from the literature128. Importance of each predictor variable was computed simply as the total 

reduction in deviance associated with that variable for the full model. Like RF, this importance value 

accounts for main effects and high-level interactions. 

We assessed model performance and predictive ability using a leave-one-out cross validation 

scheme in which each of the 36 species was treated in turn as an independent validation set (models 

were trained based on remaining 35 species). In our modeling framework, each species label 

corresponded to a unique time series of habitat suitability maps (derived from a Maxent model) and 

therefore also expressed a unique set of predictor variables measuring spatial configuration and 

extrinsic environmental characteristics. By using species as a data partition instead of random 

sampling methods (e.g., standard 10-fold cross-validation), we were able to challenge the modeling 

algorithm against truly independent data. Thus, the predictive performance metrics presented herein 

could be expected to hold for predictions of climate-related risk to additional North American species 

not included in this study. We used three measures of performance: AUC, root mean square error 

(RMSE) and deviance explained (DE).  To calculate AUC, we converted extinction  risk to a binary 

variable with a threshold of 0.5. Extinction risk had a bimodal distribution (see Supplementary Fig. S7),  

thus this conversion did not result in loss of information.  Performance results were as follows: RF, 

Reference scenario: AUC = 0.86, deviance explained (DE) = 0.32, RMSE = 0.36; RF, Policy: AUC = 

0.85, DE = 0.23, RMSE = 0.36; BRT, Reference: AUC = 0.80, DE = 0.18, RMSE = 0.39; BRT, Policy: 

AUC = 0.80, DE = 0.12, RMSE = 0.38.  In contrast, using the more common approach to cross-
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validation, and randomly leaving out 1/10th of models (instead of all models of a randomly selected 

species),  we obtain AUC=0.966 (RF, Reference scenario) and AUC = 0.999 (BRT, Reference 

scenario). 
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