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Abstract

BLUP (best linear unbiased prediction) is widely used to predict complex traits in plant and animal breed-
ing, and increasingly in human genetics. The BLUP mathematical model, which consists of a single random
effect term, was adequate when kinships were measured from pedigrees. However, when genome-wide SNPs
are used to measure kinships, the BLUP model implicitly assumes that all SNPs have the same effect-size
distribution, which is a severe and unnecessary limitation.

We propose MultiBLUP, which extends the BLUP model to include multiple random effects, allowing
greatly improved prediction when the random effects correspond to classes of SNPs with distinct effect-size
variances. The SNP classes can be specified in advance, for example based on SNP functional annotations,
and we also provide an adaptive procedure for determining a suitable partition of SNPs.

We apply MultiBLUP to genome-wide association data from the Wellcome Trust Case Control Consor-
tium (seven diseases), and from much larger studies of Celiac Disease and Inflammatory Bowel Disease,
finding that it consistently provides better prediction than alternative methods. Moreover, MultiBLUP is
computationally very efficient; for the largest dataset, which includes 12 678 individuals and 1.5 M SNPs, the
total analysis can be run on a single desktop PC in under a day, and can be parallelized to run even faster.
Tools to perform MultiBLUP are freely available in our software LDAK.

Introduction

BLUP (best linear unbiased prediction) is perhaps the most widely used tool for prediction of complex traits.
Developed in the 1950s as a way to predict random effects in a mixed model (Henderson 1950; Henderson
et al. 1959), the advent of genomic selection has further increased its role in animal and plant breeding
(Meuwissen et al. 2001; Goddard and Hayes 2007; Habier et al. 2011; Scutari et al. 2013). Recently, as SNP-
based heritability analyses have demonstrated the polygenic nature of many human traits (International
Schizophrenia Consortium et al. 2009; Yang et al. 2010), BLUP has also gained popularity among human
geneticists, where it is beginning to replace a previous emphasis on sparsity in genome-wide analyses (Yang
et al. 2011a; Makowsky et al. 2011; de los Campos et al. 2013).

Central to genetic applications of BLUP is a matrix that encodes genetic similarities between pairs of
individuals. It is sometimes called a genomic relatedness matrix, although we consider genomic similarity
matrix (GSM) is more appropriate. The GSM is used to specify the correlation structure of a random
effect term in a mixed regression model (“mixed” means that the model includes both fixed and random
effects). In the past, the only available measure of genetic similarity was a kinship coefficient computed
as a probability of identity by descent in a pedigree, and so a single random effect term sufficed to model
genome-wide additive effects. Nowadays genetic similarity can be measured directly, and in many different
ways, from genome-wide SNP data. Yet most SNP-based applications of BLUP, referred to as Genomic
BLUP or GBLUP, continue to use a single random effect, which corresponds to the unrealistic assumption
that all SNP effect sizes are draws from a common Gaussian distribution. Other authors have attempted to
relax the Gaussian assumption, discussed further below, but we believe that the assumption of a common
prior distribution is the more important limitation, and so we focus on relaxing that.

We propose MultiBLUP, which generalizes the BLUP model to accommodate multiple random effects.
Different SNP classes can be allocated separate random effects, which benefits prediction when the effect-size
variance differs markedly across the classes. There are many ways to define SNP classes for which different
effect size distributions may be appropriate, for example: coding, intronic, flanking and inter-genic SNPs;
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MHC and non-MHC SNPs; SNPs categorized according to conservation across species; and sets of eQTL
SNPs for different cell types. Alternatively, we provide Adaptive MultiBLUP which automatically identifies
SNP classes with different effect sizes. This adaptive approach begins by dividing the genome into many
small regions, which are then merged according to rules intended to identify a small number of genomically-
contiguous regions, each with effect-size variance distinct from a baseline region comprising the rest of the
genome. To ease terminology, we will refer to SNP classes as if defined by genomic regions, even though
there is no need for the SNPs in a class to be contiguous and classes can overlap. MultiBLUP assigns a
random effect to each region, whose correlation structure is determined by a GSM calculated from the SNPs
in the region. Here, we focus on GSMs encoding additive genetic effects, but it is possible to include further
random effect terms corresponding to dominance or forms of epistasis.

We first apply MultiBLUP to the seven human diseases studied by The Wellcome Trust Case Control
Consortium (2007) (WTCCC1). Although relatively small datasets (each comprising approximately 5000
individuals recorded for 280000 SNPs), these allow us to demonstrate the advantages of MultiBLUP over
a range of diseases with different genetic architectures. For rheumatoid arthritis and Type 1 diabetes, we
show improvements in predictive accuracy from assigning distinct random effects to SNPs within and outside
the major histocompatibility complex (MHC), because for these two traits MHC SNPs tend to have larger
effects. Compared to BLUP, genetic risk scores (Wray et al. 2007), stepwise regression (Purcell et al. 2007)
and Bayesian Sparse Linear Mixed Models (BSLMM; Zhou et al. 2013), we find Adaptive MultiBLUP to be
the overall top performing method, regardless of whether we measure the accuracy of predicted phenotypic
values by correlation, mean squared error, median absolute error or area under curve (AUC). Moreover,
Adaptive MultiBLUP requires only a fraction of the computational time and memory resources of BSLMM,
the second best performing method.

We next tackle larger datasets, for Celiac Disease (approximately 15000 individuals, 200000 genotyped
SNPs) and Inflammatory Bowel Disease (13000 individuals, 1.5 M imputed SNPs). Genetic screening of
patients is routinely used to guide diagnosis and hence treatment for Celiac Disease (Husby et al. 2012;
Abraham et al. 2014), and so for this trait improved prediction can have immediate impact. Due to the size
of these datasets, it is not feasible to run stepwise regression or BSLMM; by contrast, Adaptive MultiBLUP
requires less than 4 GB of memory, and completes in about 6 hours for Celiac Disease and 24 hours for
Inflammatory Bowel Disease. Again we find Adaptive MultiBLUP to be greatly superior to both standard
BLUP and genetic risk scores.

Lastly, we consider 139 phenotypes from the Wellcome Trust Heterogeneous Stock mouse collection,
where individuals are highly related, as is typical in plant and animal breeding. Although there is little
difference between the performance of BLUP, BSLMM and Adaptive MultiBLUP, our results demonstrate
that MultiBLUP can also be used when the dataset contains high levels of structure.

The tools required to perform MultiBLUP prediction are freely available in our software LDAK.

Results

The WTCCCI1 data consist of two control and seven case datasets, for Bipolar Disorder (BD), Coronary
Artery Disease (CAD), Crohn’s Disease (CD), Hypertension (HT), Rheumatoid Arthritis (RA), Type 1 Di-
abetes (T1D), and Type 2 Diabetes (T2D). Our quality control (see Methods and Supplementary Fig. 1)
removed individuals inferred to be of non-Caucasian ancestry and reduced the number of genotypes to ap-
proximately 280000. For our simulation study we use the 2959 control individuals and the 47546 SNPs
from Chromosomes 1 and 2. For the analysis of observed phenotypes, we combine in turn the 2959 controls
with the approximately 2000 case individuals for each of the seven traits, and used all SNPs.

For Celiac Disease, we use the data of Dubois et al. (2010). Individuals were sourced from five cohorts,
labeled according to country of origin (UK1, UK2, Finland, Netherlands and Italy). After quality control,
15283 individuals and 190948 SNPs remained (see Methods and Supplementary Fig. 2). For Inflammatory
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Bowel Disease, we combine data from WTCCC and the National Institute of Diabetes and Digestive and
Kidney Disease (NIDDK): starting with the 1916 Crohn’s Disease cases from WTCCC1, we add 8033 in-
dividuals from WTCCC2 (5200 population controls and 2833 ulcerative colitis cases) and 2 788 individuals
from the NIDDK (813 cases for Crohn’s Disease and 947 matched controls, and 1028 ulcerative colitis cases).
As genotyping was performed using multiple SNP arrays, we first imputed using IMPUTE2 against the 1000
Genome reference panel (The 1000 Genomes Project Consortium 2010; Howie et al. 2011). After quality
control, 12678 individuals and 1487824 SNPs remained (see Methods and Supplementary Fig. 3).

The mouse dataset consists of 1940 heterogeneous stock mice descended from 8 founder lines (Valdar
et al. 2006). After quality control there were 8 516 SNPs across 19 autosomes. The equal-tailed 95% interval
for the kinship coefficients is [—0.11,0.24], indicating high levels of relatedness (the corresponding interval for
the WTCCC1 data is [—0.01,0.01]). For our simulation study we use all individuals and SNPs. For the real
data analysis, of the > 150 traits available, we focus on the 139 quantitative traits which have measurements
available for at least 1300 mice and coefficient of kurtosis < 6 (the kurtosis of the Gaussian distribution is
3). The chosen traits, which all had coefficient of skewness < 1.5 (the Gaussian distribution has skewness
0), span behavioral, haematological, biochemical and disease-related phenotypes. For many of the traits,
the phenotypic values are strongly correlated with cage ID. Therefore, when performing cross-validation, we
ensure that individuals in the same cage remain in the same fold.

Simulation study

First, we demonstrate the potential of MultiBLUP in a simple, albeit unrealistic, setting in each of two
datasets (WTCCC1 and mouse). We divide the SNPs into five distinct regions and simulate quantitative
phenotypes where each region contributes a specified heritability. We consider three scenarios: (1) the five
regions contribute equally to heritability; (2) regions contribute to heritability in the ratios 1:2:3:4:5; and (3)
only Region 5 contributes to heritability. In each region that contributes to heritability, we assign additive
genetic effects to 20 random SNPs, with effect sizes drawn from a Gaussian distribution with mean zero and
variance chosen to achieve the required heritability. When applying BLUP, we used a single GSM computed
as average allelic correlations across all five regions. With MultiBLUP, we used five GSMs, each calculated
in the same way but using SNPs from only one of the regions. For both BLUP and MultiBLUP, we divided
individuals between training and test sets in the ratio 5:1, then measured prediction performance of models
fitted on the training set by the correlation between simulated and predicted phenotypes in the test set.

Figure 1 shows that for both datasets, the two methods perform similarly for Scenario 1, indicating little
disadvantage to assuming the more general MultiBLUP model when it is not needed. The performance of
BLUP does not improve with increasing concentration of causal variation in Scenarios 2 and 3, whereas
MultiBLUP does exploit the heterogeneity of effect sizes to improve prediction, dramatically so for the
WTCCC1 data. Prediction performance is good in all scenarios for the mice, because close relatedness
implies that almost all causal variants are tagged, but even here the improvement of MultiBLUP is noticeable.
We repeated the analysis when heritability was distributed across all SNPs, rather than only a selected 20,
and observed similar results (Supplementary Fig. 4). As well as prediction performance, we also measure
genomic selection performance, which is the accuracy of estimation of the sum of the random effects. This
is known in animal and plant genetics as the “breeding value”, and represents the phenotypic value after
discounting environmental noise. MultiBLUP also provides better genomic selection performance than BLUP
(Supplementary Fig. 5).

WTCCC1 data

For the real phenotypes, we evaluate prediction methods using ten-fold cross-validation. When comparing
methods applied to binary outcomes, it suffices to treat case/control status as a continuous variable (cases
1, controls 0), because there exists a linear relationship between prediction performance on the observed and
underlying liability scales (Dempster and Lerner 1950; Yang et al. 2011a; Zhou et al. 2013). Moreover, this
permits us to minimize any effects of confounding by first regressing case/control status on sex and the first
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20 principal component axes.

Columns 1-4 of Table 1 report the performance of BLUP, genetic risk scores, stepwise regression and
BSLMM (see Methods for details of parameter choices). Of the first three methods, there is no clear winner:
stepwise regression performs best for RA and T1D, the two traits with strongest marginal associations, while
BLUP and genetic risk scores fare better for the more polygenic traits BD and HT. By contrast, BSLMM,
whose model allows for both sparsity and shrinkage, performs well regardless of the genetic architecture of
the trait, and overall is the best of the current methods.

As a first demonstration of MultiBLUP, we consider two regions, one corresponding to the extended
MHC (Chr. 6:25-34 Mb) and one to all other SNPs (Table 1, Column 5). This relatively simple change to
the BLUP model leads to greatly improved prediction for the autoimmune traits RA and T1D (correlation
0.35 and 0.56, respectively, compared to 0.21 and 0.25 for BLUP). Supplementary Figure 6 shows Manhattan
plots for each trait, from which the enhanced role of the MHC for RA and T1D can be seen. Supplementary
Table 1 shows heritability estimates for the MHC and non-MHC regions, and how much each contributes
to prediction. Separating SNPs according to MHC improves prediction when the MHC harbors substantial
heritability; conversely high heritability can be attributed to non-MHC SNPs without this contributing much
to prediction, because a single SNP effect-size variance is inadequate for a large, heterogeneous region.

The SNPs in each region need not be contiguous. To illustrate this we partition the genome into two
regions according to eQTL status. For this application, we classify “eQTL SNPs” as those associated
(P < 10719) with changes in expression levels for at least one gene, according to Curtis et al. (2012). Using
this threshold, approximately 5% of SNPs are classified as eQTLs. Compared to BLUP, we achieve improved
prediction for RA and T1D (see Supplementary Table 2), indicating that for these traits the eQTL SNPs
tend to have a larger influence than the non-eQTL ones. Similarly, MultiBLUP regions can overlap, which
we illustrate for CD by constructing regions based on two pathways (IL-2 Receptor Beta Chain in T cell
Activation and IL12 Pathway) and two genes (NOD2 and IL23R), all of which have shown association with
the trait in at least two datasets other than the WTCCC1 (Ballard et al. 2010; Wang et al. 2009; Hugot et al.
2001; Agura et al. 2001; Duerr et al. 2006). A fifth region contains all other SNPs. Prediction is slightly
improved compared to BLUP (correlation 0.319 vs 0.316; see Supplementary Table 3)

Rather than rely on prior information to define SNP regions, MultiBLUP can be run adaptively, starting
with many small genomic regions which are then merged as described below and in Methods. For each
of the WTCCCI traits, we begin by dividing the genome into approximately 68000 regions of size 75kb
(on average 8 SNPs), with a 37.5kb overlap between neighboring regions. Although our aim is to identify
regions with above-average effect-size variance, because the individuals are predominantly unrelated most
effect-size variances will be very small, and therefore it suffices (and is much faster) to test instead whether
each effect-size variance is non-zero. Each region with P < 107% is merged with any neighboring region with
P < 1072. At the end of this process, all remaining regions are merged into a background region. For the
highly polygenic traits BD, CAD, HT and T2D, this process generates 1-2 regions (including the background
region); for CD, RA and T1D, we find on average 7, 5 and 8 regions, respectively (see Supplementary Fig. 7).
Overall, we find Adaptive MultiBLUP (Table 1, Column 6) to be the best-performing method; it ranks first
for six of the seven traits, and is only narrowly beaten by BLUP for BD. Adaptive MultiBLUP remains top
if instead we measure prediction accuracy according to mean squared error, median absolute error or AUC
(Supplementary Table 4).

Celiac Disease and Inflammatory Bowel Disease

For these two traits, the sizes of the datasets make it infeasible to run stepwise regression or BSLMM, so we
restrict comparison to BLUP, genetic risk scores and Adaptive MultiBLUP (starting as before with overlap-
ping 75kb regions). Increasing the sample size improves the resolution of Adaptive MultiBLUP; for example,
for Inflammatory Bowel Disease, the method identifies on average 27 distinct local regions (Supplementary
Figure 8). We again find Adaptive MultiBLUP to be the best performing method (Table 2 and Supplemen-
tary Table 5). For Celiac Disease, we additionally consider a linear prediction model constructed from 77
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susceptibility SNPs: 6 SNPs tagging four human leukocyte antigen (HLA) haplotypes (Monsuur et al. 2008)
and 71 SNPs based on Romanos et al. (2014). For this model, the average correlation is 0.40 and the average
AUC is 0.78 (see Supplementary Table 6), demonstrating here it is better to incorporate genome-wide SNP
data than use only top associated SNPs. Unlike Celiac Disease, genetic testing is not yet routinely used for
Inflammatory Bowel Disease, but its potential for distinguishing subtypes has been discussed. For example,
while the low prevalence of Crohn’s disease makes prediction at the population level difficult, genetic data
could aid in the diagnosis of patients presenting with abdominal pain, diarrhea and weight loss (Jostins and
Barrett 2011), and the case for this is strengthened by the improved predictive accuracy of MultiBLUP.

Mouse data

Supplementary Figure 9 shows the performance of BLUP, genetic risk scores, BSLMM and Adaptive Multi-
BLUP across the 139 mouse phenotypes. Again, we start Adaptive MultiBLUP with overlapping 75kb
regions, but owing to the smaller size of the mouse genome, relax the initial significance threshold to
P < 5x 1075 We find that genetic risk scores is by far the worst performing method (average correla-
tion 0.27), because the basic single-SNP association test it uses copes poorly with the structure present in
the dataset. Overall, the performances of BLUP, BSLMM and Adaptive MultiBLUP are very similar (av-
erage correlations 0.335, 0.336 and 0.336, respectively), with different methods performing best for different
phenotypes. As explained below, the advantage of BSLMM and Adaptive MultiBLUP relative to BLUP
comes from being able to identify individual causal loci with relatively strong influence on the phenotype;
however, the high levels of relatedness and low SNP density present in the mouse data will in general make
this difficult.

In this application, Adaptive MultiBLUP is slowed down due to the high levels of relatedness; despite there
being less than 2000 individuals, it now takes about three hours to analyze each phenotype, approximately
as long as BSLMM. This is because when deciding how to divide SNPs into regions, the shortcut used for
the human data (testing whether each initial region has effect-size variance greater than zero) is no longer
valid. However, this step is parallelizable and we anticipate that it can be made orders of magnitude faster
by implementing algorithmic speed-ups similar to those proposed by Listgarten et al. (2012).

Comparison between Adaptive MultiBLUP and BSLMM

The prediction models used by Adaptive MultiBLUP and BSLMM have much in common. For both meth-
ods, a relatively small number of SNPs are used to capture the contributions of distinct causal loci, while the
majority of SNPs influence the prediction model only through a polygenic term (in Adaptive MultiBLUP,
this corresponds to the background region). The major difference is that in BSLMM each causal locus is
typically represented by only one or two SNPs, whereas a local region in Adaptive MultiBLUP will generally
include multiple SNPs. The former approach might be expected to perform better when a reasonably strong
causal variant is well tagged by a single SNP, but even then, prediction is unlikely to suffer much by including
some extra SNPs. By contrast, when the causal variant is difficult to detect through single-SNP analysis,
either because it is not well tagged or has effect size too weak, or when a local region contains two or more
causal variants, using multiple SNPs can provide improved prediction.

This would suggest that the accuracy of Adaptive MultiBLUP, and the potential to outperform BSLMM,
will tend to increase with SNP density. Adaptive MultiBLUP was noticeably better than BSLMM for the
WTCCC1 datasets, which have on average 8 SNPs per 75kb, and we predict that had it been feasible to
apply BSLMM to the Inflammatory Bowel Disease dataset (44 SNPs per 75kb), the gap between the two
methods would have been even larger. Conversely, for the mouse data the genotyping is much more sparse
(most 75kb regions contain only a single SNP), and Adaptive MultiBLUP no longer has an advantage. The
difference between prediction models also explains the disparity in computational demands. The BSLMM
model has one effect size for each SNP, plus additional parameters, whose values are estimated using Markov
Chain Monte Carlo (MCMC). By contrast, Adaptive MultiBLUP has many fewer parameters (one variance
component for each region, plus one for the environmental noise term); this allows the prediction model to be
fitted deterministically, which is much faster than using MCMC and avoids issues of parameter convergence.
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Similarly, the memory demands of Adaptive MultiBLUP are much lower. Both methods must store a
(genome-wide) GSM, but whereas BSLMM must also read in the entire dataset, Adaptive MultiBLUP
requires only those SNPs included in local regions (which is typically a small fraction of the total number
of SNPs). For this reason, while it was not possible to apply BSLMM to the Celiac or Inflammatory Bowel
Disease datasets, Adaptive MultiBLUP could realistically be run on even larger datasets: up to around
50 000 individuals with full genome sequence data.

Discussion

We have presented MultiBLUP, a powerful and efficient method for prediction of complex traits from genome-
wide SNP data. The statistical model underlying BLUP was developed for use with kinship coefficients
derived from pedigrees, but SNP data allows additional flexibility that has not previously been exploited.
Specifically, the BLUP model assumes that SNP effect sizes have the same distribution for all SNPs. Multi-
BLUP generalizes this model by introducing multiple random effects, allowing different effect-size variances
for different classes of SNPs. The SNP classes used in MultiBLUP can be identified using prior information,
for example about genes and pathways relevant to the trait or other functional annotation of SNPs. Alter-
natively, Adaptive MultiBLUP can automatically identify SNP regions with different effect-size variances.
In fact, there is no need for the correlation structure of MultiBLUP’s random effects to be defined by SNPs,
its prediction model can integrate multiple sources of data including copy number variants, measures of gene
expression or methylation, and pedigree information.

Previous attempts to generalize the BLUP model have mainly focused on weakening the Gaussian as-
sumption for SNP effect sizes, which has been rightly criticized because of the “thin tails” property of the
Gaussian distribution. The ¢, double-exponential and normal-exponential-gamma distributions have been
suggested as alternatives, as well as mixture distributions that allow many SNPs to have zero or negligible
effect; see Zhou et al. (2013) for a review. It is not practical to compare MultiBLUP with all rival methods, so
in addition to BLUP, genetic risk scores and stepwise regression, we chose BSLMM, an approach which seeks
to incorporate ideas from many of the BLUP generalizations, and which has been shown to outperform a
number of alternative methods (Zhou et al. 2013). The advantage of BSLMM over BLUP, genetic risk scores
and stepwise regression was apparent in our analyses of the WTCCC1 data, but we found it to be inferior to
Adaptive MultiBLUP for all traits, with Adaptive MultiBLUP requiring only 10% of the computation time
and 5% as much memory as BSLMM. For the much larger Celiac Disease and Inflammatory Bowel Disease
datasets, we showed that MultiBLUP continued to outperform the computationally-feasible alternatives,
while the mouse data demonstrated that MultiBLUP can also perform well for structured datasets.

Consortia now exist for a wide variety of traits, combining data across tens of thousands of patients, while
initiatives such as the 100K Genome Project (www.genomicsengland.co.uk) are set to recruit individuals in
even larger numbers. At the same time, with next generation sequencing becoming more widely available,
and with our ability to interrogate other sources of information (for example, transcriptomic and epigenomic)
constantly improving, the number of predictors available will continue to increase. With much of the algo-
rithm parallelizable, there is essentially no limit to the number of predictors that MultiBLUP can analyze.
Instead, the runtime of MultiBLUP depends primarily on the number of individuals, as this affects how
long it takes to estimate the variance components. The current implementation of Adaptive MultiBLUP can
analyze 50 000 individuals, and we expect algorithmic advances to lead to increases in this number. We also
envisage a meta-analysis version of MultiBLUP, where prediction models are constructed locally and then
combined, allowing MultiBLUP to be used by meta-analysis consortia where data can not be shared centrally.

SNP-based prediction of phenotype is central to genomic selection, which is revolutionizing animal and
plant breeding. For humans, prediction is more challenging because we are largely outbreeding which leads
to low levels of relatedness in most populations. Moreover, the binary nature and low prevalence of many
disease phenotypes imply that prediction of disease onset is typically not useful in a general population.
However, prediction of disease state from genotype already has clinical utility in individuals selected to be
of high risk on the basis of non-genetic risk factors. Moreover, where decisions about treatment options are
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already based on risk factor scores, genomic information can contribute substantially to improved decision
making at the population level, even when individual predictions are imprecise. As the costs of genome-wide
genotyping continue to fall, additional clinical uses of genomic information for prediction of traits in humans
will be found, for example to generate more realistic, individual-specific baselines from which to assess
environmental impacts in population health studies. These will allow additional benefits to be obtained
from the superior predictions of MultiBLUP.

Methods

The usual BLUP model assumes that Y, the vector of phenotypic values for the n individuals, is influenced
by random effects g (genetic) and e (environmental) via

Y =g+e with g~N(0,Ko?) and e~ N(0,Ic?), (1)

where K is a GSM specifying the correlation structure of g, I is an n x n identity matrix, while 02 and o2 are
variances (for simplicity, fixed effects have been ignored). A common SNP-based GSM is allelic correlations
averaged over SNPs (Astle and Balding 2009):

K = XX'/p, (2)

where X is a matrix of (normalized) SNP genotypes, X’ is its transpose and p is the number of SNPs. If
(2) holds, then (1) can be expressed as a linear regression with random coefficients (Hayes et al. 2009):

Y=Y X;8+e with B;~N(0,0%/p), (3)
J

where X; denotes the jth column of X, and so §; is a measure of effect size for the jth SNP.

MultiBLUP extends (1) to include random effects g',..., g™, with correlation structures specified by

K ... KM and the corresponding variances o?,. .. 70’%/12
M
Y = Z g" +e with g™ ~N(0,K™"02) and e~ N(0,Io?). 4)
m=1

When each K™ is of the form (2) for a matrix X™ with columns corresponding to a set of SNPs R, of size
Pm, the corresponding random regression model is

M
Y=Y Y X"g'+e with BI"~N(0,07,/pm). (5)

m=1jER,,

As with BLUP, the key computational step of MultiBLUP is the estimation of the variance parameters
o?,...,0% and o2. This can be achieved using (a generalized version of) REML (Corbeil and Searle 1976),
which maximizes the log likelihood

1 1
—g log(2m) = SY'V'Y — Slog|V|  where V=02l 40K +...+ 0}, K" (6)
MultiBLUP computes 6%, ...,53, and 02, estimates of the variance components, using average information

REML (Gilmour et al. 1995; Lee and van der Werf 2006). If the total proportion of variance explained by
a kinship matrix is below 0.01% for two consecutive iterations, its contribution is set to zero; there is no
limit on how many variance terms can be set to zero, allowing MultiBLUP to be run with very many regions.

MultiBLUP includes two computational optimizations to reduce memory usage and time requirements.
Firstly, when a region contains fewer SNPs than the number of individuals, the corresponding GSM, K™ =
X™(X™)/py,, is computed on-the-fly, meaning that only X ™ rather than K™ need be stored. Secondly, in
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each iteration, the most time-consuming step is inverting V'; however, this process can be sped up whenever
at most one GSM has full rank and the total number of SNPs contributing to the remaining GSMs is less
than the number of individuals (which is generally the case for Adaptive MultiBLUP). Suppose that K* is
the GSM with full rank, then it can be decomposed as K! = UEU’, where U is orthogonal and E diagonal,
and therefore 021 + 0?2 K! = U(02I + 03 E)U’. The Woodbury Matrix Identity states that

(A+ZDZ)'=A"'-A'Z(D '+ Z2A'z2)'z7Aa (7)

Let A = 021 + 02K, concatenate the remaining regional SNP matrices into Z = [X? X3... XM],
and construct the diagonal matrix D with diagonal elements consisting of o2, /p,, repeated p,, times, for
m=1,...,M. Then V is in the form required to apply (7). Because A~! = U (021 + 0?E)~'U’ and D is
diagonal, the only inversion required is of the lower-dimensioned matrix (D~! + Z’A~1Z)~L Moreover, by
keeping V ~! in the form UWU’, it is possible to carry out the REML iterations without computing V ~!
explicitly, avoiding the need to multiply matrices of size n x n. Additionally, this implementation avoids
problems caused by local region kinship matrices being low-rank and therefore not invertible.

Predicting phenotypes. Suppose that phenotypes are recorded for individuals indexed by the set .S, and
we wish to predict those for individuals in the set 7. In addition to estimating the variance parameters,

REML also obtains g§, ... ,g{gi , estimates of the genetic random effects for individuals in S. To predict
phenotypes for individuals in 7', we estimate gk, ..., g4 by their expected values given g3, ..., g

~ ~M N

a7 = E(g7'195") = K7's(Kgs)™'g5, (8)

where K7's and K g are submatrices of K™ defined by the subscripts. We can then predict phenotypes for
individuals in 7' via Y7 = g+ + ... + 3. When the GSM takes the form (2), we have

g = XPA™  where  B" = XET(XF(XE)) gL (9)

so that 8™ is the vector of effect sizes for SNPs in X™ When K™ corresponds to a local region, it is
typically not invertible, so instead we use

gp = XpAT where BT = (XZYXE)N(XEV6E. (10)

Use of (9) and (10) is often more convenient than (8), as then phenotypes for test individuals can be predicted
without needing to refer to data for training individuals.

Adaptive MultiBLUP. If regions m and m/, of sizes p,, and p,,, have equal effect-size variances (i.e.,
02, /Pm = 02, /pm/), then Model (5) is unaffected by merging the two regions or, equivalently, replacing g™
and g™ in (4) with a single random effect with correlation structure (pK,, + p'K)/(p + p'). Therefore,
our adaptive strategy starts by dividing the genome into genomically-local SNP regions, then testing for
each region whether its effect-size variance is significantly greater than that for all other regions combined.
The formal test for Region m is performed by calculating ly, the maximum value of (6) using a single
GSM K =5, pm K™/, Dm, and [1, the maximum value using two GSMs: K™ and its complement
K™ =3 im P K™/ > m'#m P A p-value is obtained by comparing the test statistic 2(l1—lo) to a
x2(1) distribution. When levels of relatedness are low, it suffices to instead test whether the contribution to
heritability from each region is significantly different from zero, using highly efficient computations similar
to those outlined by Listgarten et al. (2013). The starting region size (we chose 75 kb for the human data) is
intended to be small enough to separate distinct causal loci, but in case a causal locus spans multiple 75 kb
regions, we then merge adjacent significant regions as described above. To test sensitivity for the WTCCC1
data, we additionally ran Adaptive MultiBLUP starting with 37.5 and 150 kb regions, or using significance
thresholds P < 107° and P < 1077 (instead of the Bonferroni-derived P < 107°); in all cases we observed
little difference in prediction performance, and Adaptive MultiBLUP remained the best performing method
(see Supplementary Table 7).

Model (4) is the same as that used by genome partitioning, a method for estimating the variance ex-
plained by subsets of SNPs (Yang et al. 2011b). The advantage of MultiBLUP over BLUP arises when
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relatively large fractions of phenotypic variance can be assigned to relatively small SNP classes. However, it
is important to bear in mind that the focus of MultiBLUP is to obtain the prediction model Y = Z%zl g
(or equivalently Y = Zﬁf:l JeR, X;”ﬁ;”), the estimates 6%,...,63%, will only accurately reflect variance
explained when individuals are distantly related and when the decision of how to construct each K™ was
made a priori, rather than adaptively based on the data.

Data quality control. All analyses used only autosomal SNPs. For the WTCCC1 data (www.wtcce.org.uk),
we filtered to remove population outliers identified through principal component analysis (Supplementary
Fig. 1), after which 2959 controls remained, while each of the case/control studies were left with between
4859 and 4928 individuals. Then we removed SNPs with either minor allele fraction (MAF) < 0.01 or
call-rate (CR) < 0.995, or P < 0.05 from either a test for Hardy-Weinberg equilibrium (HWE) or differential
missingness between cases and controls, after which studies contained between 270319 and 284913 SNPs.
Even subtle differences in population between cases and controls can lead to artificial gains in prediction. To
guard against this, we first regressed disease status on sex plus the top 20 principal component axes, then
used the (continuous-valued) residuals for subsequent analyses. A potential drawback of this approach is
that any true causal signal contained within the top axes is discarded and so unable to contribute towards
prediction; however, as population stratification is likely to benefit most methods whose prediction models
contain very many SNPs, we thought it better to err on the conservative side. By way of comparison, we
instead regressed disease status on sex and two ancestry axes derived from the HapMap reference panel (The
International HapMap Consortium 2003) observing slightly higher prediction performance for the WTCCC1
traits (see Supplementary Table 7), suggesting that the true prediction potential lies somewhere in between
these two sets of values.

For the Celiac Disease data, the initial quality control steps are described in Dubois et al. (2010). Princi-
pal component analysis indicated that the dataset was sufficiently homogeneous (Supplementary Fig. 2), so
we retained all 15 283 individuals, but removed SNPs with MAF < 0.01, CR < 0.995 or HWE P < 0.05, after
which 190,948 remained. For Inflammatory Bowel Disease, the data came from five cohorts: 1916 Crohn’s
Disease cases from WTCCC1, 5200 controls and 2833 ulcerative colitis cases from WTCCC2, 813 Crohn’s
Disease cases and 947 matched controls, and 1028 ulcerative colitis cases from NIDDK (www.niddk.nih.gov).
Separately for each cohort, we first removed outlying samples based on principal component analysis (Sup-
plementary Fig. 3), and SNPs with MAF < 0.01, CR < 0.95 or HWE P < 1075, then imputed against the
1000 Genome reference panel using IMPUTE2 (The 1000 Genomes Project Consortium 2010; Howie et al.
2011). Then we combined samples, filtering out SNPs with (expected) MAF < 0.01, (expected) CR < 0.995,
or IMPUTE2 Info Score < 0.98, and finally excluding 213 individuals who appeared to be duplicates (esti-
mated kinship > 0.7 with another individual in the dataset). 12678 individuals and 1487 824 SNPs remained.

For the mouse data (downloaded from www.mus.well.ox.ac.uk), no individuals were excluded, but SNPs
were removed if they had MAF < 0.01, HWE P < 104 or call-rate < 0.99. Each of the supplied phenotypes
had been pre-adjusted for marginally significant covariates, such as age, sex and body weight, and when
performing ten-fold cross-validation, we ensured that mice in the same cage were kept in the same fold.

Genetic risk scores. We constructed a linear predictor ) j B;X; using all SNPs achieving a p-values from
marginal association analysis below a specified threshold, with effect sizes estimated from the same analysis.
We considered five threshold values (1 to 5 on the —log;, scale), expecting higher p-value thresholds to
provide better prediction for more highly polygenic traits, and vice versa. Prediction from genetic risk scores
can be impaired due to high levels of linkage disequilibrium, so for the human data we repeated the analysis
having first pruned to obtain a subset of SNPs in approximate linkage equilibrium; results were noticeably
different only for the Inflammatory Bowel Disease dataset, which uses imputed genotypes, so for this trait
we instead report results from the pruned analysis. Because genetic risk scores estimates SNP effect sizes
independently, the method is not expected to perform well when judged according to mean squared error or
median absolute error, and this proved to be the case for all traits.

Stepwise regression. We performed multiple runs of single-SNP association analysis, each time condition-
ing on the SNPs already selected and adding the most strongly associated SNP to the model. We stopped
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when no SNP was (conditionally) significant at P < 107, then estimated coefficients for the selected SNPs
using least squares. For BD, CAD, HT and T2D, the average model size was between 0 and 2 SNPs, while
for CD, RA, and T1D, the average model size was 7, 6 and 17 SNPs, respectively.

BSLMM. We ran BSLMM with the parameters at their default values, meaning that the first 100000
MCMC iterations were discarded, then posterior estimates were obtained from the next 1000000. For both
the human and mouse data, we used a standardized kinship matrix (option -gk 2), matching the way GSMs
were computed for BLUP and MultiBLUP.

Computing resources. The first step in MultiBLUP is to compute one or more GSMs. When these
represent allelic correlations, the time required scales approximately linearly in the total number of SNPs
and quadratically in the number of individuals; for example, with optimized code (Gray et al. 2012), this
step took about 15 hours for the Inflammatory Bowel Disease data (c. 13000 individuals, 1.5 M SNPs), and
is readily parallelized. For Adaptive MultiBLUP, each initial region must be tested, which when individuals
are predominantly unrelated is very fast (about 1 hour for the Inflammatory Bowel Disease data), but slower
when individuals are highly related (about 3 hours for the mouse data), however, this step can also be
parallelized. The time to estimate the variance terms scales approximately quadratically in the number
of individuals, taking about 5 hours for the Inflammatory Bowel Disease data. The memory required by
MultiBLUP scales quadratically with the number of individuals and, if each GSM has full rank, linearly with
the number of random effects (e.g., with two full-rank GSMs, MultiBLUP requires about twice the memory
of BLUP); however, GSMs corresponding to small subsets of SNPs can be computed on-the-fly, meaning
that Adaptive MultiBLUP typically requires only slightly more memory than BLUP (about 4 Gb for the
Inflammatory Bowel Disease data).

Software Availability

The tools required to apply MultiBLUP are freely available in our software LDAK (www.ldak.org).
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Figure 1. Prediction performance of BLUP and MultiBLUP on simulated quantitative traits.
The two plots correspond to unrelated humans (left) and related mice (right). They show across 50
repetitions the correlation between predicted and observed phenotypes in the test set, for BLUP (white
boxes) and MultiBLUP (shaded boxes). The z-axis indexes the simulation scenarios, with increasing
heterogeneity of effect sizes across the five regions. Here MultiBLUP uses five GSMs, one for each region.
Within each plot, the true (simulated) heritability is 0.5 (left half) or 0.8 (right half).

Table 1. Prediction of case/control status for WTCCC1 human traits

Current methods MultiBLUP
Risk Score Stepwise Two-region
Trait BLUP (—log,,(P)) Regression BSLMM | MHC/non-MHC Adaptive
Bipolar Disorder 0.27 0.25 (1) 0.02 0.27 0.27 0.27
Coronary Artery Disease | 0.13 0.12 (1) 0.08 0.15 0.13 0.16
Crohn’s Disease 0.32 0.28 (1) 0.18 0.34 0.29 0.36
Hypertension 0.15 0.14 (1) 0.00 0.14 0.14 0.17
Rheumatoid Arthritis 0.21 0.28 (3) 0.32 0.33 0.35 0.37
Type 1 Diabetes 0.25 0.34 (5) 0.54 0.57 0.56 0.59
Type 2 Diabetes 0.16 0.14 (1) 0.10 0.17 0.16 0.18
Average across 7 traits 0.21 0.22 0.18 0.28 0.27 0.30

Current methods BLUP, genetic risk scores, stepwise regression and BSLMM (Bayesian Sparse Linear
Mixed Models) are compared with MultiBLUP (regions defined according to MHC/non-MHC) and
Adaptive MultiBLUP (starting with 75kb regions). Values report correlation between observed and
predicted phenotypes based on ten-fold cross-validation. For the genetic risk scores, we consider five
p-value thresholds (1 to 5 on the —log;, scale), and report the best prediction across these (and the
corresponding threshold in brackets). The largest correlation observed for each trait is marked in bold.


http://genome.cshlp.org/
http://www.cshlpress.com

Downloaded from genome.cshlp.org on September 16, 2014 - Published by Cold Spring Harbor Laboratory Press

12

Table 2. Prediction of case/control status for Celiac Disease and Inflammatory Bowel Disease

BLUP Risk Score (—logyy(P)) | Adaptive MultiBLUP
Trait (Number of Samples) r  AUC r AUC r AUC
Celiac Disease, All Samples (15283) 0.46  0.79 | 0.45 (1) 0.79 (1) 0.57 0.86
Celiac Disease, UK Cohorts Only (10118) 0.42 0.78 | 0.44 (1) 0.79 (1) 0.55 0.86
Celiac Disease, UK2 — UK1 (6785 — 3333) | 0.41 0.78 | 0.44 (1) 0.80 (1) 0.53 0.86
Inflammatory Bowel Disease (12678) 0.15 0.58 | 0.21 (1) 0.61 (1) 0.33 0.68
Crohn’s Disease (8826) 0.16 0.60 | 0.25 (4) 0.67 (4) 0.29 0.68
Ulcerative Colitis (9978) 0.15 0.59 | 0.17 (3) 0.61 (3) 0.27 0.66

Average correlation (r) and area under curve (AUC) between observed and predicted phenotypes for
BLUP, genetic risk scores, and Adaptive MultiBLUP (starting with 75kb regions). For Celiac Disease, we
consider all samples and separately UK samples only; for Inflammatory Bowel Disease, we consider all
samples, only Crohn’s Disease cases and only ulcerative colitis cases. The results are based on ten-fold
cross-validation, except that for Celiac Disease, we also perform out-of-sample prediction from one UK
cohort into the other. The best performing method for each measure is marked in bold.
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