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Abstract

A general treatment of the dynamics and statistical mechanics of point vortices in

bounded domains is introduced in Chapter 1. Chapter 2 then considers high positive energy

statistical mechanics of 2D Euler vortices. In this case, the most-probable equilibrium

dynamics are given by solutions of the sinh-Poisson equation and a particular heart-shaped

domain is found in which below a critical energy the solution has a dipolar structure

and above it a monopolar structure. Sinh-Poisson predictions are compared to long-time

averages of dynamical simulations of the N vortex system in the same domain.

Chapter 3 introduces a new algorithm (VOR-MFS) for the solution of generalised point

vortex dynamics in an arbitrary domain. The algorithm only requires knowledge of the

free-space Green’s function and utilises the exponentially convergent method of funda-

mental solutions to obtain an approximation to the vortex Hamiltonian by solution of

an appropriate boundary value problem. A number of test cases are presented, includ-

ing quasi-geostrophic shallow water (QGSW) point vortex motion (governed by a Bessel

function).

Chapter 4 concerns low energy (positive and negative) statistical mechanics of QGSW

vortices in ‘Neumann oval’ domains. In this case, the ‘vorticity fluctuation equation’ –

analogous to the sinh-Poisson equation – is derived and solved to give expressions for key

thermodynamic quantities. These theoretical expressions are compared with results from

direct sampling of the microcanonical ensemble, using VOR-MFS to calculate the energy

of the QGSW system.

Chapter 5 considers the distribution of 2D Euler vortices in a Neumann oval. At high

energies, vortices of one sign cluster in one lobe of the domain and vortices of the other

sign cluster in the other lobe. For long-time simulations, these clusters are found to switch

lobes. This behaviour is verified using results from the microcanonical ensemble.
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Chapter 1

Introduction

1.1 Background and motivation

1.1.1 Historical perspective

The modern mathematical treatment of fluid dynamics dates back to 1757 when

Euler [46] derived the dynamical equations of motion for an ideal fluid using New-

tonian calculus. Since then fluid dynamics has become a key area of applied mathe-

matics and continues to command a lively literature.

The focus of this thesis is on two dimensional (2D) flows involving points of

vorticity in an otherwise irrotational fluid. The mathematical formulation of this

‘point vortex’ model was introduced in 1867 by Helmholtz [61]; by the 20th century

vortex dynamics was an established sub-field of fluid dynamics. A sample of modern

vortex dynamics research is given in [2].

Following on from the work of Kirchhoff [69] and Routh [103], in 1942 Lin [76,77]

proved that the motion of N vortices in a bounded domain is a Hamiltonian system.

This led, a few years later in 1949, to Onsager [93] applying the statistical mechanics

theory, developed by Boltzmann [10] in the latter part of the 19th century, to the

vortex system with N � 1. Onsager thus postulated the remarkable concept of

negative temperature for this system. The motivation behind Onsager’s work was

largely to explain the self-organisation of many turbulent 2D flows into isolated,

large-scale, long-lived vortices. Due to the robustness of the self-organisation of

these macro vortex structures it seems likely that their formation can be explained by
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some fundamental physical principles such as those of thermodynamics and statistical

mechanics. In the subsequent years, the point vortex statistical mechanics model has

also been applied to a number of other physical systems, as detailed in section 1.1.2.

Further theoretical results [17,43,48,52,68] (among many others) have put point

vortex statistical mechanics on a sound mathematical footing. Early numerical cal-

culations [11, 64, 87, 95, 107, 121] of moderately large N (O(10)) vortex systems and

partial differential equations derived from statistical assumptions allowed some ver-

ification of these ideas. Recent improvements in computing power have allowed

simulations [13,123] of larger N (O(103− 104)) systems providing further validation.

The historical review by Eyink and Sreenivasan [49] and chapter 6 of the book by

Newton [91] offers an overview of the progress of point vortex statistical mechanics

since 1949, as well as some open problems.

This thesis will present a number of new point vortex statistical mechanics results,

with an emphasis on verification using numerical calculation. Before proceeding,

some modern applications of point vortex statistical mechanics will be discussed.

1.1.2 Reasons for modern interest

Two geophysical examples of macro vortex structures in 2D turbulence, of the

type that motivated Onsager to develop point vortex statistical mechanics as men-

tioned above, are ocean eddies and atmospheric vortices such as Jupiter’s Great Red

Spot. In strongly stratified, rapidly rotating flows, the motion is layer-wise, justify-

ing the use of the 2D point vortex model. Eddies and vortices are intense localised

structures in the ocean or atmosphere which rotate about a vertical axis. They can

maintain a stable structure while traversing vast distances and, in the case of ocean

eddies, can interact with topographic features such as islands and shorelines. They

are often long-lived with oceanic eddies having been tracked for several years [99] and

Jupiter’s Great Red spot, having been first observed by Galileo Galilei in 1610 [49],

persists to the present day. Oceanic eddies and atmospheric vortices play a key role

in the climate system and because of this, modelling them is of vital importance.

A second application of point vortex statistical mechanics is to magnetised or

‘guiding centre’ plasmas [64,110,112], where the magnetic field induces 2D behaviour.
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A plasma is a phase of matter in which the internal energy exceeds the atomic ionisa-

tion energy, and where the atoms have decomposed into negatively charged electrons

and positively charged ions that interact with each others’ electromagnetic fields.

This can immediately be seen to be reminiscent of the 2D turbulence vortex model

of interacting points of vorticity. In fact, aside from a scale factor, the equations of

motion (which will be given in the next section) for the vortex and plasma models

are identical. The modelling of plasmas is important in many physical systems with

two examples being the ionosphere (the part of the Earth’s upper atmosphere, at

heights of 5− 30× 104 m, that is partially photonised by solar ultraviolet radiation)

and the solar wind (the stream of charged particles released by the Sun into the Solar

System).

A third application of point vortex statistical mechanics is the modelling of quan-

tum vortices in superfluids [6, 39]. A superfluid is a phase of matter which behaves

like a fluid with zero viscosity and quantised circulation and was first observed experi-

mentally in Helium II: the low temperature phase of 4He. A relevant parent model for

this system is the Gross-Pitaevskii equation (nonlinear Schrödinger equation) which,

when modified by a ‘quantum pressure’ term, is equivalent to the compressible Euler

equation. When the distance between the vortices is large compared to the size of the

vortices themselves, the quantum pressure term can be neglected and close parallels

can be made with classical incompressible Euler hydrodynamics. A remarkable fea-

ture of this system is that the assumption that vorticity can be discretised is in fact

genuinely true, as vorticity can exist only within vortex filaments of small core size.

In Helium II this core size is very small (about 10−10 m) and the point vortex model

is appropriate. The study of quantum vortices is a fundamental problem in physics

with applications to the liquid cooling of superconducting magnets in high-energy

particle accelerators, fusion experiments and infrared astronomy.

A final application of point vortex statistical mechanics is to self-gravitating sys-

tems in astrophysics [19,23] e.g. stars in a galaxy interacting via gravity and plane-

tary formation from protoplanetary nebula. The details of this system differ signif-

icantly from those of the point vortex/plasma/superfluid systems described above,

most notably the stellar systems being 3D as opposed to 2D. In spite of this, the

details of Onsager’s vortex statistical mechanics and self-gravitating particle statis-
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tical mechanics are remarkably similar. Further, in terms of the physical model,

the tendency of individual point vortices to self-organise into large structures (like

ocean eddies) is closely reminiscent of the self-organisation of stars in galaxies – no

such phenomena is observed in plasmas and superfluids [23]. It should be noted

the mechanism for self organisation of vortices is different to that of self-gravitating

systems.

1.2 Point vortex dynamics

1.2.1 The Hamiltonian model

For the motion of N vortices in a simply connected and bounded domain D ⊂

R2, each with circulation Γi (i = 1, . . . , N) the equations of motion are Hamilton’s

equations [91,104],

Γiẋi = −∂H
∂yi

, Γiẏi =
∂H

∂xi
, i = 1, ..., N. (1.1)

The system (1.1) is unusual only in that the scaled vortex coordinates |Γi|1/2xi, where

xi = (xiyi)
T , take the role of canonical phase space coordinates.

A scale transformation of (1.1), such as in [110], and a change of terminology

makes the system equivalent to that of a guiding centre plasma as mentioned in sec-

tion 1.1.2. Specifically, the charged filaments (vortices) move in a uniform magnetic

field B with charge (circulation) ei. Hence the 2D plasmic form of (1.1) is

eiẋi = − 1

B

∂H

∂yi
, eiẏi =

1

B

∂H

∂xi
, i = 1, ..., N.

Throughout this thesis the point vortex dynamics terminology will be used.

In the most general formulation of point vortex dynamics (e.g. [76]), the vortex

Hamiltonian can be written as

H(x1, . . . ,xN) = −
N∑
i=1

N∑
j=i+1

ΓiΓjG(xi,xj)−
1

2

N∑
i=1

Γ2
i g(xi,xi), (1.2)

and is a conserved quantity (see section 1.2.2 for further details). The function



Chapter 1. Introduction 16

G(x,x′) is the Green’s function of the first kind for the domain D, defined by

LG(x,x′) = δ(x− x′) x,x′ ∈ D, (1.3a)

G(x,x′) = 0. x ∈ ∂D. (1.3b)

The linear, elliptic and self-adjoint operator L, which acts on the x variable only,

is in most formulations the Laplacian (L ≡ ∇2), and the result is the point vortex

dynamical system of the 2D Euler equations or, equivalently, the Coulomb interaction

of 2D plasma. Other choices of L result in alternative dynamics with relevance to

various problems in geophysical fluid dynamics and 2D plasmas; some examples of

which are given below. The self-adjointness of L guarantees the symmetry G(x,x′) =

G(x′,x); see [37].

The remaining function g(x,x′) appearing in (1.2), which we shall term the

residual Green’s function, is defined by

g(x,x′) = G(x,x′)−G0(x,x′) (1.4)

where G0 is the corresponding free-space (R2) Green’s function satisfying

LG0(x,x′) = δ(x− x′) x,x′ ∈ R2, (1.5a)

|∇G0(x,x′)| → 0 |x− x′| → ∞. (1.5b)

As mentioned above, numerical solution of the system (1.1) has understandably

focused on the 2D Euler system, for which

L ≡ ∇2, G0(x,x′) =
1

2π
log(|x− x′|), (1.6)

and interaction of the vortices is called ‘long-ranged’ due to the slow decay of the

logarithmic function. Although most early calculations (e.g. [95]) have focussed on

circular or doubly periodic1 domains for which explicit expressions for G (and thus

1The 2D Euler system in doubly periodic domains requires a different approach from that of a
bounded domain. In this situation each vortex has infinitely many images as, due to periodicity, each
image vortex also requires its own image and so on. Thus, the velocity of a vortex is given by two
doubly infinite summations which can be evaluated using the so-called ‘Ewald summation’ [47,58].
Such domains will not be considered in this thesis.
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g) are available via the method of images, it has been long known [77] that the 2D

Euler point vortex system can be solved in any simply connected domain D using

the conformal map to the unit circle. The method exploits the so-called Routh rule

to make suitable modifications to the Hamiltonian H. These techniques will be used

throughout this thesis and details are given in appendix A. The conformal mapping

of the vortex Hamiltonian has recently [35] been extended to multiply connected

domains using the Riemann mapping function of that domain onto a topologically

equivalent domain with all boundaries being circles.

For systems governed by operators L other than the Laplacian, the method of

images is typically restricted to polygonal domains since there is no equivalent of the

Routh rule. An important example of such a system with applications to geophysical

fluid dynamics [94] and 2D plasmas [20,59,110] is governed by the modified Helmholtz

operator

L ≡ ∇2 − λ2, G0(x,x′) = − 1

2π
K0(λ|x− x′|), (1.7)

where K0(·) is the modified Bessel function of the second kind of zeroth order. The

parameter λ−1 has the dimension of length and controls the range of the interaction.

This system differs from that governed by (1.6) in that the dynamical influence of

vortices/plasma decays rapidly on lengthscales ∼ λ−1, localising the dynamics (i.e.

a short-ranged interaction).

In the context of geophysical fluid dynamics, (1.7) is known as the ‘quasi-geostrop-

hic shallow water ’ (QGSW2) model and the parameter λ−1 is the ‘Rossby deformation

radius’. For dynamics of ocean vortices, typically λ−1 is of the order of 1 − 5 × 104

m.

In the context of 2D plasmas, (1.7) can be used in two separate models. In the

first case [110], (1.7) is known as the ‘Deybe screened interaction’ model and λ−1 is

the ‘Debye length’ which is of the order of 10−3 m for the dynamics of plasma in the

ionosphere and 10 m for the solar wind. In the second case [20, 59], (1.7) is known

2Note that in the terminology of low N point vortex dynamics (e.g. [92]) this system is usually
referred to simply as a ‘quasi-geostrophic’ (QG) vortex, whereas in the statistical mechanics lit-
erature (e.g. [63]), a ‘quasi-geostrophic’ system refers to a two layer model governed by L ≡ ∇2,
G0(x,x′) = 1

4π |x− x
′|−1 for x ∈ R3. Due to the focus of this thesis, the 2D statistical mechanics

term QGSW will be used.
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as the ‘Charney-Hasegawa-Mima’ equation with λ−1 the ‘gyroradius’ which is of the

order of 2 m for the ionosphere and 104 m for the solar wind [34].

A second example of a vortex system not governed by the Laplacian operator is

the ‘surface quasi-geostrophic’ (SQG) system [60], for which

L ≡ −(−∇2)1/2, G0(x,x′) = − 1

2π
(|x− x′|)−1.

The SQG system describes the motion induced by surface concentrated potential

vorticity anomalies in the ocean or atmosphere, or equivalently, surface potential

buoyancy anomalies (ocean) or potential temperature anomalies (atmosphere) at the

planetary surface or tropopause [65]. The singularity associated with an SQG vortex

is a simple pole rather than a logarthmic singularity, and the result is dynamics that

is much more active on small scales [60]. The turbulent cascade in the SQG model

is also thought relevant to three-dimensional turbulence in the Euler equations [33].

At this juncture, an important point is made with regards to the formulation of

the different point vortex models in an arbitrary bounded domain D. First, consider

the streamfunction ψ(x), which may be defined in terms of Green’s function of the

first kind, as

ψ(x) =
N∑
i=1

ΓiG(x,xi), x ∈ D. (1.8)

It is required that the flow satisfies the impenetrability constraint i.e. no flow across

the boundary ∂D. This means that (1.8) is constant along the boundary. In the 2D

Euler case the constant is arbitrary, so can simply taken to be zero i.e.

ψ(x) = 0, x ∈ ∂D. (1.9)

However, as noted in [118], for the QGSW system mentioned above (and the SQG

system as well), the constant cannot, in general, be set to zero. Instead

ψ(x) = constant 6= 0, x ∈ ∂D, (1.10)

is the most physically relevant boundary condition, with the constant being deter-
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mined from the mass conservation constraint
∫
D ψ dx = 0.

The QGSW calculations presented in chapters 3 and 4 were performed using

the less physically relevant condition (1.9). New calculations with the boundary

condition (1.10) are underway, with early indictions that very minimal difference is

observed compared to the results obtained using (1.9).

The final part of this subsection will offer a brief outline of the relationship be-

tween the point vortex model described above and the continuous 2D Euler equations.

In an incompressible 2D fluid the vorticity of the flow is given by

ω(x, t) = ∇× u(x, t) = ω(x, t)z, (1.11)

where u = ẋ = (u, v) is the velocity field of the fluid and z is the unit normal

perpendicular to the plane of the velocity of the fluid. The 2D Euler equations may

be defined in terms of the transport of vorticity by the velocity field as

∂ω

∂t
+ (u · ∇)ω = 0, (1.12)

ω = ∇2ψ (1.13)

u = z ×∇ψ, (1.14)

where ψ(x, t) is the streamfunction.

The vorticity of the point vortex system as considered in this thesis is given by

the singular distribution

ω(x, t) =
N∑
i=1

Γiδ(x− xi(t)). (1.15)

The connections between the two definitions of vorticity (1.11) and (1.15) were con-

sidered in a rigorous mathematical work by Marchioro & Pulverenti [80]. Two the-

orems in [80] are of particular relevance here. Firstly, in their theorem 4.2.2 they

consider whether the discrete system of point vortices is a limit of a smooth solu-

tion of the 2D Euler equations. To do this they take the approach of ‘smearing’ the

point vortices into patches of vorticity and then compared the evolution of the point

vortices under their Hamiltonian dynamics to the evolution of the vortex patches as
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solutions of the 2D Euler equations. They prove that when the distance between

patches is much greater than the size of the patches themselves, and over a suffi-

ciently short time interval, that the positions of the centroids of the vortex patches

converge to the positions of the point vortices as the smearing decreases to zero.

Thus they conclude that the motion of point vortices is close to exact Euler flows in

the sense of vorticity.

On the other hand, in theorem 5.3.1 of [80], the authors address the question as

to whether a similar result holds in the opposite direction i.e. does a discretisation

of the flow by finitely many vortices converge to a smooth solution of the 2D Euler

equations as the number of vortices goes to infinity? First it is noted that the

convergence of point vortices is difficult to prove analytically due to their inherent

singularities. Instead, smoothed versions of such systems were considered and it was

proved that as the smoothing goes to zero and number of vortices tends to infinity

in an appropriate way, the vorticity (1.15) does converge to the vorticity field that

is a solution of the 2D Euler equations.

Some further results on the relationship between energy in the 2D Euler equations

and the point vortex model are also of interest. The total energy of the fluid described

by the 2D Euler equations is purely kinetic and is given by

E =
1

2

∫
D
|u|2 dx. (1.16)

Using (1.14) and integration by parts, (1.16) can also be expressed as

E =
1

2

∫
D
|∇ψ|2 dx

=
1

2

∮
∂D
ψ∇ψ · n dS − 1

2

∫
D
ψ∇2ψ dx. (1.17)
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Assuming3 ψ(x) = 0 for x ∈ ∂D, the first term in (1.17) is zero, leading to

E = −1

2

∫
D
ψ∇2ψ dx

= −1

2

∫
D
ω(x)ψ(x) dx

= −1

2

∫
D2

ω(x)G(x,x′)ω(x′) dx dx′, (1.18)

where the vorticity and streamfunction relation

ψ(x) =

∫
D
G(x,x′)ω(x′) dx′,

has been used in the final line.

As will be shown below, the energy expression (1.18), and hence (1.16), are

equivalent to the point vortex Hamiltonian H (i.e. (1.2)). In doing so we will have

to reconcile apparent contradiction that the 2D Euler energy (1.16) is always positive,

while the Hamiltonian vortex energy (1.2) can have positive and negative values.

A sensible first step in demonstrating the equivalence of (1.18) and (1.2) would

be to substitute the singular point vortex vorticity distribution (1.15) i.e. ω(x) =

ω0(x) =
∑N

i=1 Γiδ(x−xi) into (1.18). However, this results in an undefined integral,

suggesting a more subtle approach is required.

In particular, we must relax the assumption that vorticity is singular and instead

consider a solution to the 2D Euler equations in which the vorticity is uniformly

distributed over a finite area or ‘patch’. There are various types of vortex patch [91],

with the one considered here being the Rankine vortex, which is defined by solid

body rotation inside a patch of radius a, centred on the point vortex location xi.

The Rankine vortex may be defined by the indicator function

Ia(r) =
1

πa2

1, r ≤ a

0, r > a,

(1.19)

3Note that as mentioned above, the assumption ψ(x) = 0, x ∈ ∂D is not always valid, particu-
larly when considering other types of vortices.
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from which the (bounded) vorticity field is given by

ωa(x) =
N∑
i=1

ΓiIa(|x− xi|). (1.20)

Note that it is assumed that a is sufficiently small, and that D sufficiently large, so

that no patches overlap. Clearly, in the limit a→ 0, the point vortex vorticity ω0 is

recovered from (1.20).

Substituting (1.20) into (1.18) gives the energy of N Rankine vortices to be

Ea = −1

2

∫
D2

ωa(x)G(x,x′)ωa(x
′) dx dx′. (1.21)

The key question now concerns the relationship between lima→0Ea and H. Using

(1.4), we evaluate (1.21) in the limit a→ 0 to give

lim
a→0

Ea = lim
a→0
−1

2

N∑
i=1

N∑
j 6=i

ΓiΓj

∫
D2

Ia(|x− xi|)G(x,x′)Ia(|x′ − xj|) dx dx′

+ lim
a→0
−1

2

N∑
i=1

Γ2
i

∫
D2

Ia(|x− xi|)g(x,x′)Ia(|x′ − xi|) dx dx′

+ lim
a→0
−1

2

N∑
i=1

Γ2
i

∫
D2

Ia(|x− xi|)G0(x,x′)Ia(|x′ − xi|) dx dx′.

(1.22)

The limit a → 0 in the first and second lines of (1.22) may be taken by simply

substituting δ(x − xi) for I(|x − xi|) and δ(x′ − xj) for I(|x′ − xj|). Then the

straightforward evaluation of the double integrals yields the first and second terms

of the Hamiltonian (1.2). Consequently, if we can ignore the third line of (1.22), we

would have exact equivalence between (1.22) and the vortex Hamiltonian (1.2), as

required. To justify ignoring the third line of (1.22), we take a different approach

than for the first two lines: evaluate the double integral first, then take the limit
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a→ 0. First, let

I =

∫
D2

Ia(|x− xi|)G0(x,x′)Ia(|x′ − xi|) dx dx′

=
1

2π

∫
D2

Ia(|x− xi|) log(|x− x′|)Ia(|x′ − xi|) dx dx′ (1.23)

Now define R = |x − xi| and R′ = |x − xi|, with Θ and Θ′ the corresponding

azimuthal arguments. We now can use the planar multipole expansion [1] to write

log(|x− x′|) = log(|(x− xi)− (x′ − xi)|)

= log (R2 +R′
2 − 2RR′ cosµ)1/2

=


logR−

∞∑
k=1

(
R′

R

)k
cos kµ

k
(R > R′)

logR′ −
∞∑
k=1

(
R

R′

)k
cos kµ

k
(R < R′),

(1.24)

where µ = Θ − Θ′. Using (1.24), the integral over x′ appearing in (1.23) can be

evaluated as

∫
D

log(|x− x′|)Ia (|x′ − xi|) dx′

=
1

πa2

∫ 2π

0

∫ a

0

log (R2 +R′
2 − 2RR′ cosµ)1/2 R′ dR′ dΘ′

=
2

a2

(∫ R

0

R′ logRdR′ +

∫ a

R

R′ logR′ dR′
)

=
2

a2

(
(R2 − a2)

4
+
a2 log a

2

)
. (1.25)

Inserting (1.25) into (1.23), the integral over x can be evaluated (using the indicator

function to restrict it to the patch R < a) as

I =
1

2π

2

πa4

∫ 2π

0

∫ a

0

(
(R2 − a2)

4
+
a2 log a

2

)
RdRdΘ

=
2

πa4

(
−a

4

16
+
a4 log a

4

)
=

1

2π

(
log a− 1

4

)
.

Clearly lima→0 I does not exist.
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From the above we can see that as a→ 0 the fluid energy

Ea → Es(a) +H where Es(a) =
1

4π

(
N∑
i=1

Γ2
i

)(
1

4
− log a

)
.

For fixed vortex radius a, Es is a constant, positive (since a � 1) reference energy,

which we refer to here as the ‘self-energy of the vortices’. Because it doesn’t depend

on the vortex positions it has no bearing on the dynamics. Because Es is singular

in the limit ε→ 0 it must be subtracted off in the point vortex formulation. This is

sometimes referred to as the ‘core energy method’ [51].

For a system with finite but small vortices to which the point vortex model

applies, the correct interpretation of the point vortex energy H, then, is as a small

correction to the large and positive ‘self-energy’ term Es(ε).

The important point to note is that in the continuous 2D Euler system the energy

of the fluid (1.16) is the kinetic energy (which is strictly positive), whereas in the

case of point vortices, the Hamiltonian energy (1.2) represents the potential energy of

the interaction between vortices (which can take both positive and negative values).

1.2.2 Conservation properties and integrability

The conserved quantities (or ‘invariants’) of the Hamiltonian (1.2) can be de-

termined using Noether’s theorem, which states that to every local symmetry of a

physical system there corresponds a conservation law. For an unbounded system

they are

• Energy H (due to invariance with respect to time)

• Angular momentum L (due to invariance with respect to coordinate rotation)

• Linear momentum in the x and y directions P and Q (due to invariance with

respect to coordinate translation).

Energy is conserved for systems in any fixed geometry, but when a boundary is added

the angular and linear momentum invariants may be lost as symmetry is broken.

The four conserved quantities H,L, P & Q allow conclusions to be made about

the integrability of the system for certain N (see [91] and references therein). The
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vital tool in this analysis is the Poisson bracket, which for two arbitrary functions

h1(xi) and h2(xi) is defined by

{h1, h2} =
N∑
i=1

1

Γi

(
∂h1

∂xi

∂h2

∂yi
− ∂h1

∂yi

∂h2

∂xi

)
.

In order for the system to be integrable all conserved quantities must have zero

Poisson brackets with each other, a property known as ‘mutual involution’.

For the unbounded N = 3 system, for all values of Γi, the three conserved quan-

tities H,L & P 2 +Q2 are mutually involutive, meaning the system is integrable for

N ≤ 3. For an unbounded neutral system i.e.
∑

i Γi = 0, then the four conserved

quantities H,L, P & Q are mutually involutive, meaning the system is integrable for

N ≤ 4. The reason for this is that, in the neutral case, the origin can be shifted so

that P = Q = 0.

In a similar manner, conclusions about the integrability of bounded systems can

be made. In a bounded, rotationally symmetric system (i.e. a circle) there are two

conserved quantities H & L meaning the system is only integrable for N ≤ 2. For

a system in the upper half plane the only conserved quantities are H,P so again

the system is only integrable for N ≤ 2. In a bounded system with no rotational or

translational symmetry the only conserved quantity is H and so the system is only

integrable when N = 1.

When any of the three types of system described above are not integrable, the

behaviour of the vortices is chaotic and numerical integration, as described in the

next section, is required. However, within the many-vortex system the qualitative

behaviour of isolated pairs of vortices can be predicted. When a pair of the same-sign

come close they will orbit each other, while a pair of equal and opposite circulations

will propagate along a straight line to infinity. These isolated pairs will exhibit this

behaviour until they are disrupted by another vortex or a boundary.
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1.2.3 Direct numerical simulation of the N vortex

system

Throughout this thesis direct numerical simulations (DNS) of the dynamical sys-

tem (1.1) will be performed using the algorithm described in section 2.1 of [4].

Several different numerical algorithms have been employed to solve the point

vortex equations (1.1) with 2D Euler dynamics. Two major limitations of such algo-

rithms, that we do not try to resolve in this thesis, are: first that O(N2) evaluations

of the partial derivatives of G and g are required at each time-step; and second, that

variable time-stepping is necessary in order to resolve trajectories on the intermittent

occasions when vortices pass close together.

It is difficult to avoid the O(N2) costs without resorting to approximate methods

(e.g. [30]), and efforts at calculations for large N (N ≈ 7000 at the time of writing)

have instead been focussed on supercomputing efforts using specialised hardware

[123].

One important feature that must be respected by any such algorithm is the

invariance of the Hamiltonian H. Symplectic methods [96, 125] have been shown

to have greatly improved conservation properties at fixed time-step. However this

technique also scales O(N2), and can have poor stability properties when used with a

variable time-step (which is necessary for large N simulations), though an alternative

adaptive scheme is suggested in [83]. Two aspects of the symplectic method that

have yet to be explored are its effectiveness in bounded domains and for large N

simulations. Extensive transformations of the Hamiltonian are required in this case

in order for it to be used with a symplectic integrator. Therefore, to keep the

presentation simple, we use as our starting point a basic (but adaptive) algorithm in

the spirit of that suggested by Bühler [13], the details of which are described below.

The algorithm proceeds by targeting solutions of (1.1) over intervals of length ∆t.

To advance the solution from the current time t = tn (tn = n∆t), the equations of

motion are solved repeatedly over the time interval [tn, tn + ∆t], by subdividing the

interval into 2m substeps (m = 1, 2, 3, . . .), and integrating over the substeps using an

explicit fourth-order Runge-Kutta method. If the solution at tn + ∆t obtained using

2m substeps is denoted {x(m)
1 , ...,x

(m)
N }, then the stopping criterion for the interval
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is defined to be

1

N

N∑
i=1

∣∣∣x(m)
i − x(m−1)

i

∣∣∣ < δ, (1.26)

i.e. the mean absolute vortex positions must converge to be less than δ. The nu-

merical parameter δ controls the accuracy of the algorithm and is referred to as the

tolerance parameter.

The stopping criterion will be first met for some m = m∗, and the algorithm then

moves onto the next time interval [tn+1, tn+1 + ∆t]. In practice, when many vortices

are present, the number of substeps required (i.e 2m∗), varies quite considerably. This

is due to intermittent episodes during which vortices pass close together resulting in

large propagation speeds, and it is the resolution of these episodes which accounts

for the need for adaptivity.

1.3 Point vortex statistical mechanics

1.3.1 Background

In his seminal paper of 1949 Onsager [93] made use of the Hamiltonian structure

outlined above to discuss a statistical mechanics model with point vortices acting as

the ‘particles’ of the system. His motivation was a desire to explain the presence

of isolated, large-scale, long-lived vortices that occur in a wide range of turbulent

flows. In terms of the point vortex model this phenomenon would be modelled by

large clusters of like-signed point vortices that persists over long time scales. A

number of direct quotes from [93], Onsager’s personal correspondences with C. C.

Lin and also unpublished notes will be included in this section as well as others.

Much of this historical material comes from the review [49], which is dedicated to

Onsager’s contributions to this problem as well as to the wider field of hydrodynamic

turbulence.

From a general perspective [14] the principle aim of statistical mechanics is to

model the statistical behaviour of a system subject to imperfectly known initial con-

ditions; for example the average motion of particles in a bounded ideal gas, knowing
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only their total energy and not their precise initial conditions.

Two important concepts in statistical mechanics are ‘macrostates ’ and ‘microstat-

es ’. The macrostate of a system is described by a macroscopic quantity such as

total energy, average particle density etc. On the other hand the microstate is a

specific state of the system that is governed by mechanical laws (i.e. the dynamical

system) such as the position or velocity of individual particles. The crucial connection

between macrostates and microstates is made using the concept of entropy, for which

the fact that a given macrostate usually corresponds to a large number of equivalent

microstates is key; see section 1.4.1.

One approach to determine a macrostate would be to integrate the dynamical

system and take time averages using a range of initial conditions. This is a valid

method but wasteful as detailed trajectories must be found, only to take the time

average to obtain a few statistical quantities. Statistical mechanics uses a different

approach in which deterministic equations are replaced by much simpler statistical

quantities that are based on assumptions for the statistical behaviour of the system.

In the case of point vortices, the power of modern computers has allowed the (waste-

ful) integrations described above to be used for the validation of statistical mechanics

predictions.

The starting point for the classical statistical mechanical approach of an ideal

gas consisting of N particles, indexed i = 1, . . . , N , is the introduction of a prob-

ability density function p(xi,vi) for the ith particle at position xi with velocity vi

as determined by the dynamical system of interest. The quantity p(xi,vi) defines

the microstate of the ith particle and p(xi,vi)dxidvi defines the probability that the

particle is in the neighbourhood dxi of xi, with velocity in the neighbourhood dvi

of vi. The phase space of the system is (xi,vi) i = 1, . . . , N , and in most physical

systems is unbounded even if the system itself is bounded e.g. a classical monatomic

ideal gas in a bounded container which has an unbounded 6N dimensional phase

space, since the microstate of each particle is given by position and velocity vectors

in 3D space. However, for the point vortex system, phase space is the same as posi-

tion space (scaled by the vortex circulation), and consequently the vortex system in

a bounded domain4 has a finite phase space volume of dimension 2N .

4A system of like-signed vortices in an unbounded domain also has finite phase space volume
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For a vortex system in a bounded domain with no symmetries, the vortices move

on a fixed energy surface in phase space. If there are additional conserved quantities

(see section 1.2.2), the vortices move on the surface made up of the intersecting

hyper-surfaces due to each conserved quantity.

The work of this thesis concerns ‘equilibrium’ statistical mechanics. When a

system is in equilibrium, the statistics of macroscopic quantities are stationary in

time. Non-equilibrium statistical mechanics has also been successfully applied to the

vortex model e.g. [25,81].

1.3.2 The negative temperature state

Onsager’s statistical hydrodynamics theory is now reviewed. Consider the same

vortex system as described in section 1.2.1, consisting of N vortices with circulations

Γi and positions xi, i = 1, . . . , N in a domain D, with area |D|. We denote the

volume element of phase space (the Lebesgue measure on R2N) as

dx1 · · · dxN ,

and the total, finite phase space volume as

Ω(∞) =

∫
DN

dx1 · · · dxN = |D|N .

We then consider the phase space volume only of energies less than E, i.e.,

Ω(E) =

∫
DN

H(E −H(x1, . . . ,xN)) dx1 · · · dxN , (1.27)

where H is the Heaviside step function: H(x > 0) = 1 (i.e. H < E) and H(x < 0) =

0 (i.e. H > E). By construction Ω(E) is a monotonically increasing function of E,

with constant limits Ω(−∞) = 0 and Ω(∞) = |D|N . Taking the derivative of (1.27)

with respect to E gives

W (E) = Ω′(E) =

∫
DN

δ(E −H(x1, . . . ,xN)) dx1 · · · dxN , (1.28)

due to the conservation of angular momentum.
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which is a non-negative function called the ‘density of states’, with W (±∞) = 0. The

density of states must achieve a maximum at some finite Emax when W ′(Emax) = 0.

The Boltzmann entropy, S(E), is a measure of the number of microstates of a

system in equilibrium corresponding to an energy surface and is defined to be

S = logW (E), (1.29)

(where the Boltzmann constant kB that typically appears in (1.29) has been scaled

to unity), and the temperature T̃ (E) and inverse temperature β(E) are defined from

S(E) to be5

1

T̃
≡ β =

1

N

dS

dE
=

1

N

W ′(E)

W (E)
. (1.30)

Note that the function β(E) is often refered to as the ‘thermodynamic curve’.

Onsager’s argument is as follows. When E < Emax, T̃ > 0. In this ‘positive

temperature’ state the vortices will tend to accumulate at the boundary (near to

their opposite signed images) or equivalently vortices of opposite sign will pair up.

However, when E > Emax, T̃ < 0 and there is a ‘negative temperature’ state which

is a temperature ‘greater’ than T̃ = ∞ where vortices of the same sign will tend to

cluster, providing an explanation for the self-organisation of the flow into large vortex

structures as mentioned in section 1.1.1. In this case adding more energy decreases

the entropy i.e. the system becomes more ordered as bigger like-signed clusters form.

This is the opposite to the usual statistical mechanics situation (e.g. an ideal gas)

where adding more energy increases the entropy i.e. the system becomes less ordered

as the particles of the ideal gas move faster.

The negative temperature state was the crucial insight Onsager gave to statistical

hydrodynamics and its existence is only possible when the density of states, and

hence the entropy, achieve a maximum, which requires a finite phase space volume.

Negative temperature states are not unique to the point vortex system, and Purcell

and Pound [97] proved their existence for nuclear spin systems in 1951, just two years

after Onsager published the vortex argument given above.

5Note that in this thesis the inverse temperature β has been divided by N in order to have
β = O(1) in the limit N →∞. This is not the standard definition.
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A final point in this section concerns the choice of ensemble for statistical me-

chanics of the vortex system [23]. This is an example of a key assumption of the

statistical behaviour of the system of the type mentioned in section 1.3.1. In clas-

sical statistical mechanics there are three standard ensembles: the microcanonical

ensemble, the canonical ensemble and the grand canonical ensemble. Each will be

dealt with in turn next.

The probability density function (PDF) of the microcanonical ensemble is defined

for a classical isolated system with fixed number of particles (vortices) by

p(x1, ...,xN) =
δ(E −H(x1, ...,xN))

W (E)
, (1.31)

which has the simple interpretation that all states with the same energy are equally

probable; see section 1.4.1 for further details. Since the vortex system is isolated (see

section 1.2) and has fixed N , (1.31) evidently represents a physically appropriate tool

for its study.

The PDF of the canonical ensemble is defined for a classical system at fixed

temperature 1/β, that is in contact with a ‘reservoir’ (a system that is coupled to,

and much larger than, the system under consideration), by

p(x1, ...,xN) =
e−βH∫

DN

e−βH dx1 · · · dxN
.

In the canonical ensemble, energy flows between the system and the reservoir so that

the temperature remains constant (the number of particles is constant as well). In

classical statistical mechanics the microcanonical ensemble and canonical ensemble

are said to be equivalent since the former can be recovered from the latter.

The grand canonical ensemble (which can be regarded as an extension of the

canonical ensemble) describes a classical system in which the energy and the particles

themselves can be exchanged with the reservoir. The PDF of the grand canonical

distribution is given by

p(x1, ...,xN) =
e−β(H−µN)∫

DN

e−β(H−µ) dx1 · · · dxN
,
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where µ is the ‘chemical potential’, a parameter controlling the number of particles.

While the definitions of the canonical and grand canonical ensembles given above

are formally correct, neither has a physical meaning for the point vortex system.

Clearly fluctuations of the energy in both ensembles, and number of vortices in the

grand canonical ensemble, are at odds with the fixed energy, fixed N point vortex

system6. The reason for this incompatibility is that it is unknown how to impose the

concept of a reservoir for negative temperatures of the point vortex system.

Another important property of ensembles in classical statistical mechanics is that

if both the microcanonical ensemble and the canonical ensemble are physically valid

for the given system, it should be possible to derive the latter from the former

[57]. This derivation is only possible when the system in question is ‘extensive’.

Extensivity can be simply explained by first considering two subsystems A and B. If

the total system is extensive then the energies of the two subsystems can be combined

to give the total energy of the system as

H(xA,xB) = HA(xA) +HB(xB). (1.32)

However the vortex energy (1.2) does not satisfy (1.32), as the two subsystems in-

teract with each other giving rise to an ‘interfacial energy’ term HI [13], meaning

H(xA,xB) = HA(xA) +HB(xB) +HI(xA,xB). (1.33)

Equation (1.33) shows that the vortex system in not extensive, meaning the mi-

crocanoncial ensemble cannot be derived from the canonical ensemble, and hence,

in general, invalidating the canonical ensemble for use in point vortex statistical

mechanics.

As a consequence of the factors outlined above, throughout this thesis, as well as

in other most point vortex statistical mechanics studies, the microcanonical ensemble

is used. Details of how it is used are given in section 1.3.3.

6Though for vortex systems governed by stochastic equations e.g. dissipative Brownian vortices
[24], the canonical ensemble is appropriate.
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1.3.3 Statistical sampling of the microcanonical

ensemble

As stated in the previous section, the microcanonical ensemble is the most phys-

ically appropriate statistical mechanics tool with which to study the point vortex

system. The most fundamental quantity to compute is the density of states (1.28)

i.e. W (E). This can be accomplished as follows. A large number of samples (Q) of

N uniformly random vortex configurations are generated in D and for each sample

the energy Ek, k = 1, . . . , Q is calculated. Then the integral in (1.28) is replaced by

a sum over the total number of samples and the delta function is approximated by

normalised kernel function K(·/σ) (e.g. Gaussian, top hat function [i.e. bin] etc),

where σ is a smoothing parameter called the bandwidth. Details on this choice of σ

are given in section 4.4.4.

From the above, the normalised density of states is given by the average over all

members of the ensemble i.e.

p0(E) = W (E) =
1

σQ

Q∑
k=1

K

(
E − Ek

σ

)
.

From this, other statistical quantities can be calculated such as the inverse temper-

ature (1.30).

The above procedure has been followed by [13, 18] among others. Campbell and

O’Neil [18] showed that for N as low as 20 the density of states can be seen to

converge for a particular D (namely a regular parallelogram). Further details of this

are given in chapter 4.

The same technique can be extended to calculate joint probability density func-

tions relating two macroscopic quantities. For example, for energy E and an arbitrary

macroscopic variable f , the joint PDF is given by

p0(E, f) =
1

σ1σ2Q

Q∑
k=1

K

(
E − Ek
σ1

)
K

(
f − fk
σ2

)
.

Note that in general σ1 6= σ2 as E and f will usually be on different length scales.

Joint PDFs of the energy and angular momentum were used in [13] to investigate
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the statistics of vortices in a circular domain. This technique will be used in chapter

5.

The generation of N uniformly random vortex configurations at relatively low E

in a general domain D can be accomplished in the following manner, often referred

to as the ‘Monte Carlo’ method7. Suppose the domain of interest D in the complex

z-plane is defined via a conformal map z = F (Z) from a unit circle C in the complex

Z-plane (see appendix A and figure A.1). A rectangle of uniformly random points

{zi} is generated in the z-plane that completely covers the domain of interest D. To

determine which of the points {zi} in the rectangle are inside D, all the points are

mapped to points Zi in the Z-plane with the map Z = f(z). If |Zi| < 1, the point

is in the C and hence, when mapped back to the Z-plane by z = F (Z), is also in D.

This procedure is demonstrated for a ‘Neumann oval’ domain in figure 1.1.

The Monte Carlo procedure described above is not able to sample configurations

at very high energies, as will be required in chapter 2. Instead the ‘multi-canonical

Markov chain Monte Carlo’ (MCMCMC) sampling technique [8, 40] could be used.

The MCMCMC method uses an ergodic Markov chain to sample states that are

‘near’ states with high (or low) energy and by keeping track of how improbable the

steps in the Markov chain are it accepts or rejects the steps in order to sample the

desired phase space efficiently. The MCMCMC algorithm has been implemented for

high energy sampling by J. G. Esler8 in a manner closely following the Matlab

implementation for the random walk PDF given in Fig. 4 of [40].

1.3.4 The two scaling limits

One issue not addressed by Onsager in [93] was the asymptotic limit for the

theory i.e. the behaviour of the model as N →∞. In the standard thermodynamic

limit that is often presented in textbooks (e.g. [57, 73]), the domain area |D| and

N are simultaneously increased while keeping N/|D| constant, which would likely

lead to a domain-independent system. In a rigorous mathematical work by Fröhlich

and Ruelle [52] and a statistical investigation by Campbell and O’Neil [18], it was

7This technique can also be used to generate initial conditions for direct numerical simulations,
as is done in chapter 5.

8The author’s primary supervisor.
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shown that in this textbook limit only positive temperature states are possible–

contrary to Onsager’s predicted negative temperature states. In fact since the system

(1.1) is invariant under domain re-scalings (the energy is simply shifted by a factor

proportional to the scaling), no additional information about the system is uncovered

by taking |D| → ∞ in the textbook limit; in fact features of the system could even

be obscured by doing so. In most cases, the vortex system is genuinely long-ranged

and as such the influence of the domain is an inescapable feature as N →∞. In the

case of QGSW vortices this system can become very short ranged.

Evidently the textbook thermodynamic limit is not particularly useful when con-

sidering the vortex system. Consequently, alternative limits must be considered.

For the system considered in this thesis with a fixed domain D and circulations

Γi = 1/N , i = 1, . . . , N/2 and Γi = −1/N , i = N/2 + 1, . . . , N , two limits will be

considered:

• The hydrodynamic limit: N →∞, E = constant (energy scaled per number

of vortices squared). This limit was considered mathematically for the vortex

system in the canonical ensemble in [16] and the microcanonical ensemble in

[17, 48, 68]. In this limit β = βh(E) → constant < 0, i.e. only negative

temperature states are accessed. The resulting states are dominated by the

‘mean flow’ (streamfunction ψ1(x)), with ‘fluctuations’ about this mean flow

taking a secondary role. Note that the arbitrary choice of Γ = ±1/N makes

expressions in the hydrodynamic limit simpler.

• The thermodynamic limit: N → ∞, Ẽ = NE → constant (energy scaled

per vortex). This limit has been studied in [45,95]. In this limit β = βt(Ẽ)→

constant, and both positive and negative temperature states are possible. Fluc-

tuations and mean flows can either be dominant or of equal importance. The

transition between low positive or negative energy symmetric states dominated

by fluctuations, and high positive energy asymmetric states dominated by the

mean flow occurs at a constant value of Ẽ in the thermodynamic limit: this is

explored in [44].

With the hierarchy introduced in the next subsection, both the hydrodynamic

and thermodynamic regimes can be explored separately; the hydrodynamic limit is
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considered in chapter 2 and the thermodynamic limit in chapter 4. Note that there

is also a possibility of an ‘intermediate’ scaling limit, that asymptotically matches

the hydrodynamic and thermodynamic limits. As yet this remains unexplored.

1.3.5 The cumulant expansion method

The cumulant expansion method of Pointin & Lundgren [95] (PL76 hereafter)

will form the basis of the statistical mechanics investigations in chapters 2 and 4.

In this method a hierarchy of cumulant equations is derived that yields a number of

theoretical descriptions for the equilibrium distribution of the point vortex system

described above in both the hydrodynamic and thermodynamic limits.

In this subsection the cumulant expansion method is reformulated in a new setting

allowing clearer interpretation and greater flexibility than PL76’s original formulation

(additional results are given in appendix B). Further, instead of focusing solely on

the 2D Euler system as in PL769 and Esler, Ashbee & McDonald [45] (EAM13 here

after), the hierarchy will be presented for a generalised vortex system i.e. for a vortex

defined by any appropriate linear, elliptic and self-adjoint operator L, such as those

described in section 1.2.1.

For the system introduced in the previous sections, we consider the statistics

of a certain energy shell (H = E) which are given by the microcanonical ensemble

(1.31). PL76 then obtain a hierarchy of cumulant equations satisfied by the marginal

densities (or reduced probability density functions) of (1.31),

p+(x1) =

∫
DN−1

p(x1, ...,xN) dx2 · · · dxN

p−(xN) =

∫
DN−1

p(x1, ...,xN) dx1 · · · dxN−1 (1.34)

p++(x1,x2) =

∫
DN−2

p(x1, ...,xN) dx3 · · · dxN
...

where the ± subscripts refer to vortices with positive (first N/2) and negative (re-

maining N/2) circulations respectively. These functions are the spatial equilibrium

9The 2D Euler system L = ∇2 will, however, frequently be used in demonstrating the equivalence
of the new hierarchy with PL76 and in the more general context of Eulerian fluid dynamics.
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distribution of the vortices. It is assumed that vortices of the same sign are in-

terchangeable, so the functions do not depend on the order in which the vortex

arguments are taken i.e.

p++(x1,x2) = p++(x2,x1), p+−(x1,x2) = p−+(x2,x1), etc.

The Gibbs entropy of the two species system can be defined as

S = −1

2

∫
D

[
p+(x) log

(
p+(x)

ρ0

)
+ p−(x) log

(
p−(x)

ρ0

)]
dx, (1.35)

where ρ0 = 1/|D|; the inverse of the domain area. Equation (1.35) can be shown

to be equivalent to the Boltzmann entropy (1.29) in the hydrodynamic limit (see

section 2.2.2).

Along with the singular vorticity distribution (1.15) (namely ω =
∑

i Γiδ(x−xi))

as introduced in section 1.2.1, the vortex density is defined by

ρ(x) =
1

N

N∑
i=1

δ(x− xi), (1.36)

(recall Γi = ±1/N). The ensemble average of an arbitrary function f(x1, ...,xN) is

given by

〈f〉 =

∫
DN

f(x1, ...,xN)p(x1, ...,xN) dx1... dxN , (1.37)

and so vorticity (1.15) and vortex density (1.36) can be defined in terms of the

ensemble means

ω1(x) = 〈ω(x)〉 = 1
2

(
p+(x)− p−(x)

)
(1.38)

ρ1(x) = 〈ρ(x)〉 = 1
2

(
p+(x) + p−(x)

)
, (1.39)

with the de-singularized second-order cumulants, describing fluctuations about the
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mean, defined by

ω2(x,x′) = 〈(ω(x)− ω1(x))(ω(x′)− ω1(x′))〉 − (1/N)ρ1(x)δ(x− x′) (1.40)

c2(x,x′) = 〈(ρ(x)− ρ1(x))(ω(x′)− ω1(x′))〉 − (1/N)ω1(x)δ(x− x′) (1.41)

ρ2(x,x′) = 〈(ρ(x)− ρ1(x))(ρ(x′)− ρ1(x′))〉 − (1/N)ρ1(x)δ(x− x′). (1.42)

The unorthodox delta-function terms in (1.40-1.42) are ‘natural’ in the sense that

they remove all singular terms, and permit ω2, c2 and ρ2 to be expressed in terms

of p++, p+− etc. It is straightforward to define higher cumulants by analogy. Some

relevant expressions are given in appendix B.1.

The advantages of recasting PL76’s cumulant expansion in this fashion are twofold.

First, it simplifies some of PL76’s expressions, notably the energy equation (equation

(1.46) below). Second, it emphasises that vorticity and vortex density scale differ-

ently in the hydrodynamic and thermodynamic limits introduced in section 1.3.4,

with the more fundamental terms, in the sense that they eventually determine the

thermodynamic curve β(E), being those related to vorticity and its fluctuations, ω1

and ω2 respectively.

It is useful at this point to reintroduce10 a generalised streamfunction ψ1 for the

mean flow arising from the mean vorticity distribution ω1, satisfying

ψ1(x) =

∫
D
G(x,x′)ω1(x′) dx′

or Lψ1 = ω1, ψ1 = 0 on ∂D, (1.43)

where L is the linear, elliptic and self-adjoint operator introduced in section 1.2.1.

Here, and throughout the rest of this thesis unless otherwise indicated, L and the

gradient operator ∇ act on the variable x. In a similar manner, higher order stream-

functions can also be defined e.g.

ψ2(x,x′) =

∫
D
G(x,x′′)ω2(x′′,x′) dx′′ (1.44)

= 〈(ψ(x)− ψ1(x)) (ω(x′)− ω1(x′))〉 − 1

N
ρ1(x′)G(x,x′).

10The relationship between the vorticity and the streamfunciton was first introduced for the
continuous 2D Euler system with (1.13) in section 1.2.1.
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In order to express the energy in terms of the cumulants defined above, it suffices

to take the ensemble average of H,

〈H〉 =

∫
DN

H(x1, ...,xN)p(x1, ...,xN) dx1 · · · dxN = E. (1.45)

Substituting for H from its definition (1.2) and using the cumulants defined above,

gives

E = −1

2

∫
D2

G(x,x′) (ω1(x)ω1(x′) + ω2(x,x′)) dx dx′− 1

2N

∫
D
g(x,x)ρ1(x) dx.

(1.46)

Equation (1.46), which is exact, simplifies PL76’s equivalent expression (their eqn. 12),

and more importantly admits simple interpretation. The first term involving ω1 is

the energy of the (ensemble) mean flow, and for L = ∇2 is exactly the same as (1.17)

i.e. the energy of continuous 2D Eulerian fluid. The second term involving ω2 gives

the energy associated with fluctuations or eddies about this mean flow, and the final

density correction term corrects for the de-singularising term in the definition (1.41)

of ω2.

PL76’s cumulant equations follow from applying the gradient operator to the

marginal densities. For example, using ∇1 to denote the gradient operation with

respect to variable x1,

∇1p+(x1) =
1

W (E)

∫
DN−1

∇1δ(H − E) dx2 · · · dxN

= − 1

W (E)

∫
DN−1

∇1H∂E δ(H − E) dx2 · · · dxN

= −N
(
∂Ẽ + β

)∫
DN−1

∇1H(x1, . . . ,xN)p(x1, . . . ,xN) dx2 · · · dxN ,

where Ẽ = NE has been substituted, and use has been made of the identity

∂Ep = W−1∂Eδ(E −H)− βNp, (1.47)

obtained from differentiating (1.31). Expanding H in terms of its definition (1.2),

and then substituting x for x1 and x′ for the variable of integration which cannot
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be evaluated in each term in the sum leads to

∇p+(x) =

(
∂Ẽ + β

)(∫
D
∇G(x,x′)

(
n+p++(x,x′)− n−p+−(x,x′)

)
dx′

− 1

N

∫
D
∇G(x,x′)p++(x,x′) dx′ +

1

2N
∇g(x,x)p+(x)

)
, (1.48)

and similarly

∇p−(x) =

(
∂Ẽ + β

)(∫
D
∇G(x,x′)

(
n−p−−(x,x′)− n+p−+(x,x′)

)
dx′

− 1

N

∫
D
∇G(x,x′)p−−(x,x′) dx′ +

1

2N
∇g(x,x)p−(x)

)
. (1.49)

Combining (1.48) and (1.49), analogous expressions for ∇ω1 and ∇ρ1 are found to

be

∇ω1(x) =

(
∂Ẽ + β

)(
ρ1(x)∇ψ1(x) +

∫
D
∇G(x,x′)c2(x,x′) dx′

+
1

2N
ω1(x)∇g(x,x)

)
(1.50)

∇ρ1(x) =

(
∂Ẽ + β

)(
ω1(x)∇ψ1(x) +

∫
D
∇G(x,x′)ω2(x,x′) dx′

+
1

2N
ρ1(x)∇g(x,x)

)
. (1.51)

Equivalent equations for second-order and higher-order cumulants are obtained

following the same procedure. Details are given in appendix B.1. The resulting

second-order cumulant equations are
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∇ω2(x,x′) =

(
∂Ẽ + β

)(
ρ1(x)∇ψ2(x,x′) + c2(x,x′)∇ψ1(x)

+

∫
D
∇G(x,x′′)c3(x,x′,x′′) dx′′

+
1

N
∇G(x,x′) (ρ2(x,x′) + ρ1(x)ρ1(x′))

+
1

2N
ω2(x,x′)∇g(x,x)

)
+

(
∂Ẽω1(x′)

)(
ρ1(x)∇ψ1(x) +

∫
D
∇G(x,x′)c2(x,x′) dx′

+
1

2N
ω1(x)∇g(x,x)

)
(1.52)

∇c2(x,x′) =

(
∂Ẽ + β

)(
ω1(x)∇ψ2(x,x′) + ω2(x,x′)∇ψ1(x)

+

∫
D
∇G(x,x′′)ω3(x,x′,x′′) dx′′

+
1

N
∇G(x,x′) (c2(x′,x) + ω1(x)ρ1(x′))

+
1

2N
c2(x,x′)∇g(x,x)

)
+

(
∂Ẽω1(x′)

)(
ω1(x)∇ψ1(x) +

∫
D
∇G(x,x′)ω2(x,x′) dx′

+
1

2N
ρ1(x)∇g(x,x)

)
(1.53)

∇ρ2(x,x′) =

(
∂Ẽ + β

)(
ω1(x)∇φ2(x′,x) + c2(x,x′)∇ψ1(x)

+

∫
D
∇G(x,x′′)c3(x′,x,x′′) dx′′

+
1

N
∇G(x,x′)

(
ω2(x,x′) + ω1(x)ω1(x′)

)
+

1

2N
ρ2(x,x′)∇g(x,x)

)
+

(
∂Ẽω1(x′)

)(
ω1(x)∇ψ1(x) +

∫
D
∇G(x,x′)ω2(x,x′) dx′

+
1

2N
ρ1(x)∇g(x,x)

)
. (1.54)
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The second-order cumulant expression φ2 and the de-singularised third-order cu-

mulants ω3 and c3 are defined in appendix B.1,

Taken together, the energy equation (1.46), the ensemble mean equations (1.50-

1.51), the fluctuation equations (1.52-1.54), and the analogous equations for higher-

order cumulants (c.f. PL76’s eqn. 17) form an infinite hierarchy that, in principle,

exactly describe the statistics of the point vortex system for an arbitrary number

of vortices N . Progress can evidently be made by considering limits N → ∞ as

described in section 1.3.4. This hierarchy will form the parent model for the hydro-

dynamic limit investigation in chapter 2 and the thermodynamic limit investigation

in section 4.

Before proceeding with using the PL76 hierarchy to study the vortex system, the

assumptions of the model will be analysed. The whole of the theory of section 1.3

rests on two key assumptions: the ergodic hypothesis and the point vortex approxi-

mation itself. The former will be dealt with in section 1.4.1, while the latter will be

considered in section 1.4.2.

1.4 Model assumptions

1.4.1 Ergodic theory

A standard assumption in justifying statistical mechanics theories is that the evo-

lution of the relevant dynamical system is ergodic in phase space over the surface of

constant energy, so that the microcanonical ensemble is valid at long times. In other

words, spatial averages over all ensemble members are equivalent to the long-time

average of a single member of the ensemble. The formal validity of this assumption

for the finite N vortex system is currently an open question. The basis of ergodic

theory will now be examined, and the key assumption of statistical mechanics stated.

Further details for a general system are found in [14] and for the vortex system in [91].

Consider again the arbitrary macroscopic function f(x1, . . . ,xN), for which the

spatial (ensemble) average is given by (1.37) i.e.

〈f〉 =

∫
DN

f(x1, . . . ,xN)p(x1, · · · ,xN) dx1 · · · dxN ,
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and the time average of the same function, integrated from t = 0 to t = T , is given

by

f̄ = lim
T→∞

1

T

∫ T

0

f(x1, . . . ,xN) dt. (1.55)

Simply put, ergodic theory gives a formal answer to the question: under what cir-

cumstances do the two averages converge so that f̄ ≈ 〈f〉?

Equation (1.55) yields two immediate questions: does the limit exist and how

can f̄ be computed in finite time? This can be regarded as determining what is the

relative importance of different sub-regions of phase space as the trajectory of the

dynamical system moves through the whole of its phase space. (It is believed that

as N →∞ these sub-regions shrink [91].)

To answer the convergence question, some classical theorems of ergodic theory

are required. First, Liouville’s theorem is used to guarantee that the evolution of the

dynamical system is a measure preserving transformation. Specifically, the vector

field defined by the dynamical system (1.1)

V (x, y) =

(
−∂H
∂y1

, . . . ,− ∂H
∂yN

;
∂H

∂x1

, . . . ,
∂H

∂xN

)
,

preserves phase space volume i.e. ∇·V = 0. From this the following theorems can be

applied: the mean ergodic theorem of von Neumann guaranteeing ‘mean-square’ (i.e.

L2 norm) convergence and the pointwise ergodic theorem of Birkhoff guaranteeing

‘almost everywhere’ (i.e. pointwise) convergence.

From these theorems it can be seen that as a given trajectory evolves in phase

space it will, after sufficiently long times, have densely filled the entire phase space

uniformly so that equal sub-regions are visited for equal times. In this case the time

average f̄ is equal to the ensemble average 〈f〉 and the system is ergodic. Assuming

the system is ergodic allows the fundamental postulate of statistical mechanics to be

stated: ‘equal a priori probabilities ’ states that all microstates with the same energy

are equally probable. From this, the key concept of statistical equilibrium can be

illustrated: consider a system evolving in time that has reached an equilibrium (time

averages of macroscopic quantities are steady). Clearly as the system evolves the
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microstate changes and hence there must be many different microstates that all give

the same macrostate. As such the macroscopic equilibrium state is the one with the

largest number of consistent microstates; this is termed the ‘principle of maximum

entropy ’. The Boltzmann entropy S = logW counts the number of microstates,

meaning the maximum entropy state is the equilibrium state (see chapter 2). Further,

using equal a priori probabilities, the alternative Gibbs entropy, S = −
∑

i pi log pi,

can be seen to be equivalent to the Boltzmann entropy when all the probabilities are

equal to pi = 1/W .

Returning to ergodic theory and equation (1.55), from a practical and compu-

tational point of view the question now becomes: how large does T have to be for

f̄ ≈ 〈f〉? Put another way, how long a run is required for the dynamical system to

reach an equilibrium so that averages over the run can be justifiably be compared

with predicted averages from equilibrium statistical mechanics? Onsager himself was

concerned with this exact question, mentioning, in correspondence to Lin [49]

“I still have to find out whether the process anticipated by these con-
siderations are rapid enough to play a dominant role in the evolution of
vortex sheets”.

Numerical calculations [121] have addressed this question directly for the low N =

6 point vortex system, and concluded that ergodicity does not hold. Consequently,

for robust verification of any statistical mechanics predictions, comparisons should

be made against both the ensemble and time-averages.

In general the specific form of the function f dictates how close to ergodic the

system is. For simple functions (typically with a high degree of symmetry) the

convergence is rapid as most sub-regions of phase space are very similar to one

another.

PL76 [95] performed approximate numerical simulations using N = 40 vortices

in a circular domain in an attempt to verify their equilibrium predictions of the

streamfunction. As will be detailed in chapter 2, equilibrium streamfunctions in

this situation tend to be characterised by like-signed vortices clustering into macro

configurations. However, over the length of their run (it is not explicit what their

time scale is), PL76 found that while in some cases the long-time equilibrium was

reached, in other cases the vortices only formed meta-stable equilibria and did not
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reach the predicted long-time equilibrium.

In a more recent study [13], equilibrium statistical mechanics theories were tested

using direct numerical simulations (with the same time stepping scheme as in this

thesis; see section 1.2.3) of N = 100 vortices over a time interval of t ≈ 470N in

the time scale used here. Four macroscopic diagnostics were used at three different

energies and agreement between the runs and statistical mechanics was very good in

all cases.

In this thesis dynamical runs will involve N = 100 vortices and are at least

t = 1000N time units in length. There is no justification for this other than on an

empirical basis: averages taken over this time appear to reach an equilibrium (as

seen from animations) and show good agreement with theoretical predictions and

ensemble averages. This time interval also compares favourably with that used in

other modern studies [13,123].

1.4.2 Miller-Robert-Sommeria theory

The more fundamental question as to the validity of the point vortex model in

a physical context is now considered, and a vorticity statistical mechanics theory,

complementary to that of Onsager’s in section 1.3, is described.

It has been shown that any smooth 2D Euler solution may be approximated arbi-

trarily well over a finite time interval 0 < t < T by the singular vorticity distribution

(1.15) i.e. ω(x) =
∑N

i=1 Γiδ(x− xi), with Γi = ±1/N as N → ∞ (see [80] and sec-

tion 1.2.1). However this is not sufficient to justify equilibrium statistical mechanics

where the limit T →∞ is required.

Onsager himself was fully aware of the limitations11 of the point vortex model [49]

“The present theory for the formation of large vortices does not apply
to all cases of unsteady flow. As a matter of fact, the phenomenon is
common but not universal.”

Onsager’s main concern with the discrepancy between the point vortex model as

N →∞ and the 2D Euler model is most easily explained with the following example.

Consider an ideal vortex patch i.e. constant vorticity in a finite area. Due to the

11Onsager did remark that the point vortex model should work better for superfluids, where he
correctly predicted that turbulence is genuinely discretised [6].
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incompressibility of the 2D Euler equations, the area is conserved which together

with the conservation of circulation implies that it is not possible for vorticity to

intensify in localised regions. However if the vortex patch is approximated by N

point vortices at a high energy, the vorticity could eventually evolve into a more

intense localised structure and the effective area would decrease: the vortices are

behaving in some respects like a compressible system with the ability to cluster or

expand.

A major step in eliminating the discrepancies between the two models was made

independently by Miller [84] and Robert [101], with further developments by Miller

[85] and Robert & Sommeria [102]. The Miller-Robert-Sommeria theory (MRS here-

after) avoids the vortex approximation altogether and instead an equilibrium statis-

tical mechanics theory is derived directly from the 2D Euler equations with vorticity

broken into small ‘patches’ that are distributed using Lynden-Bell statistics [79] to

find the most probable state. The solution is an equilibrium solution of the full 2D

Euler equations, on which fine-scale vorticity fluctuations are superimposed.

The basic quantity of the theory is a local distribution function n(x, σ), which

gives the probability density that the microscopic vorticity ω(x) lies between σ and

σ+dσ at the point x. As the vorticity field evolves it mixes to very fine scales so that

the neighbourhood of x will contain many values of vorticity, distributed according

to n(x, σ). Thus at each point x ∈ D, n satisfies

∫ ∞
−∞

n(x, σ) dσ = 1, (1.56)

and the macroscopic vorticity is given by

ω̄(x) =

∫ ∞
−∞

n(x, σ)σ dσ.

The function n(x, σ) encodes an infinite set of conserved quantities of the 2D incom-

pressible Euler equations, namely the area occupied by each level set of the initial

vorticity. If g(σ)dσ is the fraction of the total area A on which occur vorticities
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between σ and dσ then

1

A

∫
D
n(x, σ) dx = g(σ).

From here the entropy associated with n(x, σ) can be calculated using standard

Maxwell-Boltzmann statistics, and is given by

S = −
∫
D

∫ ∞
−∞

n(x, σ) log n(x, σ) dx dσ. (1.57)

Maximising (1.57) subject to (1.56) and the fixed energy given by

E = −1

2

∫
D2

∫ ∞
−∞

∫ ∞
−∞

σσ′G(x,x′)n(x, σ)n(x, σ′) dσ dσ′ dx dx′,

gives

n(x, σ) =
1

Z(x)
exp

(
−β̄[σψ̄(x)− µ(σ)]

)
,

where Z(x), µ(σ) and β̄ are Lagrange multipliers. Finally the streamfunction is

given by

∇2ψ̄(x) =
1

Z(x)

∫ ∞
−∞

exp
(
−β̄[σψ̄(x)− µ(σ)]

)
dσ. (1.58)

With the infinitely many conserved quantities of the 2D Euler system, the MRS

theory can be seen to reconcile the problems discussed at the start of the section

relating to the point vortex approximation. However the MRS theory depends on

detailed initial conditions, and in practice, because of its complexity (i.e. solving a

variational problem involving an infinite number of constraints), has usually been

used for simple initial distributions [12] or for linearised approximations [27]. For a

more general description of vorticity (independent of detailed initial conditions) and

for more for straightforward computation, the point vortex model will be studied in

this thesis. Reconciling the two theories with respect to fully turbulent Navier-Stokes

simulations is a continuing area of study e.g. [124].

Finally it is noted that equation (1.58) has a form that is very common to statisti-
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cal theories of 2D Euler vortex models in the hydrodynamic limit (i.e. dominated by

the mean flow), both from the MRS framework and the standard point vortex model.

In general such equations for the equilibrium streamfunction are called ‘mean-field’

equations and are given by

∇2ψ = F (ψ, α),

where F is a function and α a variable (or variables) that depend on the specific

formulation. The term mean-field equation will be used throughout this thesis, par-

ticularly when comparing different models.

1.5 Thesis outline

The research presented in this thesis is split up into four main problems, with

a chapter devoted to each one. Chapter 2 focuses on the bounded 2D Euler point

vortex system in the hydrodynamic limit, where the famous sinh-Poisson equation

is the valid. Two different classical derivations of the sinh-Poisson equation are

presented in section 2.2 and these are found to fit in neatly with a new ‘vorticity

mode’ eigenvalue problem. Numerical techniques are discussed in section 2.3. Section

2.4 focuses on the statistical mechanics in a new left-right symmetric, ‘heart’-shaped

domain, including verification by direct numerical simulation of the N vortex system.

Finally in section 2.5 conclusions are drawn.

Chapter 3 presents a new algorithm (VOR-MFS) for the solution of the dynamics

of the generalised vortex problem. Section 3.2 introduces the algorithm, including

details of the use of the method of fundamental solutions (MFS), a necessary bound-

ary approximation and the computational cost. Section 3.3 is then devoted to a

number of test-cases demonstrating the robustness of the new algorithm. Finally, in

section 3.4 conclusions are presented.

The focus of chapter 4 is the general point vortex system in the thermodynamic

limit. Using the reformed PL76 hierarchy presented 1.3.5, in section 4.2 the ‘vorticity

fluctuation equation’ equation is derived (a thermodynamic analogue to the sinh-

Poisson equation), which leads to statistical descriptions of the density of states
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Wt(Ẽ) and the caloric curve βt(Ẽ) for a general bounded system at low positive and

negative energies. The vorticity fluctuation is solved in section 4.3 using the vorticity

modes first introduced in chapter 2. To verify these statistical mechanics predictions,

section 4.4 considers the quasi-geostrophic vortex in a pair of Neumann oval domains

and uses the VOR-MFS algorithm of chapter 3 for microcanonical sampling in order

to construct finite N vortex versions of W (Ẽ) and β(Ẽ). Finally in section 4.5

conclusions are drawn.

Chapter 5 considers the distribution of vorticity in the 2D Euler system in the

Neumann oval domain. In section 5.2.2 a joint probability distribution is constructed

between the energy and a suitable macroscopic diagnostic that describes the distribu-

tion of the vorticity in the domain. Cross sections of this joint PDF at fixed energies

are then compared to direct numerical simulations at the same energies in section

5.2.3. In section 5.3 conclusions are made and a possible extension to the work using

large deviation statistical mechanics is suggested.

Finally in chapter 6 overall conclusions are presented and possible directions for

future research discussed.



Chapter 2

Statistical mechanics of point

vortices in the hydrodynamic limit

2.1 Introduction

Following on from Onsager’s seminal paper in 1949 [93], there was little further

work done on point vortex statistical mechanics until the 1970s when the connection

between the point vortex system and the 2D plasma system was made, interesting

many more researchers. It can be argued that this renaissance of Onsager’s theory

was initialised by the derivation of the famous sinh-Poisson equation (SPE) describing

the mean circulation in the domain. One reason for the continued popularity of the

SPE is that it has been shown [88] that its solutions are relevant to the long-time

states of turbulent 2D Navier-Stokes flows. One particularly important phenomenon

in such turbulent flows is that of ‘spin-up’ – the spontaneous acquisition of angular

momentum by the flow in a bounded domain [31, 32] – and recently the paper by

Taylor, Matthias & Helander [111] has sought to link spin-up with solutions of the

SPE.

For historical interest it is noted that Onsager derived a form of the SPE in the

late 1940s, though never published it [49]. In terms of published work, the SPE

was independently derived, first by Joyce & Montgomery [64] (JM73 hereafter) and

then later by PL76 using a contrasting technique. JM73 used a maximum entropy

approach, making no a priori assumption about the sign of the inverse temperature,
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then later finding only negative temperature states yielded non-trivial solutions. The

important point about the JM73 approach was to neglect the energy of fluctuations,

in a manner consistent with the taking of the hydrodynamic limit. PL76 on the

other hand used their cumulant expansion method described in section 1.3.5 in the

hydrodynamic limit, immediately restricting the solutions of the SPE to negative

temperature states only.

In section 2.2.1 JM73’s derivation will be reviewed. In section 2.2.2, a generalised

version of the SPE, termed here as the ‘elliptic-sinh equation’ (ESE), is derived in a

similar manner to that of PL761. This continues the theme, started in section 1.3.5,

of using a version of the PL76 hierarchy that is valid for a more general dynamics,

rather than just the 2D Euler dynamics (which would lead to the SPE).

An interesting limitation of most previous studies, e.g. [11, 113], is that it is as-

sumed that the boundary condition of the SPE is of homogeneous Dirichlet type.

Chavanis & Sommeria [27] showed that in general this is not correct and that there

exists a further class of physically relevant solutions with non-zero boundary condi-

tion. This point was recently re-emphasised by Taylor et al. [111].

Naturally, finding solutions of the SPE has been a continual area of study since

its derivation. Analytical solutions do exist, though only for square [113] or doubly-

periodic domains [72]. The standard numerical algorithm for solving the SPE was

published in 1974 by McDonald [11,82] (just one year after the first published deriva-

tion of the SPE), and continues to find applications e.g. [124]. Section 2.3 focuses on

numerical solutions and introduces using a new Galerkin-type solver that handles the

non-zero boundary condition mentioned above, as well as the standard homogeneous

Dirichlet boundary condition.

Section 2.4 is concerned solely with the 2D Euler system and solutions of the SPE

are found in a new left-right symmetric domain and verified with direct numerical

simulations of the finite N vortex system as well as a small E asymptotic theory,

details of which are given in appendix B.2. The domain is chosen specifically so that

an energy-induced phase transition occurs in the structure of the mean flow.

1A related equation was derived in [38], simply termed the ‘mean field equation’, in the context
of a two layer quasi-geostrophic point vortex system.
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2.2 The sinh-Poisson/elliptic-sinh

equation

2.2.1 Joyce-Montgomery maximum entropy

derivation

In the first published derivation of the SPE, JM73 used a maximum entropy

approach, subject to constraints determined from the conservation of energy and

conservation of positive and negative vortices. This method is now reviewed.

The basic set-up is the same as in section 1.3: N point vortices in a bounded

domain D. A total of n+N vortices have positive circulation and n−N have negative

circulation (n+ + n− = 1). The domain is then divided into M cells, each of area

∆ where 1 � M � N . The cells are large enough to contain many vortices, but

there is no distinction made between the locations of individual vortices within a

cell (the area of the cell will later be reduced to zero). Let n+
i (n−i ) denote the

number of positive (negative) vortices in the ith cell. The probability of a given

vortex distribution is

W =

{
(n+N)!

M∏
i=1

∆n+
i

n+
i !

}{
(n−N)!

M∏
i=1

∆n−i

n−i !

}
, (2.1)

which can also be interpreted as the phase space volume occupied by the distribution,

meaning the Boltzmann entropy is given by

S = logW,

as in section 1.3.2. Assuming n±N and n±i are large enough for Stirling’s formula to

apply to the factorials in (2.1), S is given by

S = −
M∑
i=1

(
n+
i log

n+
i

∆
+ n−i log

n−i
∆

)
, (2.2)

which, to within a constant, is the two-species Gibbs entropy. At statistical equilib-
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rium it is assumed that the principle of maximum entropy holds i.e. the system is

expected to be in the most probable macrostate – the one that is the most repre-

sented at the microscopic level (see section 1.4.1). Under the classical assumption of

equal a priori probabilities (that all microstates are equiprobable under the uniform

measure in phase space), the equilibrium distribution is obtained by maximising the

Boltzmann entropy (2.2). This is done using the method of Lagrange multipliers,

under the constraints of fixed energy

E = −1

2

∑
i 6=j

(n+
i − n−i )G(xi,xj)(n

+
j − n−j ), (2.3)

and fixed total number of positive and negative vortices

M∑
i=1

n+
i = n+N,

M∑
i=1

n−i = n−N.

This results in

log n+
i − log ∆ + α+ + β

∑
i 6=j

G(xi,xj)(n
+
j − n−j ) = 0 (2.5a)

log n−i − log ∆ + α− − β
∑
i 6=j

G(xi,xj)(n
+
j − n−j ) = 0, (2.5b)

for Lagrange multipliers α+, α− (often interpreted as ‘chemical potentials’) and β

(interpreted as the inverse thermodynamic temperature). The function G(xi,xj) is

the Green’s function of the first kind for the domain, as defined by (1.3) in section

1.2.1.

As a brief aside that will be used later, we derive alternative expression for the

entropy. Substituting (2.5) into (2.2), and using the energy definition (2.3), the

entropy is found to be

S = 2βE + α+n+N + α−n−N. (2.6)
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Returning to the derivation, subtracting (2.5a) from (2.5b) gives

n+
i − n−i

∆
= exp

(
−α+ − β

∑
i 6=j

G(xi,xj)(n
+
j − n−j )

)

− exp

(
−α− + β

∑
i 6=j

G(xi,xj)(n
+
j − n−j )

)
. (2.7)

The next step is to take the limit of zero cell size ∆→ 0. In this limit the ‘mean

field vorticity’ ω(x) (which determines the mean flow) can now be formally defined

by

n+
i − n−i

∆
→ ω(x)∑

i 6=j

G(xi,xj)(n
+
j − n−j ) →

∫
D
G(x,x′)ω(x′) dx′ = ψ̃(x).

In this limit (2.7) becomes an integral equation for the vorticity

ω(x) = exp

(
−α+ − β

∫
D
G(x,x′)ω(x′) dx′

)
− exp

(
−α− + β

∫
D
G(x,x′)ω(x′) dx′

)
,

which, using the definition of the streamfunction (1.43) i.e. ψ̃ =
∫
DG(x,x′)ω(x′) dx,

can be converted into the partial differential equation

∇2ψ̃ = 1
2
C1 exp

(
βψ̃
)
− 1

2
C2 exp

(
−βψ̃

)
, (2.8)

with normalisation constants, determined by the conservation of the number of vor-

tices, given by

C1,2 = 2n±

(∫
D

exp
(
±βψ̃

)
dx

)−1

. (2.9)

In this limit the energy (2.3) is given by

E = −1

2

∫
D
ψ̃(x)ω(x) dx = −1

2

∫
D
ψ̃(x)∇2ψ̃(x) dx, (2.10)
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which is identical to (1.17) i.e. the regular energy in 2D Eulerian fluid dynamics; see

end of section 1.2.1.

At this point the results of Chavanis & Sommeria [27] (CS96 hereafter) and Taylor

et al. [111] (TBH09 hereafter) are utilised to construct the sinh-Poisson equation with

the correct boundary condition. In the first instance, reference will be made to later

work of TBH09 due to its similarity with the notation used in this thesis and useful

nomenclature. The equivalence to the original derivation by CS96 will then be noted.

Note that by writing C1 = β exp (−βψ0) and C2 = β exp (βψ0), (2.8) is trans-

formed, into the canonical form of the sinh-Poisson equation

∇2ψ = C sinh βψ, (2.11)

where

ψ = ψ̃ − ψ0, C = (C1C2)1/2 and ψ0 =
1

2β
log (C2/C1). (2.12)

Note that ψ remains the streamfunction as the addition of the constant ψ0 has no

effect.

If the assumption can be made that C1 = C2 (referred to as ‘type I’ solutions in

TBH09), ψ0 = 0 and (2.11-2.12) is in the usual form, with the homogeneous Dirichlet

boundary condition

ψ(x) = 0, x ∈ ∂D.

This is the form of the SPE that has been studied by [11] among others. However,

in general C1 6= C2 (referred to as ‘type II’ solutions in TBH09), and then general

boundary condition is

ψ(x) = −ψ0, x ∈ ∂D.

Both of these solutions are physically relevant and therefore must treated on an equal

footing.

To aid in the classification of solutions of the SPE, the linearised form of (2.11)
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is considered, which leads to the following eigenvalue problem

∇2Φj = βjρ0Φj, x ∈ D, (2.13a)

Φj = constant, x ∈ ∂D, (2.13b)

where ρ0 = |D|−1 is the inverse of the domain area, Φj are the eigenmodes (corre-

sponding to type I and type II solution branches) and βj < 0 are the domain size

invariant eigenvalues. Note that
∫
D Φj dx = 0 since the system is neutral.

As mentioned, the eigenvalue problem (2.13) was first introduced by Chavanis &

Sommeria [27] (CS96 hereafter), albeit in a different form: for the mean streamfunc-

tion ψ, CS96 derived the linearised problem

−∇2ψ(x) + βψ(x) = β〈ψ(x)〉 x ∈ D, (2.14a)

ψ(x) = 0, x ∈ ∂D (2.14b)

for which there are two types of solution:

1. When 〈ψ〉 = 0, we return to the Laplace eigenvalue problem with zero mean

and {βj} the corresponding eigenvalues. These solutions were termed type I

by TBH09.

2. When 〈ψ〉 6= 0, the eigenvalue problem is new. The corresponding eigenval-

ues are roots of a function F (β) and are constructed using eigenvalues of the

Laplacian with non-zero mean. These solutions were termed type II by TBH09.

Setting Φ = ψ − 〈ψ〉 in the (2.14), there is equivalence with the vorticity mode

eigenvalue problem (2.13).

A further property of the above eigenvalue problem is revealed by integrating

(2.13a) to give

∫
D
∇2Φj dx = βjρ0

∫
D

Φj dx = 0, k = 1, 2, 3, . . . . (2.15)

The integral constraint (2.15) can be simplified further using the divergence theorem

∮
∂D
∇Φj · n ds = 0, or

∮
∂D
uk · ds = 0, (2.16)
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for uk = −∇× (Φjk). If each vorticity mode Φj is interpreted as the streamfunction

of a flow (uk) in D, then each can be said to satisfy ‘no normal flow’ and ‘zero-

circulation’ conditions on ∂D.

In summary

∇2Φj = βjρ0Φj, x ∈ D (2.17a)

Φj = constant, x ∈ ∂D (2.17b)∮
∂D
uk · ds = 0, (2.17c)

which will be termed the ‘vorticity mode’ eigenvalue for problem with βj the ‘domain

inverse temperatures’ (DITs).

By the Hilbert-Schmidt theorem [37] the vorticity modes form a complete or-

thonormal basis and also unify both the type I and type II solutions of TBH09 as

the solutions of a single eigenvalue problem. Further, the vorticity modes and DITs

will be used again in chapter 4 to study the vortex system in the thermodynamic

limit. This is a remarkable result: the vorticity modes are the natural basis to solve

the relevant equations of the vortex system in both the hydrodynamic limit and the

thermodynamic limit.

Finally the form of the solutions to the full nonlinear SPE (or in general the ESE)

in (E, β) are described. There are infinitely many solution branches of the SPE and

by the linear theory above, each solution branch originates at DIT β = βj at E = 0.

As the solution becomes more nonlinear the solution branch extends towards infinite

energy with the structure of the solution expected to remain qualitatively the same

along the entire branch.

2.2.2 Pointin-Lundgren cumulant expansion

derivation

Next we briefly outline PL76’s approach for the derivation of the SPE, generalised

for an appropriate linear, elliptic and self-adjoint operator L, as described in section

1.2.1. This generalisation could equally well be done in JM73 framework outlined in

the previous section.
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PL76 continued the cumulant expansion method introduced in section 1.3.5, in

the hydrodynamic limit where the terms of O(1/N) are small, meaning

∂Ẽ = 1
N
∂E � β = O(1).

Setting ε = 1/N , the following quantities are expanded in powers of ε

ω1 = ω
(0)
1 + εω

(1)
1 +O(ε2) (2.18)

ρ1 = ρ
(0)
1 + ερ

(1)
1 +O(ε2). (2.19)

A natural solution to the asymptotic hierarchy is obtained if it is taken that second-

order fluctuations are O(ε) to leading order, third order fluctuations are O(ε2) etc.

At leading order (1.50-1.51) become

∇ω(0)
1 (x) = βρ

(0)
1 (x)∇ψ(0)

1 (x) (2.20a)

∇ρ(0)
1 (x) = βω

(0)
1 (x)∇ψ(0)

1 (x). (2.20b)

Adding and subtracting (2.20) gives

∇ log (ω
(0)
1 + ρ

(0)
1 ) = β∇ψ(0)

1

∇ log (ρ
(0)
1 − ω

(0)
1 ) = −β∇ψ(0)

1 ,

and then integrating gives

ω
(0)
1 + ρ

(0)
1 = C1 exp (βψ

(0)
1 ) (2.21a)

ρ
(0)
1 − ω

(0)
1 = C2 exp (−βψ(0)

1 ), (2.21b)

with normalisation constants

C1,2 = 2n±

(∫
D

exp
(
±βψ(0)

1

)
dx

)−1

. (2.22)
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Using the definition of vorticity Lψ1 = ω1, (2.21b) is subtracted from (2.21a) to give

Lψ(0)
1 = 1

2
C1 exp (βψ

(0)
1 )− 1

2
C2 exp (−βψ(0)

1 ), (2.23)

i.e. an elliptic-Boltzmann equation. Using the same transformation of TBH09 (as in

section 2.2.1), (2.23) can be reformed into the elliptic-sinh equation (ESE)

Lψ = C sinh βψ, (2.24)

where, again,

ψ = ψ
(0)
1 − ψ0, C = (C1C2)1/2, ψ0 =

1

2β
log (C2/C1), (2.25)

and the linearised version of (2.24) satisfies a generalised version of the vorticity

mode eigenvalue problem

LΦk = βkρ0Φk, x ∈ D, (2.26a)

Φk = constant, x ∈ ∂D (2.26b)∫
D
LΦj dx = 0. (2.26c)

Note that in the case of QGSW vortices (L ≡ ∇2 − λ2, with λ−1 the Rossby radius)

the integral constraint (2.26c) simplifies in the same way the 2D Euler version (2.17c)

does, since

∫
D

(∇2 − λ2)Φk dx ≡
∫
D
∇2Φk dx.

Hence the QGSW vorticity mode spectrum is simply the 2D Euler vorticity mode

spectrum shifted by the constant −λ2/ρ0. For the SQG system the situation is more

complicated and will not be considered in this thesis.
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Finally it is noted that at O(ε) the energy (1.46) is given by

E = −1

2

∫
D2

G(x,x′)ω
(0)
1 (x)ω

(0)
1 (x′) dx dx′ (2.27a)

= −1

2

∫
D
ψ

(0)
1 Lψ

(0)
1 dx. (2.27b)

Following TBH09, to compute the entropy consider (1.48) and (1.49) at O(ε). As

in PL76 the closure assumption p++(x,x′) ≈ p+(x)p+(x′) etc, (known as the ‘mean

field approximation’; see [23]) is used. This assumption is equivalent to second order

cumulants being ignored for large N . This gives

log

(
p+(x)

C

)
= β

∫
D
G(x,x′)

(
n+p+(x′)− n−p−(x′)

)
dx′ (2.28a)

log

(
p−(x)

C

)
= β

∫
D
G(x,x′)

(
n−p−(x′)− n+p+(x′)

)
dx′, (2.28b)

which when inserted into (1.35) and using (2.27a) gives the entropy

S = 2βE − ρ0 log
C

ρ0

, (2.29)

which is equivalent to equation (2.6), derived for the specific 2D Euler system. Note

also that for L = ∇2 (and identifying ψ
(0)
1 with ψ̃) equations (2.24), (2.27b) are

exactly consistent with (2.11) and (2.10) in the previous section.

Following PL76, it is useful to show that the two species Gibbs entropy (1.35)

can also yield the inverse temperature definition (1.30) i.e. dS/dE = β, thus demon-

strating equivalence between the Gibbs and Boltzmann definitions of entropy. Dif-

ferentiating the Gibbs entropy (1.35) with respect to E gives

dS

dE
= −

∫
D

[
dp+(x)

dE

{
1 + log

p+(x)

ρ0

}
+
dp−(x)

∂E

{
1 + log

p−(x)

ρ0

}]
dx

= −
∫
D

[
dp+(x)

dE
log

p+(x)

ρ0

+
dp−(x)

∂E
log

p−(x)

ρ0

]
dx, (2.30)

and differentiating the energy (2.27a) with respect to E gives

1 = −
∫
D2

G(x,x′)

(
dp+(x)

∂E
− dp−(x)

∂E

)
(p+(x′)− p−(x′)) dx dx′. (2.31)
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Note that

∫
D
p±(x) dx = 1⇒

∫
D

dp±(x)

dE
dx = 0.

Combining (2.30)-(2.31) and making use of (2.28) gives

dS

dE
= β,

i.e. the definition of inverse temperature, first introduced in section 1.3.2 using the

Boltzmann entropy. This result linking the inverse temperature with the two defini-

tions of entropy allows both definitions to be used interchangeably as appropriate.

2.3 Numerical methods for the

elliptic-sinh equation

2.3.1 Previous solution methods

With the SPE/ESE derived in the previous section, the next step is its numerical

solution. Two algorithms for solving the system defined by (2.22), (2.24), (2.27b)

(or specifically for the 2D Euler case the system defined by (2.11), (2.12), (2.10)) are

now presented. The generalised PL76 ESE is defined by2

Lψ = C sinh(βψ), E = −1

2

∫
D
ψLψ dx, C =

(∫
D
eβψ dx ·

∫
D
e−βψ dx

)−1/2

,

which, using the substitutions φ = βψ and b = Cβ, can be rewritten as

Lφ = b sinh(φ), E = − 1

2β2

∫
D
φLφ dx, C =

(∫
D
eφ dx ·

∫
D
e−φ dx

)−1/2

.

(2.32)

The system most amenable to numerical solution is (2.32), though to calculate phys-

ically relevant quantities we must revert back to ψ, E and β using the substitutions

2For clarity, we have substituted ψ for ψ(0)
1 .



Chapter 2. Statistical mechanics of point vortices in the hydrodynamic limit 63

described above.

McDonald [82] discovered that finding nontrivial solutions of the SPE by standard

techniques such as fixed point iteration using an inverted Laplacian operator was

not successful3. Instead, McDonald developed a new algorithm (with the results

analysed in [11]) which specifically excludes the trivial solution ψ = 0. The method

(generalised for L below) uses a special iteration loop that updates a ‘trial solution’

until a specified precision is reached.

The first step in the McDonald iteration algorithm is to define the residual func-

tion

R =
Lw + b sinhw

〈w,w〉
, (2.33)

for a trial solution w(x), where 〈B1, B2〉 is the inner product4 of the functions B1

and B2

〈B1(x), B2(x)〉 =

∫
D
B1(x)B2(x) dx.

The residual function (2.33) tends to zero everywhere as w approaches a non-trivial

solution φ, but tends to infinity as w approaches a trivial solution.

The linear PDE

Lv + bv coshw = 〈w,w〉R, v = 0 on the boundary (2.34)

is solved, and the trial solution is iteratively corrected by

w → w +
v〈w,w〉

2〈v, w〉 − 〈w,w〉
, (2.35)

until a sufficiently accurate solution is found. To determine the accuracy of the

solution, first the grid cells of the computational domain where the solution is being

3A relaxation method has recently been used successfully in [111].
4Note the use of angled brackets with two arguments in this section represents the inner product,

while angled brackets with a single argument used in a microcanonical ensemble context (e.g. in
section 1.3.5) represent ensemble averages. Hence there should be no confusion.
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constructed are indexed i and j. Then the rms error norm is computed by

εr =

(∑
i,j

g2
1

/∑
i,j

g2
2

)1/2

,

where

g1(i, j) = Lψ(i, j) + b sinhψ(i, j) (2.36a)

g2(i, j) = |Lψ(i, j)|+ |b sinhψ(i, j)|. (2.36b)

The solver described above is amenable to conformal mapping by simply scaling

the elliptic operators in the manner described in appendix A. Namely, for a conformal

map z = f , (2.33) becomes

R =
Lw/|f ′|2 + b sinhw

〈w,w〉
,

and (2.34) becomes

Lv/|f ′|2 + bv coshw = 〈w,w〉R,

along with the elliptic operators in (2.36) being scaled in the same way.

The McDonald iteration method described above is straightforward to implement

and has recent applications such as [124]. However, modifying the solver, particu-

larly (2.34), in order to find solutions with a non-zero boundary condition is not

straightforward. As such, a new, more flexible scheme is introduced in section 2.3.2

and implemented in section 2.4.

2.3.2 The general nonlinear solver

A new, more general method based on a Galerkin-type expansion will now be

introduced to solve for φ in the ESE (2.32). Since the linear approximation of

the ESE is given by the vorticity modes (2.26), it is natural to use the vorticity

modes themselves as the basis in the construction of the solution φ. Specifically the

vorticity mode eigenvalue problem (2.26) is related to the linearised version of (2.32)
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by identifying b with ρ0βk and φ with Φk. The solver, which is described next, makes

use of the Chebyshev spectral methods of Trefethen [115] (see appendix A.4).

A solution w ≈ φ to (2.32) is sought on a specific branch in (E, β) space denoted

by ∗ i.e. the branch originating at E = 0 with β = β∗ and Φ∗. Recall from section

2.2.1 that there are infinitely many solution branches, each originating from a DIT

βj. Truncating to use a total of P vorticity modes, the solution w is approximated

by

w = AΦ∗ +
P∑
k 6=∗

akΦk, (2.37)

where A = A(b) is the pre-specified weight of the ‘dominant’ mode and {ak} are the

P − 1 as yet undetermined weights of the remaining modes. Note that the value of

b in (2.32) is also undetermined, meaning there is a total of P unknowns. To have

an exactly determined system to solve, P constraints are constructed by exploiting

orthogonality

∫
D

(Lw − b sinh(w)) Φq dx = 0, q = 1, . . . , P. (2.38)

Substituting (2.37) into (2.38) and using (2.26) gives the following system of P

integrals of nonlinear algebraic equations

∫
D

[
ρ0

(
Aβ∗Φ∗ +

P∑
k 6=∗

akβkΦk

)
− b sinh

(
AΦ∗ +

P∑
k 6=∗

akΦk

)]
Φq dx = 0 (2.39)

q = 1, . . . , P,

with P unknowns

{a1, a2, . . . , a∗−1, a∗+1, . . . , aP︸ ︷︷ ︸
P−1

, b}.

The system (2.39) can then be solved using standard nonlinear root finding algo-

rithms (e.g. Matlab’s fsolve function), thus determining the numerical solution

(2.37).

The corresponding energy can be calculated using the Galerkin expansion and
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the substitutions φ = βψ and b = Cβ as

E = − 1

2β2
β∗A

2 − 1

2β2

P∑
k 6=∗

a2
kβk,

and can be used as an internal consistency check.

A solution branch is started at β = β∗ using a small dominant weight A (≈ 0.1)

and remaining weights {ak} = 0. Moving along the branch towards higher energies,

A is increased and the previous {ak} and β are used as initial guesses. It is possible

that the solution can ‘jump’ from one branch to another, which would be indicated

by one of more of the coefficients ak being greater than the dominant coefficient A.

As such this method seems somewhat less constrained to follow a certain solution

branch than the McDonald method (though this is still the most likely result).

The performance of the new method for the 2D Euler system is considered in

terms of the residual (2.33). The maximum residual, max{R(w)}, for three sizes of

Galerkin expansion (P = 400, 800 & 1600) is computed along the first and second

solution branches (i.e originating at (E, β) = (0, β1) and (E, β) = (0, β2)) of the SPE

in a heart-shaped domain defined by (c, q) = (0.5, 0.55) (see section 2.4.3). A grid

consisting of 50 radial and 100 azimuthal points is used in each case. The branch

runs from E ≈ 0 (where the solution is approximately linear i.e. very close to the

dominant vorticity mode Ψ∗) to E = 0.02 (where the equation in strongly nonlinear).

The results are shown in fig. 2.1, with solution contours from the P = 800 branch

at E = 0 and E = 0.01 shown on the right hand side. The method performs well for

2.1(a) the zero boundary condition (TBH09’s type I solution) and 2.1(b) the non-

zero boundary condition (TBH09’s type II solution). Similar behaviour is observed

in both panels: at very low energy the method is effectively projecting exactly onto

the mode Ψ∗ and machine precision can be attained irrespective of the truncation

number P . Moving along the branch towards higher energies the solution is projected

onto more modes and the value of max{R(w)} grows approximately quadratically

for each P . Unsurprisingly, the larger P expansions perform better. Comparing

the solution contours at E = 0 and E = 0.01 in (a) and (b), intensification of the

vorticity into tighter clusters is evident.

A further test of the method will demonstrate the grid size independence of the
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Figure 2.1: (a) Maximum residual of the first solution branch (zero boundary
condition) of the sinh-Poisson equation in the heart-shaped domain defined by
(c, q) = (0.5, 0.55) for E ∈ [0, 0.02], as computed by the Galerkin expansion method.
Three sizes of Galerkin expansion have been used: P = 400 (solid), P = 800 (dashed)
and P = 1600 (dotted). In each case M = 100 azimuthal points and N = 50 radial
points. Solution contours from the P = 800 branch, at E = 0 and E = 0.01 are
shown to the right. (b) As for (a) for the second solution branch (non-zero boundary

condition).
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solutions. To do this the energy is calculated for an increasing number of grid points

while keeping the weight of the dominant mode A and the number of terms in the

Galerkin expansion P fixed, so that the ‘same’ solution is found each time. As

discussed in appendix A.4, using more azimuthal points M than radial points N

offers greatest ‘coverage’ of complicated domains. Consequently the ratio of M to

N will again remain fixed at 2:1, while the total number of points is increased. Figure

2.2 shows the relative error in the energy, scaled by the energy computed from a grid

of M×N = 50× 100, of the first solution branch sinh-Poisson solution in a heart-

shaped domain with (c, q) = (0.5, 0.55). Panel (a) compares the convergence of the

energy error at three different energy values, all computed using P = 400 modes in

the Galerkin expansion. Panel (b) shows the same as (a) using P = 800. From panel

(a) it can be seen that by N ≈ 35 the energy error has plateaued and the solution

is independent of the grid size. Comparing panel (a) to panel (b) it can be seen

that using more than 400 Galerkin modes does not noticeably improve convergence

of this particular error, either in terms of rate of convergence or final precision.

With the nonlinear solver presented in this section, numerical solutions of the ESE

with the corrected boundary condition (i.e. zero and non-zero) can be obtained. In

the next section 2D Euler dynamics are considered and the SPE equation solved in

a new left-right symmetric domain. The predicted equilibrium streamfunction from

the solutions of the SPE will be verified using direct numerical simulations. The low

energy asymptotic theory from appendix B.2 is also verified.

2.4 Equilibrium mean flow in a left-right

symmetric domain

2.4.1 ‘Most-probable’ dynamics

Recall from section 1.4.1 that, for a general N vortex system at fixed energy, the

‘most probable’ equilibrium state corresponds to the maximum entropy state5. By

definition a system not in equilibrium will always move towards a higher entropy

5Note that lower entropy solutions with a maximum local entropy may still be relevant to the
dynamics as meta-stable states.
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Figure 2.2: (a) Convergence of the energy (relative to energy computed with the
highest resolution grid ofM×N = 50×100) with the number of grid points, for the
first solution branch of the sinh-Poisson in ‘heart’-shaped domain (see section 2.4.3)
at E = 0.01 (solid), E = 0.015 (dashed), E = 0.02 (dotted), using P = 400 Galerkin

modes. (b) As for (a) using P = 800 Galerkin modes.
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state. From section 2.2.2 the entropy S of the point vortex system is given by

S = 2βE − ρ0 log
C

ρ0

,

where E is the energy given by the Hamiltonian (1.2), β is the inverse thermodynamic

temperature defined by (1.30), ρ0 is the reciprocal of the domain area and C is the

constant defined in terms of the streamfunciton ψ by

C =

(∫
D
eβψ dx ·

∫
D
e−βψ dx

)−1/2

.

Recall also that in (E, β) space, the ith solution branch of the sinh-Poisson equation

(SPE) emerges at E = 0 and β = βi, where {βi} are the domain inverse temperatures

(DITs). Solution branches may be categorised by the number of extrema of the mean

streamfunction and their relative positions within the domain. The streamfunctions

corresponding to different solution branches tend to have significantly different struc-

tures from each other; see [11].

For an investigation into the maximum entropy solutions it is instructive to plot

solution branches in (E, S) space, where the maximum entropy solution at a given

energy will be immediately apparent. At E = 0 all branches have the same entropy

and no global equilibrium solution exists. As the energy is increased, the maximum

entropy solution is usually characterised by the branch in which the streamfunction

has either one or two nodes i.e. a monopole (a cluster of vortices of one sign sur-

rounded by vortices of the other sign) or a dipole (two well-separated clusters, each

having opposite sign). The other families of solutions (i.e. branches) that are charac-

terised by a more oscillatory streamfunction and a larger number of maxima/minima

generally have lower entropies.

The question is then, at a given nonzero energy to which solution branch does

the maximum entropy solution belong? In PL76 the following claim is made for a

square domain

“It appears that the values of the reciprocal temperature λ [β in the
notation used here] and of the entropy S̃ [S here], corresponding to the
solutions having the same value of the energy, are always in the same
order among the families of solutions. In other words, the solutions cor-
responding to the largest value of the entropy always belongs to the family
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of solutions which is characterized by a single maximum or minimum of
the mean streamfunction at the center of the square domain”.

This can be interpreted as stating that only the ‘first’ branch (i.e. the one origi-

nating from the first DIT, β1) with a single maximum/minimum in its streamfunction

has highest entropy. The implication is that the second (or higher) branch does not

cross the first branch – if this did occur the maximum entropy solution would change

structure and the “order among families of solutions” would be different at different

energies.

PL76 considered two domains: the square and the circle. In the case of the circle

the SPE (2.2.1) must be slightly modified to include the role of angular momentum.

The resultant (non-degenerate) DITs6 for the circle are well separated, and the struc-

ture of the streamfunction is drastically different across different solution branches.

Consequently, the solution branches have significantly different entropies and when

plotted in (E, S) space the maximum entropy branch is very apparent for all energies

greater than zero. On the other hand, in the case of the square, angular momentum

is not conserved and (2.2.1) is valid. The first DIT for the square, clearly distinct

from lower branches, corresponds to a monopole. The next two DITs are very close,

with branch 2 being characterised by a left-right (or equivalently up-down) dipolar

streamfunction structure and branch 3 by a diagonal dipole structure (see their fig.

5). Other branches have a significantly more oscillatory structure. The first branch

always appears to be the maximum entropy solution.

The focus of this chapter is on the (unmodified) SPE (2.2.1) and consequently

the circle cannot be considered. Instead, non-rotationally symmetric domains7 are

chosen in section 2.4.3 specifically such that the first few DITs are in close proximity,

and so the branches have comparable entropies, similar to the situation in the square,

as described above. These new domains belong to a 1-parameter family for which,

crucially, the parameter can be tuned to make the branches cross in (E, S) space8.

6In the circle, DITs can be calculated analytically in terms of zeros of Bessel functions.
7Note that though elliptical domains seem like an obvious choice for this, there is no explicit

conformal map from the interior of a circle to the interior of an ellipse; the Joukowsky map is to
the exterior of an ellipse.

8PL76’s square/rectangle could have been tuned in a similar manner (and in fact was in [111]),
but verification by DNS of point vortices is more difficult in such a domain (compared to those
conformal to the circle, as will be considered in section 2.4.3) as an infinite number of images are
required. See footnote 1 of section 1.2.1.
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A crossing means that for a fixed domain, the maximum entropy solution will be

different at different energies. This type of transition will be classified in the next

section as a particular type of phase transition in the statistical mechanics framework.

It is important to note that the crossing of solution branches of the SPE was con-

sidered in TBH09, where the SPE was considered as a model for the phenomenon

of spin-up in 2D Navier-Stokes turbulence (the spontaneous acquisition of angular

momentum in a bounded flow). As discussed in section 2.2.1, TBH09 observed that

solutions of the SPE with both zero and nonzero boundary conditions are physi-

cally relevant, and they use the angular momentum as a diagnostic to distingish

between the two solutions (which have drastically different structures) in a rectangu-

lar domain. They find that for a rectangle of aspect ratio 1.2, the first two solution

branches of the SPE cross in (E, S) space. No DNS of the finite N vortex system was

presented in TBH09, so one of the goals of sections 2.4.4 and 2.4.5 is to numerically

verify this phenomena for the first time.

A final note is made about the work of Yin et al. [124]. They considered a

doubly periodic domain and focused primarily on comparison between sinh-Poisson

solutions and a Miller-Robert-Sommeria (MRS) sinh-Poisson analogue with various

‘patch’ sizes. They also noted that there can be solutions with different topologies

but very similar values of entropy (though they did not pursue the idea that the

maximum entropy solution can be different at different energies in the same model).

Their predictions were verified with DNS of the 2D Navier-Stokes equations. They

found the predicted equilibrium at a given energy had different topologies depending

on whether the point or patch model was used. In fact different (finite) patch sizes

were also found to give topologically different predictions for the equilibrium. For

initial conditions with nearly flat vorticity patches (plus random noise), the late-time

solutions of the Navier-Stokes DNS came close to the predicted maximum entropy

solution of the MRS sinh-Poisson analogue for a certain patch size, but not the

predicted maximum entropy solution of the point vortex sinh-Poisson equation. Re-

lating the point vortex model (including statistical mechanics predictions such as the

sinh-Poisson equation) to turbulent flows is an active area of research.
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2.4.2 Phase transitions

In order to more formally characterise the potential crossings of the solution

branches of the SPE in a statistical mechanics context, the concept of phase transi-

tions is now reviewed. In general a phase transition is a change in the macroscopic

behaviour (or ‘phase’) of the system as an external parameter is varied. An ‘order

parameter’ can often be defined that represents the main qualitative difference be-

tween phases. In the context of entropy, a phase transition is often related to the

competition between two (or more) different states for the maximum entropy state

of the system.

From a general point of view [14, 57, 73] there are two main types of phase tran-

sitions:

1. First order

Competing macrostates have significantly different properties and the transi-

tion between them is discontinuous. A classical example is the conversion of

liquid water into water vapour where the external parameter is the tempera-

ture. In this example there is no exact order parameter.

2. Second order/higher order

Competing macrostates are not drastically different and the transition between

them is continuous. In fact the two competing macrostates can coalesce at

a critical value. A classical example occurs in the 2D Ising model where the

external parameter is again the temperature and the order parameter is the net

magnetisation, with the transition occurring at temperatures below a critical

‘Curie temperature’.

To further characterise the two types of phase transitions that are observed in the

vortex system some new terminology is introduced. Firstly the term ‘condensate’ will

be used to describe states (at high energies) dominated by a mean flow (i.e. macro

vortices/large clusters in the point vortex model), usually in a monopolar or dipolar

structure. From this two different types of phase transition can be described: The

first type is classically termed ‘Bose condensation’ and is concerned with the onset

of the formation of the condensate as energy is increased in the hydrodynamic limit.
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This can be regarded as a first order, energy-induced phase transition and has been

studied in 2D Navier-Stokes turbulence [29,106,116].

The second type of phase transition (clearly distinct from Bose condensation)

shall be termed a ‘condensate switch’ and is characterised by drastic changes in the

flow topology of a fully-realised condensate e.g. from a monopole to a dipole or an

‘up-down’ dipole to a ‘left-right’ dipole. The transition can be first or second order

and can be induced by a change in the energy, geometry or net circulation (for a

non-neutral system). Condensate switches have been studied in the context of the

vortex system (both using point vortices and MRS theory), though under the more

general term of phase transitions. Three examples will be reviewed next using the

same terminology as used by the respective authors (i.e. ‘phase transition’ rather

than ‘condensate switch’), while sections 2.4.3-2.4.5 are devoted to new results.

The first theoretical study, by CS96 [27], aims to predict phase transitions in the

2D Euler equations. To do this they use MRS theory to calculate the ‘mean field

equilibrium state’, which is analogous to the solutions of the SPE. Their problem is

controlled by a set of eigenvalues, which as noted in section 2.2.1, transpire to be

identical to the DITs used in this thesis. In a number of the cases investigated, the

first mode is in competition with higher modes for the maximum entropy solution.

At fixed energy a geometry-induced phase transition can occur in the flow topology

from a monopolar vorticity distribution to a dipolar one when the aspect ratio of a

rectangular domain increases above a critical value.

Complimentary to [27] is the work by Venaille & Bouchet [117,118]. In this case

the authors consider Fofonoff flows, which are steady states of the one layer unforced,

non-dissipative barotropic quasi-geostrophic system. Using the MRS framework the

authors uncover numerous phase transitions in this system. In a similar manner

to [27], the authors formulate a problem controlled by a set of eigenvalues, from

which the canonical ensemble can be calculated for a range of temperatures and

hence plot classical phase diagrams between energy and circulation (acting as the or-

der parameter). For certain geometries energy-induced phase transitions were found

with two of particular note being a bifurcation from a first order phase transition to

two second order phase transitions and the spontaneous and simultaneous appear-

ance of two second order phase transitions. The effect of different Rossby radii was
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also investigated in terms of area equivalence between ensembles. Interestingly, the

statistical mechanics of Fofonoff flows was also studied in [90] using the methodology

of [27].

The final example is from the point vortex model by Smith and Smith & O’Neil

[107, 108], where a single-signed system bounded by a cylinder is considered in the

hydrodynamic limit. At sufficiently high energies all the vortices congregate into

a single cluster away from the centre of the domain and the rotational symmetry

is spontaneously broken so that a net displacement of the system accounts for a

significant fraction of the angular momentum. The transition between axisymmetric

and displaced equilibria is continuous and hence resembles a second order phase

transition. It is important to note that the cylinder is a special case in point vortex

dynamics because of the additional invariant of angular momentum; see section 1.2.2.

Further, this phase transition found in [107, 108] is unique to the circular domain –

the phase transitions found in the next section are not unique to a particular domain

and as such can be argued to be more fundamental.

From this section, it should be evident that the crossings of the solution branches

of the SPE that result in a change in structure of maximum entropy state of the

system can be formally regarded as an energy-induced condensation switch, com-

plimentary to the other examples of phase transitions in the vortex system given

above.

2.4.3 The ‘heart’-shaped domain

A convenient domain in which to look for crossings of the solution branches of

the SPE is the so-called ‘heart’-shaped domain, introduced for the first time in this

thesis. The domain is defined by the conformal map from the unit circle

z = F (Z) =
a(c, q)Z

(1− q2Z)(1− icZ)
, (2.40)
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for real constants9 a, q and c. The area of the domain defined by (2.40), which will

remain fixed at π, is given by

1

2i

∮
|Z|=1

z̄dz = πa2 1 + c4(2c2 − 1)q8 + 4c2q2(1− c2)(q4 − 1) + (1− c2)2q4

(q4 − 1)2(q2c2 + 1)2(c2 − 1)2
.

Details of the modifications of the DIT eigenvalue problem/SPE in a conformal

domain such as the heart are given appendix A.3.1. Modifications of the Hamiltonian

(1.2) (that will be used in section 2.4.5) in such domains are given appendix A.2.1.

Note that the inverse of the map (2.40) is found by solving the following cubic in

Z

(icq2z)Z3 − (q2z)Z2 − (icz − a)Z + (z)Z = 0. (2.41)

For a given z (2.41) is solved numerically using Matlab’s roots function, with the

third root mapping the interior of the unit circle to the interior of the heart.

A convenient one-parameter family of domains may be defined by c for fixed q

(and with a = a(c, q)). The first four vorticity modes for the domains defined by

(c, q) = (0.5, 0.55), (0.55, 0.55) and (0.65, 0.55) are shown in fig. 2.3.

In all three domains shown in fig. 2.3 the first three DITs are clustered in the

range from −44 to −54 and all the corresponding vorticity modes are characterised

by a high entropy monopole or dipole structure. Altering the parameter c between 0.5

and 0.65 causes a reordering of the first three vorticity modes. For example, the ‘left-

right’ dipole mode is Φ1 for c = 0.5, Φ2 for c = 0.55 and Φ3 for c = 0.65. Assuming

no crossings, the maximum entropy solution will be along the branch originating

from the first DIT in all three domains. Therefore, varying c from 0.5 to 0.55 causes

a change in the structure of this first mode/branch from dipolar to monopolar. This

change in structure can be regarded as a geometry-induced condensate switch similar

to that mentioned in section 2.4.2 for an MRS system [27].

In all three domains the fourth DIT is well separated from the first three and

corresponding fourth vorticity modes are all characterised by a quadrupole structure

which has a lower entropy.

9Note that when c = 0 the map (2.40) is identical to the Neumann oval map used in chapters 3
and 4, and when q = c = 0 the map is simply to a circle of radius a.
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β 2 = −46.0922

β 3 = −51.0648

β 4 = −81.1146
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β 2 = −47.1369

β 3 = −50.8913

β 4 = −79.677

(c, q ) = (0.65, 0.55)

Figure 2.3: The first four vorticity modes for heart domains defined by (c, q) =
(0.5, 0.5) (left-hand column), (c, q) = (0.5, 0.55) (centre column) and (c, q) =

(0.5, 0.65) (right-hand column).
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Due to the close proximity of the first three DITs/similar structure of these

vorticity modes, the heart domain is a good candidate for investigating potential

crossings of the SPE solution branches in (E, S) space and hence an energy-induced

condensate switch.

2.4.4 Solutions of the sinh-Poisson equation

To identify the specific heart domain we will use to investigate crossings of

the SPE, first consider the domains defined by (c, q) = (0.45, 0.55) and (c, q) =

(0.55, 0.55). The first two solution branches of the sinh-Poisson equation in these

domains are shown in (E, β) space in figure 2.4, as computed using the nonlin-

ear solver introduced in section 2.3.2, using P = 800 Galerkin modes and a grid

of N × M = 50 × 100. Also shown in the figure are the corresponding vortic-

ity modes that characterise each solution along the whole branch (i.e. the mode

that was used as the dominant mode in the nonlinear solver in 2.3.2). Note that

for (c, q) = (0.45, 0.55) the first solution branch (i.e. the one originating from β1)

has a dipole structure while for (c, q) = (0.55, 0.55) the first solution branch has

a monopole structure. These solution branches are also plotted in (E, S) space in

figure 2.5, following the approach of TBH09, [124] and others in assuming that the

entire entropy of the system is in the maximum entropy solution. From figure 2.5,

and for this range of energies, it is clear that the solution branches do not cross

(E, S) space, and hence the first branch (i.e. the one originating from β1) is always

the maximum entropy solution.

From the above, we know that (over the range of energies shown) the maximum

entropy solution branch for the (c, q) = (0.45, 0.55) domain is always characterised

by a dipole and for (c, q) = (0.55, 0.55) the maximum entropy branch is always

characterised by a monopole. Evidently, at some value c ∈ (0.45, 0.55) the dipole and

monopole solution branches must switch order and a crossing of the two branches

is a possibility. To investigate this, the domain defined by (c, q) = (0.51, 0.55) is

considered. Note that a number of other suitable heart domains were found that

were defined by similar values for (c, q), though the interesting behaviour occurred

at energies that were not readily accessible to DNS of the vortex system (as will be
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Figure 2.4: (Top) The first two solution branches, β1−2, in (E, β) space of the
sinh-Poisson equation for the (c, q) = (0.45, 0.55) domain. The vorticity mode char-
acterising each branch is indicated with an arrow. (Bottom) As for (a) for the

(c, q) = (0.55, 0.55) domain.
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Figure 2.5: (Top) The first two solution branches in (E, S) space of the sinh-
Poisson equation for the (c, q) = (0.45, 0.55) heart domain. (Bottom) As top for the

(c, q) = (0.55, 0.55) heart domain.
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performed later in section 2.4.5). There are doubtless other domains with drastically

different geometries which could also be considered.

The first three solution branches (solid) of the sinh-Poisson equation in the heart

domain defined by (c, q) = (0.55, 0.51) are shown in (E, β) space in fig. 2.6, computed

as above. For each solution branch the corresponding small E tangent approxima-

tions (dashed) derived in appendix B.2 are also shown and compare well to the

numerical results. The values of the constants used to compute the approximation

(B.9) were numerically determined (see appendix A) to be D1 = 2.296, D2 = 2.529

and D3 = 2.374 (correct to 4 sig. fig.). Figure 2.7 shows the same solution branches

in (E, S) space.

In contrast to figure 2.5, from figure 2.7(a-d) it is clear that the branches of the

first and second vorticity mode do cross in (E, S) space, at Ec ≈ 0.0132. Hence

for E < Ec the maximum entropy solution corresponds to the first vorticity mode,

whereas for E > Ec the maximum entropy solution corresponds to the second vor-

ticity mode. In other words, in this domain an energy-induced condensate switch

occurs, with E = Ec being the ‘double point’ where the two competing maximum

entropy states coexist.

It should also be stated that the entropy differences are very small throughout the

energy range shown. In fact, the above analysis of merely comparing the entropies

of two solutions to determine which is the maximum entropy solution lacks rigour:

we could study the thermodynamic stability by computing d2S
dE2 and testing whether

solutions are fully stable (global maximum entropy solutions), meta-stable (local

maximum entropy solutions) or even unstable (saddle points).

For the purposes of this thesis, comparing entropies is deemed sufficient, though it

would not be surprising if occasionally the second highest entropy solution is found

for long time periods, as this could well be a meta-stable state. In fact, in [89]

it was shown that the vortex system can even remain in unstable states for long

periods, as the system does not spontaneously generate perturbations which would

destabilise the state (after sufficiently long times the authors observed the system

eventually relaxing to the stable state). Interestingly, CS96 state that secondary

solutions branches of their SPE equivalent are are unstable in the linearised limit.

Perhaps they become meta-stable (and even stable) for higher energies?
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Figure 2.6: The first three solution branches, β1−3, in (E, β) space of the sinh-
Poisson equation (solid lines) for the (c, q) = (0.51, 0.55) heart domain, along with
small energy tangent approximations (dashed lines). The vorticity mode character-
ising each branch is indicated with an arrow. The energy at which the branches β1

and β2 cross is marked with a filled diamond. Also shown is the energy at which the
entropy branches β1 and β2 of fig. 2.7 cross (filled circle).
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It is also worth noting that the energy at which the branches cross in (E, β) space

differs from the energy at which they cross in (E, S) space. This implies there is a

vertical ‘jump’ in β at constant E from branch 1 to branch 2 in (E, β) space when

the solutions cross in (E, S) space . This is unphysical and could be a property of the

assumption that all the entropy of the system is in the maximum entropy solution

to due to the existence of meta-stable states. The validity of this assumption is

discussed in section 2.5.

The predictions for the equilibrium streamfunction based on the solutions of the

SPE in this section will be tested against direct numerical simulations of the vortex

system in the same domain in the next section.

2.4.5 Verification by direct numerical simulation

The statistical mechanics predictions based on the solutions of the SPE in the

heart domain presented in section 2.4.4 may be tested against DNS of the finite N

vortex system in the same domain. A similar verification was done by PL76 for

the cylinder, using the N = 40 vortex system. For a high energy initial condition

with zero angular momentum, PL76 observed that vortices rapidly cluster into a

dipolar configuration which is the predicted maximum entropy SPE solution. For

a high energy initial condition with nonzero angular momentum their results are

slightly less clear, though the dipolar solution does still appear to emerge, and it is

likely would be fully realised with a longer run (which the authors were unable to

perform without the system becoming dissipative). In a more modern study [123]

using N ≈ 7000 vortices (also in the cylinder), the high energy initial condition again

finds the dipolar solution, though surprisingly the SPE was not explicitly mentioned.

From the above, it is reasonable to conclude that the solutions of the SPE cor-

respond well with DNS of the N vortex system. The cylinder is a particularly good

system with which to compare DNS with SPE solutions since, as noted in section

2.4.1, for all energies high enough for the mean flow to dominate, the SPE maximum

entropy solution is always the first branch/dipolar streamfunction. As detailed in the

previous section, for the (c, q) = (0.51, 0.55) heart domain the predicted maximum

entropy SPE solution is different at different energies and so the goal of this section
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is to test whether these solutions can still be found with DNS.

The details of the general image model used in the DNS are given in section 1.2.1

and of the modified version of the Hamiltonian (1.2) and Hamilton’s equations (1.1)

for a domain such as the heart are given in appendix A.2.1. From a given initial

vortex configuration, prior to equilibrium there will be a ‘turbulent spin-up’ period

where small clusters of like-signed vortices coalesce and no obvious maximum entropy

solution is apparent. It is likely that the nonzero angular momentum results of PL76

mentioned at the start of this section were yet to reach the end of this spin-up period.

Using the heart domain defined by (c, q) = (0.51, 0.55) (see figure 2.6), dynamical

runs at five different energies are performed: E = 0.006 � Ec, E = 0.0095 < Ec,

E = 0.0132 = Ec, E = 0.0165 > Ec and E = 0.02 � Ec. The two extreme

energy runs (E = 0.006, 0.02) are expected to correspond with high probability to a

maximum entropy solution of the SPE characterised by mode 1 (dipole) and mode 2

(monopole) respectively. The situation for energies closer, and equal to Ec is likely

to be harder to predict.

Accessing the initial conditions for the high energy runs mentioned above is not

feasible using standard Monte Carlo uniform sampling i.e. choosing high energy

configurations from a sample of randomly distributed vortex positions. The mul-

ticanonical Markov chain Monte Carlo (MCMCMC) sampling technique described

in section 1.3.3 could be used, however it is possible that the initial configurations

found using this method would strongly resemble a specific vorticity mode/SPE so-

lution, and thus a dynamical run from such an initial condition could be biased to

remain ‘stuck’ in that mode and not necessarily find the maximum entropy solution

as expected (or take an impractically long time to do so).

Instead, initial conditions for the N = 100 system are generated as follows (see

figure 2.8). First, ten cluster centres (filled diamonds) are generated inside D at

random using the uniform distribution; see figure 1.1 in section 1.3.3. Around each

cluster centre, ten like-signed vortices are randomly distributed within a radius rc

(dashed circles). The vortices in the first five clusters are all given positive circulation

Γi = 1/N (black plus symbols) and the vortices in the remaining five clusters negative

circulation Γi = −1/N (grey circles). The final energy of the configuration can then

be approximately controlled by varying the cluster radius rc.
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High ELow E

Figure 2.8: Illustration of the technique used to generate less biased, low and high
energy initial conditions in the heart domain. Filled diamonds indicate uniformly
distributed cluster centres and are the same in both panels. Around each cluster
centre vortices are randomly distributed within a cluster radius rc (dashed circles).
The energy is controlled by varying rc from low E on the left panel to high E on
right panel. Black plus symbols represent positive vortices and grey circles negative

vortices.

For the numerical experiments in this section ten different cluster centre distribu-

tions are generated and indexed with subscripts I−X. For each cluster centre distri-

bution five initial conditions are found at E = {0.006, 0.0095, 0.0132, 0.0165, 0.02}

and indexed a-e respectively (a total of 50 initial conditions/runs). Hence, for ex-

ample, aI and bI will have the have the same cluster centres and energies E = 0.006

and E = 0.0095 respectively.

It is possible that a given centroid distribution could be strongly biased towards

a certain equilibrium solution, and so that equilibrium would be found for any en-

ergy a − e. The method described above helps to minimise this bias: consider the

dynamical runs aI and eI i.e. same cluster centres and E = 0.006 & E = 0.02 re-

spectively. Both these runs have qualitatively the same initial distribution (as same

cluster centres), so if aI found a different equilibrium to eI it can only be due to

the difference in energy – if there was a bias aI and eI would both find the same

equilibrium.

The 50 initial conditions {aI−X , bI−X , cI−X , dI−X , eI−X} are integrated using the

time stepping scheme described in section 1.2.3 for t = 2000N , ∆t = 0.1N and

δ = 10−8. Energy was conserved to at least 6 sig. figs. over the course of each run.
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At this point it is worthwhile to perform some analysis of the length of the spin-up

period. Since the high energy runs start in very tight clusters (see right-hand panel

of figure 2.8), the spin-up can be deemed to be over when the initial clusters have

fully broken up and reformed into new, larger-scale clusters (lower energy clusters

break up very rapidly). A useful diagnostic is R, the mean distance between the

ten vortices that make up each individual cluster, as tracked for the length of the

integration. The results for high energy run eI are shown in figure 2.9. From the

figure (and other runs not shown) it can be seen that by t = 500N , the value of R

for all ten clusters has increased to close to the scale of the domain implying the

clusters have fully broken up. Hence averages will be taken after t = 500N .

One must be careful of simply taking averages from the end of spin-up to the end

of the run as one feature of this system is the possible reversal or ‘flip’ of vorticity

in an equilibrium state; see chapter 5. Note that such an event was only observed in

dipolar solutions. If this does occur, averages will be taken before the reversal and

after the reversal with the sign of the vorticity changed, therefore giving an average

that describes only the a single equilibrium state and not the oscillation event. In

practice, the energies chosen for the DNS here were sufficiently high that after the

spin-up period the system remained in the same state for the rest of the integration,

and no reversal of vorticity occured. Note also that the sign of the vorticity was

changed in runs aII , aV and eIII to give consistency with the other runs.

To compare the DNS with the equilibrium streamfunction of the SPE ψ, the

streamfunction ψN of the N vortex system is required. This is computed using the

complex notation of appendix A and the grid of appendix A.4 as follows. The N

vortex positions in the unit circle C at time t are given by Zi(t) ∈ C, i = 1, . . . , N

and a grid, ZC ∈ C (found by mapping their actual positions in the heart domain),

is generated that encloses the whole circle – this is the same grid that was used in

the SPE solutions in section 2.4.4 of N ×M = 50× 100. The time-dependent, finite

N streamfunction is then given on ZC by

ψN(ZC, t) =
N∑
i=1

ΓiG(Zi(t), ZC) (2.42)

where G(·, ·) is (A.5) – the domain Green’s function in the circle, which for the 2D
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vorticity (right-hand column) of run eI (E = 0.02). The vertical dashed line at
t = 500N denotes the arbitrary end of the ‘spin up’ period when all the clusters are

deemed to have broken up.



Chapter 2. Statistical mechanics of point vortices in the hydrodynamic limit 89

Euler system is invariant when conformally mapped. Equation (2.42) is then mapped

back to the heart by (2.40) and time averages of ψN taken after the spin up period to

compute the mean ψN . Note that G is singular when Zi(t) = ZC (since G is defined

by logarithms), but in reality the vortex positions Zi will never exactly coincide with

the grid points ZC, and so the singularities will be avoided.

With the details given above, we can now begin the analysis of the runs. In

the first instance we consider the sets of runs at the two extreme energies where

the predictions of the SPE are likely to be best. Figure 2.10 shows the results for

the runs aI−V i.e. at E = 0.006 � Ec (contours intervals 1.06 × 10−5) and figure

2.11 for runs eI−V i.e. at E = 0.02 � Ec (contour intervals 1.25 × 10−5). On the

left-hand column of both figures the initial vortex configurations are shown with the

corresponding time-averaged streamfunction (2.42) shown in the centre column. On

the right of both figures is shown the equilibrium streamfunction as predicted by

the solution of the SPE at the appropriate energy i.e. E = 0.006 for fig. 2.10 and

E = 0.02 for fig. 2.11. Snapshots of the vortex positions from runs aI and eI are

shown in figure 2.12. Recall that corresponding run indices I-V in all figures have

initial vortex configurations generated by the same cluster centre distributions.

Remarkably good agreement with the SPE maximum entropy predictions from

fig 2.6 are observed in nine out of the ten dynamical runs: E � Ec aI−III,V all

find the dipolar solution and E � Ec eI−V all find the monopolar solution i.e. an

energy-induced condensate switch has occurred between E � Ec and E � Ec. For

run aIV the monopolar solution corresponding to β2 has been found over this time

interval. Based on the other runs this could be a temporary or ‘meta-stable’ state

and eventually the dipolar state, predicted by maximum entropy, may be found. Due

to the small difference in entropies between the β1 branch and the β2 branch (see

2.7), such an event should not be unexpected.

An important point to note from figure 2.12 is that at a given instant, the vortex

positions for the ‘monopole’ solution do not actually look like a monopole as seen

in figure 2.11 – instead the system is characterised by two large opposite-signed

clusters, with one remaining approximately in the middle of the domain, while the

other orbits around it. Only when a long-time average of the streamfunction is taken

is the monopole structure apparent. This is not the case for the dipolar solution,
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where at a given instant the vortex positions clearly resemble the dipolar structure.

Before proceeding with the analysis of the other runs with E closer to Ec, two

simple diagnostics are defined to allow a more formal classification of a dynamical run

(or part of one) as dipolar or monopolar. Due to the very clear structures from the

low energy runs in figure 2.10 and the high energy runs in figure 2.11, these will be

used as benchmarks. It should be noted that observations of the mean streamfuction

were used extensively in validating these diagnostics.

The following two diagnostics will be used for the distinguishing between a dipolar

and monopolar structure of the mean streamfunction ψN :

1. The first diagnostic is the x coordinate of the centre of vorticity and is defined

by

X =
N∑
i=1

Γixi,

and is expected to have larger values for solutions with left-right symmetry,

such as the dipole. Note that X is effectively a non-conserved linear impulse

in the x direction, similar to that introduced in 1.2.2.

2. The second diagnostic is the angular momentum10,

L =
1

2π

N∑
i=1

Γi
(
x2
i + (yi − ȳ)2

)
,

where ȳ is the y coordinate of the centroid of the domain given by the integral

ȳ =
1

π

∫
D
y dx,

which is evaluated using the methods in appendix A.4. Note that by symmetry,

the x coordinate of the centroid is 0. Values of L are expected to be larger for

solutions with approximate rotational symmetry, such as the monopole.

The time series of X is shown for runs aI (E = 0.006) and eI (E = 0.02) in

figure 2.13, and the absolute means for the runs aI−V and eI−V from figures 2.10-

10TBH09 effectively use angular momentum in the same way to distinguish between different
types of solutions.
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Figure 2.10: Initial N = 100 vortex configuration (left column) with correspond-
ing time-averaged finite N streamfunction ψN (centre column), for five runs all at
E = 0.006, in the heart domain defined by (c, q) = (0.51, 0.55). The larger right-hand
contour shows the maximum entropy equilibrium streamfunction ψ as predicted by
the sinh-Poisson solution at E = 0.006. In all cases black indicates positive circula-

tion and grey negative circulation.
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Figure 2.11: As for fig. 2.10, but for runs at E = 0.02. Note that runs I−V have
the same initial cluster centres as the corresponding runs I−V in fig. 2.10, though

the cluster radius is significantly smaller here to attain the higher energy.
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Figure 2.12: Snapshots of the N vortex positions at the times indicated of (top
row) low energy Run aI from fig. 2.10 and (bottom row) high energy Run eI from
fig. 2.11. In both cases vortices with positive circulation are denoted by black plus

symbols and vortices with negative circulation by grey circles.

2.11 are shown in table 2.1. Considering figure 2.13, it is clear that X is persistently

nonzero for a dipole11, while for the monopole X oscillates frequently. In terms of

the results in table 2.1, this phenomenon is characterised by the dipole runs aI−III,V

having |X̄| ≈ 2× 10−1 compared to |X̄| < O(10−1) for monopole runs (including the

anomalous Run aIV at E = 0.006).

|X̄| × 10−1 a− (E = 0.006) e− (E = 0.02)

Run I 2.402 0.7887
Run II 2.265 0.2279
Run III 2.112 0.06829
Run IV 0.5899 0.3814
Run V 1.881 0.7050

Table 2.1: Mean (to 4 sig. figs) of the absolute time averaged angular momentum L̄
from the low energy runs shown in fig. 2.10 and high energy runs shown in fig. 2.11.

The time series of L is shown for runs aI (E = 0.006) and eI (E = 0.02) in figure

11This phenomenon will be further investigated for a different domain in chapter 5.
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Figure 2.13: (Left) Times series of the centre of vorticity diagnostic X for run aI
(E = 0.006). (Right) As for left for run eI (E = 0.02).

2.14, and the absolute means for the runs aI−V and eI−V from figure 2.10-2.11 are

shown in table 2.2. From figure 2.14 it is difficult to discern how the dipole and

monopole runs are different in terms of angular momentum. The results in table

2.2 shed more light on the matter, though the conclusions are weaker than those for

the X diagnostic above. Considering all the dipole runs i.e. aI−III,V it can be seen

that |L̄| = O(5 × 10−3). However, though some monopole runs (aIV , eI,II,IV ) have

significantly larger |L̄| at O(2× 10−2), the two monopolar runs eIII,V have |L̄| at the

same order as the dipolar runs.
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Figure 2.14: (Left) Times series of the angular momentum diagnostic L for run aI
(E = 0.006). (Right) As for left for run eI (E = 0.02).
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|L̄| × 10−2 a− (E = 0.006) e− (E = 0.02)

Run I 0.4627 1.177
Run II 0.2829 1.528
Run III 0.6401 0.6365
Run IV 1.845 1.784
Run V 0.4387 0.8201

Table 2.2: Means (to 4 sig. figs) of the absolute time averaged angular momentum
L̄ from the low energy runs shown in fig. 2.10 and high energy runs shown in fig.

2.11.

To further examine the two diagnostics, the runs aI−V (black dots) and eI−V

(grey plus symbols) are plotted in (|X̄|, |L̄|) space in figure 2.15, with dipolar and

monopolar solutions grouped according to observations from figures 2.10-2.11. The

dipolar runs are clearly characterised by large |X̄| and small |L̄|, while the monopolar

runs are only be characterised by small |X̄| and have a much wider range of |L̄|.

Consequently, a suitable classification of a solution as dipolar or monopolar is the

following:

• Dipole: |X̄| > 0.2 and |L̄| < 0.01

• Monopole: |X̄| < 0.1

The above analysis, though somewhat heuristic, gives a more formal framework to

efficiently analyse all 50 runs. As mentioned earlier, in every case, the contour plot

of the mean streamfunction (like those shown in figures 2.10 and 2.11) was used to

validate the diagnostics.

Clearly there is a possibility of a run not falling into either the classification of a

dipole or a monopole e.g. |X̄| > 0.2 and |L̄| � 0.01. In practice this did not occur

in any of the 50 runs performed, and after a long enough integration a clear dipole

or monopole was always found.

With the diagnostics above, we can now proceed with analysing the other runs

with E closer to Ec. From figures 2.10 and 2.11, we can conclude that the predictions

of the SPE are generally accurate for energies significantly far away from the critical

energy Ec. How does this change when E = Ec? Is a fixed proportion of runs

attracted to one state or the other, remaining in that state for the rest of time? For

example does the system find the dipolar state 50% of the time and the monopolar
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Figure 2.15: Plot showing the positions of runs aI−V (black dots) and eI−V (grey
plus symbols) in the diagnostic space (|X̄|, |L̄|). The runs are visually ‘classified’ as
dipolar or monopolar based on mean streamfunctions shown in figures 2.10 and 2.11.

state the other 50% time? Or is a ‘mixed mode’ found where, for a given run, the

system oscillates between the dipolar state and the monopolar state, spending long

times in each? In other words both the states are metastable and random oscillations

between dipoles and monopoles are due to a small entropy barrier. Further, how does

the behaviour change for energies between Ec and the extreme energies shown in figs.

2.10-2.11?

To answer these questions the total number of dipolar and monopolar runs from

all 50 simulations (10 each at E = {0.006, 0.0095, 0.0132, 0.0165, 0.02}) are dis-

played in a stacked bar chart in figure 2.16 using the classification |X̄| > 0.2 &

|L̄| < 0.01 ⇒ dipole, |X̄| < 0.1 ⇒ monopole, that was developed for runs aI−V and

eI−V . To further elucidate theses results, table 2.3 shows the breakdown of all the

runs – recall that for each run index I-X, the positions of the cluster centres used for

the initial conditions are the same. Consequently for a given row in table 2.3, all the

initial conditions are qualitatively the same.

From figure 2.16 there is a clear trend: increasing the energy leads to an increasing
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Figure 2.16: Stacked bar chart showing which equilibrium solution was found using
the centre of vorticity diagnostic (|X̄| > 0.2 & |L̄| < 0.01 ⇒ dipole, |X̄| < 0.1 ⇒
monopole) for an ensemble of dynamical runs, each of length t = 1500N (after a

spin-up period of t = 500N), at different energies.

probability of monopole/decreasing probability of dipole, in accordance with the

predictions of the SPE as shown in figure 2.7. At E = Ec the probability of a

monopole or dipole seems to be equal for a given run, then moving to lower energies

the probability of a dipolar run increases/monopolar run decreases, and moving to

higher energies, the probability of a dipole decreases/monopole increases.

Table 2.3 gives an idea as to how important the cluster centre configuration is

in determining whether dipole or monopole solution found in a DNS. Though some

runs (e.g. I, III and VI) appear to be moderately bias towards the simulation finding

a dipole or monopole, overall the initial condition, as controlled by the cluster centre

configuration, does not appear to play a significant role in the which equilibrium

state is found.
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E = 0.006 E = 0.0095 E = 0.0132 E = 0.0165 E = 0.02

Run I D D D D D

Run II D D D D D

Run III D D D D D

Run IV D D D D D

Run V D D D D D

Run VI D D D D D

Run VII D D D D D

Run VIII D D D D D

Run IX D D D D D

Run X D D D D D

Table 2.3: Breakdown of all 50 DNS. As in figure 2.16, grey boxes indicate the time-
averaged streamfunction is a dipole and black boxes indicate a monopole. Across a
given row, all the cluster centers and hence the initial conditions used in the DNS

are qualitatively the same.

The above analysis, though indicating a clear trend, is somewhat coarse in that

a lot of interesting dynamics are simply averaged out. In particular, it is noted that

from animations of the all runs it is observed that the system does occasionally switch

form one state to the other (i.e. dipole → monopole or vice versa), spending a short

time in the new state, before switching back to the original state, where it remains for

longer times. This suggests the existence of the meta-stable states mentioned earlier

and it is postulated that closer to E = Ec the entropy barrier is smaller meaning

the meta-stable states are found more regularly. This is difficult to verify from the

relatively small ensemble of dynamical runs presented in this section, though a more

detailed stability analysis of the SPE solution branches in section 2.4.4 would shed

more light on the matter.

2.5 Conclusion

This chapter has focussed on the sinh-Poisson equation (or more generally the

elliptic-sinh equation), as a model for equilibrium statistical mechanics of the point

vortex system in the hydrodynamic limit, where the system is dominated by the mean

flow (i.e. condensate). Two classical derivations of the the sinh-Poisson equation were

reviewed in section 2.2 and numerical techniques discussed in section 2.3.

The new results were presented section 2.4, where the type of phase transition
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first identified in TBH09 was observed in a new domain and verified numerically using

DNS of the point vortex system for the first time. These results are summarised by

the following points:

1. Solutions of the nonlinear sinh-Poisson equation indicate that an energy-induced

condensate switch (i.e. first order phase transition), where the maximum en-

tropy solution changes from a dipolar condensate structure to a monopolar one,

occurs in a heart domain defined by (c, q) = (0.51, 0.55), with the two structures

having equal entropy at Ec ≈ 0.0132. Note that this condensate switch is not

unique to the domain defined by these parameters, and similar energy-induced

switches occur in other heart domains defined by similar parameters.

2. The predictions of the sinh-Poisson equation mentioned in 1. were verified by a

time-averaged, finite-N streamfunction computed from DNS with N = 100 vor-

tices, with convincing results: far from Ec the dipolar or monopolar structure

is found the vast majority of the time as predicted by the maximum entropy

solution of the sinh-Poisson equation. Moving closer the Ec the two competing

solution structures have increasingly similar entropies and the second maxi-

mum entropy solution is found more frequently. At Ec both solutions have

the same entropy, and are found with equal probability over a sample of ten

dynamical runs.

Of particular interest, the predictions of the equilibrium streamfunction based on the

sinh-Poisson equation are remarkably accurate when compared to DNS of a relatively

low N dynamical system.

One important point that is not addressed in this chapter is related to the entropy

of the solutions of the sinh-Poisson equation. As in previous studies such as TBH09

and Yin et al. [124], in this chapter it was assumed that the entire entropy of the

system is solely in the maximum entropy solution. This is not strictly true, as lower

entropy solutions are relevant as meta-stable states. This means that the entropy of

the whole system is in fact given by a sum of the entropies of all the states, with

the maximum entropy solution having the greatest weighting. In most domains the

maximum entropy solution is significantly higher than the lower entropy solutions and

so the lower entropy solutions can be ignored. However, in the heart domain defined
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by (c, q) = (0.51, 0.55) the entropies of the first two maximum entropy solutions are

very close (or the same) and as such both their contributions should be considered

(and possibly the contribution of other relevant lower entropy solutions as well). The

partitioning of the entropy between the different solutions in a domain such as the

heart awaits a future study.

As mentioned in section 2.4.4, a more rigourous study into the stability properties

of the solutions of the SPE (e.g. computing d2S
dE2 ) would allow stronger conclusions

to be made.

There are also a number of other possible avenues for future research. For ex-

ample, as stated in section 2.4.2, the phase transition found in this chapter can be

regarded as more fundamental that that found by in [107, 108] which relies on re-

lies on conservation of angular momentum. Indeed, the heart domain defined by

(c, q) = (0.51, 0.55) is not the only heart domain that exhibits a condensate switch,

and it is entirely likely that other, completely different, domains have similar be-

haviour. It would be straightforward to solve the SPE and run DNS of the vortex

system in different conformal domains, and hence carry out a systematic classification

of condensate switches in a variety of domains.

Finally, although the ESE corresponding to QGSW vortices was derived in sec-

tion 2.2.2, it is not solved in this thesis. It is straightforward to use the algorithm

described in section 2.3.2 to find the solution branches of ESE. The verification using

large N DNS in section 2.4.5 could also be carried out for the QGSW system using

the VOR-MFS algorithm that will be introduced in chapter 3. However, significant

speed improvements would be required to the VOR-MFS as evaluating the Bessel

function that governs the QGSW dynamics is typically one to two orders of mag-

nitude slower than evaluating the logarithm that governs the 2D Euler dynamics.

Further, a QGSW vortex travels slower that a 2D Euler vortex due to the QGSW

vortex having a shorter range of interaction, as controlled by the Rossby radius λ−1.

Consequently, dynamical runs significantly longer than the t = 2000N runs used in

this chapter would be required to achieve equilibrium for the QGSW system. As-

suming speed improvements could be made, it would be interesting to see how the

condensate switch differs with the QGSW system, compared to the 2D Euler system

considered in this chapter. Does the switch still occur in the heart domain defined by
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(c, q) = (0.51, 0.55) and what influence does the new free control parameter λ have?



Chapter 3

Generalised point vortex dynamics

on arbitrary domains using the

method of fundamental solutions

3.1 Introduction

As stated in section 1.2.1, a number of theoretical results (method of images,

conformal mapping) allow the construction of the N vortex Hamiltonian (1.2) in a

wide variety of domains for 2D Euler vortices i.e.

L ≡ ∇2, G0(x,x′) =
1

2π
log(|x− x′|).

For systems governed by operators other than the Laplacian, however, the method

of images is typically restricted to domains with straight boundaries, and operator

invariant conformal mapping is not possible. Consequently, the aim of this chapter is

to formulate a new algorithm that constructs a numerical approximation to (1.2) for

a general linear operator L. A requirement for the rest of this chapter (and chapter

4) is that an explicit expression (or means of numerical evaluation) is available for

the free space Green’s function G0(x,x′) corresponding to L. In the case of the 2D

Euler system the new algorithm has the advantage of allowing solutions in domains

for which an explicit conformal map is not known.

The new algorithm (VOR-MFS hereafter) is designed to solve the generalized
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point vortex problems detailed in section 1.2.1 by exploiting the method of funda-

mental solutions (MFS hereafter), see [50, 55] for detailed overviews. The idea of

the MFS is to approximate the dynamical influence of the domain boundary at each

vortex location using a linear combination of free-space (G0) Green’s function solu-

tions (the fundamental solutions). The locations of the singularities associated with

the fundamental solutions lie outside D on a set of points known as the MFS charge

points, and the weights attached to each charge are chosen to satisfy the Dirichlet

boundary condition (1.3b) on a discrete set of boundary points on ∂D. The method

is particularly simple to implement and has excellent convergence properties that will

be discussed below. Apart from the recent work of Wu et al. [122], who apply MFS

to the relatively straightforward problem of the motion of a single 2D Euler vortex

outside an elliptical cylinder, to the authour’s knowledge VOR-MFS represents the

first attempt to exploit the MFS in this context.

This chapter is based on the publication by Ashbee, Esler & McDonald [4] and

is structured as follows: Section 3.2 introduces the new algorithm VOR-MFS and

reviews the relevant aspects of the MFS method. A protocol for choosing numerical

parameters to obtain numerical solutions to a pre-determined accuracy is described.

Section 3.3 describes a number of test-cases demonstrating the robustness of the

new algorithm. Finally, in section 3.4 conclusions are presented along with possible

directions for future research.

3.2 The VOR-MFS algorithm

3.2.1 Use of the method of fundamental solutions

A standard problem for which the MFS has been designed is the boundary value

problem

Lφ(x) = 0 x ∈ D, (3.1a)

φ(x) = b(x) x ∈ ∂D, (3.1b)

where b(x) is specified on the domain boundary ∂D.
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The MFS exploits the fact that the free-space Green’s function G0(x,x′) (see

equation (1.5) in section 1.2.1) satisfies LG0(x,x′) = 0 everywhere in D, provided

that x′ lies outside D. The key idea of the MFS is simply to approximate φ(x) using

a linear combination φM(x) of M free-space Green’s functions, centered on a fixed

set of points {y1, . . . ,yM} located outside D, known as the MFS charge points. In

summary,

φM(x) =
M∑
k=1

αkG0(x,yk), x ∈ D, yk /∈ D, (3.2)

where the {αk} are a set of weights. The weights are determined by enforcing the

boundary condition (3.1b) on a discrete set of points {xBj } located on ∂D. (For

the purposes of the discussion here, and for the VOR-MFS algorithm, it will be

assumed that there are M such boundary points. In some circumstances it has been

shown [109] that the use of a number greater than M can be advantageous.) The

result is a M -dimensional linear system in the {αk}, i.e.

Gα = b, (3.3)

where the M×M matrix G has components {G0(xBj ,yk)}, the vector α components

{αk} and the vector b components {b(xBj )}. Equation (3.3) can be solved for the

{αk} using a standard algorithm (e.g. Matlab’s backslash command [which is based

on Gaussian elimination]). Note that the matrix G need only be inverted once at

the beginning of a simulation.

A detailed discussion of the convergence and stability of the MFS is given in

[50, 55] and references therein. For the illustrative problems of Laplace’s equation

and the Helmholtz equation in the unit disk, it has been shown [7, 66, 67] that if

the MFS charge points are situated at radius R > 1 then the solution converges

exponentially with M

max
x∈D
|φ(x)− φM(x)| = O

(
R−M

)
,

provided that R <
√
ρ, where ρ is the radius of first singularity of the analytic
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continuation of the solution in the complex plane. For other geometries, exponential

convergence can also be attained, but the situation can be more complicated [7].

A possible limitation with the MFS is that the linear system (3.3) can be ill-

conditioned [70,71]. However there is evidence in the literature [9,54–56] that appar-

ent ill-conditioning of the MFS-problem presents minimal practical problems for the

exponential convergence of the solution in Helmholtz and Laplace boundary value

problems. The essence of the problem is that the object of interest in the MFS prob-

lem is the convergence of the quantity φM in (3.2) and not the convergence of the

individual charge weights {α} themselves. Kitagawa [70, 71] has studied precisely

this problem and has found that errors are magnified by a quantity O(M) relative to

the error when no ill-conditioning is present (which of course decreases exponentially

in M). The essential point is that those degrees of freedom in {α} that cannot

be determined accurately (due to ill-conditioning of the linear problem (3.3)) are

precisely those that do not contribute significantly to φM .

In practice, the ill-conditioning is not typically found to affect the accuracy of

the MFS solutions. However, for a particular set-up, it is recommended that the

singular values of the matrix G are examined (i.e. prior to commencing a VOR-MFS

integration).

To use the MFS to solve (1.1) in the absence of an explicit expression for the

domain Green’s function G(x,x′), note that by subtracting (1.5) from (1.3) the

following equation for the residual Green’s function g(x,x′) is obtained

Lg(x,x′) = 0 x,x′ ∈ D, (3.4a)

g(x,x′) = −G0(x,x′). x ∈ ∂D. (3.4b)

Since the free-space Green’s function G0 is known everywhere, the boundary

value problem (3.4) is exactly of the form (3.1) (for given x′) and consequently a

standard MFS routine can be straightforwardly applied to solve for an MFS approx-

imation gM(x,x′) to the residual Green’s function, thus obtaining a corresponding

approximation to G(x,x′).

The above approach can be extended to solve for an MFS approximation to the

N -vortex Hamiltonian H (denoted HM) by linearity, with still just a single MFS
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calculation required. The relevant boundary value problem is

Lφ(x) = 0 x ∈ D, (3.5a)

φ(x) = −
N∑
j=1

ΓjG0(x,xj) x ∈ ∂D, (3.5b)

which from (3.4) has exact solution

φ(x) =
N∑
j=1

Γjg(x,xj).

It is straightforward to verify that an alternative expression for the Hamiltonian (1.2)

is

H = −
N∑
i=1

N∑
j=i+1

ΓiΓjG0(xi,xj)−
1

2

N∑
i=1

Γiφ(xi).

A standard application of the MFS provides an approximate expression φM for φ

from (3.2), which allows us to define an MFS Hamiltonian

HM(x1, . . . ,xN) = −
N∑
i=1

N∑
j=i+1

ΓiΓjG0(xi,xj)−
1

2

N∑
i=1

M∑
k=1

ΓiαkG0(xi,yk), (3.6)

where the {αk} are the MFS weights obtained from the MFS solution of (3.5).

The partial derivatives of the MFS Hamiltonian can be evaluated directly from

(3.6) and hence (1.1) can be integrated using the time-stepping algorithm of section

1.2.3. Note that this method bypasses the need for an explicit expression for G(x,x′).

Because H is a conserved quantity, a key test of the algorithm is conservation of HM .

This will be investigated below.

3.2.2 The use of pseudo-images

One factor that strongly influences the accuracy and convergence of the MFS

algorithm is the smoothness of the boundary function b(x) in (3.1b) [7]. In particular,

if b(x) varies on spatial scales comparable to the spacing between MFS charge points

(i.e. has significant spectral power at wavenumbers ∼M |D|−1/2 or greater, where |D|

is the domain area), then the MFS solution will be unable to resolve the associated
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fine scale structure in b(x) near the domain boundary. Ref. [7] recommend up to

10 MFS charge points per wavelength for the case where b(x) consists of a single

Fourier wavenumber, to obtain solutions close to machine precision.

For the specific MFS boundary value problem (3.5) solved in VOR-MFS, the

boundary function appearing on the right-hand side remains smooth everywhere

on ∂D, except where a vortex approaches the boundary. A vortex xj located a

distance ε from the domain boundary will induce a spectral peak in the boundary

data at wavenumbers ∼ ε−1. If vortices are to move freely in the domain, close

encounters with the boundary are inevitable, and the MFS method will fail whenever

ε−1 & M |D|−1/2 for the reason outlined above.

There turns out to be a simple solution of the above problem. If an additional

‘pseudo-image’ vortex of opposite sign is placed at a suitable point x∗j on the opposite

side of the boundary ∂D to the ‘problem’ vortex xj, then the spectral peak in the

boundary data is smoothed and the MFS solution will retain its accuracy. There is

considerable flexibility in the precise choice of x∗j , because all that is required is that

as xj approaches the domain boundary (ε → 0) is that x∗j → x̃j, (more precisely it

is required that limε→0 |x∗j − x̃j|/ε = 0), where x̃j is the reflected point generated

by the nearest point on ∂D to xj, as illustrated in Fig. 3.1(a). For example, the

locations of the exact 2D Euler images in the unit circle x∗j = xj/|xj|2 are easily

shown to converge towards the reflection point x̃j, as required. It is to be emphasised

that the pseudo-image is not (necessarily) an exact image of the vortex at xj (which

is not, in general, available), merely an approximate image that becomes exact in

the limit ε→ 0.

One possible choice for the pseudo-image position x∗j is the boundary reflection

point x̃j itself. However, in some relatively simple geometries x̃j is a discontinuous

function of xj, which can lead to computationally undesirable jumps in the pseudo-

image position as xj evolves in time. In the examples below, knowledge of an explicit

conformal map to the unit circle is exploited to choose x∗j ; see below for details.

Alternative methods of selecting x∗j are no doubt possible. In practice pseudo-images

are introduced smoothly as a vortex approaches the boundary. For example, in a
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circular domain with unit radius the pseudo-image strength is set by the function

Γ̂j = −Γj


0, 0 ≤ |xj| ≤ R1(
|xj |−R1

R2−R1

)2

, R1 < |xj| ≤ R2

1, R2 < |xj| ≤ 1.

(3.7)

In domains that are conformal to the unit circle a similar approach can be taken (see

below). Fig. 3.1(b) illustrates schematically the three regions in (3.7), some vortices

and pseudo-images, and the MFS charge points.

x

x̃

x
∗

ε

ε

∂D

(a)

Boundary points b(xB
j )

MFS charge points yk

Vortices xi

Pseudo-images xj
∗

x3

x3

∗

x2

x2

∗

x1

x4

(b)

Figure 3.1: (a) Schematic illustrating the boundary reflection point x̃ and a possible
pseudo-image location x∗ associated with a vortex at x. (b) Schematic illustrating
a typical configuration of vortices and pseudo-images in the unit circle domain (with
N = 4). For vortices in central white region |xj| ≤ R1 no pseudo-images are used.
In the dark grey region |xj| > R2 a full strength pseudo-image is present, whereas in
the light grey region R1 < |xj| ≤ R2 the strength of the pseudo-image is gradually

increased as the vortex moves closer to the boundary.
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In the case where there are P ≤ N pseudo-images, the MFS Hamiltonian is

HM(x1, . . . ,xN) = −
N∑
i=1

N∑
j=i+1

ΓiΓjG0(xi,xj)−
1

2

N∑
i=1

M∑
k=1

Γiα̃kG0(xi,yk)

− 1

2

N∑
i=1

P∑
j=1

ΓiΓ̂j(xj)G0(xi,x
∗
j), (3.8)

where {α̃k} are the weights obtained from the MFS solution of

Lφ(x) = 0 x ∈ D, (3.9a)

φ(x) = −
N∑
j=1

ΓjG0(x,xj)−
P∑
j=1

Γ̂jG0(x,x∗j) x ∈ ∂D. (3.9b)

Placement of pseudo-images can become complicated (or even impossible) when

parts of the domain are very thin (e.g. a flat plate or protrusion), such as in [92].

Further, the convergence properties of the algorithm in this context will also be

severely reduced, as will be noted in the next section.

3.2.3 Selection of the location and number of MFS

charge points in VOR-MFS

The optimal positioning of the MFS charge points {yk} and boundary points

{xBk } is a topic that has received considerable attention in the literature (see e.g. [7]).

The optimal distance of the curve on which the charge points are situated from the

domain boundary ∂D depends in general upon the nature of the boundary data b(x)

in equation (3.1b), as well as the curvature of the domain boundary ∂D. A detailed

analysis of the optimal location of {yk} specific to the VOR-MFS problem awaits

a future study. The spacing of the charge points {yk} along the chosen curve must

reflect the curvature of ∂D itself. Unsurprisingly, the best results are obtained if the

charge points are concentrated near regions of high curvature.

As mentioned in section 3.2.2, vortex motion around thin obstacles will lead to

severely reduced convergence properties. When the spacing between charge points

exceeds the thickness of the obstacle, VOR-MFS is likely to have the more modest
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quadratic convergence properties of a boundary integral method such as was used

in [92]. VOR-MFS is evidently not suited to this specific problem and as such the

focus of the paper will be on domains with no thin sections.

Good results have been obtained in the unit circle domain by placing the charge

points uniformly at radius R = 1.1. In other domains, a conformal map from the unit

circle domain to D can be used to determine the positions of {yk} based on a simple

distribution around the circle. The boundary points {xBk } are placed uniformly

around the circle R = 1 and then mapped onto ∂D. The use of the conformal

map, where available, ensures that the charge points are concentrated in the desired

regions [7], however heuristic methods may well work where no conformal map is

available.

Once an optimal curve for the MFS charge points {yk} has been chosen, a crucial

issue in optimizing the performance of VOR-MFS is the choice of the number M of

charge points. Recall that the adaptive time-stepping algorithm described in section

1.2.3 requires convergence of the mean vortex position to within a tolerance δ (see

equation 1.26) over a time interval ∆t. For given δ, the optimal choice of M will be

M∗(δ), defined to be the minimum value of M for which the accumulated error due

to the MFS approximation over the interval [tn, tn+∆t] is less than εδ. Here ε < 1 is

a constant chosen to ensure that MFS errors at M = M∗(δ) remain sufficiently small

compared with the errors associated with the adaptive time-stepping scheme itself.

For a specific set-up, the value of M∗(δ) can be estimated prior to a dynamical

integration by the following procedure. A set of random vortex positions {xi} is first

generated. The mean error in velocity ui at the vortex locations due to the MFS is

then defined to be

E(M) =
1

N

N∑
i=1

∣∣∣u(M)
i − ui

∣∣∣ , (3.10)

where u
(M)
i is the MFS estimate of ui. Next, the fact that MFS solutions converge

exponentially in M , is exploited to write the following estimate for E(M)

E(M) ≈ 1

N

N∑
i=1

∣∣∣u(M)
i − u(Mmax)

i

∣∣∣ = Ae−αM , (3.11)
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where Mmax is the maximum number of points for which the MFS problem can be

conveniently solved. Estimates for the real constants A and α are found by using

(3.11) to calculate E(M) for several values of M < Mmax and making a least squares

fit to logE(M). The values of A and α thus obtained are specific to the problem

being solved, and also depend to a certain extent on numerical choices such as the

locations of {yk}, the values of R1, R2 etc. In practice a number of realisations of

{xi} are tested and the ‘worst case’ values of A and α are used below.

Provided ∆t is sufficiently small, the MFS error in mean vortex position over the

time interval ∆t can be estimated to be E(M) ∆t. The requirement that

E(M) ∆t ≤ εδ, (3.12)

is sufficient for the estimated MFS error to be less than the time-stepping error (by

a factor ε). Our estimate of M∗(δ) is defined by equality in the above relation, and

using (3.11) is found to be

M∗(δ) = − 1

α
log

(
εδ

A∆t

)
. (3.13)

The important point evident from (3.13) is that M∗(δ) has logarithmic dependence

on δ. Consequently, provided the constant α is not too small, appropriately small

values of δ can be targeted at little additional cost in terms of MFS charge points. A

conservative choice of ε = 10−3 is made in all integrations described below, to ensure

that time-stepping errors dominate over MFS errors.

The dependence of E(M) on N is shown in Fig. 3.2 for the neutral system (equal

numbers of positive and negative vortices) for (a) 2D Euler vortices (λ = 0) and (b)

the QGSW vortices (λ = 1), with N = 4, N = 8 and N = 16 in a unit circle. Charge

points are placed at a radius of 1.1, ∆t = 0.1 and Γi = ±1. Ten realisations of the

vortex positions are used for each calculation. It is clear from Fig. 3.2 that the mean

error E(M) in the vortex velocities depends, at most, weakly on N and on λ.
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Figure 3.2: MFS mean velocity error E(M) for (a) the 2D Euler system and (b)
the QGSW system, with N = 4, N = 8 and N = 16 in the unit circle. The results
are calculated from the ‘worst’ case outcome of ten uniformly distributed random

configurations of the N vortices.

3.2.4 Computational cost of VOR-MFS

The structure of the MFS Hamiltonian (3.8) makes possible simple scaling es-

timates for the computational costs of VOR-MFS in comparison with an explicit

numerical scheme designed to solve the same problem. How, for example, does the

VOR-MFS algorithm scale with vortex number N and the accuracy controlling (tol-

erance) parameter δ?

First note that a single evaluation of the linear problem (3.3) requires [M∗(δ)]
2

multiplication operations. It follows that the costs associated with solving the linear

problem are overwhelmed by the costs associated with the evaluations of the deriva-

tives of the Hamiltonian (3.8) in (1.1), which (as argued below) requires at least

[M∗(δ)]
2 evaluations of the derivatives of the free space Green’s function. Hence the

additional costs of solving the linear system (3.3) can be safely neglected.

Comparing the costs of evaluating the derivatives of an image model Hamiltonian

(eqn. 1.2, with G(x,x′) given in appendix A.2.1) to the VOR-MFS Hamiltonian

(3.8), the former requires 4N2 evaluations of the derivatives of G0 and the latter

(N +M∗(δ)+ P̄ )2 evaluations, where P̄ < N is the average number of pseudo-images



Chapter 3. Generalised point vortex dynamics on arbitrary domains using the
method of fundamental solutions 113

in use. For N �M∗(δ) VOR-MFS therefore becomes cheaper than the corresponding

image model (since P̄ is roughly proportional toN). VOR-MFS is therefore very well-

suited to large N super-computer simulations of the type performed by [123]. Note

that there is evidently an optimisation problem, which has not yet been explored

in detail, concerning how best to choose the pseudo-image protocol to minimize

M∗(δ) + P̄ in VOR-MFS.

The costs associated with decreasing the tolerance parameter δ are primarily

associated with the underlying adaptive time-stepping scheme described above in

section 1.2.3. For the present fourth-order (RK4) scheme, a decrease in δ by a factor

of sixteen results in a doubling of the number of substeps (m∗ → m∗ + 1) needed

over each integration interval ∆t. In VOR-MFS there is an additional cost associated

with an increase in the number of MFS points M∗(δ) but, because this increase is

logarithmic in δ the additional cost is relatively small, particularly if N is large.

A further cost for VOR-MFS, which applies when the system being integrated

is no longer the 2D Euler system, is the additional cost of evaluating e.g. modified

Bessel functions (see eqn. 1.7), when calculating the gradients of H. This cost can

be considerable, and the use of fast Bessel function routines is recommended.

3.3 Test cases for VOR-MFS

3.3.1 Test case I: Multiple 2D Euler vortices in a

circular domain

The first test for VOR-MFS will consider the dynamics of N 2D Euler vortices in

a unit circle domain. The performance of VOR-MFS will be tested against an exact

‘image’ model to be described.

The exact Hamiltonian H for the motion of N 2D Euler vortices in a unit circle

is given by (1.2) with

G(x,x′) =
1

2π
log |x− x′| − 1

4π
log
(
1− 2x · x′ + |x|2|x′|2

)
, (3.14)

where the first term can be recognised to be G0(x,x′) and the second is therefore
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g(x,x′). Viewed as a function of x, (3.14) is equivalent (up to a dynamically irrel-

evant function of x′) to the streamfunction induced in an unbounded domain by a

vortex of circulation +1 at x′ plus a vortex of circulation −1 at the image location

x∗ = x′/|x′|2. The exact expression for G(x,x′) allows (1.1) to be solved directly

using the adaptive time-stepping routine described in section 1.2.3. We refer to this

model henceforth as the image model.

Two tests used to assess VOR-MFS are conservation of the Hamiltonian H and

of angular momentum

L =
1

2π

N∑
i=1

Γi|xi|2. (3.15)

Conservation of L follows from the rotational symmetry of the unit circle domain;

see section 1.2.2. The relative error measures

δH(t) =

∣∣∣∣H(t)−H(0)

Hr

∣∣∣∣ , δL(t) =

∣∣∣∣L(t)− L(0)

Lr

∣∣∣∣ , (3.16)

are adopted as the principal means of evaluation of VOR-MFS accuracy. Here Hr

and Lr are reference magnitudes for the Hamiltonian and angular momentum, chosen

to be their mean and standard deviation respectively, as calculated from 100 sam-

ples based on uniformly distributed vortex positions. Recall that VOR-MFS uses

convergence of mean vortex position as its criterion for advancement (see eqn. 1.26),

hence conservation of H and L are not targetted directly. Numerical control over

the error measures δH and δL is therefore an important internal consistency check

for the algorithm.

To compare results between the image model and VOR-MFS, the equations of

motion (1.1) are integrated for 100 non-dimensional time units with N = 4 vor-

tices (with circulations Γi = +1,+1,−1,−1), using each model. The motion of

four vortices in a bounded domain is known to be chaotic in general [91] and conse-

quently provides a robust test. Results for three different values of the tolerance δ

are compared (δ = 10−6, 10−8, 10−10) with the integration interval set to be ∆t = 0.1.

For VOR-MFS, the MFS charge points are located at R = 1.1, and the procedure

detailed in section 2.4 is followed to set the number of MFS charge points to be
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Figure 3.3: Dependence of relative numerical error δH(∆t) in the Hamiltonian
H, at the end of a single integration interval ∆t, upon the number of MFS charge
points M used by VOR-MFS (solid curves). The largest errors over 100 realisations
of uniformly distributed random initial conditions are shown and results are given
for several values of the adaptive time-stepping tolerance (δ = 10−6, 10−8, 10−10).
Dashed lines show the corresponding error in the image model. The values M =
M∗(δ) obtained from equation (3.13) are illustrated as solid points on each curve.

M = M∗(δ) = 156, 202, 248 respectively. Pseudo-images are introduced smoothly

for radii greater than R1 = 0.8 and with R2 = 0.9 (see eqn. 3.7) at positions

x∗j = xj/|xj|2.

To confirm that the number of MFS points M = M∗(δ) is adequate in each case,

Fig. 3.3 shows δH(∆t) (Hr = −0.366, 3 sig. fig.) as a function of M for VOR-MFS

(solid curves), and the corresponding error in the image model (dashed lines). The

results are taken from the worst case of 100 short integrations (length t = ∆t = 0.1)

with uniformly distributed random initial vortex placements as initial conditions.

Fig. 3.3 confirms that the method of section 3.2 is broadly successful in selecting the

minimum value M = M∗(δ) for which errors due to MFS are significantly less than

errors due to the adaptive time-stepping scheme (dashed curves).

Fig. 3.4 illustrates vortex trajectories calculated using both the image model and

VOR-MFS over 20 nondimensional time units. Numerical parameters are δ = 10−8

and M∗(δ) = 202, as in the middle case above. The same initial conditions are used
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Figure 3.4: (a) Vortex trajectories as calculated using the image model over 20
nondimensional time units with tolerance parameter δ = 10−8. Black curves show
positive vortices and grey curves negative vortices. Initial positions are plotted as
filled circles and final positions as crosses. (b) As (a) but for VOR-MFS with M∗(δ) =

202.

in each case and it is clear from the figure that VOR-MFS accurately reproduces

the image model trajectories during a period in which the vortices make multiple

circuits of the domain. The mean difference in vortex positions between the two

runs at t = 20 is 1.3 × 10−4. Due to the chaotic nature of the vortex evolution

the mean difference grows exponentially and is 6.7 × 10−1 at t = 40. Beyond this

time the two integrations diverge completely. Note that vortices are within the full

pseudo-image region |xj| > R2 = 0.9 (see eqn. 3.7) for just 7% of the integration.

Fig. 3.5 shows the time evolution of δH(t) and δL(t) (Lr = 0.593, 3 sig. fig.)

over the full duration of the VOR-MFS model integrations (solid curves, with M =

M∗(δ) in each case) and image model integrations (dashed curves), where again

δ = 10−6, 10−8, 10−10 and M = M∗(δ) = 156, 202, 248. It is evident that in both

models δH(t) and δL(t) are controlled (linearly) by the tolerance parameter δ. Fig. 3.5

demonstrates that the growth of numerical errors in both H and L is comparable in

each model.
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Figure 3.5: Time evolution of the error measures (a) δH(t) (Hamiltonian error)
and (b) δL(t) (angular momentum error) during VOR-MFS model integrations (solid
curves) and the image model integrations (dashed curves). Three values of the tol-
erance parameter δ = 10−6, 10−8, 10−10 are shown with M = M∗(δ) = 156, 202, 248

the respective number of MFS charge points.
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3.3.2 Test case II: Multiple 2D Euler vortices in a

Neumann oval

A more challenging test for VOR-MFS is to simulate point vortex dynamics in

a domain with less symmetry than the unit circle. Next VOR-MFS is therefore

validated against an image model for 2D Euler dynamics in a domain bounded by a

Neumann oval [78]. Neumann ovals, constrained here to have equal area (π), are a

one-parameter family of curves defined by the conformal map from the unit circle

z = F (Z) =
aZ

1− q2Z2
, a = aπ(q) =

1− q4

(1 + q4)1/2
. (3.17)

The usual correspondence between the complex plane C and R2 is assumed, i.e.

z = x + iy is identified with coordinates x = (x y)T in the Neumann oval domain

and Z = X + iY with coordinates X = (X Y )T in the unit circle image domain.

The parameter q (0 ≤ q < 1) controls the shape of the Neumann oval. Here q = 0.7

is chosen (q = 0 maps the circle to itself). Further details of the image model for

any conformally mapped domain are given in appendix A.2.1 and the specific case of

the Neumann oval defined by the mapping (3.17) is used as an example in appendix

A.2.2.

A numerical image model designed to solve (1.1) for the Neumann oval has been

implemented using the adaptive method of section 1.2.3. The numerical image model

was validated by verifying conservation of H (see below).

The VOR-MFS model is designed as follows. According to [7], MFS charge points

in conformal domains are optimally placed when they do not enclose singularities of

the Schwarz function associated with ∂D. The Schwarz function z̄ = S(z) is a

complex form of the equation determining ∂D, i.e. if h(x, y) = 0 defines ∂D in R2,

then z̄ = S(z) follows from resolving the equation h((z + z̄)/2, (z − z̄)/2i) = 0 in

favour of z̄. It is assumed here that S(z) is analytic in the neighborhood of ∂D. For

the particular case of (3.17) it can be shown that S(z) has singularities at

z± = ±i
aπ(q)2q(1 + q2)

2(1− q4)2
, (3.18)
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which lie on the imaginary axis outside ∂D. Taking these locations into account,

a suitable curve for the charge points, illustrated in Fig. 3.6, was found to be the

Neumann oval with parameters q = 0.73 and a = (1.3)1/2aπ(q). The spacing of the

MFS charge points on this curve follows the ‘constant conformal radius’ method [7],

i.e. the M charge points are equally spaced on the unit circle and then mapped to

their Neumann oval by (3.17). Fig. 3.6 shows that charge points are concentrated

near the regions of maximum curvature of ∂D. Calculations of M = M∗(δ) following

the method of section 3.2.3 reveal that a significantly greater number of charge points

(approximately twice as many for the same δ) are required for the oval as compared

to the circle.

Pseudo-images are introduced much as for the unit circle. First define inner and

outer Neumann ovals by (3.17) with q1 = 0.86 and a1 = (0.6)1/2aπ(q1) and q2 = 0.78

and a2 = (0.76)1/2aπ(q2) respectively. Denoting the polar equations of the inner and

outer ovals by r = R1(θ) and r = R2(θ) respectively, the pseudo-image formula (c.f.

eqn. 3.7) used is

Γ̂j = −Γj =


1 |xj| ≥ R2(θj)(
|xj |−R1(θj)

R2(θj)−R1(θj)

)2

R1(θj) ≤ |xj| < R2(θj)

0 |xj| < R1(θj).

(3.19)

where θj = tan−1 (yj/xj). Pseudo-images are placed at the exact image point in

the unit circle image domain and mapped back to the Neumann oval. That is, if a

vortex at xj maps to Xj in the image domain then the pseudo-image is placed at

x∗j = f(Xj/|Xj|2); see appendix A.2.1.

Fig. 3.7 shows the time evolution of the error measure δH(t) (calculated using

HM) during separate integrations with N = 4, N = 8 and N = 16 vortices and

Hr = −0.441, −0.895 and −1.70 to 3 sig. fig. respectively. Equal numbers of

positive and negative vortices are used in each case with circulations Γi = ±1. The

numerical parameters used are integration interval ∆t = 0.1, tolerance δ = 10−8

and number of MFS charge points M∗(δ) = 348. Good conservation properties are

evident for all three integrations.



Chapter 3. Generalised point vortex dynamics on arbitrary domains using the
method of fundamental solutions 120

Boundary points b(xB
j )

MFS charge points yk

Singularit ies of the
Schwarz function

x
-2 -1.5

y

-1

-0.5

Figure 3.6: Geometry of VOR-MFS for the Neumann oval integrations with 70 MFS
charge points illustrated. Partial pseudo-images are used in the light grey region and
full pseudo-images in the dark grey region. Unfilled circles show the singularities z±

of the Schwarz function given by (3.18).
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Figure 3.7: Time evolution of error measure δH(t) for VOR-MFS integrations of
N = 4, 8 and 16 2D Euler vortices (solid, dashed and dotted curves respectively.)

The value of the tolerance parameter was δ = 10−8 with M = M∗(δ) = 348.
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3.3.3 Test case III: A solitary QGSW vortex in a

Neumann oval

Arguably the main strength of VOR-MFS is its capacity to simulate point vortex

dynamics in systems other than the 2D Euler equations. One example of such a

system is the quasi-geostrophic shallow water (QGSW) model discussed in section

1.2.1, see (1.7) for its free space Green’s function. Next VOR-MFS will be used to

simulate the motion of a single QGSW vortex in the Neumann oval.

The motion of a single vortex governed by (1.1) is well-known to be confined to

isolines of the Hamiltonian H [91], which in the case of a single vortex in a domain

D is given by

H(x1) = −1

2
Γ2

1g(x1,x1),

where g(x,x′) is the residual Green’s function for D. The Hamiltonian H can be

approximated at any point x1 using the MFS (by HM , see eqn. 3.8). An MFS

estimate of the isolines of H can therefore be obtained by evaluating HM on a grid

over D, and contouring the resulting function of x1.

The isolines of H for a QGSW vortex with Rossby radius λ−1 = 1 and circulation

Γ1 = +1, calculated using the above method with M = 374 charge points, is shown

in Fig. 3.8a. The isolines can be contrasted with those for a 2D Euler vortex shown

in Fig. 3.8b. The main difference between the two systems is that the (boundary-

induced) velocity field experienced by the vortex is much weaker in the QGSW

system towards the center of the domain. (Recall from (1.1) that u1 = Γ−1
1 k ×

∇x1H and therefore vortex velocities are proportional to the gradient of H). The

weaker velocities can be explained by the fact that the dynamical influence of the

QGSW vortex decays exponentially at distances & λ−1, due to the modified Bessel

dependence in (1.7). A QGSW vortex placed a distance � λ−1 from a domain

boundary therefore moves as if the boundary is absent.

The thick dashed lines on Fig. 3.8 show dynamical trajectories calculated explic-

itly using VOR-MFS (for the QGSW vortex) and the image model (for the 2D Euler

vortex) for 35 non-dimensional time units. The initial condition is identical for both

runs x1(0) = (0.805 0)T . However, the behavior is different due to the different dy-
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Figure 3.8: Isolines of H(x1) for (a) a solitary QGSW vortex with λ−1 = 1 and
Γ1 = 1 (calculated as HM with M = 374), and (b) a solitary 2D Euler vortex, in
the Neumann oval given by (3.17) with q = 0.7. The thick dashed lines in each
panel show the dynamically calculated trajectory of a vortex with initial position
x1(0) = (0.805 0)T over 35 time units, with δ = 10−8. The contour interval is 0.078
in both panels except for the grey dotted contour in (a) (at level 0.097) plotted to

illustrate the predicted trajectory.
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Figure 3.9: Time evolution of the error measure δH(t) (where H is estimated
by HM) over 100 non-dimensional time units (corresponding to approximately four
complete circuits of the domain) for an QGSW vortex with λ = 1. Three values of the
tolerance parameter δ = 10−6, 10−8, 10−10 are shown with M = M∗(δ) = 290, 374, 460

the respective number of MFS charge points.

namics: the QGSW vortex recirculates within the same lobe, whereas the 2D Euler

vortex circulates between the two lobes. It is also clear that, as expected, the 2D

Euler vortex travels considerably further during the same time period.

Fig. 3.9 shows the time evolution of δH(t) (Hr = 0.216, 3 sig. fig.) during a

further QGSW integration with x1(0) = (0 0.3)T , over 100 non-dimensional time

units, or approximately four complete circuits of the domain. Results are shown for

three different values of the tolerance parameter δ = 10−6, 10−8 and 10−10, with cor-

responding numbers of MFS charge points M∗(δ) = 290, 374, 460. The Hamiltonian

error measure δH(t) is evidently linearly controlled by the tolerance parameter δ.

A further test will consider the errors in the trajectory of the vortex after one

complete circuit of the Neumann oval, as computed dynamically using VOR-MFS.

Consider the solitary QGSW vortex initially located at x1(0) = (0 0.2)T inside the

Neumann oval. The vortex takes tf time units to complete one circuit, after which

it comes back to its starting position to within a tolerance ∆y = |0.2 − y(tf )|, the

size of which gives an indication of the accuracy VOR-MFS when used dynamically

in this situation.
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The value of tf is found with the decomposition

tf = tI + tII ,

used as follows: the system is first integrated from t = 0 → tI with ∆t = 0.1 fixed,

where tI is chosen such that slightly less than one circuit is completed. Then the

system is integrated for a final step from t = tI → tI + tII with ∆t = tII , where tII

is found (to machine precision) using a shooting method combined with the secant

method. The majority of the error in ∆y, after tf , will be from the steps where

∆t = 0.1 with the final step (where ∆t < 0.1) having a much smaller contribution.

Note that δ will be the same for all steps.

With tf found, the model is solved for various values of δ (and corresponding M∗

predicted from (3.13), [not shown]) and a relationship between ∆y and δ determined,

and shown in figure 3.10; the dots are the numerical values and the solid line is a

least squares fit. Again an exponential relationship is observed, with VOR-MFS

performing accurately even at low precision.

3.3.4 Test Case IV: Multiple QGSW vortices in a

Neumann oval

A final test for VOR-MFS is the simulation of the dynamics of many QGSW

vortices in a Neumann oval. The dynamics of two or more vortices are chaotic and

therefore more challenging numerically. As above, the main means of validating the

algorithm is by verifying conservation of H (calculated as HM from eqn. 3.8).

Fig. 3.11 shows the evolution of the error measure δH(t) for the Hamiltonian for

three different runs withN = 2, 4 and 8 vortices andHr = −0.366,−0.719 and−1.16,

to 3 sig. fig. respectively. Numerical parameters are as for the 2D Euler calculations

described in section 3.2. As in the 2D Euler case good convergence properties are

evident.
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Figure 3.10: Relationship between ∆y and δ (with M chosen by the M∗-δ protocol)
for a single QGSW vortex after exactly one circuit of a Neumann oval. The dots are

numerical values and the solid line a least-squares fit.
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Figure 3.11: Time evolution of error measure δH(t) (where H is estimated by HM)
for VOR-MFS integrations with N = 2, 4 and 8 QGSW vortices (solid, dashed and
dotted curves respectively). The value of the tolerance parameter was δ = 10−8 with

M = M∗(δ) = 348.
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3.4 Conclusion

A new algorithm VOR-MFS has been presented above. It is designed to solve

generalized point vortex models in arbitrary two-dimensional domains. The main

advantages of the new algorithm are:

1. VOR-MFS requires knowledge of only the free-space (R2) Green’s function

G0(x,x′) of the point vortex model in question, as opposed to the domain-

adapted Green’s function (required e.g. by image-based models). VOR-MFS

can therefore be used to investigate the alternative point vortex models of

geophysical interest discussed in chapter 1 (QGSW, SQG, etc.). Additionally,

VOR-MFS can be used to solve the 2D Euler system in domains for which the

Green’s function G(x,x′) is not known explicitly or is expensive to calculate.

2. Subject to certain caveats [7], the MFS algorithm converges exponentially with

the number of charge points M . Hence it is practical to choose M in order

that the error associated with using the VOR-MFS algorithm is comparable to

that of the underlying adaptive time-stepping scheme (see section 3.2.3).

3. The number M of MFS charge points required converges as the number of

vortices N → ∞. Consequently, for sufficiently large N , VOR-MFS becomes

no more expensive (and eventually cheaper) to integrate than an image model

adapted to the same problem.

One difficulty for the MFS method occurs when parts of the domain D are very

thin (e.g. a flat plate or protrusion). In such domains VOR-MFS is likely to perform

more like a boundary-integral method, similar to that in [92]. A further caveat, is that

complicated domains that require a large number of MFS charge points could result

in numerical difficulties, due to limitations associated with the size and apparent

conditioning of the linear system (3.3). As discussed in section 3.2.1, this presents

minimal practical problems.

The VOR-MFS algorithm opens up a number of interesting pathways for future

research. In chapter 4 VOR-MFS will be used to test statistical mechanics predictions

of the behaviour of the geophysical point vortex models mentioned chapter 1.
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Some further possibilities for future research which are not addressed in this the-

sis are as follows. Chen [28] has demonstrated that MFS is effective in multiply

connected domains, hence (for example) VOR-MFS could be used to validate and

extend recent results describing vortex trajectories around islands [36]. Another

possibility is that, with a few minor adaptations, VOR-MFS could be extended to

study the dynamics of point vortex ‘hetons’ [62], i.e. two-layer quasi-geostrophic

vortices of relevance in oceanography [38, 74, 75]. Further, the dynamics of large

ensembles of three-dimensional quasi-geostrophic vortices has also prompted consid-

erable interest [119], including numerical simulations of single-signed point vortices

in an unbounded domain [63, 86]. There is potential for VOR-MFS to be extended

to study the three-dimensional system in bounded domains, permitting the study of

‘neutral’ systems in which vortices of both signs are present.

Finally, it is interesting to speculate on whether or not the MFS algorithm could

be used effectively to implement boundary conditions in dynamical models with

piece-wise constant vorticity (contour dynamics, e.g. [41]) or even in models aiming

to represent continuous vorticity distributions. In both cases the effective treatment

of the continuous analogue of the ‘pseudo-images’ discussed in section 3.2.2 above

will be paramount.



Chapter 4

Statistical mechanics of point

vortices in the thermodynamic

limit

4.1 Introduction

Two well-known scaling limits exist in the point vortex system: the hydrodynamic

limit, valid only for positive energies, was studied in chapter 2, while the focus of this

chapter is on the thermodynamic limit, valid for low positive and negative energies.

Here we will take the ‘non-classical’ thermodynamic limit N → ∞, Ẽ = NE →

constant, |D| = constant. This limit was considered for 2D Euler vortices by PL76,

using the hierarchy introduced in section 1.3.5. PL76 considered the thermodynamic

limit at sufficiently low energy (positive and negative) where the mean flow ω1(x) = 0

is negligible and can be ignored, leaving the fluctuations described by the correlation

function ω2(x,x′) as the key quantity. In a manner analogous to the derivation

of the sinh-Poisson equation/elliptic-sinh equation for the statistical description of

the mean flow in the hydrodynamic limit, PL76 derived an equation (c.f. eqn. 35)

for the statistical description of the fluctuations in their thermodynamic limit. In

this chapter, a variant of PL76’s equation, referred to as the vorticity fluctuation

equation, is derived and solved for a generalised dynamics.

To demonstrate an application of the VOR-MFS algorithm of chapter 3, the
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statistics of a system of quasi-geostrophic shallow water (QGSW) vortices will be

tested against the theoretical predictions of the vorticity fluctuation equation.

This chapter is a generalisation and extension of the publication by Esler, Ashbee

& McDonald [45] (EAM13 hereafter) and is structured as follows. The vorticity

fluctuation equation is derived in section 4.2 and solved in section 4.3. In section 4.4

the theoretical predictions of the vorticity fluctuation equation are compared with

numerical experiments using QGSW vortices. In section 4.5 conclusions are drawn

and further work is considered. Finally, in appendix 4.A some details of ongoing

work are given.

Before proceeding, a point made in section 1.3.4 is re-emphasised. The standard

‘classical’ thermodynamic limit is to take |D| → ∞ and N → ∞ while N/|D| →

constant, and for a classical system such as an ideal gas, this limit gives domain

independent results. However domain-independence is inconsistent with the long-

ranged interaction of 2D Euler vortices governed by the Laplacian (1.6) and QGSW

vortices (with moderate Rossby radius) governed by the modified Helmholtz operator

(1.7), where the influence of the boundary cannot be scaled away. Further, in this

limit it has been proved [52] that Onsager’s predicted negative temperatures (see

section 1.3.2) cannot exist, contradicting numerical evidence [18, 45]. Evidently it

is more interesting to take the non-classical thermodynamic limit N → ∞, Ẽ →

constant as will be done here.

4.2 Derivation of the vorticity fluctuation

equation

The following treatment will be presented for a generalised vortex dynamics, as

defined for an linear, elliptic and self-adjoint operator L (introduced in section 1.2.1)

with corresponding Green’s function G(x,x′) and dynamics governed by

LG(x,x′) = δ(x− x′).
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Recall that the dynamics of 2D Euler vortices are defined by

L ≡ ∇2, G0(x,x′) =
1

2π
log(|x− x′|),

and QGSW dynamics are defined by

L ≡ ∇2 − λ2, G0(x,x′) = − 1

2π
K0(λ|x− x′|),

where is λ−1 the Rossby radius and controls the range of the interaction.

In this section, theoretical expressions for the density of states Wt(Ẽ) and the

inverse thermodynamic temperature βt(Ẽ), valid at small energies in the non-classical

thermodynamic limit N →∞, Ẽ → constant will be derived for a generalised vortex

i.e one governed by the the linear, elliptic and self-adjoit operator L. As detailed

in section 1.3.3, it is straightforward to construct finite N estimates of the density

of states W (Ẽ) using histogram methods. It was shown in [18] that for a certain

domain D (a parallelogram) the density of states converges as

lim
N→∞

1

N
W (Ẽ/N) = Wt(Ẽ), (4.1)

with similar behaviour expected for a general domain. From EAM13 it appears that

convergence is apparent for as few as N = 100 vortices. A corresponding limiting

form of β(Ẽ) is also expected

βt(Ẽ) =
W ′
t(Ẽ)

Wt(Ẽ)
.

The starting point for determining these theoretical expressions is to derive the

vorticity fluctuation equation. This is done by considering the PL76 cumulant hi-

erarchy in the thermodynamic limit, N → ∞, Ẽ → constant. As in sections 1.3.5

and 2.2.2, this theory is presented for a generalised vortex dynamics, though at a

number of junctures reference will be made to the 2D Euler system to allow for direct

comparisons with PL76 and EAM13.

When taking the thermodynamic limit, PL76 simultaneously truncate the infinite

hierarchy of cumulant equations that were introduced in section 1.3.5. No formal
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justification of this truncation is given, other citing the success of a similar approach

for other problems in physics. As in EAM13, here we conjecture that the cumulant

equations (e.g. (1.48-1.50)) admit asymptotic solutions in the small parameter ε =

N−1/2. If this conjecture were proved, it would provide formal justification of PL76’s

truncation.

Consequently, the existence of an asymptotic hierarchy satisfying the cumulant

equations in the thermodynamic limit will be assumed. As mentioned in section 4.1

it is also assumed that energy of the system is sufficiently low so that there is no

mean flow (i.e. ω1 = 0). The absence of a mean flow, along with the symmetry of

the microcanonical ensemble dictates that other odd vorticity moments are also zero,

that is ω3 = ω5 = . . . = 0 and consequently cross-correlations involving odd vorticity

modes are also zero, e.g. c2 = 0, see (1.53)). It is natural then to look for asymptotic

series solutions for the remaining nonzero terms in the hierarchy that are of the form

ρ1(x) = ρ0 + ε2ρ
(1)
1 + . . .

ω2(x,x′) = ε2
(
ω

(0)
2 + ε2ω

(1)
2 + . . .

)
(4.2)

ρ2(x,x′) = ε4
(
ρ

(0)
2 + ε2ρ

(1)
2 + . . .

)
etc.

Here ρ0 = |D|−1, the inverse of the domain area, is the leading term in the vortex

density expansion in this scaling regime. Note that an exactly uniform distribution

of vortices corresponds to ρ1(x) = ρ0.

Inserting the expansions (4.2) into the second order cumulant equation for∇ω2(x,x′),

i.e. (1.52), and equating terms of order ε2 leads to the following equation

∇ω(0)
2 (x,x′) = ρ0

(
∂Ẽ + β

)(
∇ψ(0)

2 (x,x′) + ρ0∇G(x,x′)

)
, (4.3)

which is satisfied by the leading-order vorticity fluctuations. Here ω
(0)
2 is symmetric

in its arguments, and is subject to an integral constraint

∫
D
ω

(0)
2 (x,x′) dx = −ρ0, (4.4)
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obtained by inserting the expansion (4.2) into the definition of the second order

cumulant c2(x,x′), see (1.41). Similarly, the leading order correction to the mean

vortex density is found to be given by

∇ρ(1)
1 (x) =

(
∂Ẽ + β

)∫
D
∇G(x,x′)ω

(0)
2 (x,x′) dx′ +

1

2
βρ0∇g(x,x). (4.5)

The energy equation (1.46) at O(ε2) (and in the absence of a mean flow) is given

by

Ẽ = −1

2

∫
D
ψ

(0)
2 (x,x) dx− g0

2
, (4.6)

where g0 = ρ0

∫
D g(x,x) dx. To obtain a general solution to the system (4.3-4.6), it

turns out to be necessary to integrate (4.3) rather than take its divergence as done

by PL761. This gives the integro-differential equation

ω
(0)
2 (x,x′) = −ρ2

0 + ρ0

(
∂Ẽ + β

)(
ψ

(0)
2 (x,x′)− ρ0

∫
D
ψ

(0)
2 (x,x′) dx

)
+βρ2

0 (G(x,x′)− ρ0G0(x′)) . (4.7)

Using the integral constraint (4.4), (4.7) can be expressed as

ω
(0)
2 = −ρ2

0 + ρ0

(
∂Ẽ + β

)
Kω(0)

2 + βρ2
0Kδ(x− x′), (4.8)

where K is the integral operator defined by

Kφ(x) ≡
∫
D
K(x, x̄)φ(x̄) dx̄, (4.9)

where K(x, x̄) = G(x, x̄)− Ḡ(x)− Ḡ(x̄),

Ḡ(x) = ρ0

∫
D
G(x, x̄) dx̄.

Equation (4.8) is the vorticity fluctuation equation: the key equation of the ther-

modynamic scaling regime, analogous to the elliptic-sinh equation in the hydrody-

1Considering the 2D Euler system, note that upon taking the divergence of (4.3), the resulting
equation, together with (4.5-4.6) can be seen to be related to equations appearing in PL76. Specif-
ically, the divergence of (4.3) and (4.6) are identical to eqns. 35 and 37 of PL76, upon identifying
ω

(0)
2 with PL76’s F (1, 2)− 1, and rescaling β → 8πλ, and (4.5) is analogous to PL76’s eqn. 36.
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namic regime (see chapter 2). Its solution will be described in the next section.

As will be detailed in the next subsection, the operator (4.9) yields an eigen-

value problem that is identical to the vorticity mode eigenvalue problem (2.26), first

introduced in chapter 2 through linearising the sinh-Poisson equation (2.11). The

vorticity modes are a natural basis with which to solve (4.8). This is a remarkable

result: the vorticity modes are the key to determining the statistics of the vortex

system in both the thermodynamic limit and the hydrodynamic limit.

4.3 Solution of the vorticity fluctuation

equation

4.3.1 Vorticity modes

As stated in the previous section, the operator (4.9) can yield the vorticity mode

eigenvalue problem (2.26) from chapter 2 i.e.

LΦk = βkρ0Φk, x ∈ D,

Φk = constant, x ∈ ∂D∫
D
LΦj dx = 0.

To show the equivalence between (4.9) and (2.26) the following calculations are

required: first, note that from the symmetry of the kernel K(x, x̄), and the close

relationship between K and the Dirichlet kernel G(x, x̄), that the operator K is self-

adjoint. The Hilbert-Schmidt theorem [37] then states that the eigenvalue problem

KΦj =
1

βjρ0

Φj, j = 0, 1, 2, . . . , (4.11)

generates a set of real eigenvalues {βj} (the domain inverse temperatures [DITs])

with corresponding eigenfunctions {Φj} (the vorticity modes) that form a complete

orthonormal basis for the function space L2[D], i.e. the {Φj} can be normalised so
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that ∫
D

Φj(x)Φk(x) dx = δjk.

Importantly the first eigenfunction is given by Φ0(x) = constant, hence the re-

maining modes satisfy

∫
D

Φj(x) dx = 0, j = 1, 2, 3, . . . . (4.12)

At this point it is still not clear how the eigenvalue problem (4.11) is equivalent to

the original vorticity mode eigenvalue problem (2.26) introduced in chapter 2. Three

further calculations reveal the equivalence:

1. Applying the general linear, elliptic and self-adjoint operator L with corre-

sponding Green’s function G(x,x′) (re-introduced in section 4.1) to both sides

of (4.11) gives

βjρ0

(
Φj − ρ0

∫
D

Φj dx

)
= LΦj, j = 0, 1, 2, 3, . . . ,

and it follows from (4.12) that the vorticity modes (for j ≥ 1) satisfy the

eigenvalue problem

LΦj = βjρ0Φj, j = 1, 2, 3, . . . , (4.13)

which is identical to (2.26a).

2. On the boundary i.e. x ∈ ∂D

Φj(x) = −βjρ0

∫
D
Ḡ(x̄)Φj(x̄) dx̄ = constant, (4.14)

since G(x,x′) = Ḡ(x) = 0 for x ∈ ∂D. Equation (4.14) is identical to (2.26b).

3. Integrating (4.13), gives

∫
D
LΦk dx = βjρ0

∫
D

Φk dx = 0, k = 1, 2, 3, . . . , (4.15)

which is identical to the boundary integral constraint (2.26c).
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In summary, (4.13), (4.14) and (4.15) are identical to (2.26a), (2.26b) and (2.26c)

respectively. In other words, (4.11) is identical to the original DIT eigenvalue problem

(2.26).

For the special case of QGSW vortices, as governed by the modified Helmholtz

operator (introduced in 1.2.1 and reintroduced in section 4.2), the vorticity mode

eigenvalue problem is

(∇2 − λ2)Φj = βjρ0Φj, x ∈ D (4.16a)

Φj = constant, x ∈ ∂D (4.16b)∮
∂D

(k ×∇Φj) · ds = 0, (4.16c)

where the integral constraint (4.16c) has been simplified using the divergence theo-

rem; see section 2.2. This is the system that will be used in section 4.4.

Vorticity modes are computed using a grid in the circular domain of N ×M =

50×100 points in the radial and azimuthal directions respectively – the same grid used

in the sinh-Poisson equation solutions of section 2.4.4. Further details on conformal

grids are given in appendix A.4.

4.3.2 Analytical solution

Returning to our goal to solve the vorticity fluctuation equation (4.8), it makes

sense to seek solutions in the form of an expansion in the vorticity mode basis func-

tions {Φk}, as introduced in 4.3.1. Namely

ω
(0)
2 (x,x′) = −ρ2

0 + ρ0

∞∑
j=1

∞∑
k=1

ajk(Ẽ)Φj(x)Φk(x
′). (4.17)

The ansatz (4.17) automatically satisfies the integral constraint (4.4) because the

first moment (4.12) of each vorticity mode vanishes. Inserting (4.17) into (4.8) and

equating coefficients leads to

βjajk = (∂Ẽ + β) ajk + βδjk (j, k ≥ 1). (4.18)
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Solutions of the homogeneous equation for ajk are unphysical, i.e. they are un-

bounded as Ẽ → −∞, hence only the diagonal elements are non-zero. It follows

that the solution is consistent with the x ↔ x′ symmetry implicit in the definition

of c2(x,x′), see (1.41).

Evidently the inverse temperature β in (4.18) must be regarded as a function of

the scaled energy in the thermodynamic scaling limit, i.e. β = βt(Ẽ) in (4.18). The

diagonal terms in (4.18) can be obtained in terms of the corresponding entropy

St(Ẽ) =

∫ Ẽ

βt(Ê) dÊ,

by direct integration, giving

ajj(Ẽ) = −1− βj exp
(
−(St(Ẽ)− βjẼ)

)∫ Ẽ

−∞
exp

(
St(Ê)− βjÊ

)
dÊ. (4.19)

Inserting (4.17) into the energy equation (4.6), results in

−1

2

∞∑
j=1

ajj
βj

= Ẽ − Ẽ0, (4.20)

where Ẽ0 =
G00 − g0

2
and G00 = ρ2

0

∫
D2

G(x, x̄) dx dx̄.

Inserting (4.19) into the sum in (4.20) results in the linear integral equation

Ẽ − Ẽ0 =
1

2

∞∑
j=1

(
1

βj
+ exp

(
−S(Ẽ)

)∫ Ẽ

−∞
exp

(
S(Ê) + βj(Ẽ − Ê)

)
dÊ

)
. (4.21)

Following PL76, we substitute Wt = exp (St) into (4.21) to give

(
Ẽ − Ẽ0

)
Wt(Ẽ) =

1

2

∞∑
j=1

(
Wt(Ẽ)

βj
+

∫ Ẽ

−∞
Wt(Ê) exp

(
βj(Ẽ − Ê)

)
dÊ

)
. (4.22)

Taking the Fourier transform of (4.22) gives the first order ordinary differential

equation in the transform variable k

i
dŴt(k)

dk
− Ẽ0Ŵt(k) = −1

2

(
∞∑
j=1

ik

βj(βj − ik)

)
Ŵt(k), (4.23)



Chapter 4. Statistical mechanics of point vortices in the thermodynamic limit 137

which can be integrated to give

Ŵt(k) = W0 exp

[
−iẼ0k −

∞∑
j=1

1

4
log

(
1 +

k2

β2
j

)
+

i

2

(
k

βj
− tan−1

(
k

βj

))]
,

(4.24)

where W0 is a normalising constant. Taking the inverse Fourier transform of (4.24)

gives

Wt(Ẽ) =
W0√
2π

∫ ∞
−∞

f1(k; βj) exp
(

i(Ẽ − Ẽ0)k − if2(k; βj)
)
dk, (4.25)

where f1 and f2 are real valued functions given by

f1(k; βj) =
∞∏
j=1

(
1 +

k2

β2
j

)−1/4

, (4.26)

f2(k; βj) =
1

2

∞∑
j=1

(
k

βj
− tan−1

(
k

βj

))
. (4.27)

The corresponding inverse temperature can be written in a form convenient for nu-

merical quadrature as the ratio of the two real integrals

βt(Ẽ) =
W ′
t(Ẽ)

Wt(Ẽ)
= −

∫ ∞
0

kf1(k; βj) sin
(
k(Ẽ − Ẽ0)− f2(k; βj)

)
dk∫ ∞

0

f1(k; βj) cos
(
k(Ẽ − Ẽ0)− f2(k; βj)

)
dk

. (4.28)

It is evident from (4.28) that the limiting thermodynamic curve is completely deter-

mined, up to a shift in the ordinate due to a change2 in Ẽ0, by the distribution of

DITs {βj}. The amplitude function f1(k) decays exponentially as k →∞ rendering

numerical quadrature of (4.28) straightforward.

Using Wt = exp(St), (4.25) is inserted into (4.19), and evaluating the Ê-integral

2For 2D Euler vortices, a change in domain size by a factor µ ∈ R i.e. D → µD results in a shift
Ẽ0 → Ẽ0 − (1/4π) logµ. A similar result is expected for QGSW vortices. In both cases the DITs,
be definition, remain unchanged.
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results allows the diagonal coefficients ajj to be evaluated as

ajj(Ẽ) = − 1∫ ∞
0

f1(k) cos
(
k(Ẽ − Ẽ0)− f2(k)

)
dk

∫ ∞
0

f1(k)(k2 + β2
j )
−1×

(
k2 cos

(
k(Ẽ − Ẽ0)− f2(k)

)
+ βjk sin

(
k(Ẽ − Ẽ0)− f2(k)

))
dk.

(4.29)

The coefficients {ajj} determine the partitioning of the energy into fluctuations

associated with each vorticity mode. In section IV. C. of EAM13 it was shown that

{ajj} have a simple dynamical interpretation in terms of the time-variance of the

projection of the vorticity field ω(x) onto the corresponding vorticity mode Φj(x).

Changes in energy partitioning between the vorticity modes, as Ẽ increases, were

shown to give insight into the nature of the transition between states with and

without a mean flow.

The theoretical results of sections 4.2-4.3 are compared to numerical results for

the QGSW system. To allow for direct comparisons between the QGSW system

considered here and the 2D Euler system considered in EAM13, the same domains

are used in both cases. Consequently, much of the details are the same for both

systems.

The final point in this section concerns (4.25) and (4.28) for large values of λ2.

Recal that the PL76 hierarchy introduced in section 1.3.5 is based on the small

parameter ε = 1/N , N →∞ and thus is only valid when terms smaller than O(1/N)

can be ignored. In particular we require

1

N
� ρ0

λ2
, (4.30)

to be satisfied in order to justifiably use the PL76 hierarchy. So, for example, let us

say we require 1/N to be an order of magnitude smaller than ρ0/λ
2 for (4.30) to be

satisfied. Thus, for λ2 = 4 approximately N = 100 vortices are required, while for

λ2 = 100 approximately N = 3000 vortices are needed
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4.4 Comparison of the vorticity

fluctuation equation with numerical

experiments: QGSW vortices

4.4.1 Domain inverse temperatures in Neumann

ovals

The theoretical results presented in the previous section will now be tested against

numerical results for the QGSW vortex system. Recall from section 1.2.1, that

QGSW dynamics are defined by L ≡ ∇2 − λ2, G0(x,x′) = − 1
2π
K0(λ|x − x′|), with

the Rossby radius λ−1 controlling the range of the interaction. For λ 6= 0, QGSW

dynamics are shorter ranged than the dynamics of 2D Euler vortices, which are

defined by L ≡ ∇2, G0(x,x′) = 1
2π

log(|x− x′|). In the limit λ→ 0 the modified

Helmholtz operator L ≡ ∇2 − λ2 governing QGSW vortices, becomes the Laplace

operator L ≡ ∇2 governing 2D Euler vortices. Note that there is a degree of freedom

in the choice of the free space Green’s function G0 for the 2D Euler system in that

one can add an arbitrary constant – we will exploit this in section 4.4.3. In EAM13

the 2D Euler system was considered and it will also be used in this chapter as a

reference point to investigate the QGSW system.

The first step to compute the theoretical prediction for the density of states

(4.25) and the inverse temperature curve (4.28) for QGSW or 2D Euler vortices is

to calculate3 the DITs {βi} (introduced in section 2.2.1 and reintroduced in section

4.3.1) as was done for the heart domain (2.40) in chapter 2. The domains chosen

in this chapter are from the one-parameter family of Neumann ovals, introduced in

section 3.3.2 and first used in [100] in the context of Hele-Shaw flows. Details of the

modifications of the vorticity mode eigenvalue problem (4.16) for a general conformal

domain are given in appendix A.3.1.

3The DITs may be calculated analytically for the disk (given by zeros of Bessel functions),
but the microcanonical ensemble, defined by the PDF (1.31), is not correct in this case as the
additional invariant of angular momentum has not been incorporated (though could be done so
relatively straightforwardly).
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q = 0.2 q = 0.6 q = 0.9

Figure 4.1: Examples of the family of Neumann oval domains of area π, generated
by the conformal map (A.11) for q = 0.2, 0.6 and 0.9.

Recall from section 3.3.2 that the conformal map from the unit circle C in the

Z-plane to the Neumann oval D in the z-plane is given by (3.17), namely

z = F (Z) =
a(q)Z

1− q2Z2
, a ∈ R.

This family of domains varies, as shown in figure 4.1, from a single cylinder, centre

the origin (when q → 0), to two separate cylinders touching at the origin (when

q → 1). As expected, varying the parameter q alters the distribution of DITs. The

two domains used in this chapter are defined by q = 0.3 and q = 0.8, and contour

plots of these vorticity modes and corresponding DITs for the 2D Euler system (i.e.

λ2 = 0) are shown in figure 4.2. Recall that for the QGSW system (i.e. λ 6= 0) the

DIT spectrum is shifted by −λ2/ρ0 relative to the 2D Euler system DIT spectrum.

The vorticity modes remain unchanged. The significantly different distributions of

DITs in the q = 0.3 domain compared to the q = 0.8 domain will be key in explaining

the different structures of density of states and inverse temperature curve that will

be seen later in this chapter.



Chapter 4. Statistical mechanics of point vortices in the thermodynamic limit 141

β1 = −42.61

β2 = −46.15

β3 = −51.02

β4 = −83.32

β1 = −36.41

β2 = −70.51

β3 = −91.35

β4 = −91.89

q = 0.8q = 0.3

Figure 4.2: Left: Contour plots of the first four vorticity modes Φj(x) (j = 1, 2, 3, 4)
and corresponding DITs βj (to 4 sig. figs.) for the q = 0.3 Neumann oval domain.
Right: as left for the q = 0.8 Neumann oval domain. In both cases black contours

are positive and grey contours are negative.
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4.4.2 Calculation of the constants G00 and g0

With the DITs calculated in the previous section, the next step in evaluating

(4.25) and (4.28) is to calculate the constant Ẽ0, as defined by G00 and g0

G00 = ρ2
0

∫
D2

G(x, x̄) dx dx̄, (4.31)

g0 = ρ0

∫
D
g(x,x) dx, (4.32)

where G is Green’s function of the first kind for the domain (defined by (1.3)) and

g is the residual Green’s function (defined by (1.4)). The double integral (4.31) is

straightforward to compute for both the 2D Euler system and the QGSW system

using the appropriate vorticity mode basis and the completeness relation definition

of the Green’s function

G(x, x̄) =
∞∑
j=0

Φj(x)Φj(x̄)

ρ0βj
,

which leads to

G00(x, x̄) =
∞∑
j=0

ρ0

βj

(∫
D

Φj(x) dx

)2

. (4.33)

To demonstrate convergence of the above calculation figure 4.4 shows the error rela-

tive to the highest resolution computed of G00 for q = 0.8, λ2 = 0 (dark grey dots),

4 (black diamonds), 100 (light grey squares). Note that after N ≈ 35 the errors

in all three curves in figure 4.4 are very similar. This is as expected since all three

calculations for (4.33) are effectively the same, since the DITs {βj} for λ 6= 0 are

simply shifted by −λ2/ρ0 relative to the λ = 0 DITs. The differences forM . 35 are

evidently due to the non-convergence of the DITs at these resolutions (see appendix

A.4). The final values of (4.33) for the domains and values of λ2 considered in this

chapter are given in table 4.1.
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Figure 4.3: Convergence of the constant G00 (relative to G00 calculated with the
highest resolution grid of N ×M = 70× 140) with the number of grid points for the
q = 0.8 Neumann oval for λ2 = 0 (dark grey dots), λ2 = 4 (black diamonds), and

λ2 = 100 (light grey squares).

G00 λ2 = 0 λ2 = 4 λ2 = 36 λ2 = 100
q = 0.3 -0.03926 -0.02384 -0.006133 -0.002574
q = 0.8 -0.02342 -0.01701 -0.005529 -0.002437

Table 4.1: Values of the constant G00 (to 4 sig. figs.) for λ2 = 0, 4, 36, 100 in
Neumann ovals defined by q = 0.3, 0.8.

For the QGSW system considered in this chapter, the function g appearing in

the integrand (4.32) may be evaluated using the VOR-MFS algorithm, as was done

in section 3.3.3. Namely

g(x,x) = −2
M∑
k=1

αkG0(x,yk), (4.34)

where yk are the MFS charge points (see section 3.2.3), {αk} are the weights de-

termined by the MFS and x is a grid in the Neumann oval D (including boundary

points on ∂D). Note that the pseudo-image method is used for points x near the

boundary – see section 3.2.2 for details.

The integral (4.32) cannot yet be evaluated as the integrand (i.e. (4.34)) is
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singular as |x| → ∂D. This is dealt with in the following way: first, (4.34) is

transformed4 to the unit disc C via the map z = F (Z) with Jacobian |F ′(Z)|2 =

J(R, θ), i.e.

g0(x,x) = ρ0

∫
C
g(x(X),x(X))|F ′(Z)|2 dX, (4.35)

where R ∈ [0, 1] and θ ∈ [0, 2π] are, respectively, the radial and azimuthal coordinates

in C. The singularity in the integrand of (4.35) is now at the boundary of C (i.e.

|X| = 1), but can be removed using an ‘image’ approximation for |X| → 1. This is

done by assuming the contribution to g at the boundary can be approximated by the

logarithmic function g̃C(R) = − 1
2π

log(1−R2), justified since near the boundary the

Bessel function G0 in (4.34) will have a small argument and so the approximation

K0(z) ≈ − log(z/2)− γ, γ = 0.5772 . . . , (4.36)

is valid for small z and can be used. Hence, adding and subtracting g̃C(R)|F ′(Z/|Z|)|2

to the integrand of (4.35) gives

g0(x,x) = ρ0

∫
C
g(x(X),x(X))|F ′(Z)|2 − g̃C(R)|F ′(Z/|Z|)|2 dX

+ρ0

∫
C
g̃C(R)|F ′(Z/|Z|)|2 dX,

then switching to polar coordinates Z = Reiθ in C gives

g0(x,x) = ρ0

∫ 2π

0

∫ 1

0

[g(R, θ)J(R, θ)− g̃C(R)J(1, θ)] RdRdθ

+
ρ0

2

∫ 2π

0

J(1, θ) dθ, (4.37)

where the radial part of the second integral in (4.37) has been evaluated using∫ 1

0
− log(1 − R2)RdR = 1/2. The remaining integrals in (4.37) are now regular

and can be evaluated using the numerical techniques described in appendix A.4.

As for the G00 calculation, to demonstrate the convergence of the g0 calculation

figure 4.4 shows the error relative to the highest resolution computed of g0 for q = 0.8,

4Note that the modified Helmholtz operator used in calculating g is not invariant when confor-
mally mapped.
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Figure 4.4: Convergence of the constant g0 (relative to g0 calculated with the
highest resolution grid of N ×M = 130 × 260) with the number of grid points for
the q = 0.8 Neumann oval for λ2 = 0 (dark grey dots), 100 (light grey squares). All

calculations are done using M = 314 MFS charge points.

g0 λ2 = 0 λ2 = 4 λ2 = 36 λ2 = 100
q = 0.3 0.1604 0.09012 0.03898 0.02343
q = 0.8 0.1995 0.1129 0.04487 0.02585

Table 4.2: Values of the constant g0 (to 4 sig. figs.) for λ2 = 0, 4, 36, 100 in Neumann
ovals defined by q = 0.3, 0.8.

λ2 = 0 (dark grey dots), λ2 = 100 (light grey squares). The values of g0 for the

domains and values of λ2 used in this chapter are shown in table 4.2. For the q = 0.3

values M = 220 MFS charge points were used and for q = 0.8, M = 314. Both these

values of M were determined using the techniques of section 3.2.3.

Note that in the case of 2D Euler vortices, the integrand of (4.32) does not need

to be approximated using VOR-MFS as it can be conformally mapped to C (see (A.7)

in appendix A.2.1) to give

g0 = ρ0

∫
C

(
gC(X,X)− 1

2π
log |F ′(Z)|

)
|F ′(Z)|2 dX, (4.38)

instead of (4.35). The singularity at the boundary is dealt with in the same manner
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as above i.e. by adding and subtracting g̃C(R)|F ′(Z)/|Z|)|2 to (4.38), which leads to

g0 = ρ0

∫ 2π

0

∫ 1

0

[
g̃C(R)(J(R, θ)− J(1, θ))− 1

4π
J(R, θ) log J(R, θ)

]
RdRdθ

+
ρ0

4π

∫ 2π

0

J(1, θ) dθ,

instead of (4.37), which again can be evaluated using the numerical techniques in

appendix A.4.

With the above, Wt(Ẽ) and βt(Ẽ) can now be evaluated.

4.4.3 Statistical sampling of the microcanonical

ensemble using VOR-MFS

We now proceed with the numerical construction of statistical estimates for W (Ẽ)

and β(Ẽ) so that they can be compared to Wt(Ẽ) and βt(Ẽ) as computed in section

4.4.1. The N = 100 vortex system will be considered for λ2 = 0 (i.e. 2D Euler

vortices, whose energy may be computed exactly using the conformally mapped

Hamiltonian (A.12)) and λ2 = 4, 100 (i.e. QGSW vortices whose energy may be

computed approximately using the VOR-MFS algorithm, as in section 3.3.4). As

mentioned in section 4.4.1, in the limit λ → 0 the 2D Euler dynamics should be

recovered from the QGSW system and the energies should be the same. However, a

subtlety arises due to the fact that when λ → 0 the free space Green’s function of

the QGSW vortex, given by (1.7) i.e.

G0(x,x′) = − 1

2π
K0(λ|x− x′|),

does not equal the free space Green’s function for the 2D Euler vortex, given by (1.6)

i.e.

G0(x,x′) =
1

2π
log(|x− x′|).
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In fact

lim
λ→0
− 1

2π
K0(λ|x− x′|) =

1

2π

[
log

(
λ|x− x′|

2

)
+ γ

]
,

where the small argument Bessel function approximation (4.36) has been used. Con-

sequently, the energy computed with (1.7) would be different to the energy computed

with (1.6) in the limit λ→ 0.

Evidently, the meaning of energy in the 2D Euler system is subtlety different to

its meaning in the QGSW system. This is not a dynamically important issue, but

in order to directly compare the QGSW results with the 2D Euler results, an ad hoc

modification must be made to (1.6). The new version of (1.6) will be termed the ‘2D

Euler approximation Green’s function’ and is defined as

Gλ
0(x,x′) =

1

2π
log(|x− x′|) +

1

2π

(
log

λ

2
+ γ

)
. (4.39)

Clearly (4.39) still describes 2D Euler dynamics, since it satisfies ∇2G0(x,x′) =

δ(x−x′) i.e. adding a constant to the streamfunction of 2D Euler vortices does not

change the dynamics.

When (4.39) is used to calculate the energy in (1.2), the final result is that the

domain independent constant Cλ is added to H i.e.

H → H + Cλ

where Cλ = Γ2
iN

1

2π

(
log

λ

2
+ γ

)
,

(recall Γi is the circulation of the ith vortex, taken to be ±1/N in this thesis).

Consequently, in the limit λ → 0 the QGSW energy tends to the 2D Euler energy,

as required. Clearly Cλ → −∞ as λ → 0, though logarithmically: for λ = 10−16,

Cλ ≈ −0.03. Note that now 2D Euler energies can only be given relative to a single

QGSW energy, as Cλ is calculated for a certain value of λ.

Before proceeding with the statistical sampling of vortices, note that, as men-

tioned in section 2.5, the evaluation of Bessel functions on most workstations, as

performed by Matlab, is approximately one to two orders of magnitude slower than

the evaluation of logarithmic functions. Consequently, calculations for the QGSW
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systems are not as well-converged as those for the 2D Euler system. As will be seen

later, reasonably strong conclusions can still be drawn.

4.4.4 Constructing probability density functions

from the microcanonical ensemble

With the information given above and general details in section 1.3.3, statistical

sampling of the uniform distribution can be approached. Calculation of probability

density function (PDFs) of the density of states has been done previously in [18] and

EAM13 for 2D Euler vortices, and convergence has been observed for relatively low

numbers of vortices (O(100) or less). The approach here is as follows: a sample of

N vortex configurations is repeatedly taken out of a very large number of uniformly

random positions within D (50 vortices have Γi = 1/N and 50 have Γi = −1/N).

For each sample the energy is calculated, and hence W and W ′ are constructed using

kernel density estimation [105]: for Q samples of the energy {Ei} (i = 1, . . . , Q), the

estimates are constructed using Gaussian kernels (i.e. K(x) = 1√
2π

∫∞
−∞ e

−x2/2 dx)

and are given by

W (Ẽ) =
1

σQ
√

2π

Q∑
i=1

exp

(
−(Ẽ − Ẽi)2

2σ2

)
, (4.40)

W ′(Ẽ) = − 1

σQ
√

2π

Q∑
i=1

(Ẽ − Ẽi)
σ2

exp

(
−(Ẽ − Ẽi)2

2σ2

)
, (4.41)

where σ is the kernel ‘bandwidth’. There is a considerable body of literature (e.g

[105, 120]) on the choice of σ, though a heuristic method is sufficient for many pur-

poses. Clearly too large a value of σ can obscure important features of the PDF

(‘oversmoothing’), while too small a value leads to random fluctuations in the PDF

due to variations between particular samples and not the underlying structure of

the data (‘undersmoothing’). A suitable strategy is to start with a large σ, and

the decrease it until fluctuations that are more ‘random’ than ‘structural’ start to

appear.

In some cases it is desirable to have a more automated technique for choosing σ

(e.g. based on the sample size and standard deviation), though even then it is still
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worthwhile to try smaller values of σ and perform the visual checks described above.

One well-established technique for automatically determining σ is the so-called ‘nor-

mal scale’ (NS) bandwidth selector [105], which assumes that the underlying data

has a Gaussian structure, then the ‘ideal’ normal scale bandwidth, σNS, is given by

σNS =

[
8
√
πR(K)

3[µ2(K)]2
1

Q

]1/5

std({Ẽi}), (4.42)

where std({Ẽi}) is the standard deviation of the sample energies {Ei}, and R(K)

and µ2(K) are defined, for a given the kernel K, by

R(K) =

∫ ∞
−∞

[K(x)]2 dx,

µ2(K) =

∫ ∞
−∞

x2K(x) dx.

For the Gaussian kernels used here, R(K) = 1/2
√
π and µ2(K) = 1, meaning (4.42)

becomes

σNS ≈ 1.06 Q−1/5 std({Ẽi}). (4.43)

Equation (4.43) is widely accepted as a good first choice for the bandwidth (with

further alterations done ‘by eye’) for unimodal, approximately normal distributions,

such as those we are expecting for the density of states (4.40).

To understand the significance of σNS, consider the microcanoncial ensemble

consisting of Q = 1.6 × 105 samples of N = 100 2D Euler vortices (λ2 = 0) in

the q = 0.3 Neumann oval. The left hand panel of figure 4.5 shows the density of

states PDFs (4.40) for 2D Euler vortices as computed from all 1.6×105 samples, and

bandwidths σ = σNS (black) and σ = σNS/8 (grey) – in other words, Q and std{Ẽi}

are the same for both PDFs. Though there are noticeable random fluctuations for

σ = σNS/8, the qualitative structure of the PDF is the same as for σ = σNS. The

right hand panel of figure 4.5 shows the same as the left panel for the microcanonical

ensemble of λ2 = 100 QGSW vortices (again N = 100, Q = 1.6× 105 and q = 0.3).

Similar conclusions may be drawn as for the left panel. Further, comparing the two

panels of figure 4.5, reducing σ seems to have a similar affect in terms of the relative
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size of the random fluctuations for both values of λ2. Similar behaviour is observed

for N = 200, N = 1000 and for intermediate values of λ2, as well as for the q = 0.8

Neumann oval.

The practical consequence of the above analysis is that using Q = O(105) and

σ = σNS as a starting point for ‘by eye’ smoothing gives PDFs of (4.40) that are

sufficiently convergent for our purposes. Tables 4.3 and 4.4 show the values of σNS

(to 4 sig. figs.) that will be used for the PDFs later in this section. Note that there

has been significantly less work done on techniques to automatically choose σ for

distributions like βt = W ′
t/Wt. Consequently, for figure 4.10 values of σ were chosen

on a more empirical basis.
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Figure 4.5: (Left) The density of states PDF (4.40) for the 2D Euler system with
N = 100 in the q = 0.3 Neumann oval, computed from Q = 1.6 × 105 samples and
smoothed using σ = σNS (black) and σ = σNS/8 (grey). (Right) As for left for the

QGSW system with λ2 = 100.
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max{σNS} × 10−3

N = 100 3.221

λ2 = 0 N = 200 3.178
N = 1000 3.158
N = 100 2.643

λ2 = 4 N = 200 2.625
N = 1000 2.623
N = 100 1.478

λ2 = 36 N = 200 1.453
N = 1000 1.441
N = 100 0.9983

λ2 = 100 N = 200 0.9600
N = 1000 0.9485

Table 4.3: The normal scale bandwidth values for Gaussian kernels σNS (4.43) that
were used for the PDFs for the Neumann oval defined by q = 0.3, for λ2 = 0, 4, 36

and 100.

max{σNS} × 10−3

N = 100 2.929

λ2 = 0 N = 200 2.912
N = 1000 2.904
N = 100 2.545

λ2 = 4 N = 200 2.521
N = 1000 2.511

Table 4.4: As for table 4.3 for q = 0.8 Neumann ovals.

4.4.5 Results

Figure 4.6(a) compares the theoretical predictions Wt(Ẽ) (4.25) (dashed grey)

with the numerical reconstructions W (Ẽ) (4.40) using N = 100 (red), N = 200

(blue) and N = 1000 (green), for the 2D Euler system and the QGSW system with

λ2 = 4 as indicated, for the q = 0.3 Neumann oval (shown). Figure 4.6(b) is the

same as Figure 4.6(a) for the q = 0.8 Neumann oval (also shown). In each case,

(4.25) is a plausible limiting curve for the convergence of the (4.40) as N increases.

Figures 4.7-4.9 compare the theoretical prediction Wt(Ẽ) (grey dashed) with nu-

merical reconstruction W (Ẽ) for the QGSW system for N = 100 (black), N = 200

(blue) and N = 1000 (green), in the q = 0.3 Neumann oval. In particular, figure

4.7 shows λ2 = 100, figure 4.8 shows λ2 = 4 and figure 4.9 is the intermediate value

λ2 = 36. Also shown in all three figures are the theoretical curves WET (Ẽ) (4.58)
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(black) as derived in appendix 4.A (using theory from [43]), which are valid for large

λ. Note the different axes in all three figures.

Before analysing figures 4.7-4.9, recall from section 4.3.2 that for a given value of

λ2, the validity of Wt(Ẽ) as a limiting expression for W (Ẽ) depends on the value of

N used to calculate W (Ẽ). In particular, we require the condition (4.30) (namely

1/N � ρ0/λ
2) to be satisfied. For λ2 = 100 (figure 4.7), at N = 1000 (green), 1/N

is only approximately three times smaller than ρ0/λ
2 (for N = 100, 1/N is actually

greater than ρ0/λ
2), and so, as expected, Wt(Ẽ) fails to predict W (Ẽ). It should be

noted that the rate of convergence of W (Ẽ) in terms of N is significantly slower for

the λ2 = 100 shown in figure 4.7 compared to that for λ2 = 4, as shown in figure 4.8.

Consequently, in the case of λ2 = 100, computing W (Ẽ) using N > 1000 would be

expected to give results increasingly closer to Wt(Ẽ).

Figure 4.8 shows the results for λ2 = 4. In this case, even at N = 100 (red) the

condition (4.30) is easily satisfied, with 1/N begin approximately ten times smaller

than ρ0/λ
2. Consequently, as should be expected Wt(Ẽ) is a good candidate limiting

curve of W (Ẽ).

Figure 4.9 is the intermediate case with λ2 = 36. At N = 100 (red), the condition

(4.30) is not satisfied as 1/N ≈ ρ0/λ
2 and Wt(Ẽ) is a poor prediction for W (Ẽ). At

N = 1000 (green), 1/N is approximately ten times smaller than ρ0/λ
2 and Wt(Ẽ) is

a plausible limiting curve for W (Ẽ).

From figures 4.7-4.9, we can postulate that for a given λ2, the number of vortices

N required in computing W (Ẽ) such that the theoretical prediction Wt(Ẽ) is a

plausible limiting curve is

N ≈ 10
λ2

ρ0

. (4.44)

For λ2 = 4, (4.44) suggests as few as N ≈ 100 vortices are required, while for

λ2 = 100, N ≈ 3000.

The large λ theoretical curves WET (Ẽ) (4.58) (black), as derived in appendix

4.A, behave as expected. From figure 4.8 we see that at λ2 = 4, WET (Ẽ) is not valid.

As shown in figure 4.7, for λ2 = 100 WET (Ẽ) has become an improved prediction for

W (Ẽ).
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Comparing the density of states for λ2 = 0, 4, 36 and 100 in figures 4.6-4.7 in

both domains, it is evident that the median energy is shifting to a higher positive

value and the standard deviation is reducing as λ2 increases. This is due to the

decreasing range of interaction of the QGSW system, as controlled by λ2. In the

case of λ2 = 100 the system is so short ranged that each vortex is only interacting

with other vortices that are in very close proximity, and thus the influence of images

(i.e. the boundary) is drastically reduced. Consequently most of the vortices behave

as if they are in an unbounded domain, which is consistent with the close-to-Gaussian

PDFs with median tending to zero, shown in figure 4.7.

An alternative test is to compare theoretical results for the inverse temperature

curve (4.28) with the numerical reconstruction given by the quotient (4.41)/[N×(4.40)].

This is shown in figure 4.10 for the same four configurations (λ2 = 0, 4 and q =

0.3, 0.8) as in figure 4.6. There is reasonable agreement in all four cases, for low

positive and negative energy. For large positive energy where the number of samples

is scarce, the kernel bandwidth σ causes significant bias to the curves, as can be seen

by the oscillatory structure.

4.5 Conclusion

In this chapter the point vortex system was studied in the thermodynamic limit.

The theoretical results of [45] have been generalised for any (appropriate) type of

dynamics and the VOR-MFS algorithm of chapter 3 has been employed to verify

theoretical predictions for the case of the QGSW vortex.

The main results are summarised by the following points.

1. In section 4.2 new analytical expressions for the density of states Wt(Ẽ) (equa-

tion (4.25)) and the inverse thermodynamic temperature βt(Ẽ) (equation (4.28))

were derived for a generalised vortex. These expressions are valid for low posi-

tive and negative energies where there is no mean flow and the distribution of

vortices is close to uniform. Numerical evaluation of these analytical expres-

sions were carried out in section 4.3.

2. To investigate the analytical expressions described in point 1, statistical sam-



Chapter 4. Statistical mechanics of point vortices in the thermodynamic limit 154

−0.2 −0.15 −0.1 −0.05 0 0.05
0

2

4

6

8

10

12

14

16

18

λ
2 = 0 λ

2 = 4

Energy Ẽ
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Figure 4.6: (a) Statistical reconstruction of the density of states W (Ẽ) (4.40) with
N = 100 (red), N = 200 (blue), N = 1000 (green) and the corresponding low E
theoretical prediction Wt(Ẽ) (4.25) (grey dashed) for the 2D Euler system i.e. λ2 = 0
and QGSW vortices at λ2 = 4 as indicated for the q = 0.3 Neumann oval shown to

the right. (b) as for (a) for the q = 0.8 Neumann oval (shown).



Chapter 4. Statistical mechanics of point vortices in the thermodynamic limit 155

−0.06 −0.05 −0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04
0

5

10

15

20

25

30

35

40

45

Ẽ
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Figure 4.7: Statistical reconstruction of the density of states W (Ẽ) (4.40) for
N = 100 (black), N = 200 (blue) and N = 1000 (green) QGSW vortices at λ2 = 100,
along with corresponding low E theoretical predictions Wt(Ẽ) (4.25) (grey dashed)
from section 4.4 and the Edwards-Taylor large λ2 theoretical predictions WET (Ẽ)

(4.58) (red) from appendix 4.A, for the q = 0.3 Neumann oval.
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Figure 4.8: As for figure 4.7 for λ2 = 4. Note that the axes differ from figure 4.7.
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(Ẽ

)

 

 

λ
2 = 36

N = 100
N = 200
N = 1000
§4.4 Theory ( low E , small λ)
§4.A Theory ( lar ge λ)

Figure 4.9: As for figures 4.7 and 4.8 for λ2 = 36. Note that the axes differ from
figures 4.7 and 4.8.



Chapter 4. Statistical mechanics of point vortices in the thermodynamic limit 158

−0.15 −0.1 −0.05 0 0.05 0.1
−80

−60

−40

−20

0

20

40

Energy Ẽ
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Figure 4.10: (a) Statistical reconstructions of β(Ẽ) for N = 100 vortices (stars)
and corresponding theoretical predictions (solid lines) for a 2D Euler vortex (black)
and a QGSW vortex (λ2 = 4, grey) for the q = 0.3 Neumann oval shown to the right.

(b) as for (a) for the q = 0.8 Neumann oval.
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pling of the QGSW system was effected in section 4.4. The VOR-MFS algo-

rithm of chapter 3 proved to be an effective method with which to construct

finite N statistical estimates of the density of states and the inverse temper-

ature curve. Note that the validity of the analytical expressions for a given

Rossby radius λ−1 depends on the number of vortices N used in constructing

the statistical estimates. In particular, the results form figures 4.7-4.9 and the

condition (4.30) (namely 1/N � ρ0/λ
2), imply that the statistical estimates

should be computed using (4.44), i.e. using N ≈ 10λ2/ρ0 vortices, in order for

the theoretical expression Wt(Ẽ) to be valid. For λ2 = 4, N ≈ 100 is sufficient,

while for λ2 = 100, N ≈ 3000 would be required. As described in section 3.2.4,

there are significant computational costs to using larger N (though paralleli-

sation would help), though this is something that could be pursued in future

work.

3. Alternative theoretical expressions for the density of states WET (Ẽ) (equation

(4.58)) and inverse thermodynamic temperature βET (Ẽ) (equation (4.59)) are

derived in appendix 4.A, based on the work of Edwards & Taylor [43]. These

expressions are valid in the limit of large λ, and were also tested against the

finite N statistical estimates of the density of states for various values of λ,

and by λ2 = 100 are becoming an increasing plausible limiting curve.

4. The importance of the DITs, {βi}, in describing the system is demonstrated

again, following on from their key role in the solutions of the elliptic-sinh equa-

tion in the hydrodynamic limit as considered in chapter 2. Comparing the two

Neumann oval domains for the 2D Euler system (λ2 = 0) the significantly dif-

ferent structures of the inverse temperature curves βt(Ẽ) (and to a less striking

extent the density of states Wt(Ẽ)) are controlled by the different DIT dis-

tributions. For the QGSW system, the DITs of a certain domain are simply

shifted by the constant −λ2/ρ0 relative to 2D Euler DITs for the same domain.

Therefore, for a given domain and moderate value of λ2, the distribution of 2D

Euler DITs is similar to the distribution of QGSW DITs. Hence, as might be

expected, the qualitative properties of the curves, such as the inverse thermo-

dynamic temperature achieving a minimum for the q = 0.8 Neumann oval (see
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figure 4.10), are the same for the QGSW system and for the 2D Euler system.

In other words, since the qualitative properties of the theoretical curves are

controlled by the distribution of DITs, and since the distributions are similar

for the QGSW λ2 = 4 and the 2D Euler vortex, the theoretical curves for these

two systems are qualitatively similar.

For very large values of λ2, the influence of the domain is drastically reduced

and the QGSW DIT distribution is significantly different than the distribution

for the 2D Euler system. An investigation into the affect this has on the density

of states and the inverse thermodynamic temperature is underway and some

theoretical details are given in appendix 4.A.

In EAM13, the 2D Euler version of the theoretical results of sections 4.2 and 4.3

compare well with DNS of the N = 100 vortex system. It is not straightforward

to construct the inverse temperature curve βt(Ẽ) from a set of runs at fixed Ẽ.

Instead the vorticity fluctuation ω2 can be projected onto the vorticity modes and

comparisons were made between dynamical runs, the microcanonical ensemble and

theoretical predictions. As mentioned in section 2.5, even at moderate value of N

(e.g. N = 100) DNS of the QGSW system using VOR-MFS would require significant

speed improvements to the algorithm, due to (a) Bessel functions being slower to

evaluate than logarithmic functions and (b) longer integration times required to

achieve equilibrium for the QGSW system as a result of slower vortex speeds. If

these improvements could be made, the QGSW theory could be further compared

with the DNS in the same manner as EAM13.

While the theoretical results of this chapter were derived for a generalised dy-

namics, verification was performed using the QGSW system introduced in section

1.2.1. The flexibility of the VOR-MFS algorithm should allow the SQG system, also

introduced in section 1.2.1, to be considered in the same manner.

It is also noted that the theoretical results of Edwards & Taylor [43] and Taylor

[110] have relevance to the QGSW system considered in this chapter. In the context

of 2D plasmas, they consider a ‘finite-range’ Coulomb potential i.e. using the free

space Green’s function G0(x,x) = K0(λ|x − x′|). For fixed λ they take the limit

|D| → ∞, to give a system independent of the boundary. It can be seen that this
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is equivalent to fixing |D| and taking the limit λ → ∞ i.e. a system with such

short-ranged interactions that it is not influenced by the boundary. They derive a

number of thermodynamic quantities including an equation of state (analogous to

the ideal gas equation in classical statistical mechanics) and hence an expression

for the inverse thermodynamic temperature. A brief overview of the modifications

required to the theory in [43] so that it can be used in the framework presented here

is given in appendix 4.A.

4.A Edwards-Taylor theory

In this appendix an overview of the modified version of the theory of Edwards &

Taylor [43] is given, which is valid for QGSW vortices in the large λ limit. Expressions

in this limit will be denoted by the subscript ET below.

The key part of the theory of [43] that we are interested in involves approximating

the summation in their eqn. 13 by an integral (which can be evaluated analytically).

In the framework used here, this translates to approximating the infinite sum on the

right hand side of the ordinary differential equation for the density of states (4.23)

i.e.

i
dŴt(k)

dk
− Ẽ0Ŵt(k) = −1

2

(
∞∑
j=1

ik

βj(βj − ik)

)
Ŵt(k).

This may be done using Weyl’s law [3] (stated explicitly below for the Laplacian

operator) which can be used to determine the asymptotic distribution of the QGSW

DITs for large λ: first consider the standard Laplace eigenvalue problem in a domain

D (area |D|),

∇2Ψj = −αjΨj, Ψj = constant on ∂D, (4.45)

with eigenvalues αj > 0. Weyl’s law [3] states that, at leading order, the asymptotic

distribution of Laplace eigenvalues satisfies

lim
j→∞

j

αj
=
|D|
4π

. (4.46)
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Next consider the QGSW vorticity mode eigenvalue problem

(∇2 − λ2)Φj = βjΦj, Φj = constant on ∂D, (4.47)

with DITs βj < 0. The two eigenvalue problems (4.45) and (4.47) are related (see

section 4.3.1) by

βj = −π(αj + λ2),

which when combined with (4.46) gives the asymptotic distribution of the DITs in

the QGSW problem (with domain area |D| = π) to be

lim
j→∞

βj = −π(4j + λ2). (4.48)

Figure 4.11 compares (4.48) to the DITs of the q = 0.3 Neumann oval computed at

resolutions N×M = 20×40, 30×60 and 40×80. The ‘dropping off’ of the computed

DITs relative to the Weyl’s law is due to a lack of resolution in the computational

grids.

For large λ, the sum in (4.23) will be dominated by large βj and using (4.48) we

can replace the sum with an integral, retaining accuracy at leading order i.e.

i
dŴET (k)

dk
− Ẽ0ŴET (k) = − ik

2
ŴET (k)

∫ ∞
1

1

(4πs+ πλ2)(4πs+ πλ2 − ik)
ds.

(4.49)

Note that the lower limit of the integral in (4.49) is only correct to leading order:

considering the next order term in the Weyl’s expansion could give a more accurate

approximation of the summation.

The integral on the right hand side of (4.49) is evaluated to give

i
dŴET (k)

dk
− Ẽ0ŴET (k) = − 1

8π
ŴET (k) log

(
1 +

ik

Λ

)
, (4.50)
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asymptotic distribution of DITs to the DITs calculated numerically at resolutions
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where Λ = π(4 + λ2). The ordinary differential equation (4.50) is solved to give

ŴET (k) = W̃0 exp Λ

(
−i

(
Ẽ0 +

1

8π

)
k

Λ
+

1

8π

(
1 +

ik

Λ

)
log

(
1 +

ik

Λ

))
, (4.51)

where W̃0 is a normalisation constant. Taking the inverse Fourier transform of (4.51)

gives

WET (Ẽ) =
W̃0√
2π

∫ ∞
−∞

exp

[
Λ

(
i

(
Ẽ − Ẽ0 −

1

8π

)
k

Λ

+
1

8π

(
1 +

ik

Λ

)
log

(
1 +

ik

Λ

))]
dk

= W0

∫ ∞
−∞

exp
[
Λ̃
(
i(ẽ− 1)z + (1 + iz) log(1 + iz)

)]
dz, (4.52)

where ẽ = 8π(Ẽ − Ẽ0), Λ̃ = Λ/8π and z = k/Λ. Equation (4.52) is identical to eqn.

14 in [43], and as in [43], can be evaluated using the method of steepest descents. To

do this we use the following result for integrals involving analytic functions

I(Λ) =

∫
C

eΛg(z) dz,

for some analytic function g(z). If g(z) has a saddle point at z0, where g′(z0), and

the contour C can be deformed to pass through z0 on the steepest descent path (on

which ={g(z)}=constant), then the asymptotic form for I is

lim
Λ→∞

I(Λ) =

(
2π

Λ

)1/2
eΛg(z0)

(−g′′(z0))1/2

(
1 +O(Λ−1)

)
. (4.53)

For our specific case (i.e. (4.52)),

g(z) = i(ẽ− 1)z + (1 + iz) log(1 + iz), (4.54)

and so the first task in evaluating (4.53) is to calculate z0. This is done by

g′(z0) = i(ẽ− 1) + i + log (1 + iz0) = 0

⇒ z0 = i(1− e−ẽ). (4.55)
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Substituting (4.55) into z in (4.54) gives

g(z0) = 1− e−ẽ − ẽ, (4.56)

and similarly for the second derivative

g′′(z0) = − 1

1 + iz0

= −eẽ. (4.57)

Substutiting (4.56) and (4.57) into (4.53) gives the leading order behaviour of (4.52)

to be

WET (Ẽ) = W1 exp
(

Λ̃
(
1− e−ẽ − ẽ

)
− ẽ/2

)
,

or, in terms of our original variables

WET (Ẽ) = W2 exp

(
4 + λ2

8

(
1− e−8π(Ẽ−Ẽ0) − 8π(Ẽ − Ẽ0)

)
− 4π(Ẽ − Ẽ0)

)
,

(4.58)

(where W1 and W2 are normalisation constants) and hence the inverse thermody-

namic temperature is

βET (Ẽ) = (4 + λ2)π
(
e−8π(Ẽ−Ẽ0) − 1

)
− 4π. (4.59)

Both (4.58) and (4.59) are valid for large λ. These expressions are tested against

numerical reconstructions in section 4.4.3.



Chapter 5

Oscillations of the point vortex

system between meta-stable states

5.1 Introduction

For the point vortex system at equilibrium there are two1 equivalent states of

vorticity, both of which are maximum entropy solutions and are identical but for a

switch in the sign of vorticity i.e. equilibrium solutions occur in plus/minus pairs.

Consider a bounded vortex system in the hydrodynamic limit, dominated by the

mean flow with two equivalent equilibrium states (referred to as meta-stable states),

such as that shown for the Neumann oval shown in figure 5.1. Since the two meta-

stable states are both maximum entropy solutions they are both equally likely to be

realised in a dynamical simulation. For extremely long-time simulations the system

is assumed to be ergodic (see section 1.4.1) and thus it is expected to spend equal

times in each meta-stable state meaning the vorticity of the system must theoretically

flip from one state to the other. However, in certain cases the time scale over which

these flips occur will be too long to be observed in a simulation.

1This is excluding the results of chapter 2, where in the heart domain, at E = Ec there are four
equally likely equilibrium states: two corresponding to the dipolar solutions and two corresponding
to the monopolar solution.
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≡

(a) (b)

Figure 5.1: Two equivalent streamfunctions in the Neumann oval domain defined
by q = 0.8. Positive contours are black and negative contours are grey.

This short chapter will investigate the oscillation of vorticity between meta-stable

states in the Neumann oval domain. Similar phenomena was predicted in [27] and

verified numerically in [89], though a different approach is taken here. Although the

oscillatory phenomena will occur in the heart-shaped domain studied in chapter 2

(and likely other domains as well), the high curvature of the Neumann oval as the

parameter q → 1 leads to particularly clear results. The system will be investigated

using microcanonical sampling in section 5.2.2 and using direct numerical simulations

in section 5.2.3. In section 5.3 conclusions are drawn and possible extensions to the

work are suggested.

5.2 Meta-stable states in the Neumann

oval

5.2.1 The centre of vorticity diagnostic

Before proceeding with the calculations, recall from section 1.3.2 how the macro-

scopic behaviour of the point vortex system changes as energy is increased: starting at

high negative energies (i.e. E → −∞), the system is characterised by opposite-signed

pairs. As energy increases towards E = 0 the opposite-signed pairs break up until

the vorticity is uniform across the domain. Then, as energy increases (E →∞) like-

signed clusters form, with the size of the cluster increasing as the energy increases.

Oscillations of vorticity between meta-stable states occur in this high positive energy
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state and can be characterised using the following macroscopic diagnostic2

X =
N∑
i=1

Γixi =
1

N

N∑
i=1

sgn(Γi)xi, (5.1)

with X > 0 corresponding to positive vorticity in the right-hand lobe and negative

vorticity in the left-hand lobe (i.e. figure 5.1(a)) and vice-versa for X < 0 (figure

5.1(b)). Below it will be seen that when X persistently remains bounded away from

zero, the system is in one of the two meta-stable states and a change in sign indicates

an oscillation from one state to the other. On the other hand, when X is persistently

close to zero the vorticity distribution is close to uniform and there are no large-scale

oscillations of vorticity between the lobes. The variable X can be regarded as the x-

coordinate of the centre of vorticity of the system and was previously used in section

2.4.5 to diagnose DNS in the heart domain at dipolar (effectively the same use as

in this chapter). Also, as stated in section 2.4.5, (5.1) is effectively a non-conserved

version of the linear impulse in the x direction, referred to as P in section 1.2.2.

A final point is made about how ensemble averages relate to the time averages of

the diagnosticX. To verify equilibrium statistical mechanics, it is usually desirable to

run DNS for the longest time that is feasible, and then take averages of macroscopic

quantities which can be compared to microcanonical ensemble averages. However,

one must be careful of doing so here as even if the system is at a sufficiently high

energy for large scale oscillations between meta-stable states to occur, for sufficiently

long-time DNS the time average of (5.1) i.e. X(t) will be zero, as the system will

have spent equal times in each meta-stable state. What we are actually interested

in here are intermediate-time averages that correspond to the system being stuck in

one meta-stable state or the other.

2The projection of the vortex positions onto the maximum entropy vorticity mode could also be
used.
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5.2.2 Statistical sampling of the microcanonical

ensmble

As described in section 1.3.3, joint probability density functions can be con-

structed to show the correlation between two macroscopic quantities. Here it is most

instructive to calculate the joint PDF between the two macroscopic quantities E and

X, both of which require scaling. Let X̃ =
√
NX. We then postulate that

lim
N→∞

p0,N(X̃, Ẽ) = p0(X̃, Ẽ). (5.2)

The scaling on E (i.e. Ẽ = NE) is the same thermodynamic scaling that was used

in chapter 4 and was previously verified numerically in [18, 45]. The scaling on X

may be justified by assuming that the x-coordinates of the vortices are independently

and identically distributed (iid) on D (note that bounded variance is guaranteed as

D is finite). For moderate values of |E| the iid assumption is valid and the central

limit theorem can be applied: consider N̂ vortices placed inside a sub-domain of

the domain D. Under the iid assumption, by the central limit theorem [98] the

distribution of x-coordinates of the vortices is normal and hence the diagnostic X is

also normal, meaning the quantity
√
N̂X tends to a fixed distribution as N̂ → ∞.

Consequently, we postulate that over the whole domain the quantity

X̃ =
1√
N

N∑
i=1

sgn(Γi)xi

also tends to a fixed distribution as N → ∞. Note that for very large positive

energies the iid assumption is not valid as the vortices are strongly biased to form

into tight clusters – the energies considered in this chapter are not high enough for

this to occur meaning the iid assumption and hence the use of the central limit

theorem are valid in justifying the scaling X̃ =
√
NX.

Figure 5.2 shows the joint probability density function p0,N(X̃, Ẽ) for N = 100

vortices in the Neumann oval defined by q = 0.8, as computed using Gaussian kernels

[105] from 107 samples generated by Monte Carlo sampling with bandwidths σX̃ =

8× 10−3 and σẼ = 4× 10−3 (see section 4.4.4). The contour spacing is quadratic for
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clarity. Also shown are the maxima of the PDF (thick black line). From the figure

there are clearly two regimes: for Ẽ . −0.05 the PDF is unimodal (X̃ = 0) and for

Ẽ & 0.05 the PDF is bimodal (X̃ 6= 0). In the bimodal regime, as energy increases,

larger like-signed clusters form in each lobe and the distance between the two modes

of the PDF increases.

Assuming ergodicity, i.e. that the microcanonical ensemble can predict the av-

erage of intermediate-time DNS (see section 5.2.1), the increasing distance between

the two modes of the PDF as the energy increases signifies the decreasing probability

of a switch between the two meta-stable states in a DNS as energy increases. As

expected, since the two modes are symmetric about Ẽ = 0, both meta-stable states

are equally likely to be realised.

Figure 5.3 shows cross sections of the PDF p0,N(X̃, Ẽ) at Ẽ = −0.05, 0, 0.05 for

N = 10, 20, 50 and 100 vortices, all computed with 107 samples. Convergence to the

invariant function (5.2) is evident, even at this relatively low N .

The change in regime from unimodal (corresponding to no oscillations in a DNS)

to bimodal (corresponding to oscillations in a DNS) shown in figures 5.2 and 5.3

is consistent with second order phase transitions, as introduced in section 2.4.2. In

this case, X̃ is the order parameter that defines the different phases: as energy is

increased X̃ changes smoothly from zero in the unimodal phase to non-zero in the

bimodal phase.

In fact in most domains the phase transition from a unimodal regime to a bimodal

regime as the energy is increased will happen, for an appropriate order parameter.

Consider the vortex system in an arbitrary domain: at low energy the distribution

of vorticity will be close to uniform and hence unimodal (order parameter zero). At

high energy the system is forced into one of the two equivalent bimodal configurations

comprising of two well-separated clusters, one of either sign (order parameter non-

zero). As energy increases the like-signed clusters become larger and further apart

from each other. In the q = 0.8 Neumann oval this means that a cluster of one

sign will naturally occupy one lobe while the cluster of the other sign occupies the

other lobe. Due to the high curvature of this Neumann oval, these clusters become

trapped in their respective lobes leading to the situation where the probability of

the clusters switching lobes is unlikely even at relatively low energies. In a domain



Chapter 5. Oscillations of the point vortex system between meta-stable states 171

such as the heart, like-signed clusters will still become trapped in localised regions of

the domain in the same manner as the Neumann oval, though only at significantly

higher energies.

The critical energy at which the two symmetric states occur in an arbitrary

domain is related to the first DIT β1, as introduced in section 2.4.1. In domains

such as the heart, β2,3 are close to β1 leading to a less clear emergence of the two

symmetric states, as mentioned above. There are a number of subtleties to this

phenomena, which are detailed in [44].

X̃

Ẽ

p0,N(X̃, Ẽ)

−3 −2 −1 0 1 2 3
−0.1

−0.05

0

0.05

0.1

Figure 5.2: Joint X̃-Ẽ PDF for the q = 0.8 Neumann oval with N = 100 vortices.
The contour spacing is quadratic and the thick black line indicates the maximum of

the PDF.
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Figure 5.3: Cross sections of the joint X̃-Ẽ PDF for the q = 0.8 Neumann oval
at Ẽ = −0.05 (top), Ẽ = 0 (middle) and Ẽ = 0.05 (bottom), using N = 100 (solid

black), N = 50 (solid grey), N = 20 (dashed black) and N = 10 (dashed grey).

5.2.3 Direct numerical simulation

The predictions from the joint PDF p0,N(X̃, Ẽ) of the previous subsection can be

verified using direct numerical simulations of the vortex system in the same domain3.

Four integrations of N = 100 vortices are performed each at Ẽ = −0.05, Ẽ = 0,

Ẽ = 0.05, using the parameters t = 6000N , ∆t = 0.1N and δ = 10−8; see section

1.2.3 for details. Initial conditions are generated using the Monte Carlo method

described in section 1.3.3.

Figure 5.4 shows the DNS PDFs pD(X̃) (solid black lines) at Ẽ = −0.05 (top),

Ẽ = 0 (middle), and Ẽ = 0.05 (bottom). Each PDF is based on the average of four

DNS runs. Also shown are the normalised cross sections of the joint PDF (dashed

grey lines) from the microcanonical ensemble shown in figure 5.2 at the same energies

i.e. p0,N(X̃, Ẽ = −0.05), p0,N(X̃, Ẽ = 0), p0,N(X̃, Ẽ = 0.05). Qualitative agreement

3This is not verification as in chapters 2 and 4 where DNS and microcanonical sampling were
used to verify the predictions from statistical mechanics. Here the DNS is only confirming the
ergodicity of the system – possible statistical mechanics predictions are discussed in section 5.3.
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between the DNS PDFs and microcanonical ensemble PDFs is observed at all three

energies.

Figure 5.5 shows typical time series of the DNS at Ẽ = −0.05 (top), Ẽ = 0 (mid-

dle), and Ẽ = 0.05 (bottom). As the energy increases the period of the oscillations

also increases, in agreement with the microcanoncial predictions from the previous

section.

5.3 Discussion

This chapter has presented numerical evidence, based on statistical sampling of

the microcanonical ensemble and direct numerical simulations, that oscillations of the

centre of vorticity between meta-stable states can occur in the point vortex system

dominated by the mean flow in the q = 0.8 Neumann oval domain. It was noted that

there are two phases of this system: a high energy phase where vorticity oscillates

between the lobes of the Neumann oval, as characterised by a bimodal vorticity

distribution and a low energy phase where the vorticity is uniform, as characterised

by a unimodal vorticity distribution.

The next step in this problem would be to place the above result more formally

in a statistical mechanics context and hence derive statistical mechanics predictions

for the vorticity that also exhibit the same oscillatory behaviour at the appropriate

energy. Equilibrium statistical mechanics models only provide a basis for calculations

of the probability of the oscillations, while offering no information about their evolu-

tion in time. A suitable alternative way to model the time evolution of an N particle

system is using large deviation statistical mechanics, as reviewed by Touchette [114].

As detailed by Touchette, the outcome of a given macrostate (such as X) should con-

centrate around certain meta-stable values (observed in this chapter) and the proba-

bility of oscillations between meta-stable states should decay exponentially with the

number of vortices.

Touchette outlines a ‘phenomenological’ model for the evolution of the fluctua-

tions in time of a general N particle system. Touchette’s model (summarised below)

is phenomenological in the sense that the dynamics are postulated on the basis of a

number of mathematical and physical principles, rather than being derived directly
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Ẽ

=
0
)
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Figure 5.4: Comparison of the PDFs of centre of vorticity X as computed from
direct numerical simulations (solid black lines) and the microcanonical ensemble
(dashed grey lines) at Ẽ = −0.05 (top panel), Ẽ = 0 (middle panel) and Ẽ = 0.05

(bottom panel).
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Figure 5.5: Typical time series of the centre of vorticity X from direct numerical
simulations at Ẽ = −0.05 (top panel), Ẽ = 0 (middle panel) and Ẽ = 0.05 (bottom

panel).
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from the N -particle system – an extremely difficult (if not impossible) task.

Touchette’s proposed model for the time evolution of a macrostate XN , assumes

that the dynamics satisfy a stochastic differential equation of the form

d

dt
XN(t) = b(XN) + ξN(t), (5.3)

where b(XN) is a restorative force field computed from the statistics of the system

and ξN(t) is a noise term that models the oscillations of XN(t). Some of the key

mathematical and physical principles used in the derivation of (5.3) are:

1. The intensity of the noise ξN(t) should vanish as N → ∞ to reflect the fact

that the oscillations of XN vanish as N →∞.

2. Assuming the oscillations of XN arise from the short-time correlated interac-

tions of the N particles, the noise XN(t) should be chosen to be a Gaussian

white noise with zero mean. In fact the noise term can be decomposed as

ξN(t) = r
dB(t)

dt
,

where r models the size of the fluctuations (as estimated from the statistics of

the system) and dB(t)/dt are increments of a Wiener process, which automat-

ically gives Gaussian white noise [53].

3. The stationary probability distribution of (5.3) should match the equilibrium

probability distribution of XN determined from the microcanonical ensemble

of the N particle system.

Recall that in chapter 4, equilibrium statistical mechanics predictions were de-

rived for the density of states which were valid in the limitN →∞. These predictions

were then verified by observing the convergence, as N increases, of the density of

states computed from the microcanonical ensemble towards the theoretical predic-

tions. Equation (5.3) is a similar type of theoretical prediction and so would be tested

against the DNS of the vortex system (as in figure 5.5) for increasing N , where the

decay of the oscillations, as N increases, should be observable.
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In fact, a stochastic model very similar to (5.3) was used to model oscillations

of vorticity between meta-stable states in the vortex system in [89], though in a less

physically relevant domain than was used in this chapter.

Another interesting avenue of research would be investigating the ‘entropy barrier’

between the two dipole states of the Neumann oval. The two dipole states correspond

to the first branch of the sinh-Poisson equation and they must be separated by an

entropy minimum (or saddle point) creating a barrier of entropy ∆S. Is would be

interesting to find out which state creates the entropy barrier: presumably the second

solution branch of the sinh-Poisson equation. Further, ∆S could be computed as a

function of E, then the lifetime of meta-stable states should scale as eN∆s and the

probability of an oscillation as eN∆s. Such behaviour was predicted in [21] and could

be verified by DNS of the system considered in this chapter. The finite N effects a

long-ranged system, similar to the vortex mode considered here, were considered in

the context of the canonical ensemble in [26].



Chapter 6

Conclusions and future work

The work presented in this thesis concerns the dynamics and statistical mechanics

of N point vortex systems in a variety of bounded domains. Broadly speaking four

main problems have been approached. Chapter 2 considered the 2D Euler vortex

system in the hydrodynamic limit. Chapter 3 introduced a new numerical algorithm

which was subsequently used in chapter 4 to study the QGSW vortex system in the

thermodynamic limit. Chapter 5 used the 2D Euler system to numerically demon-

strate how vorticity can oscillate between localised regions in a left-right symmetric

domain. At the end of chapters 2, 3, 4 and 5 detailed summaries are given and

suggestions for future work that is closely related to the chapter has been discussed.

This chapter will provide a broader overview of the work and also suggest some fu-

ture problems that, while still being complementary, differ significantly from those

already considered in the previous chapters.

In chapter 2 the vortex system in the hydrodynamic limit, dominated by the

mean flow, was considered. The focus of the chapter was on 2D Euler dynamics

where the well-known sinh-Poisson equation (SPE), an elliptic partial differential

equation for the streamfunction, is the key statistical mechanics result. The SPE

has infinitely many solution branches, each with a different streamfunction structure

and each originating at zero energy from a ‘domain inverse temperature’ (DIT); the

branches are found as solutions to a ‘vorticity mode’ eigenvalue problem derived by

linearising the SPE. The entropy of the statistical mechanics predictions can also

be calculated from the solution branches and hence the most probable maximum

entropy solution can be predicted. The full nonlinear SPE was solved, using a new
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numerical technique based on a Galerkin-type expansion, in a domain chosen such

that the solution branches have the potential to cross. It was found that the two

highest entropy solution branches did cross as the energy of the system increased;

hence the topological structure of the most probable solution changed (from a dipole

to a monopole) as the energy increased. This was classified as a condensate switch

phase transition, where the condensate is simply the state of the system dominated

by the mean flow. In order to verify this condensate switch, the N = 100 vortex

system, from which the SPE is derived in the limit N →∞, E=constant, was consid-

ered in the same domain. An ensemble of long-time direct numerical simulations at

different energies was carried out and the time-averaged equilibrium streamfunction

of these simulations were compared with the predicted equilibrium streamfunction

from the SPE solutions. Reasonably Convincing results were observed, verifying the

condensate switch: at low energies the dipolar solution was found and at high en-

ergies the monopolar solution; both as predicted by the SPE. Additionally, at the

critical energy where the two solution branches of the SPE cross, and hence have

equal entropy, the dipolar solution was found in half of the runs and the monopolar

solution was found for the other half.

In chapter 3, a new algorithm (VOR-MFS) was introduced for the calculation

of the dynamics of a generalised vortex. VOR-MFS utilised the method of funda-

mental solutions (MFS) to construct a highly accurate numerical approximation of

the dynamical influence of the boundary on the dynamics of vortices inside a do-

main, using a weighted sum of M fundamental solutions (charges) placed outside

the domain. With appropriate placing of charges, the MFS (and hence VOR-MFS)

achieves exponential convergence, even in complicated domains. Consequently, the

solutions constructed using VOR-MFS are highly accurate, with verification being

carried out using the invariance of the analytical Hamiltonian if available or the

numerical Hamiltonian (and angular momentum in the case of the disk). This was

done for four test cases, including the dynamics of N quasi-geostrophic shallow water

(QGSW) vortices in a Neumann oval domain.

In chapter 4 the vortex system in the thermodynamic limit was considered. In

particular, in the absence of a mean flow the ‘vorticity fluctuation equation’ was de-

rived which is the thermodynamic analogue of the SPE. It transpires that solutions
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of the vorticity fluctuation equation may be constructed using the vorticity modes

introduced in chapter 2 as a basis. Solutions of the vorticity fluctuation equation

allow low positive and negative energy equilibrium predictions to be made for the

density of states and hence for the inverse thermodynamic temperature. In order

to verify these statistical mechanics predictions, and further demonstrate the effec-

tiveness of the VOR-MFS algorithm introduced in chapter 3, the QGSW system in

a Neumann oval was considered. Using statistical sampling of the microcanonical

ensemble, finite N estimates of the density of states and inverse thermodynamic tem-

perature were constructed and compared with the statistical mechanics predictions,

with convincing results.

In chapter 5, the 2D Euler system in the Neumann oval was considered. Using a

suitable macroscopic diagnostic for the distribution of vorticity in the domain, a joint

probability density function with the energy was constructed from the microcanoni-

cal ensemble and it was found that, as the energy increases, the vorticity distribution

changes from unimodal to bimodal where a vortex cluster of one sign becomes in-

creasingly likely to be trapped in one lobe of the Neumann oval while a cluster of

the other sign becomes trapped in the other lobe. This behaviour was verified using

direct numerical simulations where, due to ergodicity, the clusters switch lobes in

an oscillatory manner. The higher the energy the greater the clustering and hence

the longer the period of oscillation. The change in the behaviour of the system as

the energy is increased (and the vorticity distribution changes from unimodal to bi-

modal) is classified as an energy-induced second order phase transition in statistical

mechanics.

From chapters 2 and 4, it should be evident that the vorticity modes and DITs

are a remarkably useful tool for statistical mechanics calculations in a variety of

limits and their significance should be emphasised. The distribution of DITs varies

depending on the shape of the domain and this distribution controls the form of

solutions in the hydrodynamic and thermodynamic limits. Hence, one clear avenue

for future research would be a rigorous mathematical investigation into the behaviour

of the distribution of DITs in general domains. This would likely use techniques from

spectral theory and progress in this area could allow very general observations to be

made regarding the behaviour of the system in multiple limits.
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There are also a number of other possibilities for future research. For example, as

noted in section 1.3.4, in addition to the hydrodynamic and thermodynamic limits,

other limits could conceivably exist which have yet to be explored. Complementary to

the work in chapters 2 and 4, it would be interesting to investigate the transition from

when the system is best described by the thermodynamic limit where the vorticity

fluctuation equation (4.8) applies to when it is best described by the hydrodynamic

limit where the sinh-Poisson equation/elliptic-sinh equation (2.23) applies. This

spontaneous, symmetry breaking as the mean flow emerges has been observed in

2D turbulence and described as Bose condensation; see section 2.4.2. As noted by

PL76, this ‘intermediate scaling regime’ must involve asymptotic matching of the

hydrodynamic limit as E → 0 with the thermodynamic limit as Ẽ →∞.

The Miller-Robert-Sommeria (MRS) theory [84, 85, 101, 102], as introduced in

section 1.4.2, also offers a number of possibilities for future work. The MRS theory

dispenses with the point vortex approximation and instead breaks up the vorticity

into patches which are distributed using Lynden-Bell statistics [79] to find the most

probable state. Unlike the point vortex approximation, the MRS approach enables

all the invariants of the 2D Euler equations to be included, though it is debatable

whether they should be included if we are interested in generic properties of the

system [111]. Interestingly, a number of MRS studies such as [27, 117, 118] also rely

on a set of eigenvalues, analogous to the DITs mentioned above. In the paper by

Yin et al. [124], the following MRS sinh-Poisson analogue was derived and solved in

a doubly periodic domain

∇2ψ = D

[
2 sinh(βψ)

e−α + 2 cosh(βψ)

]
, (6.1)

where D−1 is the (arbitrary) patch size, α is a Lagrange multiplier and β and ψ are,

respectively, the inverse temperature and the streamfunction, as defined in chapter

2. It would be interesting to find out if the crossings of solution branches of the SPE

in the heart-shaped domain considered in section 2.4, and the resulting condensate

switch, also correspond to crossings in the branches of (6.1). Yin et al. also noted

that the structure of the maximum entropy solutions of (6.1) varies depending on

patch size D−1. How this relates to the SPE maximum entropy solutions, particularly
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at the critical energy where two solution branches have the same entropy, would be

of interest.

Another potential extension to the work presented in this thesis would be ‘direct’

comparisons between point vortex statistical mechanics and 2D turbulence. Yin et

al. verified their solutions of the SPE and (6.1) in the doubly periodic domain using

DNS of the full Navier-Stokes equations. Though technically challenging, similar

calculations for the heart domain in chapter 2, and for the Neumann oval in chapter 4,

would provide a stringent test as to the validity of point vortex statistical mechanics

as a model for 2D turbulence.

Finally, it would be interesting to relate the equilibrium statistical mechanics

results presented in this thesis to non-equilibrium statistical mechanics. In equilib-

rium statistical mechanics, statistics of macroscopic quantities are stationary in time,

whereas in non-equilibrium statistical mechanics, time-dependent statistics are de-

rived based on a ‘kinetic theory’ approach. Though equilibrium statistical mechanics

has demonstrated to be an effective model for 2D turbulence, its clear shortcoming

is that this model ignores the dynamical mechanisms that lead to equilibrium, which

can dominate the flow for long times. This shortcoming can be addressed using

non-equilibrium statistical mechanics where the relaxation of point vortices towards

equilibrium is governed by an energy conserving integro-differential equation; see [25]

and references therein1. It would be interesting to use a similar equation to model

the non-equilibrium ‘turbulent spin-up’ period described in section 2.4.5. Here the

non-equilibrium state was simply ignored and a heuristic approach was used to de-

termine when it was over and hence when the equilibrium statistical mechanics could

be justifiably used (see figure 2.9). It would be desirable to have a more complete

description of the system, using both non-equilibrium and equilibrium statistical

mechanics.

1Note that the evolution of the non-energy conserving system of a single test vortex in a bath of
field vortices is governed by the Fokker-Plank equation [22]; incidentally, the evolution of Brownian
vortices as a whole is also governed by the Fokker-Plank equation [24].



Appendix A

Conformal mapping techniques

A.1 Introduction

Conformal mapping techniques have been used throughout this thesis to study

Hamiltonian vortex dynamics (1.2) and elliptic partial differential equations (e.g.

the sinh-Poisson equation (2.11)) in two different families of domains: chapter 3

introduced the Neumann oval (also used in chapter 4) and chapter 2 introduced the

heart-shaped domain. Details of the transformation of the Hamiltonian from the unit

disk to any simply connected domain are given in section A.2.1, with the Neumann

oval used as an example in section A.2.2. In section A.3.1 the mapping theory for a

general elliptic PDE is given, and in section A.3.2 two examples are presented using

the Laplace eigenvalue problem for domains not used in this thesis. Finally section

A.4 details the conformal grids themselves, with respect to their ‘coverage’ of the

domain and their performance in terms of numerical quadrature.

A.2 Green’s function/Hamiltonian

A.2.1 The map

Consider a unit disk domain C in the complex Z-plane with the usual corre-

spondence between C and R2 is taken so that Z = X + iY ∈ C is identified with

X = (X Y )T ∈ R2. As mentioned in section 3.3.1, the exact Hamiltonian H for the
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z = F (Z )

Z = f (z )

Z -plane z -plane

C D

Figure A.1: The conformal map from a unit circle C in the Z-plane to another
simply connected domain D in the z-plane.

motion of N 2D Euler vortices in C is given by (1.2) with

G(Z,Z ′) = GC(Z,Z
′) =

1

2π
log |Z − Z ′| − 1

4π
log

∣∣∣∣Z − Z ′

|Z ′|2

∣∣∣∣ , (A.1)

where the first term isG0(Z,Z ′) (alternatively, the free space interaction of a vortex of

circulation +1 at Z ′) and the second term the de-singularised function gC(Z,Z
′) (al-

ternatively, the contribution due to image vortex of circulation −1 at Z∗ = Z ′/|Z ′|2).

Switching to complex conjugate notation and inserting (A.1) into the Hamiltonian

(1.2) leads to the familiar N vortex Hamiltonian for C

HC
(
Z,Z

)
= − 1

4π

N∑
i=1

N∑
j=i+1

ΓiΓj log
(

(Zi − Zj)(Zi − Zj)
)

+
1

4π

N∑
i=1

Γ2
i log

(
1− ZiZi

)
− 1

4π

N∑
i=1

N∑
j=i+1

ΓiΓj log
((

1− ZiZi
) (

1− ZjZj
)

+ (Zi − Zj)(Zi − Zj)
)
.

(A.2)

The first term in the right hand side of (A.2) corresponds to the free space vortex-

vortex interaction, the second term is the self-interaction for each vortex with its

own image and the third term is the interaction of each vortex with the images of

all the other vortices.

We are concerned here with how the Hamiltonian (A.2) transforms when the
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domain C is conformally mapped to another simply-connected domain D in the z-

plane by the map

Z = f(z), (A.3)

with inverse

z = f−1(Z) = F (Z), (A.4)

see fig. A.1. As with the Z-plane, in the z-plane C corresponds to R2, and z = x+iy

corresponds to x.

As proved in [77] and reviewed in [91,104], in order to construct the Hamiltonian

in the z-plane HD, the Green’s function GD and the de-singularising function gD are

required. The invariance of the Laplace equation under the map (A.3) guarantees

the Green’s function itself is also invariant

GD(x,x′) = GC(f(x),f(x′)) (A.5)

where the vector-valued function X = f(x) is the R2 expression of (A.3).

The function gD does, however, change under the mapping (A.3). By definition

gD(x,x′) = GD(x,x′)− 1

2π
log |x− x′|

= gC(f(x),f(x′)) +
1

2π
log

∣∣∣∣f(z′)− f(z)

z′ − z

∣∣∣∣. (A.6)

To find the function gD(x,x), as required in (1.2) (where it is denoted at g(x,x)),

take the limit z → z′ in (A.6) giving

gD(x,x) = gC(f(x),f(x))− 1

2π
log |F ′(Z)|, (A.7)

where the Taylor expansion

f(z′) = f(z) + (z′ − z)f ′(z) +O
(
(z′ − z)2

)
,
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has been used.

Note that both (A.5) and (A.7) are given only in terms of Z coordinates, allow-

ing the so-called Kirchhoff-Routh formula to also be defined purely in terms of Z

coordinates as

HD (z, z) = HC
(
Z,Z

)
+

N∑
i=1

Γ2
i

4π
log |F ′(Zi)| , (A.8)

a result first given for N = 1 by Routh [103] in 1881 and generalised for any N by

Lin [77] in 1941.

The dynamics governed by (A.8) are found as follows: first note that x = (z+z̄)/2

and y = (z − z̄)/2i and so

∂HD
∂z

=
∂HD
∂x

∂x

∂z
+
∂HD
∂y

∂y

∂z

=
1

2

(
∂HD
∂x
− i

∂HD
∂y

)
,

then the complex form of Hamilton’s equations (1.1) is

Γiżi = 2i
∂HD
∂zi

= 2i

(
∂HD
∂Zi

∂Zi
∂zi

+
∂HD

∂Zi

∂Zi
∂zi

)
= 2i

∂HD
∂Zi

(
∂zi
∂Zi

)−1

, (A.9)

since ∂Zi/∂zi = 0 as the conformal map (A.4) is not a function of Z. Using (A.4),

the left hand side of (A.9) can also be expressed in terms of Z coordinates, giving

Γi
˙

F (Zi) = 2i
∂HD
∂Zi

(
∂zi
∂Zi

)−1

. (A.10)

Hence the dynamics are computed in C using (A.10) then mapped to D using (A.4);

see next section.
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A.2.2 Example

The Hamiltonian in the Neumann oval domain that is used in chapters 3 and 4 is

examined in detail in this subsection. The domain is defined by the conformal map

zi = F (Zi) =
aZi

1− q2Z2
i

, (A.11)

(for real constants a and q) and was first used to investigate Hele-Shaw blob growth

near a wall in [100]. The area is given by

1

2i

∮
D
z̄ dz = πa2 (1 + q4)

(1− q4)2 ,

which when fixed defines a one-parameter family of Neumann ovals in q.

Using (A.8) (and hence (A.2)) the Hamiltonian for N point vortices in the Neu-

mann oval D is

HD
(
Z,Z

)
= HC +

1

4π

N∑
i=1

Γ2
i log

∣∣∣∣a(1 + q2Z2
i )

(1− q2Z2
i )2

∣∣∣∣ . (A.12)

Using the conjugate of (A.11) we can compute, by directly differentiating with

respect to time,

żi = aŻi
1 + q2Zi

2(
1− q2Zi

2
)2 ,

and also

∂zi
∂Zi

=
a(1 + q2Z2

i )

(1− q2Z2
i )

2 ,

which when substituted into (A.9) gives

ΓiŻi =
2i

a2|1− qZi|2
∂HD
∂Zi

.
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Thus the equations of motion for the ith vortex are

Ẋi =
−1

2πa2|1− qZi|2

{
N∑

i=1,i 6=j

Γj(Yi − Yj)
|Zi − Zj|2

+
N∑
j=1

Γj(Y
∗
j − Yi)

|Zi − Z∗j |2

+ 2q2

[
YiQ2 −XiQ3

|1 + q2Z2
i |2

+ 2
YiQ1 +XiQ3

|1− q2Z2
i |2

]}
(A.13a)

Ẏi =
1

2πa2|1− qZi|2

{
N∑

i=1,i 6=j

Γj(Xi −Xj)

|Zi − Zj|2
−

N∑
j=1

Γj(Xi −X∗j )

|Zi − Z∗j |2

− 2q2

[
XiQ2 + YiQ3

|1 + q2Z2
i |2

+ 2
XiQ1 − YiQ3

|1− q2Z2
i |2

]}
, (A.13b)

where the image vortices denoted by stars are

Z∗j = X∗j + iY ∗j = (Xj + iYj)
1

X2
j + Y 2

j

,

and

Q1(Zi) = <{1− q2Z2
i }

Q2(Zi) = <{1 + q2Z2
i }

Q3(Zi) = ={1− q2Z2
i } ≡ ={1 + q2Z2

i },

where <{·} and ={·} denote the real and imaginary parts of the relevant expression.

The differential equations (A.13) can then be integrated to give Z coordinates for

the motion in the z-plane. These coordinates can then be mapped to the z-plane

by substituting zi = xi + iyi and Zi = Xi + iYi into (A.11) and equating real and

imaginary coefficients to give

xi = a
XiQ1 − YiQ3

|1− q2Z2
i |2

yi = a
YiQ1 +XiQ3

|1− q2Z2
i |2

.
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A.3 Elliptic operators

A.3.1 The map

Consider the elliptic PDE

∇2uD(x, y) = h(uD(x, y)) (A.14)

in the same domain D as described in section A.2.1. The function h on the right

hand side of (A.14) was effectively sinh(uD) in chapter 2 and simply the eigenvalue

problem −λiuD in chapter 4. The question is, again, how is the equation (in this

case (A.14)) transformed when mapped to C via (A.3), i.e. Z = f(z)? Note that

Dirichlet or vorticity mode boundary conditions associated with a partial differential

equation such as (A.14) are unchanged when mapped to C.

Following [1], the answer to the above question is now reviewed. First note that

uD(x, y) ≡ uC(X(x, y), Y (x, y)), (A.15)

meaning the right hand side of (A.14) remains unchanged when mapped to C. Con-

sequently the task is to find the multiplying factor A in

∇2
zuD(x, y) = A∇2

ZuC(X, Y ), (A.16)

where ∇2
z = ∂2/∂x2 + ∂2/∂y2 and ∇2

Z = ∂2/∂X2 + ∂2/∂Y 2. The first step is to take

the second derivatives of (A.15) with respect to X and with respect to Y

∂2uC
∂X2

=
∂2uD
∂x2

(
∂x

∂X

)2

+ 2
∂2uD
∂x∂y

∂x

∂X

∂y

∂X
+
∂2uD
∂y2

(
∂y

∂X

)2

+
∂uD
∂x

∂2x

∂X2
+
∂uD
∂y

∂2y

∂X2

(A.17)

∂2uC
∂Y 2

=
∂2uD
∂x2

(
∂x

∂Y

)2

+ 2
∂2uD
∂x∂y

∂x

∂Y

∂y

∂Y
+
∂2uD
∂y2

(
∂y

∂Y

)2

+
∂uD
∂x

∂2x

∂Y 2
+
∂uD
∂y

∂2y

∂Y 2
.

(A.18)



Appendix A. Conformal mapping techniques 190

Using the Cauchy-Riemann equations

∂x

∂X
= − ∂y

∂Y
,

∂y

∂X
=
∂x

∂Y
,

(A.17) and (A.18) are combined to give

∇2
zuD(X) = |F ′(Z)|−2∇2

ZuC(Z),

and hence when (A.14) is mapped to C it is transformed into

|F ′(Z)|−2∇2
ZuC(Z) = h(uC(Z)). (A.19)

Equation (A.19) can then be solved in C using, for example, Chebyshev spectral

methods [115] (see appendix A.4) and then mapped back to the D via (A.4).

To compute the scaling for a non-Laplacian operator by the same map, a similar

calculation to that given above for the Laplacian operator is required. For example in

the case of the modified Helmholtz operator considered in chapter 4, (∇2−λ2)u(z) =

f(z) is also transformed into (A.19) with h ≡ λ2uc − h∗.

Before proceeding with some examples, a final point about (A.14) & (A.19) and

their relation to conformal mapping of the Hamiltonain as discussed in section A.2.1 is

made. In section A.2.1 we demonstrated the changes of the Laplace Green’s function

GD(x,x′) with conformally mapped to domain C. In order words we showed how

Laplace’s equation ∇2
zGD(x,x′) = 0 changes when conformally mapped i.e. (A.14)

with zero right hand side. However, vortex dynamics is not defined by Laplace’s

equation, but by the Poisson equation with Dirac delta function on the right hand

side i.e. ∇2
zGD(x,x′) = δz(x− x′) or equivalently

∇2
zGD(z, z′) = δz(z − z′), (A.20)

where δz(·) is the delta function in the z-plane. Therefore, for the results of section

A.2.1 to be valid we must prove the conformal invariance of the delta function, a point

frequently missed in many analyses and only proven recently in [42]. The argument

is as follows. Consider the delta function in the z-plane, for some arbitrary function
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h(z)

∫
z∈R2

δz(z − z′)h(z) dz = h(z′) (A.21)

Applying the conformal map (A.3) to (A.21) gives

∫
Z∈R2

δZ(F (Z)− F (Z ′))h(F (Z))|F ′(Z)|−2 dZ = h(F (Z ′)), (A.22)

where δZ(·) is the delta function in the Z-plane. From (A.22) it can be seen that

δZ(F (Z)− F (Z ′))|F ′(Z)|−2 = δZ(Z − Z ′). (A.23)

Using (A.19), (A.20) becomes

∇2
Z

|F ′(Z)|2
G(F (Z), F (Z ′)) = δZ(F (Z)− F (Z ′)), (A.24)

then using (A.23) gives

∇2
ZG(F (Z), F (Z ′)) = δZ(Z − Z ′).

Hence we conclude that (A.14) with delta function on the right hand side is con-

formally invariant, meaning no additional factors are required to the changes in the

Green’s function described in section A.2.1.

A.3.2 Examples

To further demonstrate the mapping of elliptic problems (beyond that used for

the heart-shaped domain considered in chapter 2 and the Neumann oval considered

in chapter 4), the Laplace eigenvalue problem

∇2ui = −α2
iui,

where ui is the ith eigenmode and α2
i is the ith eigenvalue, is considered for two

domains that were not used elsewhere in this thesis. The calculations are done using
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Chebyshev spectral methods [115]; further details are given in section A.4. The first

domain considered is the cardioid which may be defined by

z = F (Z) = qZ

(
1− a(q)Z

2

)
(A.25)

which is a map from C to a family of limaçons in D defined by a and q. The area is

given by

πa2(1 + 2q2),

and the domain varies from a circle (as q → 1, a→ 0) to a cardioid (as q →
√

2/3,

a → 1). To compute the eigenmodes of the cardioid the scaling factor in (A.19) is

required

|F ′(Z)|2 = a2(1− 4qR cos θ + 4q2R2), Z = Reiθ.

The solution is then mapped back to D using

x = qR

(
cos θ − aR

2
cos 2θ

)
y = qR

(
sin θ − aR

2
sin 2θ

)
.

The eigenmodes ui and eigenvalues α2
i for the cardioid of area π are shown in fig.

A.2. This calculation was done using N ×M = 50×100 radial and azimuthal points

respectively; see section A.4. Eigenvalues are shown to six significant figures, though

at this resolution they have converged to better than 10−12.
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Figure A.2: First 12 Laplace eigenmodes and eigenvalues of the cardioid defined
by the conformal map (A.25), a = 1, q =

√
2/3.
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The next domain considered is a generalised version of the Neumann oval, where

the two lobes are allowed to be of different size. The domain is defined by the map

z = F (Z) =
a(q, γ)Z + γZ2

1− q2Z2
, (A.26)

with area given by

π
2γ2 + a2 + q4a2

(1− q4)2

and

|F ′(Z)|2 =
a2(1 + 2q2R2 cos 2θ + q4R4) + 4γr(a cos θ(R2 + 1) + γr)

(1− 2q2R2 cos 2θ + q4R4)2
, Z = Reiθ

with

x =
Ra cos θ(1− q2R2) +R2γ(cos 2θ +Rβ2)

1− 2q2R2 cos(2θ) + q4R4

y =
Ra sin θ(1− q2R2) +R2γ sin 2θ

1− 2q2R2 cos(2θ) + q4R4
.

The domain (A.26) has three parameters a, q and γ. Fixing the area gives

a = a(q, γ), with γ then controlling the size of the smaller, left-hand lobe, and q the

‘pinching’ between the lobes, as for the Neumann oval considered in chapters 3 and

2. It is noted that domain can vary from a Neumann oval (γ → 0), to a circle by

reducing the size of the left-hand lobe (γ → 1).

The eigenmodes for the uneven Neumann oval of area π are given in fig. A.3.

Again the radial× azimuthal resolution used in the computation isN×M = 50×100.
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Figure A.3: First 12 Laplace eigenmodes and eigenvalues of the uneven Neumann
oval defined by the conformal map (A.26), q = 0.8, γ = 0.1, a = 0.4828 (4 sig. figs.).
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A.4 Conformal grids and numerical

quadrature

Throughout this thesis Chebyshev spectral methods based on the work of Tre-

fethen [115] have been used. Two examples, which also use the conformal mapping

techniques of A.3.1, are

1. Eigenvalue solvers for the vorticity mode eigenvalue problem introduced in

the context of the hydrodynamic limit in section 2.2 (and further used in the

thermodynamic limit in section 4.3.1).

2. Expressions for the Laplacian and quadrature routines used in the sinh-Poisson

solver of section 2.3.2.

A brief overview of Chebyshev spectral methods will now be presented and the

convergence of the method demonstrated in terms of numerical quadrature for the

domains used in this thesis.

Chebyshev methods are best introduced by considering the standard problem

of approximating the derivative of some function u(x) on a non-periodic 1D grid

x = {x1, . . . , xN}. A standard way to do this would be using a finite difference

formula [15]. Finite difference approximations are often derived by considering Taylor

expansions, though in this case it is more instructive to consider their derivation

using local interpolation: first we fit a unique polynomial of low degree (e.g. ≤ 4) to

our function u(x) at each grid point {xi}, from which algebraic expressions for the

derivative u′(x) on all grid points can be calculated, leading to a matrix differential

operator called a differentiation matrix DN . The degree of the polynomials used

for this local interpolation determines the rate of convergence of the approximation

of u′(x). In general, uniform grids are used in this case. This method is effective,

though in situations where high accuracy is required (e.g. calculation of eigenvalues),

we are often stymied by computational difficulties relating to the size of the DN .

Chebyshev spectral methods take a more global approach: givenN+1 grid points

{xi}, a polynomial of order N is fitted to our function u(x) on all grid points, which

can then be differentiated to give an algebraic expression for the derivative u′(x)
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and hence a differentiation matrix DN (with different entries to the finite difference

version). For a suitably smooth function u(x), the Chebyshev spectral approximation

of u′(x) has remarkably fast ‘spectral’ convergence rates, in some cases exponential

in N . This allows high-accuracy approximations of the derivative to be computed

using fewer grid points and hence a smaller DN than would be required using the

finite difference method described above.

Uniformally-spaced grids often have poor stability properties with Chebyshev

spectral methods, so non-uniform grids are frequently used – a convenient one being

that comprised of Chebyshev points, which are projections onto the x axis of equally

spaced points on the unit circle. Consequently, 1D Chebyshev grids are naturally

defined for x ∈ [−1, 1], with points clustered near x = ±1. It is straightforward to

alter such grids to have different ranges in 1D e.g. R = (x + 1)/2 gives R ∈ [0, 1]

with points clustered near R = 0, 1.

First and higher order1 ordinary differential equations as can be solved by sim-

ply inverting the appropriate differentiation matrix and solving the resulting system

linear of equations, usually using Matlab’s backslash command. Similarly, the

eigenvalue problem u′′ = λu (eigenvalues λi) can be solved by simply computing the

eigenvalues of the differentiation matrix [DN ]2, easily done using Matlab’s eig rou-

tine2. In chapter 12 of Trefethen, the evaluation of integrals (numerical quadrature)

on Chebyshev grids was demonstrated, with the so-called Clenshaw-Curtis quadra-

ture shown to also have exponential convergence with the number of grid points.

The methods described above for solving differential equations/eigenvalue prob-

lems and calculating integrals can be extended to 2D problems. For square or rect-

angular domains Chebyshev grids can be used in both directions and the extensions

are straightforward. However, in this thesis a grid is required in the unit disk C

with Z = Reiθ (see figure A.1). Such a grid was defined in chapter 11 of Trefethen

that consisted of Chebyshev points in the radial direction R and periodic, regularly-

spaced points in the azimuthal direction θ. The 2D Laplacian ∇2 can be defined

on this grid and hence partial differential equations and eigenvalue problems solved.

1The nth derivative u(n)(x) is simply given the of the first order differentiation matrix raised to
the power n i.e. [DN ]n.

2Note that the higher eigenvalues (when the number of grid points per wavelength of the eigen-
function is low) will not be spectrally accurate.
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Numerical quadrature may also be performed using Clenshaw-Curtis quadrature in

the radial direction and the periodic trapezoid rule in the azimuthal direction (which

also converges exponentially fast).

For any grid and numerical quadrature scheme, integrals may be evaluated in the

conformal domain D (see fig. A.1) using

∫
D
dx =

∫
C
J(R, θ) dX, (A.27)

where J(R, θ) = |F ′(Z)|2 is the Jacobian of the domain, also used in sections A.2.1

and A.3.1.

With the tools based on Chebyshev spectral methods described above, all the

types of problems mentioned at the start of this section can be solved. To demon-

strate the effectiveness of these methods, the convergence of integrals in the con-

formally mapped domains used in this thesis is considered. The error norm used is

simply

eD =

∣∣∣∣∫
D
dx− |D|

∣∣∣∣ , (A.28)

where |D| is the domain area, equal to π in this thesis. The evaluation of the integral∫
D dx is performed as described above i.e. mapping to C using (A.27) and then using

Clenshaw-Curtis quadrature in the radial direction and periodic trapezoid rule in the

azimuthal direction.

Before proceeding, the choice of the number of grid points must be considered.

The work of Banjai [5] is particularly relevant here as he used the same conformal

mapping techniques of section A.3.1 and the same spectral methods described above

to calculate the Laplace eigenvalues and eigenmodes in a domain D with a fractal

boundary. Of note, he found that having significantly more azimuthal points M3

than radial points N in C gave the best ‘coverage’ when the grid was mapped to

the domain of interest D. This approach is also adopted here, though on a less

extreme scale than [5]. Specifically twice as many azimuthal points as radial points

in C will be used. Figure A.4 shows the coverage of two grids with approximately

3M should not be confused with M the number of MFS charge points as used in chapter 3 and
similarly N should not be confused with N the number of vortices as used throughout this thesis.
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the same total number of grid points (MN ≈ 3000) in the Neumann oval defined

by q = 0.8. The grid in A.4(a) is constructed using N = M/2 and can be seen to

offer significantly better coverage then the grid in A.4(b) that is constructed with

N =M.

Note that the wasteful crowding of grid points near the regions of highest curva-

ture in the domains shown in figure A.4 is a property of conformally mapping the

Chebyshev grid in the disk to this domain. A new gird with more even spacing in

the Neumann oval that reduces the crowding could be defined, but the exponential

convergence properties of the spectral methods described above would be lost. As

will be shown next, the use of spectral methods gives highly accurate results even

with crowded grids.

N = M/2

(a)

N = M

(b)

Figure A.4: Chebyshev grids in a Neumann oval for (a) twice as many azimuthal
M as radial points N and (b) equal number of azimuthal and radial points. Both

grids have approximately equal number of total grid points (3000).

With the above we are now able to demonstrate the effectiveness of the spectral

methods. Figure A.5 shows the performance of the error norm (A.28) as the number

of grid points increases while the ratio of twice as many azimuthal to radial points is

maintained, for the two Neumann oval domains considered in chapter 4. Shown to

the left are typical grids for both Neumann ovals. Machine precision (εmach ≈ 10−15)

in the error norm (A.28) is achieved in both cases, though convergence is significantly

faster for the q = 0.3 Neumann oval due to the close-to-regular grid spacing in D.

Figure A.6 shows the same as figure A.5 for two heart-shaped domains as used

in chapter 2. Machine precision is achieved rapidly in both cases, again due to

close-to-regular grid spacing in D.
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Figure A.5: Convergence of the integral error norm (A.28) as the number of grid
points increases for the two Neuman oval domains shown to the right (shown with
typical grids). The ratio of azimuthal points to radial points remains fixed at 2:1.
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Figure A.6: As for figure A.5 for the heart-shaped domains shown to the right.
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Further results from the

Pointin-Lundgren hierarchy

B.1 Derivation of the second-order

cumulant equations

In this section the missing detail in the derivation of (1.50-1.51) is supplied and

a full account of the derivation of the second-order cumulant equations (1.52-1.54)

is given.

Careful application of the same procedure as in section 1.3.5 to the marginal

density p++ leads to

∇p++(x,x′) =

(
∂Ẽ + β

)(
1

2

∫
D
∇G(x,x′′)

(
p+++(x,x′,x′′)− p++−(x,x′,x′′)

)
dx′′

− 2

N

∫
D
∇G(x,x′′)p+++(x,x′,x′′) dx′′

+
1

N
∇G(x,x′)p++(x,x′) +

1

2N
∇g(x,x)p++(x,x′)

)
. (B.1)
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Similarly

∇p+−(x,x′) =

(
∂Ẽ + β

)(
1

2

∫
D
∇G(x,x′′)

(
p+−+(x,x′,x′′)− p+−−(x,x′,x′′)

)
dx′′

− 1

N

∫
D
∇G(x,x′′) (p+−+(x,x′,x′′)− p+−−(x,x′,x′′)) dx′′

− 1

N
∇G(x,x′)p+−(x,x′) +

1

2N
∇g(x,x)p+−(x,x′)

)
(B.2)

∇p−+(x,x′) =

(
∂Ẽ + β

)(
−1

2

∫
D
∇G(x,x′′)

(
p−++(x,x′,x′′)− p−+−(x,x′,x′′)

)
dx′′

+
1

N

∫
D
∇G(x,x′′) (p−++(x,x′,x′′)− p−+−(x,x′,x′′)) dx′′

− 1

N
∇G(x,x′)p−+(x,x′) +

1

2N
∇g(x,x)p−+(x,x′)

)
(B.3)

∇p−−(x,x′) =

(
∂Ẽ + β

)(
1

2

∫
D
∇G(x,x′′)

(
p−−−(x,x′,x′′)− p−−+(x,x′,x′′)

)
dx′′

− 2

N

∫
D
∇G(x,x′′)p−−−(x,x′,x′′) dx′′

+
1

N
∇G(x,x′)p−−(x,x′) +

1

2N
∇g(x,x)p−−(x,x′)

)
. (B.4)

To obtain the equation for ∇ω2 take

1

4

((
(B.1)− p+(x′)(1.48)

)
−
(
(B.2)− p−(x′)(1.48)

)
−
(
(B.3)− p+(x′)(1.49)

)
+
(
(B.4)− p−(x′)(1.49)

))
− 1

2N

(
(B.1) + (B.4)

)
and for ∇c2

1

4

((
(B.1)− p+(x′)(1.48)

)
−
(
(B.2)− p−(x′)(1.48)

)
+
(
(B.3)− p+(x′)(1.49)

)
−
(
(B.4)− p−(x′)(1.49)

))
− 1

2N

(
(B.1)− (B.4)

)
with a similar calculation for ∇ρ2 leading to (1.54). In the latter case, the second-

order cumulant

φ2(x,x′) =

∫
D
c2(x,x′′)G(x′′,x′) dx′′

= 〈(ρ(x)− ρ1(x)) (ψ(x′)− ψ1(x′))〉 − 1

N
ω1(x)G(x,x′)
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has been introduced. The third-order de-singularised cumulants are defined to be

ω3(x,x′,x′′) = 〈(ω(x)− ω1(x))(ω(x′)− ω1(x′))(ω(x′′)− ω1(x′′))〉

− 1

N

(
δ(x′′ − x)c2(x,x′) + δ(x− x′)c2(x′,x′′) + δ(x′ − x′′)c2(x′′,x)

)
+

2

N2
δ(x′ − x)δ(x′′ − x)ω1(x)

c3(x,x′,x′′) = 〈(ρ(x)− ρ1(x))(ω(x′)− ω1(x′))(ω(x′′)− ω1(x′′))〉

− 1

N

(
δ(x′ − x′′)ρ2(x,x′) + δ(x− x′)ω2(x,x′′) + δ(x− x′′)ω2(x,x′)

)
+

2

N2
δ(x′ − x)δ(x′′ − x)ρ1(x).

and can be introduced into the calculation by means of the identities

ω3(x,x′,x′′) + ω1(x)ω2(x′,x′′) + ω1(x′)ω2(x′′,x) + ω1(x′′)ω2(x,x′)

+ ω1(x)ω1(x′)ω1(x′′)

=
1

8

(
p+++(x,x′,x′′)− p[++−](x,x

′,x′′) + p[−−+](x,x
′,x′′)− p−−−(x,x′,x′′)

)
− 1

4N

(
3p+++(x,x′,x′′)− p[++−](x,x

′,x′′) + p[−−+](x,x
′,x′′)− 3p−−−(x,x′,x′′)

)
+

1

N2

(
p+++(x,x′,x′′)− p−−−(x,x′,x′′)

)

c3(x,x′,x′′) + ρ1(x)ω2(x′,x′′) + ω1(x′)c2(x,x′′) + ω1(x′′)c2(x,x′)

+ ρ1(x)ω1(x′)ω1(x′′)

=
1

8

(
p+++(x,x′,x′′) + p(−++)(x,x

′,x′′) + p(+−−)(x,x
′,x′′) + p−−−(x,x′,x′′)

)
− 1

4N

(
3p+++(x,x′,x′′) + p(−++)(x,x

′,x′′) + p(+−−)(x,x
′,x′′) + 3p−−−(x,x′,x′′)

)
+

1

N2

(
p+++(x,x′,x′′)− p−−−(x,x′,x′′)

)
where the shorthand p[++−] = p++−+p−++ +p+−+ and p(−++) = p−++−p+−+−p++−

has been used.
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B.2 Small E asymptotic theory

This section follows on from the cumulant expansion in the hydrodynamic limit

in section 2.2.2 with an asymptotic analysis of the elliptic-sinh equation (ESE) in the

small (positive) energy limit. Further properties of the EPE are revealed including

a linear approximation to the inverse temperature β(E).

Consider solutions to the ESE in the limit E → 0. A new small parameter

ε = E1/2 is introduced and the key quanities in the PL76 framework are expanded

in terms of it

ψ
(0)
1 = ε

(
Ψ0 + ε2Ψ2 + . . .

)
, (B.5a)

ω
(0)
1 = Lψ(0)

1 = ε
(
Ω0 + ε2Ω2 + . . .

)
, (B.5b)

β = B0 + ε2B2 + . . . . (B.5c)

As E → 0 solutions of the ESE are known to bifurcate from critical values of the

inverse temperature β; in other words from B0 in (B.5c). These critical values are

a property of the domain and it will be shown that they are given by the DITs

defined is chapters 2 and 4. The aim of this asymptotic analysis is to determine

B0 (to obtain the critical temperatures of bifurcation) and further B2 (to obtain

a linear approximation to β, valid for small E). To simplify the calculation, the

elliptic-Boltzmann-Poisson equation (2.23) will be considered instead of the elliptic-

sinh equation (2.24).

Inserting the expansions (B.5a-B.5c) into the integral expression for C1 given by
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(2.22) gives

C1 =

(∫
D

exp (βψ) dx

)−1

= ρ0

(
1 + εB0ρ0

∫
D

Ψ0 dx+ ε2B
2
0ρ0

2

∫
D

Ψ2
0 dx

+ε3B2ρ0

∫
D

Ψ0 dx+ ε3B0ρ0

∫
D

Ψ2 dx+ ε3B
3
0ρ0

6

∫
D

Ψ3
0 dx+O(ε4)

)−1

= ρ0

[
1− εB0ρ0

∫
D

Ψ0 dx+ ε2B2
0ρ0

(
ρ0

(∫
D

Ψ0 dx

)2

− 1
2

∫
D

Ψ2
0 dx

)
− ε3B2ρ0

∫
D

Ψ0 dx− ε3B0ρ0

∫
D

Ψ2 dx

−ε3B3
0ρ0

(
ρ2

0

(∫
D

Ψ0 dx

)3

−

ρ0

(∫
D

Ψ0 dx

)(∫
D

Ψ2
0 dx

)
+ 1

6

∫
D

Ψ3
0 dx

)
+O(ε4)

]
.

The corresponding expression for C2, also given by (2.22), is obtained by mapping

β → −β, hence

C1 − C2

2
= −εB0ρ

2
0

∫
D

Ψ0 dx− ε3B2ρ
2
0

∫
D

Ψ0 dx− ε3B0ρ
2
0

∫
D

Ψ2 dx

− ε3B3
0ρ

2
0

[
ρ2

0

(∫
D

Ψ0 dx

)3

−ρ0

(∫
D

Ψ0 dx

)(∫
D

Ψ2
0 dx

)
+ 1

6

∫
D

Ψ3
0 dx

]
+O(ε5),

C1 + C2

2
= ρ0 + ε2B2

0ρ
2
0

[
ρ0

(∫
D

Ψ0 dx

)2

− 1
2

∫
D

Ψ2
0 dx

]
+O(ε4).

Decomposing the Boltzmann-Poisson equation (2.23) into

Lψ(0)
1 = 1

2
(C1 − C2) cosh (βψ

(0)
1 ) + 1

2
(C1 + C2) sinh (βψ

(0)
1 )

and inserting the above expansions, gives to leading order in ε,

LΨ0 = B0ρ0

(
Ψ0 − ρ0

∫
D

Ψ0 dx

)
, (B.6)
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together with boundary condition, and associated integral constraint

Ψ0 = const. on ∂D,
∫
D
LΨ0 dx = 0.

These are the exact conditions that specify the vorticity mode eigenvalue problem

(4.13) in chapter 4. Evidently, by definition, the possible eigenvalues are B0 = βj,

with Ω0 proportional to Φj. Further, since LΦj = βjρ0Φj, and Φj satisfies no-normal

flow boundary conditions, Ψ0 is proportional to Φj (up to an irrelevant constant).

The maximum entropy solution will be the one with largest inverse temperature, i.e.

j = 1. Considering the energy (2.27b) at leading order gives the constraint

−1

2

∫
D

Ψ0LΨ0 dx = 1

which is used to normalise Ψ0, giving

Ψ0(x) =

(
− 2

β1ρ0

)1/2

Φ1(x).

To determine the specific heats of the modes of excitation in the limit E → 0,

we must proceed to higher order. At O(ε3) the elliptic-Boltzmann equation can be

written as

(
L −B0ρ0 +B0ρ

2
0

∫
D
· dx

)
Ψ2 =

−B3
0ρ

2
0

(
ρ2

0

(∫
D

Ψ0 dx

)3

− ρ0

(∫
D

Ψ0 dx

)(∫
D

Ψ2
0 dx

)
+ 1

6

∫
D

Ψ3
0 dx

)

− 1
2
B3

0ρ
2
0Ψ2

0

(∫
D

Ψ0 dx

)
+ 1

6
ρ0B

3
0Ψ3

0 +B3
0ρ

2
0Ψ0

(
ρ0

(∫
D

Ψ0 dx

)2

− 1
2

∫
D

Ψ2
0 dx

)

+B2ρ0Ψ0 −B2ρ
2
0

(∫
D

Ψ0 dx

)
.

Inserting for Ψ0 and B0, and using the fact that

∫
D

Φ1 dx = 0
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results in

(
L −B0ρ0 +B0ρ

2
0

∫
D
· dx

)
Ψ2 =(

− 2

β1ρ0

)1/2(
−β

2
1

3

(
Φ3

1 − ρ0

∫
D

Φ3
1 dx

)
+
(
β2

1 +B2

)
ρ0Φ1

)
. (B.7)

The solvability condition for (B.7) is that the inner product of the forcing terms

on the right-hand side with Φ1 must be zero. Evaluating this inner product returns

B2,

B2 = −β2
1

(
1− D1

3

)
,

where D1 = ρ−1
0

∫
D

Φ4
1 dx. (B.8)

Hence, in the hydrodynamic scaling regime the inverse temperature in the limit

E → 0 has the form

β(E) = β1 − β2
1

(
1− D1

3

)
E +O(E2). (B.9)

Expressions analogous to (B.9) can be derived corresponding to the higher branches

βi, i > 1.

Figure 2.6 shows the linear approximations (B.9) and the corresponding full non-

linear sinh-Poisson solutions for the first three branches for the heart domain defined

by (c, q) = (0.51, 0.55). Good agreement at low energies it evident between the full

solution and (B.9).

It is interesting to understand how the values of D1 (and D2,3,...) vary depending

on the geometry of the domain D. Table B.1 shows D1/3 for a variety of domains;

further details of the Neumann oval are in section 3.3.2 and of the heart in section

2.4.3. Despite the domains being drastically different from one another, D1/3 ∈

[0.7, 0.78] for all domains shown. This prompts two questions: how fundamental to

the system is this range of values? Further, is 1 < D1/3 for every domain i.e. is

the gradient of (B.9) always negative? These questions, along with others relating

to how the geometry controls the distribution of DITs, await further study.
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Domain (area = π) D1/3

Circle 0.7758
Neumann oval, q = 0.3 0.7553
Neumann oval, q = 0.8 0.7007

Heart, (c, q) = (0.51, 0.55) 0.7634
Heart, (c, q) = (0.65, 0.55) 0.7484

Table B.1: Values of the integral constraint (B.8) (to 4 sig. figs.) for various domains.
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