
PRL 96, 110601 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
24 MARCH 2006
Tunable Tsallis Distributions in Dissipative Optical Lattices
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We demonstrated experimentally that the momentum distribution of cold atoms in dissipative optical
lattices is a Tsallis distribution. The parameters of the distribution can be continuously varied by changing
the parameters of the optical potential. In particular, by changing the depth of the optical lattice, it is
possible to change the momentum distribution from Gaussian, at deep potentials, to a power-law tail
distribution at shallow optical potentials.
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Statistical physics deals with systems composed of a
large number of particles. The state of such systems is usu-
ally described by a distribution function, which allows us
to determine the relevance of a certain configuration and to
calculate macroscopic quantities, as the mean of physical
observables. Gaussian distributions often occur whenever
dealing with systems consisting of a large number of par-
ticles. These distributions well describe dynamics domi-
nated by a large number of small random events, as, for
example, the erratic motion of a small particle in water
(Brownian motion). Not every system, however, can be
described by Gaussian distributions, and there are situa-
tions in which the dynamics is dominated by rare and large
fluctuations, in striking contrast with the Brownian motion
corresponding to a Gaussian distribution. These large fluc-
tuations result in long, power-law tail distributions, com-
monly termed Lévy distributions [1]. Associated to the
long tail is the divergence of the first and/or second mo-
ment of these distributions.

Quite recently, power-law tail distributions have been
attracting much attention, as many different systems, from
atoms undergoing subrecoil cooling [2] to blinking nano-
crystals [3], were found to follow Lévy statistics. Among
the various systems governed by non-Gaussian statistics,
cold atoms in optical lattice [4] attracted particular atten-
tion because of their tunability. It was, in fact, theoretically
shown that by changing the lattice’s parameters it should
be possible to observe the transition between Gaussian and
power-law tail distributions [5,6]. The experimental obser-
vation of anomalous fluctuations in the energy of an atom
in an optical lattice constituted clear evidence of the pre-
dicted anomalous dynamics [7]. Further theoretical work
[8] pointed out that the atomic momentum distribution is
precisely a Tsallis distribution [9], a particular power-law
tail distribution introduced in the context of nonextensive
statistical mechanics. It was shown, furthermore, that the
transition between Gaussian and power-law tail distribu-
tions is accompanied by a transition from ergodic to non-
ergodic dynamics [10]. In the present work, we demon-
strate experimentally that the momentum distribution of
cold atoms in an optical lattice is indeed a Tsallis distribu-
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tion, whose parameters can be continuously varied by
changing the lattice’s parameters.

Before presenting our experimental results, it is impor-
tant to set the theoretical background. For simplicity, we
restrict our theoretical analysis to the case of a Jg � 1=2!
Je � 3=2 atom illuminated by two counterpropagating and
orthogonally polarized light fields (the so-called lin ? lin
configuration). The interaction with the laser fields pro-
duces a periodic potential U� � U0��2� cos2kz�=2 for
each ground state j�i, where z is the atomic position along
the axis Oz of light propagation. Light-induced stochastic
transitions between the two optical potentials lead to a
damping mechanism, the so-called Sisyphus cooling, and
to fluctuations in the atomic dynamics [4]. The damping
force is momentum dependent, of the form F � ��p=
�1� �p=pc�2�, where � is constant, p is the atomic mo-
mentum, and pc is a characteristic capture momentum,
which depends on the lattice parameters [11]. The finite-
ness of the capture momentum results in a power-law tail
momentum distribution, with sufficiently energetic atoms
undergoing long flights over many potential wells [5,6].

A precise analysis of the atomic momentum distribution
was carried out in the framework of the Fokker-Planck
equation (FPE) for the atomic semiclassical Wigner func-
tion [11]. An analytic solution of the FPE was obtained in
the limit of negligible spatial modulation, i.e., after spatial
averaging over a period of the optical potential. It was later
pointed out [8] that the solution of the FPE determined in
Ref. [11] is a Tsallis distribution:

W�p� � Z�1
q �1� ��1� q�p

2�1=1�q; (1)

where Zq is, for 1< q< 3, the normalization factor. For
q! 1, the Tsallis distribution coincides with the Maxwell-
Boltzmann distribution, with Gaussian wings. For q > 1,
the Tsallis distribution displays instead power-law tails of
the form W�p� 	 1=p2=�q�1�. The parameters q and �,
which characterize the Tsallis distribution, can be ex-
pressed in terms of the parameters of the optical potential.
In particular, the q parameter, which characterizes the
nature of the tails of the distribution, is related to the depth
of the optical lattice according to
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FIG. 1. (a) Results of quantum Monte Carlo simulations for
the momentum distribution W�p� of atoms cooled in a 1D lin ?
lin optical lattice. The momentum p is reported in units of the
recoil momentum pr. The data points correspond to the average
of n � 104 atomic trajectories. For each trajectory, the atom is
initially in the internal state j�i and is in the ground state of a
given well. The system then evolves in the lattice for a time tf �
100=!r, where !r is the recoil frequency. The depth of the op-
tical lattice is U0 � 60Er, the detuning from atomic resonance is
� � �20�, where � is the width of the excited state. The line is
the best fit of the data with the Tsallis distribution. The fit pro-
duced a q value of q � 1:791� 0:004 with an adjusted R2 equal
to 0.995. (b) Values for the q parameter of the Tsallis distribution
as a function of the depth of the optical potential. The data points
correspond to our full-quantum Monte Carlo simulation and are
obtained by fitting curves as those in (a) with a Tsallis distribu-
tion. The line represents the analytical result for q as a function
of U0 derived in Ref. [8] in the semiclassical limit.
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q � 1� 44
Er
U0
; (2)

where Er is the atomic recoil energy [8].
The goal of the present work is to investigate experi-

mentally whether the atomic momentum distribution is,
indeed, a Tsallis distribution. However, as the semiclassi-
cal derivation of Ref. [11] involved spatial averaging and a
classical description of the center-of-mass motion, we first
verified to which extent these approximations affect the
derived results by comparing them with full-quantum cal-
culations. By using standard methods of quantum
Monte Carlo simulations [12], we determined the atomic
momentum distribution for an ensemble of atoms evolving
in an optical lattice. The atomic motion is treated quantum
mechanically, and the optical lattice is treated exactly
(without spatial averaging). The coupling with the vacuum
modes of the electromagnetic field is treated with the
quantum jumps technique [12].

The results of our simulations are reported in Fig. 1. The
data points in Fig. 1(a) are the results of our numerical
calculations. The solid line is the best fit of the data points
with a Tsallis function. The excellent agreement between
the data points and the Tsallis distribution is evident, and it
is quantitatively confirmed by an adjusted R2 for the fit
equal to 0.995. We can conclude, therefore, that our quan-
tum mechanical calculations confirm the results of Ref. [8]
derived in the semiclassical limit: The atomic momentum
distribution is a Tsallis function.

From our numerical simulations, we also determined, by
fitting data as those in Fig. 1(a), the value of the q parame-
ter as a function of the depth U0 of the optical potential,
with results as in Fig. 1(b). These results validate the
semiclassical prediction of Eq. (2) [dashed line in
Fig. 1(b)] and motivate our experimental work.

Our experimental setup consists essentially of a three-
dimensional dissipative optical lattice of cesium atoms. A
3D configuration offers the significant advantage of con-
fining the atoms in all directions, reducing in this way the
loss of atoms from the optical lattice. The optical lattice is
generated by four laser beams detuned of an amount �
from the Fg � 4! Fe � 5 transition of the D2 line and
arranged in the so-called umbrellalike configuration [13].
One beam propagates in the z direction; the three other
beams propagate in the opposite direction, arranged along
the edges of a triangular pyramid having the z direction as
an axis. This is the same lattice beams’ geometry we used
in our work on the ratchet effect [14], and we refer to that
work for the details of the lattice beams’ angles, relative
amplitudes, and polarizations.

Cesium atoms are cooled and trapped in a magneto-
optical trap, followed by a compression phase to reduce
the spatial extent of the atomic cloud. The trap is then
switched off, and after 15 ms of optical molasses the atoms
are loaded in the optical lattice. The atoms are left to
equilibrate in the optical lattice for 37 ms. Then the optical
lattice is switched off and the atomic cloud undergoes a
11060
free expansion for 30 ms. During the phase of free expan-
sion, the atomic momentum distribution is mapped onto
the atomic spatial distribution. After the phase of free
expansion, the atomic cloud is illuminated by a retrore-
flected laser beam resonant with the Fg � 4! Fe � 5
transition for 1.5 ms, and simultaneously an image of the
cloud is taken using a charge-coupled device (CCD) cam-
era. This image represents the momentum distribution of
the atoms thermalized in the optical lattice. The CCD
camera is oriented so as to image a plane which contains
the z axis. In this way, we can extract the momentum
distribution along the z direction from the images of the
atomic cloud [15].

A typical example of our measurements of the atomic
momentum distribution along the z axis is shown in
Fig. 2(a). That data set, as well as all data sets presented
in this work, is obtained by averaging 200 images. Some
remarks are in order to justify our procedure to analyze the
data. Particular care has been taken to equilibrate the lattice
1-2
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FIG. 2. (a) Experimental results for the momentum distribu-
tion of cold atoms in a 3D dissipative optical lattice (data points)
and their best fit with a Tsallis function (solid line). The obtained
q value, equal to 1:310� 0:015, is derived by fitting only the
right part of the momentum distribution. The adjusted R2 is
equal to 0.9985. The parameters of the optical lattice are � �
�24�, !� � �2��20:8 kHz. The distribution is normalized so
that its maximum is equal to unity. (b) Values of the q parameter
as a function of the vibrational frequency at the bottom of the
well, as obtained by fitting the experimental data with a Tsallis
distribution.
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beams, and this is reflected in the good symmetry of the
results of our measurements; see Fig. 2(a). However, even a
very small asymmetry may affect significantly the fitting
procedure. This is particularly true for the analysis of the
tail of the distribution, which requires one to identify the
offset of the measurements very precisely.

To avoid introducing systematic errors in the data analy-
sis due to a small unbalance of the lattice beams, we
determined the parameters of the best fit with the Tsallis
distribution by fitting only half of the curve. We arbitrarily
chose the half with positive momentum, p > 0 [16]. The
fitting Tsallis distribution included also an offset, to take
into account the unavoidable background present in the
data. The result of this procedure is illustrated in Fig. 2(a):
The solid line represents the best fit with a Tsallis function
of the half side of the experimental data with p > 0. In
Fig. 2(a), the so-determined fitting function has been plot-
ted also for p < 0 to show that, because of the small
asymmetry of the curve, the data points with p < 0 have,
in fact, a slightly different offset. This is precisely the
reason which led us to restrict our fit to only one side of
the measured momentum distribution.

We turn now to the quantitative analysis of the experi-
mental data. Consider the data shown in Fig. 2(a). We fitted
the side with p > 0 of the momentum distribution with a
Tsallis function. The agreement between the fit and the
11060
experimental data is excellent, as quantitatively character-
ized by an adjusted R2 equal to 0.9985. We can conclude,
therefore, that the measured momentum distribution is a
Tsallis distribution, in agreement with the theoretical pre-
dictions [8]. We made several measurements for different
depths of the optical potential, which was varied by chang-
ing the lattice beams’ intensity. The optical potential was
characterized by measuring, via pump-probe spectroscopy
[4], the vibrational frequency!� at the bottom of the wells,
which scales as the square root of the potential depth. We
notice that the conversion between intensity of the lattice
beams and potential depth via pump-probe spectroscopy
measurements introduces an error of the order of 1 kHz on
the offset of the frequency scale for our experiment [hori-
zontal axis of Fig. 2(b)]. However, the potential depth was
varied by changing the intensity of the lattice beams, which
can be done with high accuracy. Therefore, although the
absolute frequency has an error of 1 kHz, the error for the
difference between two vibrational frequencies is much
smaller, of the order of 1%. The data for the vibrational
frequency will, therefore, be reported with such an accu-
racy, under the assumption that only relative measurements
are actually characterized by such an error. We explored
the range of lattice depth for which we expect to observe
the transition between Gaussian distributions (q! 1) and
power-law tail distributions (q > 1). For all measurements,
we found an excellent agreement between the fit with a
Tsallis distribution and the experimental data. The adjusted
R2 was larger than 0.998 for all series of data except the
one at the shallowest potential, for which the adjusted R2 is
equal to 0.988, and the one at the deepest potential, for
which we found an adjusted R2 equal to 0.93. From the fit
of the experimental data, we derived the q parameter for
the Tsallis distribution as a function of the vibrational
frequency, with results shown in Fig. 2(b). A direct com-
parison with our calculations [see Fig. 1(b)] is not possible
because of the different dimensionality and atomic transi-
tion. However, we observe that the experimental findings
agree qualitatively with the theoretical predictions: There
is a transition between Gaussian distributions at deep
potentials (q! 1 for large !�) and non-Gaussian,
power-law tail distributions at shallow potentials (q in-
creasingly larger than 1 for decreasing !�).

We have already stressed that the peculiar feature of the
Tsallis distribution are the power-law tails. Previous stud-
ies of the momentum distribution of cold atoms in optical
lattices were not conclusive about the nature of the tails of
the momentum distribution [17]. The high value of the
adjusted R2 that we obtained for the fit of the momentum
distributions of our experiment is a clear indication that the
fitting Tsallis function well describes also the tails of the
distribution. However, as this is an important point, we also
analyzed separately the tails of the distribution to verify
that they are consistent with the power-law tail distribution
W�p� 	 p2=�1�q�. We refer to Fig. 3 for the analysis of the
tails of the distribution. A data set is shown in Fig. 3(a),
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FIG. 3 (color online). (a) Experimental results for the atomic
momentum distribution (black data points) and their best fit with
a Tsallis function (black solid line). The value of the q parameter
derived from the fit is indicated in the figure. The adjusted R2 is
equal to 0.9985. The parameters of the optical lattice are � �
�24�, !� � �2��20:6 kHz. For comparison, the experimental
data and relative fit for a deep optical potential [!� �
�2��27:5 kHz] are also reported (gray points and line, red on-
line). The best fit with a Tsallis distribution produces q �
1:01� 0:01; i.e., it is a Gaussian. (b) The data points are the
experimental results for the distribution P>�p� [see Eq. (3)]. The
solid line represents the best fit with the power law cp�3�q�=�1�q�

of the data for P>�p� in the shown interval p > 20pr.
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together with the best fit with a Tsallis function. The fit
produces a value for the q parameter equal to q � 1:38�
0:12. Then we analyze just the tail of the distribution. As
customary in the study of power-law tail distributions [18],
we consider the (unnormalized) probability distribution

P>�p� �
Z 1
p
W�~p�d~p: (3)

Obviously, if W�p� scales asymptotically as p2=�1�q�, we
expect P> to scale as p�3�q�=�1�q�. We consider the tail of
the distribution P> and, more precisely, the portion of the
data corresponding to a momentum p > 20pr. As shown in
the log-log plot in Fig. 3(b), the data for the tail of P> are
consistent with a power law, and a fit of these data with the
function cp�3�q�=�1�q� produces a q parameter equal to q �
1:396� 0:005. This value, determined by fitting only the
tail of the distribution, is equal, within the error, to the
value for q determined by fitting the entire distribution.
This shows that the Tsallis distribution well describes the
entire measured momentum distribution and constitutes
direct evidence of the power-law nature of the tails of the
measured distribution.

In conclusion, we demonstrated experimentally that the
momentum distribution of cold atoms in dissipative optical
lattices is a Tsallis distribution. The parameters of the
distribution can be continuously varied by changing the
lattice parameters. In particular, by changing the depth of
the optical lattice, it is possible to change the momentum
distribution from Gaussian at deep potentials to a power-
law tail distribution at shallow potentials.

The implementation of tunable Tsallis distributions with
cold atoms in dissipative optical lattices shows that this is a
11060
model system useful to study a variety of phenomena of
statistical physics. In particular, the tunability of the Tsallis
distribution will enable the experimental study of the cor-
respondence between ergodicity breaking and power-law
tail distributions, as recently established theoretically [10].
The use of tilted shallow optical lattices will also allow one
to study anomalous transport in washboard potentials, a
problem which has recently attracted much attention [19].
Finally, fluctuating nondissipative optical lattices could be
used to investigate long tail distributions and rare events in
quantum tunneling through fluctuating barriers [20].
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