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Abstract

Ultrasound modulated optical tomography is a hybrid imaging modality with numerous po-
tential clinical applications. In this work we develop, validate, and assess the accuracy of a
number of forward models which describe the effect. We subsequently derive an inversion
procedure which reconstructs images of the optical absorption coefficient in a turbid media
from measurements of the optical field autocorrelation function made on the boundary.

We begin with the development of a reference forward model which is accelerated by
execution on the parallel architecture of modern graphics processing units. The model is
validated against analytical and numerical results from the literature. The acceleration of the
model results in improvements in performance of between one and two orders of magnitude
when compared with a standard implementation.

Whilst accurate, the reference model is not suited for use in an image reconstruction al-
gorithm. As such, a number of alternative models are derived based upon spherical harmonic
expansions of a correlation transport equation. In particular, a third order simplified spher-
ical harmonic approximation is developed which provides a peak improvement in accuracy
of over 50% relative to standard diffusion-style approximations. Each of the models is solved
by the finite-element method, and validated against the reference Monte-Carlo simulation.

Finally, we develop an image reconstruction procedure for ultrasound modulated opti-
cal tomography which employs a finite-element implementation of the proposed forward
models. As part of the derivation we investigate the form of the correlation measurement
density functions which describe the sensitivity of the technique to perturbations in the op-
tical parameters of the medium. We demonstrate the ability to reconstruct an image of the
optical absorption coefhicient in a turbid medium from noisy measurements of the field auto-
correlation function made on the boundary of the domain. Reconstructions employing data
corrupted by 1% Gaussian noise achieve accuracy of circa 80% in the region of peak optical
sensitivity, and maintain spatial resolution equivalent to the dimensions of the focused acous-
tic field probing the domain. Away from the sensitive region of the optical axis, regularisation

forces the imaging resolution towards that of conventional diffuse-optical tomography.
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Chapter 1

Introduction

The field of biomedical imaging encompasses the study of techniques dcsigncd to produce
images of clinically or scientifically relevant representations of anatomy and biological pro-
cesses. The information presented in such images is broad, ranging from the delineation of
anatomical structures to the concentrations of molecular biomarkers, and a commensurate
number of imaging techniques have been design to capture the requisite data.

The subject of this work is one such technique—ultrasound-modulated optical tomogra-
phy (UOT, also known as UMOT/USMOT). This hybrid imaging technique aims to com-
bine the optical contrast of biological tissues at near-infrared wavelengths with the spatial
resolution of focused ultrasound fields in order to provide highly localised measurements of
the optical properties of biological tissues.

In this chapter we will begin by placing UOT in context with alternative optical imag-
ing techniques, before considering in greater depth the challenges faced in its development.

Finally, we provide an overview of this work, and its contribution to the field.

1.1 Biomedical optical imaging

Optical imaging techniques have numerous attractive qualities. Unlike modalities such as
X-ray computed tomography (CT) [60], or positron emission tomography (PET)[45], the
radiation employed is non-ionising. Furthermore, the small size and low cost of the requi-
site hardware (contrasted with techniques such as magnetic resonance imaging) suggest that
bedside monitoring could be commonplace in the near-future: the pulse oximeter, which
relies on diffuse optical technology, is already ubiquitous in clinical environments.
Biomedical techniques designed to produce images with optical contrast at significant
depth (as opposed to superficial techniques such as standard microscopy or optical coherence
tomography [121]) typically operate in the near-infrared region of the electromagnetic spec-
trum (circa 600-1100nm). This range of wavelengths, often denoted the ‘optical window’, is

chosen for two principle reasons:

14
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1. Biological tissues are relatively transparent in the optical window, and thus light prob-
ing the medium can penetrate deeper than is possible using surrounding regions of the
spectrum. At wavelengths shorter than those in the optical window, the absorption
of oxygenated and deoxygenated haemoglobin present in blood quickly attenuates in-
cident radiation. At longcr wavclcngths, the same effect occurs due to the increasing

absorption of water.

2. When multiple wavelengths of illumination are employed, the data may be combined
via knowledge of the absorption spectra of various chromophores (such as the afore-
mentioned haemoglobin) to infer parameters such as oxygen saturation. In turn, such
measures may indicate underlying pathologies, e.g., increased vascularisation due to
tumour angiogenesis, or serve as an indicator of the progress of treatments which
themselves alter the optical properties of tissues, e.g., thermal necrosis by therapeutic

high-intensity focused ultrasound (HIFU).

These properties have been extensively exploited in the field of near-infrared spectroscopy
(NIRS) [58]. A principal application is in determining the state of blood oxygenation in the
brain, which is related to the local oxygen demand, and in turn, functional activation.

Whilst light in the optical window is capable of penetrating deep into tissue, optical scat-
tering causes the input energy to quickly diffuse throughout the tissue, significantly limiting
the spatial resolution of such techniques. The desire to localise changes in the concentration
of various chromophores, such as haemoglobin, motivated the development of diffuse opti-
cal tomography (DOT) [10, 24, 47]. In its most basic form, DOT involves the collection
of data from multiple detectors placed around the periphery of an object which are subject
to illumination from multiple continuous wave (CW) sources. A model-based image recon-
struction procedure is then employed to reconstruct an image of the absorption coefficient
within the medium. The use of frequency modulated or pulsed sources permits the recovery
not only of the absorption coefficient, but also of the scattering coefficient of the medium
[11]).

Despite various advances, the spatial resolution in DOT is still limited to around 1omm
[47]. The desire to improve the spatial resolution of DOT, whilst maintaining optical con-
trast, has recently led to the development of two hybrid imaging modalities: ultrasound-
modulated optical tomography, the subject of this work, and photoacoustic tomography
(PAT) [18].

1.1.1  Photoacoustic tomography

In photoacoustic tomography the medium to be imaged is typically subject to pulsed wide-
field illumination from an optical source operating within the optical window. A laser is
typically chosen as the optical source, owing to its ability to generate high peak powers and

generate short pulses (though the use of high power light emitting diodes has been investi-
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gated [5]). The input illumination is absorbed by chromophores in the tissue causing a small
local rise in temperature. The resulting thermoelastic expansion generates a broadband acous-
tic wave which propagates through the medium until it is detected upon the boundary.

By back projecting the detected acoustic field to its origin, an estimate is made of the ini-
tial photoacoustic pressure distribution. Since the initial pressure distribution is dependent
upon local absorption, so to is the resulting image.

The penetration depth which can be achieved in PAT is primarily dependent upon the at-
tenuation of the input illumination. Since optical absorption is also the source of its contrast,
the technique can achieve its best results in the case of highly absorbing targets embedded in
weakly absorbing media: depths of up to 4omm have been reported iz vivo in human breast
tissue [66]. Without the use of focused optical excitation, the spatial resolution of PAT is de-
pendent upon the frequency content of the detected acoustic field, the higher frequencies of
which are preferentially absorbed by biological tissues. In practice, sub-millimetre resolution
can be achieved for penetration depths of around a centimetre [18].

Whilst the ‘raw’ photoacoustic image obtained from acoustic back projection is princi-
pally dependent upon absorption, the actual relationship between the initial pressure distri-
bution and the optical coeflicients of the medium is more complicated. The initial pressure
distribution is in fact proportional the product of the absorption coefficient and the local op-
tical energy density. As such, quantitative photoacoustic imaging requires the use of a model-
based inversion which considers the optical transport problem [33]. Such an approach is
also of great importance in permitting spectroscopic measurements, since the optical energy
density will change with wavelength such that ‘raw’ images can not be considered on a like-
for-like basis. The recovery of the scattering coeflicient in PAT is challenging, since it is only

related to the measurement through the local optical energy density [34].

1.1.2  Ultrasound modulated optical tomography

Ultrasound-modulated optical tomography is, as its name suggests, more closely related to
DOT than PAT, in terms of its practical implementation. In UOT coherent optical sources
and detectors are placed around the medium and an ultrasound field is introduced which in-
teracts with the optical field. We refer to the mechanisms of interaction between the acoustic
and optical field as acousto-optic (AO) modulation. Note that many authors use terms such
as acousto-optic imaging (AOI) and acousto-optic tomography (AOT) to refer to UOT, but
we shall reserve the use of terms involving ‘acousto-optic” to refer specifically to the modula-
tion processes.

We will explore the physical basis of acousto-optic modulation further in chapter 2, but
for now we state that in coherent acousto-optics the optical field undergoes phase modu-
lation, such that the light which has passed through the acoustic field has frequency com-
ponents shifted by multiples of the acoustic frequency. Since we have considerable spatial

and temporal control over the ultrasound field—it can be focused into most biological me-
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dia, and its propagation speed is such that time gating and electronic modulation can be
achieved with readily available instrumentation—we may define the region from which the
modulated, or ‘tagged’ optical field is generated.

A ‘raw’ UOT image (a direct mapping approach) assigns the intensity of the detected
modulated light to a particular region of an image based upon the assumed location of the
ultrasound distribution. Our measured data is proportional to the product of the local acous-
tic intensity and the optical sensitivity (that is the probability of light travelling from a given
source, to a given detector, via a particular point). Since the optical sensitivity of the medium
is dependent upon the absorption and scattering coeflicients, so too is our image.

The spatial resolution which can be achieved in UOT is entirely defined by the size of the
insonified region, though smaller regions of acousto-optic interaction result in lower signal
to noise ratios in measurement. At shallow depths a resolution of 100 #m has been demon-
strated [115], but resolutions in the millimetre range are more common at depths of a few
centimetres. The imaging depth in UOT is dependent upon optical attenuation, since light
must reach the point at which it is modulated, before returning to the detector point for mea-
surement. Penetration depths beyond 9gomm have been demonstrated ex-vivo in a medium
of optical properties similar to human breast tissue [67], but it is more typical to experience
penetration depths of the same order of magnitude as in DOT (a few centimetres) [38].

Two questions regarding the design of a UOT system follow immediately from our in-

troduction:

o How do we best detect the small (~10°Hz) shifts in frequency from the background
light (~10""Hz)? This question has achieved significant attention from numerous
researchers over the past twenty years, and we will review the relevant contributions

in chapter 2.

e As is the case in PAT, our measured data and associated raw images do not quantita-
tively represent the underlying optical coeflicients we wish to recover. The reconstruc-
tion of the optical properties from the detected data constitutes the inverse problem
in acousto-optics, and has received considerably less attention in the literature than

the experimental aspects of the problem.

A practical implementation of UOT is likely to offer lower spatial resolution than that
which can be achieved in PAT. Nonetheless, UOT provides an order of magnitude improve-
ment in spatial resolution over DOT.

Unlike PAT, UOT has similar relative sensitivities to absorption and scattering as DOT.
Whilst knowledge of the local optical absorption coefficient is of significant clinical value,
the scattering coefficient also conveys information regarding anatomical structure [24] and
functional responses [so]. Moreover, since UOT does not require absorption for contrast
(asis the case in PAT), there is the potential to image scattering structures in low-absorption

backgrounds to substantially great depth. Asa first step towards quantitative imaging, we will
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concentrate in this work on the recovery of the absorption coefficient, principally because its
clinical relevance is better understood than that of scattering, but also because this forms the

basis for the future development of spectroscopic techniques.

1.2 Overview and contribution

In this work we will develop theory and methods which address the forward and inverse
problems in acousto-optics. We will primarily concentrate on autocorrelation UOT, the ad-
vantages and disadvantages of which are discussed in the theoretical review of chapter 2. The
reasons for this choice are twofold: first, the technique is ‘close’ to the underlying physics,
allowing direct access to the power spectral density of the detected light; second, this detec-
tion technique is under active development within our research group at the time of writing,
and thus the results of this work have direct application in ongoing empirical studies.

In chapter 2 we will begin with a review of the development in the field, before providing
the theoretical basis from which we will develop our work.

We will begin the investigation-proper in chapter 3 where we will develop a reference
forward model based upon a Monte-Carlo solution to the radiative transport equation. We
will take advantage of recent developments in the highly parallel architecture of graphics pro-
cessing units (GPUs) to accelerate the model, and employ a mesh based optical domain to
maximise the flexibility of the simulation. This work has implications beyond UOT, demon-
strating techniques for efficient simulation in diffuse optics. The work developed in this
chapter was published by the author in 2012 [105], following earlier developments in 2010
[73]. The tool developed during this chapter was exploited in work by others in our research
group [52], [72].

Whilst accurate and optimised, the MC model of chapter 3 is too slow to be used as the
basis for an image reconstruction (inversion) technique; rather, it serves as a useful reference
against which alternative models can be validated. Sakadzi¢ and Wang previously published
the results of a diffusion-like model which can be solved quickly by deterministic numerical
methods [118]. In chapter 4 we provide a previously unpublished derivation for their model,
and we do so with a level of generality which allows it to be extended to consider higher
order effects not present in the original version. We use this model of the AO interactions
in a modified light model which employs the simplified spherical harmonic method, and
demonstrate significant improvements in the model over the original with respect to our
reference Monte-Carlo simulation.

In chapter s we employ the models of chapter 4 to develop an image reconstruction proce-
dure for autocorrelation UOT. We develop discrete-form sensitivity relations which describe
the sensitivity of the various measurement types to perturbations in the acoustic absorption
in the medium. These sensitivity relations are used as part of a linear reconstruction process
which produces images of the optical absorption of a medium from a single optical source-

detector pair, and a raster scan of the acoustic field. We examine the qualities of different
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measurement types, and the effects of noise on the degree of regularisation required to pro-
duce a useful solution. This work is formulated in the style of diffuse optical tomography,
and naturally lends itself to a practical implementation. The work of this chapter was pub-
lished by the author in 2013 [106], following eatlier reports at conference [106].

This work closes in chapter 6 with a summary of the work, and an extensive discussion
of how the outcomes of this investigation can be developed, improved, and generalised to

alternative detection mechanisms and insonification protocols.



Chapter 2

Background

2.1 Overview

In this chapter we will review the theory and literature pertinent to our investigation, develop
the theoretical framework of the acousto-optic interactions which underpin this work, and
formalise the quantities and measures in the particular experimental configuration targeted
in this work.

We begin with a brief overview of tissue optics, introducing the relevant physical quanti-
ties and pertinent models of light transport in tissue. In section 2.3.1 we will review the lit-
erature of the field, considering separately the experimental and theoretical advances which
have taken place in the field. In section 2.4 we will analyse the nature of the acousto-optic
modulation in UOT. In section 2.5 we will consider the models which have been proposed
which employ the mechanisms of acousto-optic modulation to describe UOT. Finally, in
section 2.6, we will describe the specific experimental methods targeted in this thesis, the

observables and related quantities.

2.2 Tissue optics

This brief introduction to tissue optics will primarily serve to formally introduce the physical
quantities and assumptions made throughout this work, and the most relevant model of light
in tissue: radiative transport. For a more complete review and analysis the reader should refer

to texts such as [56, 85, 94, 137].

2.2.1  Absorption and scattering

Exogenous light propagating in typical biological tissue undergoes two primary processes:
absorption, and scattering.
Absorption occurs when the atoms which constitute biological tissue are excited by some

incident radiation, and this energy is partially or fully lost by vibrational relaxation, rather
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than by a re-radiation of the incident field. Different atoms existing in varying molecular
combinations each have specific wavelengths at which they can be excited, and hence absorp-
tion is a wavelength dependent phenomenon, giving rise to our perception of colour. One
of the most pertinent chromophores in biomedical optical imaging is haemoglobin, which ex-
hibits different spectra in its oxygenated and de-oxygenated states, and provides great insight
owing to its functional relevance in physiology. We quantify absorption in biological tissues
by the absorption coefficient ¢, [mm™"]. The absorption coefficient will be considered in
greater depth in chapter 3.

Scattering is the process by which a number of atoms or molecules collectively excited
by the incident radiation re-radiate the field with a different wave-front as that of the input
excitation, owing to their size and geometrical arrangement. Scattering is also wavelength
dependent, exibiting a monotonic dependence with wavelength over the ranges typically em-
ployed in near infra-red optical imaging [127], such as the techniques described in this work.
We quantify the amount of scattering by the scattering coefficient ¢, [mm™"]. This quantity
describes the efficiency of the scattering process in tissue, but does not describe the nature of
the scattering. It is thus common to also employ a phase fiunction which describes the proba-
bility density function of the angle at which light is scattered. The implications of the phase
function will be elucidated in chapter 3, and this will be made use of further in chapter s.
An important related property is the mean-cosine of the scattering angle, g = (cos 8). This
describes the relationship between how much light is scattered in the incident direction, and
how much is back-scattered. In most tissues g & 0.9, which means that incident radiation,
scattered to a degree indicated by u,, is mostly scattered in the direction of incidence. This
definition gives rise to the transport scattering coefficient u/ = u (1 — g) [m™"] which de-
scribes the amount of scattering in a medium as if each body scattered the incident light in
an isotropic fashion. Accordingly, the transport mean free path ltr = 1“271 [m] describes the
distance that light travels (on average) before its direction has been randomised by scattering

processes.

2.2.2  Radiative transport

A rigorous and accurate description of light transport in tissue could be provided by solution
(by various numerical methods) of Maxwell’s equations. However the disordered, random
nature of biological tissues would require such a solution to be averaged over all the realisable
states of organisation of the underlying tissue.

The most relevant approximation for the purposes of the optical imaging is the radiative
transport equation (RTE). The RTE operates under the assumption of weak-scattering, the
high-frequency limit of optics, where it is assumed that the effects of interference can be
neglected and different components of the optical field can be summed in power. The RTE

for continuous wave illumination is

[8:V 4 u, + 1] L(1,8) = u, f 2(5,8)L(r,8) ¥/, (2.1)
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where L(r,s) [W m™ sr™"] is the specific intensity, p(8,s’) is the phase function described
previously, and the integral takes place over all solid angle. The RTE is an energy balance
expression for the flow of energy at r in direction §: the first term is the net change of energy,
and this is equated to the losses due to absorption and out-scattering, and in-scattering from
all directions §' to 8.

We will discuss the theoretical development of radiative transfer, and the nature of spe-

cific intensity, or radiance, in chapter 3.

2.3 A concise review of ultrasound modulated optical tomography

We will review the field of ultrasound modulated optical tomography in two parts which re-
flect those aspects of the investigation first raised in our introduction. First, we shall consider
the experimental advances which have taken place, specifically considering the alternative de-
tection mechanisms and insonification strategies which have been described in the literature.
Second, we shall consider the theoretical developments in the field, to which we refer to work
pertaining to the physical mechanisms of modulation, modelling, and image reconstruction.
Further details can be found in the recent reviews of Reskink et al. [110], Elson et al. [38],

and Morgan et al. [1o1].

2.3.1 Detection and insonification strategies

Marks et al. [91] first detected the acoustic modulation of a coherent optical field in a tur-
bid medium by band-pass filtering the signal from a single photo-multiplier tube (PMT) at
the centre frequency of acoustic pulses. Wang et al. followed a similar approach [133] but
employed a focused continuous wave transducer which was scanned through the medium to
provide an image of an embedded absorber. Wang and Ku [136] developed their method
by employing a frequency swept technique which encoded the location of the optical signal
along the axis of the ultrasound field. At a similar time to Wang’s initial publication, Leutz
and Maret [74] employed an digital correlator to indirectly sample the power spectrum of
light detected by a PMT in a photon-counting configuration, in addition to using a Fabry-
Pérot interferometer for direct analysis of the spectrum of the detected field. Later, Sakadzic
and Wang would use the Fabry-Pérot technique to produce high resolution (<100um) im-
ages of absorbers embedded in turbid media [115].

Each of the methods demonstrated to this point employed single detector systems. Such
methods are both sensitive and allow the evolution of a speckle grain, or coberence area, to be
followed in real-time — this is important in tissue as decorrelation of the field due to Brown-
ian motion (as studied directly in DWS) would otherwise serve to average out the response.
The downside of these methods is that the signal to noise (SNR) is typically optimised by
detecting only a single coherence area, from which only a small optical flux (relative to the

total exiting flux) can be obtained.
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The introduction of parallel detection mechanisms, capable of sampling the flux from
multiple coherence areas simultancously, began with the work of Lévéque et al. [77]. In
this work the authors demonstrated an improvement in SNR by detecting multiple mutu-
ally incoherent speckle grains on the individual pixels of a charge coupled device (CCD)
array. Since the integration period of such a device is far greater than the period of the ul-
trasonic modulation, a method was derived which determines the modulated component
by separately integrating the collected flux over four phases of the acoustic cycle, averaged
over multiple cycles. This Jock-in method has the disadvantage of being less immune to the
decorrelation which occurs in living tissue. Continued experimental investigation ensued
employing parallel detection techniques. Yao et al. [138] incorporated the ideas of Wang
and Ku’s earlier work by coupling a frequency swept modulation with parallel lock-in detec-
tion. Lévéque [78] demonstrated three-dimensional imaging of an absorbing inclusion in a
biological sample media. More recently, Ruan et al. extended the technique to detect mod-
ulation from the first overtone generated by non-linear propagation of the acoustic field in
the medium [112], and also to employ pulsed ultrasound [111].

Liectal. [80] proposed an alternative parallel CCD method in which the variance of the
speckle field integrated over time is measured. The premise of this speckle-contrast technique
is that under acoustic modulation the individual speckle grains oscillate in their intensity:
thus, as the degree of modulation can be derived by considering how spatially ‘smooth’ the
field becomes during averaging. The integration period in this method is shorter than most
of the lock-in methods, and hence speckle decorrelation is better tolerated.

Parallel detection methods were further advanced by the integration of interferometric
techniques. Gross et al. [s1] proposed mixing the speckle pattern from the turbid medium
with a reference beam shifted by the acoustic frequency in a form of digizal holography. A
principle advantage of this method is that the desired signal from the sample is amplified
by heterodyne mixing with the reference arm: the amplitude of the reference arm can be
increased to the point that the technique becomes shot-noise limited. Since a CCD is used
for detection, the fast oscillations of the unmodulated light and the shifted reference beam
are averaged by the detector. By tilting the angle of the reference beam with respect to the
CCD the different spatial frequencies of the speckled field from the sample are spread out in
k-space (the two-dimensional Fourier transform of the detected field). The static interference
fringes between the shifted reference beam and the desired modulated field occupy a portion
ofk-space dependent upon the angle of the two beams. The decorrelation noise of the speckle
field is primarily limited to the low spatial-frequencies and can thus be separated from the
desired signal. The shot noise of the reference beam generates a DC offset across k-space
which can be calculated and removed from the desired signal. In practice, the reference beam
is shifted by a slightly greater amount from the acoustic frequency in order that a four-phase
lock-in detection method can be employed. This technique was adapted by Ruan etal. [113]
to detect modulation due to trains of ultrasound pulses, and extract the modulation due to

higher acoustic harmonics.
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An alternative holographic technique which has generated significant interest is the use
of photorefractive crystals. In this method a photorefractive crystal is illuminated by a signal
beam from the insonified sample, and a reference (local oscillator) beam. In the approach
initially proposed by Murray et al. [102] the local oscillator is at the same frequency as that
illuminating the sample. In this case a hologram of the interference pattern between the un-
modulated light from the sample and the reference beam is written into the crystal via the
Pockels effect. The modulated component of the sample beam varies at a frequency beyond
the response time of the crystal, and does not form a component of the hologram. Once
formed, a part of the sample beam is diffracted by the holographic grating in the crystal to
become phase matched with the reference beam and the resulting coherent wavefront can be
integrated over a single detector. This approach allows inference of the modulated compo-
nent of the light from the reduction in the unmodulated intensity. Axial resolution can be
achieved by the use of pulsed ultrasound. In an alternative approach suggested by Ramaz et
al. [109] the reference beam is up-shifted to the frequency of ultrasonic insonification such
that the static interference pattern in the crystal is a result of only the modulated light ema-
nating from the sample. In this method light from the reference beam is diffracted from the
resulting hologram to form a wavefront coherent with the modulated light. The two signals
interfere on a detector and the heterodyne signal is extracted. In practice a method of mod-
ulation is applied to the ultrasound to distinguish the signal temporally from background
noise. Despite the use of a single detector, the optical étendue remains large, defined by the
area of the crystal employed in the experiment. The principal limitation of photorefractive
techniques is the response time of the crystal: if the crystal responds to changes in the wave-
front too slowly, the effects of decorrelation will be recorded as if they were a result of the
modulated field, absent of decorrelation.

Another recent technique which can utilise a single detector is the spectral-hole burning
(SHB) method, as demonstrated by Li et al. [81]. Unperturbed, the doped SHB crystal ab-
sorbs the incident wavelengths of interest. By pumping the crystal with a reference beam at
the acoustically modulated frequency of interest, the appropriate energy levels of the doped
crystal are saturated. At this time, and for tens of milliseconds following, the crystal is trans-
parent to the same wavelengths. Whilst this ‘spectral-hole’ exists, the signal beam can be
passed through the crystal and the unmodulated light will be absorbed, whilst the relevant
signal passes to the detector. The chief disadvantage of this approach is that the crystal must

be cryogenically cooled.

2.3.2  Modulation, modelling, and inversion

Leutz and Maret’s previously described experimental work [74] derived the power spectrum
of the light from a UOT experiment by taking the Fourier transform of the autocorrelation
function calculated by a digital correlator. As part of their work, the authors developed a

model of the AO effect in turbid media insonified by a plane wave. This model was based
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upon the approach of diffusing wave spectroscopy (DWS) [89, 103]. Such models calculate
the expected autocorrelation in an experiment based upon the modulation of optical path-
lengths in a medium. In addition to the Brownian motion of DWS, Leutz and Maret incor-
porated the movement of the optical scatterers in the medium, assuming them to oscillate in
harmony with the applied acoustic field.

Kempe et al. [62] extended the analysis of Leutz and Maret to consider a narrow beam
of ultrasound and compared this model to experimental data. Mahan et al. [88] proposed
the acoustic tagging process to be that of Brillouin scattering, and proceeded to develop an
expression of the intensity of the modulated signal and the signal-to-noise ratio in the case
of an ultrasound field focused into a small volume.

Theoretical understanding of UOT was advanced by Wang [13 5] who jointly modelled
the two coherent mechanisms of interaction previously investigated: the acoustically induced
displacement of optical scatterers and the change in the index of refraction due to compres-
sion and rarefaction. Theoretical research continued with the extension of Wang’s model to
the case of anisotropically scattering media [114]. Each of these works assumed an optical
transport mean free path far greater than the acoustic wavelength such that successive scatter-
ing events in the medium could be considered uncorrelated. A theory accounting for strong
correlations in the interaction at successive scattering sites was presented later [116].

Blonigen et al. [22] investigated the nature of the phase shifts applied to ultrasound
modulated light in the context of a photorefractive crystal detection regime.

The DWS style of the analytical models presented thus far were limited to geometries for
which an analytic form of the optical path length from source to receiver was known. Fur-
ther developments by Sakadzi¢ and Wang [117] moved away from this approach with the
development of a correlation transfer equation (CTE). The CTE provides a treatment of
the acoustic continuous-wave (CW) UOT problem in the style of a transport equation, thus
capable of modelling arbitrary optical geometries. The authors provide a rigorous derivation
of the model based upon multiple scattering theory (as opposed to to transport theory [56])
where the time-domain effects of acoustic modulation are integrated into the mutual coher-
ence function which is ultimately transformed into the more familiar quantity of specific
intensity. Owing to the lack of analytical solutions to the transport equation, the authors
demonstrate its application with a Monte-Carlo model. In chapter 3, we take a heuristic ap-
proach to the development of a similar MC model which secks to retain a clear distinction
between the purely optical, and the acousto-optic aspects of the simulation. The two models
will be seen to be equivalent, though much like distinction between analytical and heuris-
tic derivations of the standard radiative transport equation, the former provides a more clear
physical basis to the field variable, and the approximations required in the derivation. In later
work, the authors reformulate their CTE is to account for pulsed ultrasound pulse [119].

In addition to their derivation of the CTE, Sakadzi¢ and Wang present a diffusion ap-
proximation for the CW UOT problem [118]. This work is of great importance since the dif-

fusion style formulation can be solved by standard numerical means, such as finite element,
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or finite difference methods. The computation of such solutions is relatively inexpensive,
when contrasted with MC based approximations to the underlying CTE. These advantages
come at the cost of the applicability of the model: various assumptions and approximations
are made in the derivation which limit its applications to higher frequency ultrasound fields
and moderate ultrasound pressures. The limitations in the acousto-optic aspect of the model
are in addition to those introduced due to the diffusion approximation, principally that the
model is only valid in regions where the optical scattering coeflicient is much greater than
the absorption coefficient. Despite its reduced flexibility, the flexibility and moderate com-
putational requirements of the diffusion approximation provides the best potential for use as
part of an iterative model-based inversion. For this reason we provide a full derivation of the
model in chapter 4 where we also extend the technique with a higher order light transport
model. Later, in chapter s, we employ the model as part of a linear image reconstruction
procedure for UOT.

Bal and Schotland [16] developed a model of incoherent acousto-optic modulation in
which both the index of refraction and the number density of the scattering and absorbing
particles in agiven medium are modulated by a standing acoustic wave. The resulting spatially
varying absorption coeflicient, scattering coefficient, and index of refraction, were incorpo-
rated into a diffusion model of light transport. For a given source and detector, the authors
propose measuring the Fourier transform of the forward model in the variables of the acoustic
wave-number and phase; the absorption and scattering are recovered via the inversion of this
transform. This approach to UOT has not yet been demonstrated experimentally (except-
ing a particular example involving fluorescent biological media) and will not be considered
further in this work.

More recently, Bratchenia et al. [28] demonstrated the recovery of the optical absorp-
tion coefficient in a turbid medium via a model-based inversion. In their work the UOT
signal was described in the frequency domain, and the acoustically-driven modulation of the
coherent input light was linearised in a diffusion-style model, similar to that presented by
Allmaras and Bangerth [6]. A three-dimensional recovery of the optical absorption coefhi-
cient was performed using an iterative non-linear optimisation employing the Levenberg-
Marquardt algorithm. In chapters 4 and s of this work we take an an alternative approach
to the forward and inverse problem in UOT: we employ a time-domain model of the UOT
signal which naturally provides many of the oft-employed measurement types in UOT, such
as the modulation depth. Our forward model considers the non-linearity of the acoustically
driven decorrelation of the optical field, which allows us to examine in greater depth the form
of the sensitivity functions which arise in the UOT experiment. In an approach common in
DOT, we linearise our forward model in the optical parameters; this leads to a one-step differ-
ence data reconstruction which resolves an absorption perturbation from an assumed known
background.

Huynh et al. [55] modelled the detected acousto-optic signal as a temporal convolution

of the acoustic and optical intensity profiles as a pulse propagates along the axis of the ultra-
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sound transducer. Discretised, the resultant matrix operators were inverted by a maximum
likelihood algorithm. Despite the simplicity of the model, good agreement was found with

experimental results.

2.4 Mechanisms of coherent acousto-optic modulation

In the review of section 2.3.2 we described two potential coherent mechanisms for the inter-

action between light and sound discussed in the literature.

o The displacement of optical scatterers from their rest positions by the propagating
acoustic field altering the optical paths of diffuse light through the medium [74]. This
mechanism is the basis of diffusing wave spectroscopy (where Brownian motion, rather
than the acoustic field, generates a displacement of the scatterers), and has been used

in this manner to analyse various parameters of optical scatterers within turbid media.

o The perturbation of the local refractive index of the medium through the strain in-
troduced by the propagating acoustic field altering the optical path lengths of diffuse
light through the medium [135]. This technique can be applied to both non-turbid
and turbid media, and is used in numerous optical instruments such as the acousto-

optic modulator (Bragg cell).

2.4.1 Displacement of optical scatterers

As an acoustic field propagates through a turbid medium the endogenous optical scatterers
of the medium will be displaced from their rest positions and thus the optical path length
between the two scatterers will be altered. To describe this mechanism of modulation we
consider an optical path between two scatterers in the medium which are located at r, and
ry,, as depicted in figure 2.1.

The phase accrued over the unperturbed optical path is given by

()Zl)a,b :ko”o|rb — 1], (2.2)

where /eo is the optical wave number i vacuo, and 7, the background index of refraction.
The particle displacement of a time-varying monochromatic acoustic field is defined locally

A(r, 1) = Ay(r)cos(w, t + p(r)), (23)

where Ao(r) and ¢(r) are the local acoustic displacement amplitude and phase offset at r,
and w,, the acoustic angular frequency. The displacement & of an optical scatterer at r is

assumed to follow the background displacement of the medium, accordingly,

E(r, £) =k, (r)Ag(r) cos(e,  + (1)) (2.4)
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Figure 2.1: llustration of the time varying acoustic displacement of the scatterers of a turbid

medium perturbing the optical path between scattering sites.

where k L(r) = Kk (r)/|k,(r)| is the unit acoustic propagation direction and k, the local
acoustic wave vector at t. For atypical scatterers, it might be necessary to introduce a phase
offset and modified amplitude of oscillation relative to the background medium, though this
is not expected to be required for endogenous biological scatterers under moderate acoustic
amplitudes and within the frequency range of medical ultrasound systems [117]. We can de-
fine the incremental phase of the perturbed path due to the displacement of optical scatterers

as

Ay (1) =konok-(E(ry,1) = E(x,,1)), (25)

where k is the unit optical propagation direction for the path between the two unperturbed

scattering sites. The total time-varying phase accrued over the perturbed path is

B, ()= koms [ 10, = |+ (£, 1) = E(r,01))] (26)

Rather than considering the phase due to displacement of optical scatterers as a quantity
defined over a path, an alternative approach is to consider the extra phase increment as a
function of a particular scattering site. Assume the optical path of figure 2.1 now extends to
athird scatteringssite at r, with unit optical propagation direction k b.c- The phase increment

over the path from r,, to r, will be the summation of the two individual increments,
A, = kg (k- (£, )= £ ) 4y - Elro D) =E0) . (27)

If the scatterers at r, and r,, are stationary (or the incremental phase due to their oscilla-

tion has already been considered in some series expansion),

A¢4,c :kOnO <l;'5(rb’t)_1;b,cg(rb’t)> . (7"8)
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Denoting the scatterer at position 1, the j™ scatterer, the incoming optical propagation

direction k i = k and the outgoing propagation direction k i1 = k b

Ad; = _leono(li;].Jrl —l}j)-g(rb,t). (2.9)

2.4.2 Perturbation of the index of refraction

Asan acoustic field propagates through a medium a mechanical strain is developed as regions
arelocally compressed and rarefied. This strain modifies the local permittivity in the medium,
and thus the index of refraction, as depicted in figure 2.2 The magnitude of this interaction
is described by the adiabatic piezo-optic coefficient dz /dp of the medium, which is 1.466 x

1071°m> N~* in water [108]. We follow the literature [135] in defining the quantity

dn
n=— fz/:, (2.10)

dp
where p is the density of the insonified medium and v, the speed of sound. This permits a
convenient form of the resulting variation of the index of refraction when expressed in terms
of acoustic particle displacement. Noting the relationship between acoustic particle displace-
ment and pressure in an harmonic plane wave (§ = p/(pv,®,)) allows the variation in the

index of refraction from the background medium due to the acoustic field of equation 2.3 to

be written as

An(r,t) = nynk,Ay(r) cos(wt + ¢(r)). (2.11)

Optical Path

Optical Scatterer

¢

Time Varying Acoustic
Amplitude (Blue)

Figure 2.2: [llustration of the time varying index of refraction over the length of an optical

path due to perturbation of the index of refraction by an applied acoustic field.

Let us again consider an arbitrary optical path between two scatterers in a medium at r,,
and r,. The phase accrued over the unperturbed optical path is given by equation 2.2. The
incremental phase accrued over the path due to the spatially varying index of refraction is

given by
Ag, = ko”oﬂkaf l)Ao(r) cos(wt + @p(r))dr. (2.12)
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The total time-varying phase accrued over the path with perturbed index of refraction is

Iy

¢n4,b = konof [1 + vkﬂAO(r) cos(wt + gﬁ(r))] dr. (2.13)

I,

2.4.3 Combining the mechanisms

In theory, the integration of the perturbed index of refraction of section 2.4.2 should be
performed over the limits defined by displaced optical scatters of section 2.4.1. A complete
expression for the incremental phase over a path between two scattering sites at r, and ry,

would then be

" rp+E(ry,t)
A,y =kong [k' (E(ry, 1) =€ (x5 1))+ 7k, Ag(r)cos(cwt + ¢(r))dr} ;
r+E(r,,0)
(2.14)
and the complete phase increment over the path given by
¢a,b:k0n0|rb_ra|+A¢a,b' (7"15)

In practice, the additional phase in the limits of the integration is often neglected from
analytical formulations as |£ (r, £ )| is considered to be much smaller than a typical free path
|r;, —r,| at the frequencies and pressures of interest [118]. In this case, the two mechanisms

and their associated phase increments are considered independently.

2.5 Models of ultrasound modulated optical tomography

Two primary analytical models of UOT were discussed in the earlier review. The first is based
upon an extension of the methods of diffusing wave spectroscopy. The second is based upon a
reformulation of the radiative transfer equation. In this chapter we introduce both methods,
their limitations and capabilities. We provide only an overview of the latter method here,
since the theory is developed further in the body of this work (particularly in chapters 3 and
4).

2.5.1  UOT models based upon diffusing wave spectroscopy

Diffusing wave spectroscopy investigates the nature of a turbid media by analysing the dy-
namic properties of the multiple scattering of diffuse light passing through the medium as
the scatterers undergo Brownian motion. This has a clear corollary with the first mechanism
of interaction described in this chapter, and for this reason, many of the methods of analysis
applied to this field were subsequently applied to consider the acoustically driven displace-
ment of a turbid medium’s scattering objects.

The measure used in the DWS approach, both for empirical measurement and as the

output of the analytical formulations, is the un-normalised electric field autocorrelation func-
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tion® [103],

G(7) = (E(1)E*(t + 7)), (2.16)

where t is time, 7 is lag, E () is the electric field of the scattered light, E *(¢t)is the conjugate
of the electric field, and the angle brackets represent averaging over time. The electric field
at a given point in space is the summation of all the possible scattering paths taken by the
light through the medium from a coherent source. For DWS we expect that as the scattering
particles move randomly under Brownian motion, the correlation of the electric field will
decrease according to the magnitude of the mean-square particle displacement, which is in
turn related to the temperature, size, and diffusivity of the particles [89]. If we neglect Brow-
nian motion and instead consider the autocorrelation due to the application of an harmonic
ultrasound field, we might now expect to find an autocorrelation function which itself is
harmonic; the acoustic field, via the mechanisms of interaction, modifies the individual scat-
tering paths to a varying extent before returning to their initial values, and so on. In this case,
we might find it convenient to consider the power spectral density of the detected electrical
field. By the Wiener-Khinchin theorem we can find the optical power spectral density by

taking the Fourier transform of the electric field autocorrelation function,

S(w):foo G(t)exp(—jwt)dr. (2.17)

—00

The forms of the autocorrelation functions and power spectrum densities for both DWS and
acousto-optics are illustrated in figure 2.3.

To develop an expression for the autocorrelation function which considers both mech-
anisms of interaction under insonification by an acoustic field, we begin by assuming the
ratio of the optical transport mean free path and the optical wavelength to be much greater
than unity (/. /A5 3> 1). As such, we imply there is no correlation between different optical
paths: (E,_ (t)E;‘éS1 (t + 7)), = 0 where E_(¢) is the fraction of the incident electric field
scattered along a path of length s. This assumption of weak scattering allows us to write the

autocorrelation function as an integration over all possible path lengths,

G(r)= (E()E*(t + 7)), = f PONEE @t +),ds,  (218)

where p(s) is the probability density function of s. In doing so, we also assume that the
acoustic amp[itude is not so great as to cause variation in p(s) over an acoustic period. Taking
the scattering anisotropy g = O such that l" = lt, there will be N + 1 paths over which we

must accrue phase increments for a path involving N & s /[, scattering events. The resultant

"In the literature, this often denoted G| to distinguish it from the intensity autocorrelation function G,.

We will neglect the subscript in this work.
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Figure 2.3: Illustration of the form of the electric field autocorrelation function and power
spectral density expected from a diffusing wave spectroscopy, and acousto-optic measure-

ment.

field autocorrelation function can be written

N+1

(EOE @ +),= (o] = (A (e +9)-,,(0)
= (2.19)

N
D040+ 5) - Ay ) | )
j=1 t
where A, j is the phase increment due to the perturbation of the index of refraction over
the path leading to the 7™ scatterer, as defined in equation 2.12,and A¢ 4,7 is the phase incre-
ment due to displacement of the ;™ optical scatterer, as defined in equation 2.9. Completing

the formulation of the the analytic theory now requires two steps.

o First, the terms for the phase increments must be averaged over all time, path lengths
and propagation angles. In Wang’s original formulation [13 5] this algebraic manipula-
tion was performed by assuming an acoustic plane wave under conditions of isotropic
scattering in an homogeneous medium, with weak correlations between scattering
phase increments (k, /. > 1). Later work developed the algebraic manipulation to

include anisotropic scattering [ 114] (in the phase increments) and strong correlations

between scattering phase increments [116].
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e Second, the probability distribution of the potential scattering path lengths (p(s))
for a particular geometry and optical source-detector configuration must be sought,
in order to permit the integration over s: the diffusion approximation has been used
for this purpose in each of the studies of DWS. Solutions have been limited to studies

involving slab geometries under planar illumination.

In summary, the analytical solutions to the acousto-optic effect based upon diffusing
wave spectroscopy are only capable of producing solutions for simple geometries for which
the probability density function of the optical path from source to receiver are known. In all
cases, assumptions of weak scattering and a planar acoustic field are employed. Despite their
limitations, these solutions do provide insight into the relative importance of the modulation

mechanism and their relationship to the acoustic and optical parameters of the problem.

2.s.2  UOT models based upon correlation transport

Analternative formulation of acousto-optic theory has been presented in the literature which
aims to avoid the limitations of the DWS approach in permitting the consideration of arbi-
trary heterogencous optical properties and ultrasound fields [118]. This formulation applies
the methods (and approximations) of radiative transport [97] to develop a correlation trans-
fer equation; this approach has previously been been applied to media with scatterers under-
going Brownian motion |2, 35].

Aswas discussed in our introduction to tissue optics, the primary limitation of transport
style models is that it is difficult to find solutions for anything but the simplest of geometries.
As with radiative transport, a typical approach involves statistically sampling the equation in
a statistical Monte-Carlo model.

We will consider transport style models of UOT (and the approximation of their so-
lution by Monte-Carlo methods) in chapter 3, and further approximations which permit

deterministic numerical solution in chapter 4.

2.6 Autocorrelation ultrasound modulated optical tomography

In this work we will concentrate on development of models and reconstruction techniques
applied to autocorrelation ultrasound modulated optical tomography, a technique originally

demonstrated experimentally by Leutz and Maret [74], and subsequently by others [27],
[79]-

2.6.1  Experimental technique

The scattering medium is illuminated by a coherent electromagnetic wave which can be point-
like, in the case of direct fibre coupling, or over an extended area if the beam is expanded

accordingly. The medium is insonified by a focused time-harmonic acoustic field which can
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be scanned through the medium in the case of imaging, or fixed in the case of point-like
sensing.

A speckled wavefront emanates from the sample which is modulated by the acousto-
optic interaction. A single coherence area is selected and detected by an appropriate detector.
Owing to the small signal levels available from a single coherence area, thisis typicallya PMT
or avalanche photodiode (APD) operating in photon counting mode: that is to say that in-
dividual pulses are output from the detector as each photon is recorded.

The output of the detector can be processed directly by a dedicated digital autocorrelator,
or alternatively this can be achieved in software by recording the arrival times of detected

photons.

2.6.2  Observables and related quantities

The principal measurement type for autocorrelation UOT is the electric field autocorrelation

function,

G'(r)= (Er(t)Er(t-f-T))z. (2.20)

The superscript I denotes that this is a measurement of the modulation depth flux across
the boundary, rather than a measurement of the modulation depth fluence at a point within
the medium. In practice, this measurement is derived from the intensity autocorrelation
function via the Siegert relationship.

Numerous measures derived from the field autocorrelation function have been employed
in theliterature. Some, such as the modulation depth, have been defined differently by various
authors. One reason for this ambiguity is that depending upon the context the autocorrela-
tion function may be analysed in the time (lag) domain, or by its Fourier transform in the
frequency domain. In this work we will work in both domains, and we now outline the ter-
minology we employ in each case, and how this relates to measures used by other authors. In
all cases, we will assume that the autocorrelation function has been post-processed to remove

the exponential decay due to Brownian motion evident in real measurements.

Time domain

The field autocorrelation function can be analysed directly in the time domain. A useful
quality of the time domain measurements is that an evaluation of the un-normalised function
at T = 0 gives the intensity that would be measured in a standard optical experiment. In the
literature of UOT this is often referred to as the ‘DC’ component, though care should be
taken since this since this quantity differs from the DC component of the power spectral

density (see the following section).

GoA(r)= G(0,r) = LO)(r). (221)



2.6. Autocorrelation ultrasound modulated optical tomography

35

In the case that the superscript I is present, indicating a measurement of flux accross the
boundary, the spatial location r represents the location of a point detector. In its absence,
the measurement is of the correlation fluence within the medium at the specified point.

Less ambiguous is that which is often referred to as the ‘AC’ component,
GL)=GO(0,r) — G(T/2,1), (2.22)

which measures the total fluctuation of the autocorrelation function as a result of all spectral
components in the signal. This measure is typically applied to the autocorrelation function
after removal of any exponential decay due to Brownian motion.

One of the most common measurements is the modulation depth. We follow the com-

mon definition,

_Gfg(r)_G(o,r>—G(T/z,r)_1_ <1 >

MDD (r) = = ~T,r
GO(r) G(O,r)

5 (2.23)

where T is the acoustic period, and g (7, r) is the normalised field autocorrelation function.

Frequency domain

By the Wiener-Khinchin theorem, the Fourier transform of the autocorrelation function
gives the power-spectral density (PSD) of the signal, § (F>(w, r). Since E(¢) is real and wide-
sense stationary, the spectral-density is even, real and non-negative. As shall be seen in this
work, it is often convenient to work in the frequency domain. Numerous authors have rede-
fined the modulation depth as being the ratio of the PSD at some harmonic of the acoustic
frequency to the component at DC, cv = 0. We shall make clear the use of the frequency do-
main MD measurement at the N harmonic by referring to the N* harmonic modulation

depth
S(Nw,,r)

S@©,r) ’

where the superscript takes the same meaning as the previous case. The first harmonic mod-

MDgy(r) = (2.24)

ulation depth is a good approximation for the modulation depth when the modulation is
smal, MD~MD;,MD K 1.

The total intensity may be found in the frequency domain by integrating over all fre-

quency,
LO(r)=G(0,r) =2 f SW(w, 1) de, (2.25)
0
and hence the time domain modulation depth, which considers all acoustic harmonics, can
be calculated by
o IS de
MDY/ (r)= ————. (2.26)
( [ 8N (w,r) dew

This is rarcly used in the literature, since the measurement is more casily acquircd from the
time-domain, and frequency domain measures are typically employed when the models only

consider a finite number of the acoustic harmonics.



Chapter 3

A highly parallel Monte-Carlo model of

correlation transport

3.1 Introduction

The problem of light-transport in highly scattering media is well described by the radiative
transfer equation (RTE) under conditions which are typically satisfied by biological tissues
[56]. Unfortunately, analytical solutions to the RTE are limited to simple geometries.

Approximate numerical solutions to the RTE can, in principle, be sought via determin-
istic numerical approaches such as the finite element method [131]. Such approaches re-
quire that the simulation domain be discretised to form a linear system of equations which
can be solved by various direct or iterative techniques. In three dimensions, the RTE is an
integro-differential equation which solves for the five-dimensional quantity of specific inten-
sity (defined over space and the direction of propagation), this requisite discretisation leads
to prohibitively large linear systems in the case of three-dimensional simulations.

An alternative approach is the application of the Monte-Carlo (MC) method in which
the desired observables are estimated by a stochastic model [107, 120, 134]. An estimation
converges towards its expected value as we run a large number of trials of the stochastic model,
each of which samples some state of the system under investigation. In the case of light trans-
port as described by the RTE, each trial consists of the propagation of an amount of energy
launched into the medium and propagated according to statistical properties of the medium
which themselves can be derived from the electromagnetic wave equation [85]. Whilst ex-
tremely flexible, the MC technique is computationally intensive; numerous variance reduc-
tion techniques have been employed to improve efficiency, with some researchers employing
‘white’ MC models whereby absorption processes are applied to the sampled trials of a single
MC model in post-processing [3, 49, 64, 95]. Improvements in simulation speed have also
been achieved by the application of aggressive, platform-specific, optimisations [40, 59].

In recent years, considerable advances have been made in executing MC simulations of

36
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light transport on the highly parallel architecture of graphics processing units (GPUs). The
first demonstration by Alerstam et al. [4] considered the problem of light transport in an ho-
mogeneous semi-infinite medium; increases in speed over a CPU implementation of up to
three orders of magnitude were achieved. Fang and Boas [41] subsequently developed a gen-
eral purpose code to perform MC simulations in heterogencous voxelised geometries. Un-
der specific circumstances speed increases over a CPU implementation of up to X350 were
noted. Such improvements in performance have been realised because of a natural mapping
of the ‘embarrassingly parallel’ MC algorithm to the GPU hardware architecture.

Monte-Carlo models can also be applied to the correlation transport problem in acousto-
optics. Throughout the initial theoretical investigations of the acousto-optic technique, a
number of CPU-based MC models were demonstrated to support the analytical solutions
under development [114, 116-119, 135]. We recently demonstrated the acceleration of a
MC AO simulation [73], achieving performance improvements of up to x 100 over a CPU
implementation equivalent to that presented in ref. [135]. We also demonstrated that our
GPU-based AO simulations involved an order of magnitude of extra computational-effort
over a pure optical simulation.

Whilst our previous implementation of an AO MC simulation [73] was limited to ho-
mogeneous semi-infinite slab geometries with plane wave ultrasound, here we will develop a
code capable of simulating the AO effect in optically heterogeneous domains, with arbitrary
(monochromatic) acoustic field distributions. Previous CPU-based AO MC simulations re-
ported in the literature [118, 119] have implemented a similar level of flexibility by the use of
avoxelised simulation domain for the spatial distribution of the optical and acoustic param-
eters. In this chapter we will demonstrate the implementation of optical heterogeneity via
a mesh-based system which avoids the deleterious effects of a voxelised geometry [21], and
exploit the computation power of the GPU to avoid approximations in the treatment of the
AO phase shifts demonstrated in previous work [118].

Our aim is the development of a tool that has the potential to provide significant guid-
ance in the application and optimisation of the AO technique as both an imaging and a
sensing modality for a broad range of tissue geometries and detection mechanisms. A robust
and flexible model is also required for the validation of approximate methods such as those
described in chapter 4. In the future, a fast Monte-Carlo model may also serve as the basis of
image reconstruction techniques for ultrasound-modulated optical tomography, though the

computational burden would likely require implementation on a GPU-equipped cluster.

3.1.1  Overview

We begin in section 3.2 with an overview of the relevant theory of correlation transport, and
an approximate adjoint technique employed for point-source, point-detector simulations.
The implementation of the simulation program and its post-processing techniques are de-

tailed in section 3.3, following a brief overview of the pertinent considerations of parallel
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programming for GPU architectures. In section 3.4 we demonstrate the validation of the
simulation program, consider its performance relative to other simulation codes, and demon-
strate one application in the calculation of explicit spatial sensitivity maps corresponding to

experimental studies recently undertaken.

3.2 Theory

3.2.1 Monte-Carlo, radiative and correlation transport

In the context of radiative transport, it is the task of the MC technique to repeatedly prop-
agate fractions of the total input radiance through the medium along different paths which
are generated by consideration of the statistical properties of the medium. A good technical
overview of the relationship between the RTE and the various MC methods seen in the lit-
erature is provided by Sassaroli and Martelli [120]. We will describe the exact nature of our
implementation in section 3.3.

It is unfortunate that in the literature each of these fractions of energy is often described
as a ‘photon’ Contrary to the very nature of the photon [98] (in the quantum electrody-
namic sense) these descriptions ascribe said fractions of energy a scalar value and a location
in space. Whilst Ishimaru discussed the link between radiance (or specific intensity) and the
average Poynting vector in his 1975 book [57], it is not until more recently that Mischenko
provided a complete derivation of the RTE from Maxwell’s Equations [97], and continued
to discuss in depth the relationship between the RTE and the physical quantities [99] under-
lying the concept of radiance. It is perhaps the intangible nature of the radiance which the
RTE propagates which encourages this improper use: if the link between the quantities in
the RTE (and thus a MC simulation) and an observable were physically obvious, no doubt
a different nomenclature would have been chosen.

In the context of MC, we will in this work employ the term ‘photon packet’ to refer to
some fraction of the radiance propagating in a medium. For our purposes, we will think of
this photon packet as representing the propagation of a quasi plane-wave (of limited spatial
extent) which carries energy through the medium along a particular path [137]. We may
describe locations at which this ray interacts with a statistically sampled point in the medium.
In this sense, some fraction of radiance which propagated along a path, j, can be ascribed a
value corresponding to the underlying strength of the electric field of the quasi-plane wave,

T

R . 1 (2 .
Lj(r,s):TETw?J ZE]-(t)E].(t)dt (3.1)

where £ jis the complex electric field strength associated with the quasi-plane which consti-
tutes L (r,§), and the radiance is not dependent upon time since the system is wide-sense sta-
tionary. As the simulation determines the path defining j, the associated fraction of radiance
is attenuated according to the Beer-Lambert law[120]. Upon detection the total radiance is

found by summing over all fractions, L(r,§) = Z]- L]v(r, 8).
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In the case of acousto-optics, we propagate samples of correlation radiance G/(r,$,t,7)
through the domain. By the definition of the un-normalised field autcorrelation function,

T—+oo0 T

G(t,7)= lim —J E)E*(t — 7)ds, (3.2)

we describe the correlation radiance,

T—>+oo

G,(r,5,t,7)= lim —J E. (t)E (r—7)de. (3.3)

To proceed, we must consider how G;(r,8, £, 7) varies in time along its path. In chapter 2
we explored the two mechanisms by which we consider coherent light to be modulated as it
traverses a path between two scatteringsites. In the MC procedure each input photon packet
(quasi-plane wave) will undergo N — 1 sequential scattering eventsat ry,, for 1 <k < N—1,
k € Z before it leaves the turbid medium. If we assume that the optical source does not
move with the acoustic field, é;(ro, t) = 0, we can rewrite the phase increment due to the

displacement of scatterers (equation 2.9),

Palr,t)=—ng (ko,k+1 - ko,k) &(r,t), (3.4)

where ko, 5 and ko, k41 Tepresent the optical wave-vectors prior to and following incidence
with the scatterer at 1y, respectively. Now, over the path ; involving N free pathsand N — 1

scattering events we may write the complex phase perturbation,

N-1 N
$i()=D Bt t)+ Db, (ri_po1t), (3:5)
k=1 k=1

where j is a particular scattering event, 1y, is the input location, and ry = r is the location
where the path is detected. Since ¢ 4 and gﬁn are expressed in complex analytic form, and
the acoustic field is monochromatic, the resultant summation leads to a complex phase pet-
turbation with a particular magnitude and phase offset, which oscillates harmonically at the
acoustic frequency. Taking the magnitude m = |¢ ]-(O)| and phase angle ¢ = Zgﬁ ]-(O) of

this perturbation we may express the time varying phase increment as [22],

$;(t)=Im [mj exp(j[ew,t _%‘])} . (3.6)

As such, we can describe £ i in equation 3.3,

E(t)=a;exp (j [wot —klj+,(1)]) (37)

where a; is some amplitude which has been attenuated during propagation through the scat-

tering medium, /. is the length of path 7, and w is the optical angular frequency. Inserting

our expression for the insonified partial field into our expression of the correlation radiance,
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equation 3.3.
T
13 , .
G.(r,8,¢,7)= lim T a]-exp(] (a)ot—kl]--l—msm(wat—goj)))

] T—+c0 _T
2
X a;exp (—] (wo(t —7) =kl +msin(w,(t — 1)~ goj))) dt. (3.8)
Since the system is wide-sense stationary and harmonic over an acoustic period, we may re-
duce the averaging to consider only a single acoustic cycle. Rewriting with 7 =27/,

1 7T
G,(r,5,t,7)= ?J ajz.exp (ja)oT+jm]- sin(cw,t —¢;)+ jm;sin (gpj + o, (t — T))) dt

0
(3.9)

We apply the Jacobi-Anger expansion [1] to remove the sine terms in the exponent,

1 T 0
A _ 2 . . .
Gt e)=1 [ e, 3 Jompen(ine,espl=ing)

X Z]k(m]-)exp(—jkwﬂt)exp(jk(wdr+g0]-)dt, (3.10)
k=—c0

Where ], is the 7™ order Bessel function of the first kind. To simplify the integrand we
define,

Aj(n)=],(m;)exp(=jng;) (3.11)
and

Bi(k)=Ju(m,)exp (jk(w,7 +9,)) (3.12)

such thar,

A _ 2 .
G,(r,8,t,7) =a; exp(jw,T)

1 T oo o
X TJO > Aj(n)exp(jne,t) > Bj(k)exp(—jkw,t)dt (3.13)

n=—0oo k=—00
We expand the integrand for a term 7 = 7’ and & = &/,
/ ./ / -1/ _ / / -/ 7/
Aj(n")exp(jn'w,t)B;(k")exp(—jk'w,t) =A;(n")B, (k' )exp(jn'w,t — jk'w,t)

(3.14)

and consider the integral with respect to time,
1 T
A].(n’)Bj(/e/)?Jo exp(jn’w,t — jk w,t)dt (3.15)

by orthoganility,

1 T b — 5/
?J exp(jn'ew,t — jk w,t)dt = { L ifk=n (3.16)
0

0 otherwise
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such that we can rewrite equation 3.13,

0 ) 1 T ) .
G,(r,8,t,7)= Z ajz. exp(J wo'r)Aj(n)Bj(n)T L exp(jrw, t—jnew,t)dt. (3.17)
Completing the integration, and noting that the system resultant system is independent of
time,

G,(r,5,7)= Z ajz,exp(jcoor)Aj(n)B]-(n), (3.18)

reintegrating the terms A;(n) and B, (n),

G5 )= > atexplj, o), (m))exp(=jng) ], (m))exp (jn(w,7+9,))

(3.19)
and simplifying,

00

G,(r,8,7)= Z ajz,]j(mj)exp(jcoor)exp(jnwﬂr). (3.20)
We can now again apply the identity J_, (z) = (—1)"] (2) [1], after expanding the summa-
tion for 7 =0,

A _ 2 .
G,(r,5,7)= a; exp(jw,T)

x <1§<mj>+ij<mf>exp<;'nwar>+ij<mj>exp<—/nwdr>>. (3.21)
n=1 n=1

Now, since exp(j x) + exp(—j x) = 2 cos(x),

G(r,8,7)= a; exp(jw, ) <]02(m]) +2i]j(mj)cos(nwar)> . (3.22)
n=1

In this form, we can see that the correlation radiance contains spectral content at the input
optical frequency, with side-bands at integer multiples of +cv,. The phase of each of the
element is lost in the autocorrelation function such that the final summation over j sums the
power of each field component. In practice we typically neglect the component at the optical
frequency since it is not recovered in the transformation from the experimentally recorded

intensity autocorrelation (as discussed in chapter 2). Thus,

G;(r,8,7) :a}z. |:]02(m]-)+22]j(mj)cos(nwa7):| . (3.23)
n=1

There are therefore three tasks to be performed in the proposed MC simulation. First, we
must statistically generate the random paths, 7, along which we will propagate our ‘photon
packets. Second, we must attenuate this photon packets according to the Beer-Lamber law

to determine their associated intensity 4?. Third, we must accumulate the phase increments
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which constitute 7 i according to 3.s. In this formulation, the first two tasks are identical to
the MCin the standard RTE. The accumulation of phase increments precludes the possibility
of a ‘white’ MC approach, since the calculations require knowledge of the complete photon-

path, rather than the partial path lengths in each region of differing absorption coeflicient.

3.2.2  Anapproximate adjoint method

MC models of light transport are unable to directly simulate point-source, point-detector
(PS/PD) regimes which commonly occur in studies involving the use of coherent light, since
the random walk which begins at the source location is highly unlikely to impinge directly
upon the detection point. In some cases it may be sufficient to integrate the detected flux
over a region surrounding the detector location, assuming the detector accepts diffuse light
incident from any direction. An alternative approach is to employ the reciprocity of light
transport to define the adjoint transport process [86].

We will consider the adjoint method with greater rigour in chapter 5 when we employ
this procedure to calculate the sensitivity functions required to perform image reconstruc-
tion. For now, we consider only the practicalities of an adjoint based approach to performing
PS/PD simulations. To begin, we consider the standard optical case. To determine the exit-
ing flux across a boundary for a given detector configuration, Lg, we perform the following

procedure.

1. The MC forward model would be executed to give the radiance distribution through-
out the domain for the actual source location. Once normalised we might think of
this as a radiance probability density function which describes the probability of the

transport of light from the source location to a given point in the domain.

2. The MC forward model would be executed again with the source term replaced by
the adjoint source. This source has the location and acceptance profile of the dezector
in the simulated experiment, and its intensity is scaled by the boundary conditions
of the medium. Once again, following normalisation, we can (given the reciprocity
of the problem) consider the resultant adjoint radiance distribution to represent the
probability density of radiance at any point in the domain being detected by the actual

detector.

3. The product of the two probability functions gives the probability density of radiance
generated by the source reaching a given position in the domain, with a particular
direction, reaching the detector. By integrating the result over the domain, and over
all solid angle, we arrive at the total (normalised) flux which would be detected in
the actual experiment (this is a form of the Chapman-Kolmogorov equation[122]).

Neglecting the normalisation we may write this,

L= L ) JﬂL(r,§)L*(r,§) dr ds (3.24)
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where L(r,8) is the forward radiance due to the source, L*(r, §) is the adjoint radiance
due to the adjoint detector, and integration is performed over the entire domain (£2),

and over all solid angle (477).

To perform this procedure requires that L(r,§) be recorded throughout the domain. How-
ever, typical MC codes, including that under development in this work, usually record the
fluence (r) = f 4. L(r,8) d8 throughout the domain. In this work we will make the follow-

mg approx1mat10n,

Ln LL(Y,§)L*(r,§) dr ds L UmL(r,g) dé} [ L L) dg] . (329)

This expression would become an equality in the case that radiance is perfectly isotropic. The
error in this approximation is worst near sources and boundaries where the radiance distri-
bution becomes more directionally dependent. Application of this approximation reduces
the accuracy of our solution in a similar manner to that which is achieved with a diffusion
style model. However, there are certain scenarios which cannot be simulated by diffusion
style approaches. We will return to consider this more fully in chapters 4 and s.

Until this point we have been describing the transport of radiance, rather than correla-
tion. We now expand the idea to the case of AO where energy will be distributed not only at
the input optical frequency, but at side-bands shifted by multiples of the acoustic frequency.
Consider a pencil beam incident normal to the boundary of the simulation domain at some
point r, illuminating the system with a given irradiance, L! (r,,$). We denote the proba-
bility of optical power at some point r, in the £ side-band reaching some point r;, in the
n™ side-band as P]:’ (ry,r,). The probability distribution of optical power at each side-band
throughout the domain resulting from the source at r; is given by the unit-less normalised
fluence rate PJ/(r,r,) = @”(r)/LE(rS, §), where ®”(r) is the fluence rate at a point r in the
medium in the 7 side-band. In replacing our detector with an adjoint source of equiva-
lent directivity at r;, we may derive another set of optical power probability distributions

Pg (r, r, ) By our approximation,

P(rd,rs)zJQP(rd,r)P(r,rS)dr. (3.26)

In the case of transitions to and from different side-bands we must sum over the relevant
permutations:
- k
P:(rd,rs)zj D Pl (r,r)PE(r,x,)dr. (3.27)
|
We assume that contributions to the (7 4 1) side-band are negligible and thus express the

detected exitance at the zeroth side-band,

Lg’o(rd) i~ LSF(rS)J Pg(rd, r)Pg(r, r,)dr, (3.28)
Q
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where by reciprocity Pg(rd,r) = Pg(r, r). The detected exitance at the first side-band is

given by,
Ly (rg) = Li(r) JQ Pl(rg,t)P(x, 1)+ P (xz, )P, (r,r, ) dr. (3.29)

We find Po1 (r;,r) by optical reciprocity, and make the approximation Pll(rd, r) R Pg(rd ,1).

Thus, the first harmonic modulation depth, MD{ detected at a point on the boundary is

given by,

fﬂ PO1 (ry, r)Pg(r, r,)+ Pg(rd, r)PO1 (r,r,)dr
[ Pg(rd,r)Pg(r, r,)dr

MDIJ ~ (3.30)
Given the approximations made in developing this expression, it is important that any simu-
lation which employs this approach is demonstrated to tend to the correct result, as may be
found by integrating the output over a larger region. We will demonstrate the validity and

use of the expression in section 3.4.

3.3 Implementation

3.3.1 GPU Parallel Programming

The design of an efficient GPU accelerated parallel algorithm such as the current simulation
requires a different approach to traditional serial or parallel CPU algorithms. In the latter
case the efficiency of an algorithm is primarily a function of the number of instructions to
be performed for each execution of the algorithm; efficiency is increased by pre-processing
data and storing this in memory for retrieval by the algorithm. On a GPU the converse is
true, memory access is expensive and computation is cheap, as such the ratio of arithmetic
to memory access should be maximised - even to the extent that it may be preferable to re-
evaluate intermediate values of a large calculation rather than store them.

The second crucial aspect of writing efficient GPU accelerated code is preventing the di-
vergence of multiple threads due to control flow instructions. This is epitomised by the single
instruction, multiple thread (SIMT) paradigm. Each of the many streaming multiprocessors
(SMs) contained within a GPU contains a single instruction scheduler which passes the re-
quired computational instruction to multiple scalar processors (SPs) which each process a
single thread. If, through a control flow instruction, any of the SPs within a single SM are
executing different instruction to another, execution of those threads residing on that SM
must be executed in serial until the threads re-converge.

Since each simulated photon packet has no dependence on the state of another, such al-
gorithms are inherently parallelisable. The large datasets required to store an acoustic field
provide challenges for a GPU-based system, as does inherent divergence caused by only a sub-
set of photons currently under simulation transitioning between regions of particular optical

properties.
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The present simulation is to be implemented in the nVidia CUDA architecture. Whilst
tied to a specific platform, the tool-chain provided by nVidia is (at the time of writing) con-
siderably more advanced than other offerings, such as OpenCL. An extensive discussion of
best practices when programming in CUDA is provided by nVidia. Our implementation

follows three broad strategies.

1. Exposing the parallelism of the algorithm: the problem at hand is inherently parallel
as each photon packet is propagated independently of every other. In our algorithm
cases will occur when individual photon packets require different treatments. For ex-
ample some may be reflected or refracted at an optical boundary, whereas others may
be incident upon a scattering object. It is important to minimise this divergence since

cach execution branch will be serialised by the hardware.

2. Use of special purpose memory: whilst such devices are capable of a very high arith-
metic instruction throughput, this comes at the expense of the caching of memory.
Various special purpose memory spaces exist on the device which are optimised to

store particular types of data.

3. Use of intrinsic arithmetic functions: CUDA exposes a number of functions which
map directly to the hardware level; such instructions are considerably faster than the
standard C library implementations, but often have reduced accuracy. Judicious use
of these functions (particularly the trigonometrical and transcendental replacements)

can considerably increase performance.

3.3.2  Architecture

The simulation framework is built around an executable program (the simulation program)
which is configured by variables contained within a set of MATLAB data files: this is depicted
in figure 3.1. The requisite datasets can each be built manually according to the specifications
provided in section 3.3.3, though a number of scripts have been developed by the author to
perform basic tasks such as generating simple acoustic fields and simulation geometries. The

simulation program itself consists of two primary components.

1. The core photon-propagation and phase accrual algorithm (the kernel) is written in
the C language using the nVidia CUDA language extensions to permit execution on
a suitable GPU. The kernel and its support functions are wrapped in C++ functions
to provide an external interface (the kernel wrapper). The kernel and its wrapper must
be compiled using the nVidia supplied nvcc compiler and link against a number of

nVidia libraries.

2. Datainput and output, kernel configuration and management is performed by a piece

of code written in the C++ language (the driver). The driver links against the kernel



3.3. Implementation

Geometry Driver
Specification (C++)
Acoustic Field Kernel
(CUDAC) Output Data File
Ancillary Data Kernel Wrapper
(CUDA C, C++)
MATLAB Data Files Simulation Program
Y
MATLAB
o
P D A "
',/,/x/g Ao x=03
S NEAVA PS y=04
A =l z2=0.1

Voxelised Acoustic Field Meshed Simulation Domain ~ Simulation Parameters

Figure 3.1: Architecture of the simulation framework demonstrating the input datasets, or-

ganisation of the simulation program code, and relationship to the MATLAB environment

wrapper, in addition to libraries provided by Mathworks which permit the reading of
MATLAB data files. The driver can be compiled by a standard C++ compiler.

Upon execution the simulation kernel is initialised by the simulation driver. After all
required data has been uploaded to the GPU, a pointer to a memory allocation for photon
state information is passed to the kernel, and from this each parallel thread can record the
photons packets which are detected. Once called, each thread of the kernel will initialise
a photon and propagate it until it either impinges upon a detector surface, is completely
absorbed by the medium, or leaves the simulation domain. In the first case the photon state
is written to the output buffer and a new photon is launched, in the latter cases the photon is

terminated and a new photon is launched. If the required number of photons for the current
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run has been launched or recorded, the thread exits and control returns to the driver. The
driver then writes the data to disc before re-executing the simulation kernel repeatedly, until
such time that the desired number of photons have been simulated. This process is depicted

in figure 3.2
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3.3.3 The Simulation Domain

The simulation domain consists of a description of the geometry of the system, the optical
properties of the different regions of the geometry of the system, the applied acoustic field
and a number of physical constants. A representation of these physical systems must be de-
veloped which considers the importance of choosing the correct memory architecture for a

GPU accelerated application.

Acoustic Field

Of the three sets of data required by the simulation program, the largest is the acoustic dataset.
As described in section 3.2, simulation of the acousto-optic modulation process requires

knowledge of the following acoustic parameters at each point in the medium,

A, the local acoustic displacement amplitude,

k , the local acoustic propagation direction, and,
gb, the local acoustic phase offset, relative to an arbitrary point,

in addition to various constants such as the acoustic wave-number £, and material dependent
properties such as the speed of sound in the medium, v,,.

If it assumed that a single precision number is required for each variable (three for the
propagation direction) then 20 bytes of storage are required for each point in the acoustic
field. Storing six points per acoustic wavelength (to provide a good approximation to the
field shape, in addition the prevention of aliasing), assuming the speed of sound in water
v, = 1480ms~" and a typical ultrasound frequency f, = 2Mhz, 42875 elements per cu-
bic millimetre must be stored, occupying 832kB of memory. Given the aim of this work is
to consider the use of acousto-optics and its ability to non-invasively target physiologically
relevant targets, it is likely that domains of several cubic centimetres will be required; the
memory requirements for such fields will quickly become prohibitively large.

Previous CPU based simulations [118] also represent the acoustic data in this voxelised
manner. In this work the spacing of grid elements was optimised to provide greater resolution
in the axis of the focus of the ultrasound field, and trading this against memory usage off-axis.
Even if enough memory is available on the device to store the field, we must still consider
that memory access on the device is relatively expensive, more so than in the CPU case. One
might suggest calculating the acoustic propagation direction k, at runtime by taking the
derivative of the phase of the local acoustic field V@ (r), however a numerical differentiation
will require sampling the phase at multiple points surrounding that of interest, incurring the
significant overhead of device memory access.

The GPU architecture offers a convenient solution: texture memory. Texture memory

resides in standard device memory; the process of binding an array to a texture provides an
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alternate access route to the specified region of device memory which conveys numerous

advantages.

Texture memory is spatially cached such that reads from the same or similar locations

will be fulfilled from the cache, rather than by re-accessing device memory, this im-
proves access time for other texture reads which must retrieve the data from device

memory.

A single read from texture memory can return a compound variable of up to 128 bytes

(four single precision floating point numbers or integers).

o Texture memory supports various addressing modes which allow the acoustic field
automatically wrap around itself or clamp to the nearest value; this can be selected
individually in each dimension allowing the efficient representation of acoustic fields

with linear symmetry.

The texture hardware can perform tri-linear interpolation upon the reading of a spe-

cific point. This allows precision to be maintained as the grid is made more coarse.

The texture caching procedure is an opaque feature of the hardware, and this can cause
difficulty in optimisation. The cache miss rate can, however, be determined using a profiling
tool provided by nVidia.

If the spatially varying acoustic data can be represented in only four floating point num-
bers, a single texture read could be used to retrieve the required acoustic data at a specific
point in the medium with the added advantage of automatic tri-linear interpolation. To
achieve this, we scale the acoustic propagation direction (a unit vector) with the local acoustic
displacement amplitude to form a compound variable Aok, whose magnitude can be taken
at runtime, and the propagation vector restored by normalisation.

Under the assumption that the acoustic field does not exceed the available memory on
the device, we now have a relatively efficient way of storing and retrieving the data at run-
time. The simulation driver accepts the acoustic data as four three-dimensional MATLAB ar-
rays, indexed according to their spatial location in a Cartesian manner. The first is the local
phase offset, and the remaining three are the x,y and z components of the amplitude scaled
propagation direction. Noting MATLAB’s one-based indexing, the array elements located at
[1] [1] [1] represents the acoustic field within the simulation domain located at the point
r = (0,0,0). To map the entries of the acoustic field arrays to the simulation domain the
complete extent of the acoustic field is recorded in a separate variable.

Upon reading the MATLAB arrays from the data file the simulation driver creates a com-
pound array of four-element floating point numbers which store each of the relevant vari-
ables for every point in the three-dimensional array. During this process, the input arrays are
permuted from their column-major format (as used by MATLAB) to the C-style row-major
format. This permutation is performed such that addressing of the array within the kernel re-

mains intuitive. The simulation driver uploads the permuted compound array to the device’s
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memory and binds a texture to the appropriate location for later access by the kernel. During
simulation the kernel indexes the acoustic field texture using a normalised access method; a
texture request is made by submitting a three-element floating point number with each ele-

ment in the range [0, 1].

3.3.4 Geometry Representation

In many Monte-Carlo simulation programs which support heterogencous optical properties,
including GPU accelerated programs [41] and those which consider acousto-optics [118],
the heterogeneity is provided by discretising the domain in the same manner as has been
applied to form the acoustic field representation — a voxelised grid (a piecewise constant ba-
sis). As a photon packet takes a step through multiple volume elements (voxels), each must
be examined to ascertain if there has been a change in optical properties. The approach has
the benefit of being conceptually straightforward. As discussed briefly in section 3.3.1 this
representation is sub-optimal for a GPU implementation due to the overhead in accessing
different memory locations. Furthermore, a photon may move through a variable number
of voxels on each step, this implies the use of a for or while loop in the kernel code which
propagates photons: this introduces divergent execution paths and thus serialisation of ex-
ecution. A different approach is taken here whereby the simulation domain is represented
by a tetrahedral mesh. This representation is typically encountered in applications of, e.g.,
the finite element method, but has also been applied to a CPU based Monte-Carlo photon
propagation [40]. By employing this method, photons move around within volume elements
which subdivide the simulation geometry. On each photon step, we must check for intersec-
tion with any of the four boundaries (facets) of the current element. Whilst we must still
interrogate a dataset to determine the location of these facets, the amount of data to be re-
trieved, and the nature of the processing to be performed, is now fixed across each thread,
thus avoiding issues of divergence and potentially reducing the amount of data which must
be retrieved from memory’.

In addition to being a more suitable description of the simulation geometry for technical
reasons, a meshed approach allows the boundaries between two optically dissimilar regions
to be represented with arbitrary accuracy, rather than as a stepped voxelisation. Some of the
advantages of this approach are discussed in [90]. Two tables of data are required to define
the geometry of the simulation domain, though two more are required for this particular

application. The tables are now considered by their internal names.

nodes The node list records the three-dimensional Cartesian co-ordinate of every node, or
vertex, in the mesh. These nodes are used by the element matrix to form the individual

tetrahedral elements from which the geometry is constructed.

"'This is of course dependent upon the complexity of the models; homogeneous cuboid geometries would
be far more efficiently represented as voxelised structures, however the research aims of this study require

the flexibility to consider more physiologically relevant, complex structures.
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elements The element table defines each tetrahedral element by four numbers which de-

fine the co-ordinates of each vertex of the element by indexing the node list.

neighbours The neighbour list is a requirement of this application. As photons are prop-
agated through the simulation domain they will pass from one element to the next via
one of the boundaries (facets) of each tetrahedron. To determine into which element
they may transition, we access the element neighbour list with the current element in-
dex; this returns the indices of the four elements neighbouring the current element (or
zero for the domain boundary). By convention element opposite node j of element

i is located in the neighbour list at index [1, j].

properties The properties list is a requirement of this application. Each element in the
clement table has an entry in the properties list which defines an index to the medium

of which the element is composed.

The primary mesh tables (elements and nodes lists) may be generated by various means.
For the most simple geometries such as plane slabs, the nodes and element lists can be built
by hand. More complex optically homogeneous geometries can be built using triangulation
tools such as the MATLAB delaunay function. Open source tools such asisozmesh [39] can
build meshes from voxelised data, such as MRI scans (potentially pre-segmented to delineate
different optical regions). Alternatively, a number of finite element method tools have inte-
grated geometry definition and meshing tools from which a suitable mesh can be exported.
In the case that the acoustic field for simulation is derived from a finite-element analysis, a
mesh will be readily available. The neighbours table can be generated using the MATLAB
neighbors function. Note that this function returns NaN entries for external facets, these
must be replaced with zeroes for use in the simulation program. The properties list can be
generated by hand. It is likely that this list will already exist if the dataset was derived from a
finite-element analysis or from pre-segmented data.

Much like the acoustic datasets, each of these tables is stored in the device as a texture,
though in this case a one-dimensional texture accessed by conventional array indexing, rather
than the normalised case employed for the three-dimensional acoustics texture. The benefits
of texture memory discussed previously are also conveyed to the access of the geometry tables.

The simulation driver reads the dataset from the MATLAB data files, transfers these arrays
to the device and binds them to a relevant texture. Just prior to their transfer to the device,
each of the arrays is padded with an empty row at their beginning; this is to permit element
zero to represent that which is external to the specified simulation domain. If the datasets
have been constructed in MATLAB’s one-based indexing regime, this requires no attention
from the user. Otherwise, it may be necessary to increment each entry in the element and

neighbours tables by one.
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3.3.5 Ancillary Data

In addition to the acoustic field and geometry data, three more sets of data are required to
complete a simulation. These comprise of the medium specifications (primarily the optical
properties) as indexed by the geometry tables, simulation physical constants (such as the ul-
trasound frequency, optical wavelength) and simulation control constants.

Different mediums are specified in a data structure containing the following constants,

all of which are specified at the simulated optical wavelength.

mua is the absorption coefficient, ¢, [m™].
mus is the scattering coefficient, u, [m™].

g is the anisotropy factor, g, of the medium [-].
n0 is the index of refraction of the medium [-].

eta is related to the acousto-optic coefficient, and was defined in equation 2.10.[m™"].

The simulation driver retrieves the medium entries from a MATLAB array named medium
in the supplied data files. An entry must be provided for every medium referenced in the ele-
ment properties table according to MATLAB’s one based-indexing, the simulation driver au-
tomatically pads the array with a defunct zero entry. This dataset is uploaded to the constant
memory area of the graphics card which provides cacheing for such read only data.

The simulation program requires the following constants to be presented.

kO is the wavenumber of the optical source, /eo in units of rad m~1.
ka is the acoustic wavenumber, /ea in units of rad m~!.

init_photon_location isathree-componentvariable specifying the initial location, in
units of the meter, from which photon packets are launched into the simulation do-

main.

init_photon_direction isa three-component unit magnitude variable specifying the
initial direction which the photon packet takes when launched into the simulation

domain.

init_photon_weight is the notional weight of a photon packet and can be set to an

arbitrary value, typically unity.

init_element isan index to the element into which the photon is launched into the sim-
ulation domain. This should be determined from the initial photon packet location

cither by hand, or by use of a function such as MATLAB’s tsearchn function.
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init_face is the facet from which the photon packet is launched into this simulation do-
main. Setting this variable disables an intersection test on this face during the first run
of the photon packet propagation code. If the photon packet is injected at a point

within a domain element, this variable can be set greater than three to disable the test.
n0_external is the refractive index external to the simulation domain.

detector_index isthe medium index which represents the detector. Photon packets en-
tering an element of the specified medium will be detected and terminated as they

pass into this region.

The simulation driver retrieves the simulation constant variables from a single element
MATLAB array consisting of a structure with the documented field names. This dataset is
also uploaded to the constant memory area of the device. Finally, the simulation program
requires a number of simulation constants which dictate how execution continues. These

include the number of photons to simulate, and the output filename.

3.3.6 Algorithm

Given a representation of the simulation domain the algorithms which propagate photon
packets through the simulation domain, accrue their phase, and control the execution of the
simulation can now be described.

Many of the fundamental calculations performed are of a standard form for MC light
transport codes. Whilst there are significant changes to the ordering of the algorithm, and
the way in which the geometry is represented, Wang's description [134] of his de-facto stan-
dard code, MCML serves as a reference for each part of the photon propagation routine.

As described in section 3.3.2, following the upload of required data from the host to
the device, the simulation driver repeatedly calls the simulation kernel to request a certain
number of photon packets to be propagated®. On each call, tens of thousands of individual
threads perform the process described at a high-level in algorithm 1; the important processes

are subsequently described in greater depth.

Photon Packet Step Size

With knowledge of the interaction coeflicient of the current medium, u, = u, + u,, the

photon step size is calculated,

| _
o Tlog1-¢) (331)
My

where £ is a uniformly distributed random number distributed over the interval [0, 1).

*>The entire simulation task could be completed in a single call to the kernel, however this would require
a memory buffer large enough to store the results of every photon packet to be recorded. Instead, a smaller

buffer is used, and this is written out to disk by the simulation driver between each kernel invocation.
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Algorithm 1: The Simulation Kernel Algorithm

20

21

22

23

24

25

26

27

28

29

30

Data: photons requested

get photon index from global photon counter;

while phoron index < photons requested do

end

initialise photon packet to initial state;

repeat

else

end

until he photon packet has zero weight, detection is flagged, or the photon packet

sample the photon packet step size;
if photon packet intersects a facet then

set step size to take photon packet to boundary;

if photon reflects then
‘ set next direction according to reflection;
else
set next direction according to refraction;
update element and face;
if element is a detector then
flag detection;
end

end

set next direction by scattering ;

absorb photon packet weight into medium ;

accumulate phase due to displaced scatterer ;
accumulate phase due to modulated index of refraction ;
update location according to step size;

update direction according to next direction;

perform photon roulette (3.3.7);

has exited the simulation domain;

if detected then

write photon location, weight and phase to buffer;

increment global photon counter;

end
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Geometry Intersection

Given the current location, direction and step size of a photon packet, we must now test for
interaction with the simulation geometry, e.g., intersection of any of the facets of the current
element.

By retrieving the four nodes of the current element, we construct each of the four facets
of the tetrahedron by iterating over choices of the three nodes (2, 3,4),(1,3,4),(1,2,3),and
(1,2,3). We test for intersection with each facet, ignore the result of any test corresponding
to the face over which the photon packet previous travelled.

The intersection of a line-segment with a triangle is a well understood geometric oper-
ation. The most basic form of this test involves testing for intersection of the line with the
plane defined by the three points of the triangle, before determining if the intersection point
occurs within length of the current segment. Alternative accelerated algorithms are avail-
able in the literature pertaining to computer graphics, one of the more popular being that of
Moller and Trumbore[100]. However, when implemented without infinite precision, such
tests require epsilon based algorithms which test results of operations not against zero, but
against a small range around zero. As such, the algorithm is no longer robust. This can often
be tolerated in graphics rendering application, however in this application, the consequences
of false-positives or negatives is that a photon will end an iteration of the algorithm at a posi-
tion which does not correspond to its current element. All subsequent intersection tests will
fail, and the photon will propagate indefinitely.

To avoid this problem, we use an alternative approach based upon the triple scalar prod-
uct [63]. Here we rely only upon the sign, rather than the value, of various arithmetic op-
erations. This approach is mathematically equivalent to the use of Pliicker co-ordinates, (as
described by Fang [40]), but avoids the associated complexity of analysis and notation.

The signed volume of a tetrahedron defined by four vertices p,—ps; is calculated by[63],

V(PosP15P25P3) = = [(P1 — Po) X (P2 — Po) - (P5 — Po)] (3.32)

N =

where - is a dot-product and X the cross product operator. To determine if the ray defined by
the current photon packet direction intersects the current tetrahedral element we begin by
retrieving the four vertices of the element from the geometry cache. We test for intersection
with each of the four facets of the tetrahedron by iterating over the four choices of the three
nodes. We ignore the result of a test against the facet, if any, over which the photon packet
previously reflected or refracted.

For each of the four facets we calculate three signed volumes,
L. V(r,1,,p1,P2):
2. V(r,,1;,P2Po)

3. V(t,,1,P0sP1)-
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In the case that the sign of each of these volumes is equal, the ray intersects the facet. To
determine if the photon packet will intersect the facet given its current step size we calculate
the two signed volumes V, = V(py, Py, P2» I,) and V, = V(pg, P1> P2» T ); in the case that
the signs of these volumes are opposite, and that V, > 0, intersection occurs at the parametric
distance V, /(V, + V). If any interactions occur the smallest intersection distance is used
to scale the current photon packet step size.

Ifan intersection occurs, the photon packet step size is updated to take it to the boundary
of the element. We then perform a series of tests to determine if the photon packet reflects,

refracts or simply transmits into the next medium.

1. Iftheindex of refraction on either side of the boundary is matched, the photon packet

transmits into the next element with the same propagation direction.

2. Otherwise, we calculate the angle of incidence of the photon packet @; using the nor-
mal to the plane defined by the three points of the face we have intersected. With
knowledge of the index of refraction in the incident medium 7; and the medium into
which we may transmit, 7,, we next check for total internal reflection which occurs
when nf < nf(l - Cosz(ai)). In this case, we reflect the ray in the plane defined by
the face,

§ —§—2ncos(a;) (333)
where 1 is the unit normal to the face.

3. If total internal reflection does not occur, we must calculate the internal reflectance

function,
1 [sin®(e; —a,) tan’(a;—a,)
R(ai == .2 2
2 | sin“(a;+a,) tan“(a;+a,)

(3.34)

where the transmission angle @, is found by Snell’s law (#; sin(a;) = 7, sin(a,)). We
now generate a uniformly distributed random & in [0, 1). If ¢ < R(e;) then the pho-
ton packet is reflected back into the current element, and it’s next direction is calcu-
lated according to the equation for total internal reflection. Otherwise, if & > R(a; ),

the ray refracts into the next medium and its new direction is calculated,

n

n. ;
§«— —S5—n —lcos(ai)+~/l—sin2(a[) (3~35)

n 7

Scattering

If the photon packet does not intersect a facet of the current tetrahedron, it is considered to
have interacted with the medium. In this case the photon packet first undergoes scattering.

In this application the photon packet is scattered by the Henyey-Greenstein phase function
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[s4]. Expressed as a probability density function,
1— g2

2(1+ g2 —2g cos(0))2 (5.56)

p(cos(0)) =

For anisotropic scattering where g # 0 the resultant deflection cosine, COS(@) is found

by [134], ,
1 1—g?
cos(0)| g0 = 2 [1+82 - <m> :| (3:37)

For isotropic scattering with g= 0,
cos(@)|g:o:2§—1 (3.38)

where £ is a uniformly distributed random number distributed over the interval (0, 1). The

uniformly distributed azimuthal angle is then found.

$=2r& (3.39)

The direction cosines of the next direction of the photon packet are updated according

to the sampled values of the scattering deflection and azimuth.

3.3.7 Absorption and Roulette

Following a scattering event, some proportion of the photon packet weight is absorbed into

the medium. The photon packet weight is updated [134],
Ha

We—w—w— (3.40)
e
where w is the photon packet weight.

In order to reduce the number of photons packets with a very low weight (and thus little
statistical significance) the variance reduction technique of roulette is employed. Photon
packets with a weight less than a certain threshold are assigned a probability 72 of surviving
the roulette procedure. A random number ¢ is generated in [0, 1] and if (§ > 1/m) the

photon packet weight is reduced to zero, for termination on the next iteration. In order to

conserve energy, a surviving photon packet has its weight updated w < mw.

Index of refraction phase accrual

The simulation offers two methods to calculate the index of refraction phase increment based
upon equation 2.6.

In the first formulation we approximate the equation with a numerical integration over
the path of the current photon packet step. We divide the photon packet path length into N

subintervals of equal widths h= |rb — ra| /N and employ the composite midpoint rule,

N-1
¢n(ra’rb’ t) ~ ko”o’ib ZP0<rk)eXp [].(¢a(rk) - wat)] (3~4I)
k=0
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where r, = r, + (k 4 0.5)(r, — r,)/7. The number of subintervals is defined at runtime
as a particular number of points per acoustic wavelength and thus differs for cach photon
packet under propagation; the divergence of this approach leads to sub-optimal performance.
Furthermore, a large number of reads from the acoustic-dataset are required to minimise the
error in the numerical integral. This approach is still viable owing to the performance benefits
of the parallel implementation and provides excellent accuracy irrespective of the nature of
the underlying acoustic field.

An alternative approach to the calculation of the index of refraction phase increments
is to assume that over the length of single photon packet step the acoustic field can be repre-
sented by a plane wave of given pressure amplitude, propagation direction and phase offset

as defined at a point r,

Pe(rs ) = Po(r ) exp(7 [P (ro) + K, (ro) - (r — 1) — 0, 2]). (3.42)

This expression is substituted into equation 2.6 and the integration completed over the straight

line path of the photon packet step fromr, to r,

kOnOOPO(rC)eXp(j(¢u(rc) - ka(rc) ' rc - wat))
jku(rc)'(rb_ra) (3-43)

X [exp(j(ka(rc) . rb)) - exp(].(ka(rc) : ra))] .

In the case that the acoustic wavevector is a slowly changing function of space, this approxima-

gbn(ra’rb’ t) ~

tion can offer significant performance improvements over the numerical integration when
the photon packet step size is large compared to an acoustic wavelength. This is achieved due
to reduced memory access, and its non-divergent execution.

Irrespective of the integration method, the real and imaginary parts of each expression

are evaluated and stored individually by expansion of the complex exponential.

3.3.8 Random Number Generator

On numerous occasions within the photon propagation algorithm, a uniformly distributed
random number must be generated. As a parallel algorithm, this requires special treatment.
A standard random number generator (RNG) could be used for each thread (photon propa-
gation kernel), though if it were seeded with the same value, each thread would perform the
same calculations. One approach might be to seed the RNG with different values for each
thread, but in this case one would have to ensure that each RNG output sequence did not
overlap during simulation; to ensure this were true, an RNG with a large period would be re-
quired, thus implying a large amount of state information (memory usage). This application
uses an implementation by Alerstam [4] of Marsaglia’s multiply-with-carry RNG [92]. As
detailed in the references, the algorithm requires only eight bytes of state information and

has a period of greater than 260,
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3.3.9 Scored quantities and post-processing

The simulation code stores two sets of data for later analysis: the internal fluence deposition
and the parameters of photon packets which exit the simulation domain.

The internal fluence rate is recorded at the zeroth and first optical harmonics at the nodes
of each element within the domain. Upon an absorption event the contribution to the total
fluence rate is found according to equation 3.40, with a proportion ]02(m ;) distributed to the
zeroth harmonic and 2/, f(m ;) to the first. The fluence at the absorption event is distributed
to the nodes of the mesh according to linear weightings of the distance of the photon packet
to each node. Following simulation the fluence rates are normalised by the total input opti-
cal power, and the Voronoi volume of each node in the mesh. Consequently, the recorded
fluence is approximated on the mesh in a linear basis. Various standard MATLAB functions
can be used to investigate the dataset as defined on the nodes of the mesh. Alternatively, the
data can be interpolated to a regular grid for further analysis.

Upon leaving the simulation domain the location, weight, absolute path length, and
phase modulation terms (72, ¢, of equation 3.6) of each photon packet are recorded in a
buffer residing in the device memory of the GPU, subsequently being transferred to the host
and saved to disk. The autocorrelation function of each photon packet may be calculated

using equation 3.23.

3.4 Results

The results of this investigation are presented in three subsections.

1. Thealgorithm is validated by comparing the results of both optical and acousto-optical

simulations against analytical and numerical results available in the literature.

2. W consider the performance of the code by comparing it with existing mesh-based

optical simulation codes, and our previous GPU implementation.

3. We demonstrate the use of the code in building explicit perturbation sensitivity maps

for an acousto-optic experiment, the results of which are published elsewhere.

As described eatlier, one of the core uses of the Monte-Carlo algorithm is as a tool for vali-
dation of other approximate numerical models of the acousto-optic effect; and this tool will

be used for that purpose in chapter 4.

3.4.1 Validation: optical

Validation of the light transport algorithm is performed by two techniques. In the first case
we compare the output of the simulation code with approximate analytical solutions for a
variety of geometries. The analytic solutions here are based upon the diffusion approximation

which is valid for distances greater than one scattering mean free path ([, = 1/, where 1/
s s
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is the reduced scattering coefficient) from the source. In addition to differences near sources,
discrepancies between the analytical solutions and the Monte-Carlo results will also occur
when boundary conditions are not matched. Specifically, the simulation code operates in
a domain of limited spatial extent, whereas many of the presented solutions are valid only
for semi-infinite domains. These effects will be noted where present. In the second case, the
simulation program has been cross-validated against alternative Monte-Carlo simulations to
demonstrate agreement near the source.

The choice of optical scenarios chosen for validation is motivated by the validation tech-
niques applied to other Monte-Carlo simulation codes, the availability of analytical solu-
tions, and an understanding of the elements of the algorithm tested by differing scenarios.

The latter consideration is the most important, and motivates the following scenarios.

1. Domains involving large numbers of small and/or poor quality elements tests the re-

silience of the program’s intersection codes.

2. Multiple subdomains of differing refractive indices ensure reflection and refraction

are properly handled.

3. Multiple subdomains of differing optical properties test the registration of the subdo-

mains with the tetrahedral mesh.

In all cases, the simulation code must predict the proper path length and weight of each pho-
ton packet (related to the scattering and absorption in the medium respectively) in order to
adequately predict the quantities of interest. In the following sections, a variety of increas-
ingly complicated scenarios (in terms of geometry and heterogeneity of optical properties)

are demonstrated.

Transmittance and Diffuse Reflectance of a Thin Slab

Following the procedure outlined in [134] the diffuse reflectance and total transmittance of
aslab of a scattering medium of thickness d = 0.02cm with optical properties 1, = 10cm ™1,
Uy = 90cm™!, and anisotropy factor g = 0.75 are calculated in response to a coherent pen-
cil beam perpendicularly incident on the lower surface. Ten simulations of 50,000 photon
packets are performed, and the average values of the aforementioned parameters are calcu-
lated alongside standard error.

In the simulation program the simulation domain is of limited but suitable spatial extent
in the x—y plane — e.g., 0.5m. The tetrahedral geometry is constructed using a point cloud
consisting of 10 x 1o x 2 points in the x,y, and z directions, respectively. The reflectance and
transmittance are calculated by summing the weight of all of the photon packets escaping
the simulation domain on the appropriate surfaces. Table 3.1 demonstrates the results of the
process against other models, as provided in [134].

The simulation program demonstrates a 0.01% error? in the diffuse reflectance and a

3 All errors presented with respect to the data of van de Hulst
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Source R, Average | R, Error | T, Average | T, Error
van de Hulst, 1980, 0.09739 0.66096

Code under development | 0.09740 0.00025 | 0.66070 0.00033

MCML 0.09734 0.0003§ 0.66096 0.00020

Prahlezal, 1989 0.09711 0.00033 0.66159 0.00049

Table 3.1: Comparison of the diffuse reflectance and total transmittance of a thin slab with
matched boundary predicted by the simulation program against a diffusion model and alter-

native Monte-Carlo simulation codes.

—0.39% error in the total transmittance. The standard error lays within the bounds defined
by the other simulation programs. The output of the program has been tested to be insensi-
tive to the complexity of the tetrahedral geometry (e.g., increases in the number of elements
in any axis). Increasing the number of averages to so generates an R ; = 0.0973 (—0.092%)
and 7, = 0.6609 (—0.0091%), with consistent standard errors. This validation experiment

supports the correct operation of light transport routines of the simulation program.

Depth Resolved Internal Fluence of a Thin Slab (Ad-Hoc Voxelisation)

Once again following the procedure of [134], the internal fluence is recorded as a func-
tion of depth through a semi-infinte slab of a scattering medium with optical properties
U, = 0.1ecm™1, U, = 100cm~!, and anisotropy factor g = 0.9. The photon packet ab-
sorption deposition is recorded in the simulation program using one dimensional array of
200 hundred elements spanning a 10mm depth of the medium, and converted to fluence
through division by the homogeneous absorption coefficient. Diffusion theory suggests that

at adepth in the medium of greater than the effective transport coefficient,
1
\/3lua(lus + lus(l - g))

fluence will decay exponcntially according to,

$(2)= pyexp(—z/D) (3.45)

Yot ~5.7mm (3.44)

where ¢O is the incident irradiance, and z the depth within the medium.

Figure 3.3 compares the output of the simulation program with that of CUDAMCML
[4], which independently validates against other Monte-Carlo codes, including MCML. An
exponential fitaccording to the presented theory is also overlaid on the graph, using the value
of g previously calculated. The exponential fit to diffusion theory is found to be accurate
at distances considerably more shallow than the penetration depth of the semi-infinite slab.
As highlighted by Wang, the curves intersect at around a single transport mean free path into
the medium (1/(u, + Iug) ~ 1mm). Beyond this distance, the two Monte-Carlo codes and

the exponential fit are in excellent agreement.
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Figure 3.3: Comparison of the depth resolved unitless fluence in a semi-infinite medium as
computed by the simulation program against that computed by CUDAMCML, in addition

to an exponential fit according to diffusion theory.

Layer | n Iu; [1/cm] | w, [1/cm] | Depth [cm]

I I 12 0.1 0.5
2 I 11 0.3 0.2
3 1 13 0.2 0.2

Table 3.2: Optical properties of the multi-layered slab geometry employed in the simulation

of figure 3.4

Reflectance of a Multi-Layer Slab

In more recent work, Liemert and Kienle [83, 84] derive a diffusion approximation for an
N-layered cylindrical slab with isotropic scattering. Software is provided by the author to
numerically solve this equation for an arbitrary number of layers, with differing optical prop-
erties. We employ this software, and another Monte-Carlo model, to validate the simulation
code in the case of multi-layered slab geometry with index-matched layers. A multi-layered
slab is conceived with the optical properties given in table 3.2.

The N-layered diffusion approximation is configured to calculate the reflectance for a
cylinder of radius 100mm to minimise any boundary effects when comparing the result with
a semi-infinite multi-layered slab. The program is configured to report the reflectance over a
0.1mm grid from the center of the cylinder extending outwards over 300 grid points.

The simulation program was configured by meshing a multi-layered slab of width and

depth 1ocm, and appropriate height according to table 3.2. A total of 107 photons were
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Figure 3.4: Plot of the radially resolved reflectance from a multi-layered slab, as calculated by

the simulation program, MCML, and a diffusion approximation.

launched at the centre of the slab, and the program recorded all photons exiting the slab. To
minimise variance, the reflectance of the simulation program output was calculated by inte-
grating the output flux around thin concentric rings with radii centred on the desired point.
This was performed in post-processing, where appropriate scaling was performed to provide
reflectance in units of [W m™]. For further validation close to the source, the MCML pro-
gram was configured to simulate the same optical configuration in a semi-infinite multi-layer
slab. The same number of photons were used as with the simulation program. MCML au-
tomatically reports the reflectance in its output file, this was scaled to the same units as pro-
duced by the simulation program. Figure 3.4 illustrates the results of the simulation proce-
dure. Both Monte-Carlo models agree excellently over the entire radial range considered.
Beyond circa 16mm, statistical noise is evident in these curves owing to the reduced number
of photon packets binned at larger distances from the source. The diffusion approximation
would not be expected to be accurate close to the source location, and this is indeed noted.
As the radial distance increases, the approximation tends towards the Monte-Carlo curves.

This result supports the correct operation of the simulation program.

Reflectance of a System of Concentric Shells

Sikora et. al. present a solution to the diffusion equation for the case of a series of concen-
tric shells with heterogeneous optical properties [126]. To demonstrate the functioning of
the simulation program with a more complex geometry, we here reproduce figures four and
five of their work. These graphs demonstrate the intensity on the surface of the outer shell

against the angle from the source of illumination for two different configurations of optical
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Shell Case1 u, | Case1 lug Case2 u, | Case2 /-‘2
Quter | o0.005 I 0.005 I

Middle | o.005 1 0.005 0.75
Inner 0.01 1.5 0.01 1.5

Table 3.3: Optical properties of the cocentric shells [mm™] employed in the simulation of

figures 3.6 and 3.7
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Figure 3.5: Mesh employed in the simulation of figures 3.6 and 3.7 for the series of concentric

shells.

properties, as given in table 3.3. The mesh for the concentric shells, of radii 20, 15, and 10mm
was built using COMSOL Multiphysics, and is displayed in figure 3.5. The simulations were
performed with 107 photons launched inwards, normal to the external surface of the sphere.
The analytical solutions computed using a Mathematica script provided by an author of the
cited work. Variance in the Monte-Catlo results was reduced by integrating the output over
bandsaround the sphere at each of the calculation points before appropriate scaling to match
the output of the analytical solution. The results of the two cases are shown in figures 3.6 and
3.7.

The amplitude in each case has been normalised to the value of the analytical solution at
an angle of 7t/2 radians from the source location. In both cases it can be seen that excellent
agreement is found at an angle from the source exceeding 7t /4 radians. Whilst the diffusion
approximation is not expected to provide complete agreement with the radiative transfer
equation (as approximated by the simulation program) near the source, this is exacerbated

in this case as the source in the analytical solution is in fact a Gaussian beam, rather than a
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Figure 3.6: Plot of flux on the outer surface of the concentric spheres vs. angle from the

illumination source for the parameters of case one of table 3.3.
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Figure 3.7: Plot of flux on the outer surface of the concentric spheres vs. angle from the

illumination source for the parameters of case two of table 3.3.
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Figure 3.8: Temporally resolved reflectance (upper curve) and transmittance (lower curve)
for a slab of optical properties given in the text, resolved at a radial distance = 30mm from

the source.

pencil beam. The agreement in the nature and differences in the curves at large angles from
the differing source provides reasonable confidence in the proper operation of light transport

algorithms and geometry handling of the simulation program.

Temporal Point Spread Functions for Semi-Infinite Slabs

Contini et. al. provide solutions for various measures of the optical response of semi-infinite
slabs under the diffusion approximation [32]. These solutions include the temporally and
spatially resolved reflectance and transmittance of the slabs to instantaneous and continuous-
wave illumination from a coherent pencil-beam. To demonstrate that the correct optical path
lengths are being taken by the simulated photon packets, and that the correct absorption is
being applied, we reproduce two figures from a subsequent paper in which Martelli et. al.
compare their analytical results with Monte-Carlo models [93]. In the first case, correspond-
ing to figure two of [93], we examine the time-resolved reflectance and transmittance of a
slab of thickness 40mm, [ui = 0.75mm™", refractive index 1, = 1.4 and relative refractive
index to the background medium of 7 = 1.33. The values are resolved at a radial distance
© = 30mm from the source position. The results are presented in figure 3.8. Each curve
demonstrates excellent agreement with the analytical solution, as would be expected in a
region far from the source. Statistical noise is seen in the Monte-Carlo data owing to the

limited number of photons resolved at this radial distance.
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Figure 3.9: Temporally resolved total transmittance for a slab of optical properties given in

the text with relative refractive index of 7 = 1.4 (upper curve) and 7 = 1 (lower curve).

In the second case, corrcsponding to ﬁgurc three of [93], we consider the total time-
resolved transmittance for the same slab, though this time with lui = 0.5mm™, refractive
index 7, = 1.4 and relative refractive indices of 7 = 1.4 and 7 = 1. The results are presented
in figure 3.9. In this case, excellent agreement is found for the case of matched refractive
index, though in the case of 7 = 1.4 the simulation appears to under-report the fluence at
large time intervals. We note that the same discrepancy is also seen in the original work,
and as such we consider this to be a consequence of the diffusion approximation rather than
an error in the Monte-Carlo code. The figures presented in this section support the correct

operation of the simulation program.

3.4.2 Validation: acousto-optical

Validating the phase accrual algorithm presents a greater challenge than the optical case since
fewer analytical formulations are available. Furthermore, those which are presented in the
literature typically employ considerable approximations, or are limited to simple geometries.

Two sets of analytical results are employed in this work.

Plane Wave Acousto-Optics

Sakadzi¢ and Wang present an analytical solution for the modulation depth developed dur-
ing coherent illumination of a semi-infinite slab insonified by plane-wave ultrasound [114].
As part of this work, a set of figures is presented comparing their analytical solution with a

Monte-Carlo model which they have developed. These figures compare the expected mod-
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Figure 3.10: Acousto-optic modulation depth calculated by the simulation program vs. an

analytical solution for changes in the optical absorption coefficient

ulation depth against the optical absorption coeflicient, acoustic frequency, acoustic am-
plitude, and optical scattering coefficient. The baseline optical properties of the slab are
v, = 1480 [ms™'], » = 0.3211, ny = 1.33, L = 2 [em], u, = 20 [em™'], u, = O and
g = 0. Figures 3.10 through 3.13 compare the analytical solution with the results calculated
by the simulation program. Given the considerable approximations made in the analytical
development, excellent agreement is seen between the analytical solution and the output of
the simulation program. In figure 3.11 we observe that the modulation depth increases with
acoustic frequency due to increased acousto-optic tagging efficiency. In typical biological
media we would expect increasing acoustic attenuation with frequency to act contrary to

this trend: this is not modelled in the present example.

Partially Insonified Medium

An alternative analytical formulation is derived by Sakadzi¢ and Wang based upon appli-
cation of the diffusion approximation to a correlation transfer equation [118]. In this work
the correlation diffusion equation is solved by a finite difference technique for a semi-infinite
slab geometry containing a cylinder of plane-wave ultrasound. We will explore such models
further in chapter 4.

Here we recreate this simulation in a cuboid mesh of width x = 20mm. The depth and
height of the mesh (y = 100mm, z = 40mm) are chosen to minimise boundary effects.
A cylinder of ultrasound is created of radius 3.175mm. 107 photon packets were launched

into the domain at x =0, y = 10mm and allowed to propagate until they were completely
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analytical solution for changes in the acoustic displacement amplitude A
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Figure 3.13: Acousto-optic modulation depth calculated by the simulation program vs. an

analytical solution for changes in the scattering coefficient

absorbed into the medium, or exited the domain via one of the boundaries. The simulation
program recorded the internal fluence distribution on each node throughout the medium at
the input optical frequency, ®,(r), and at the first shifted side-band, ®,(r). The internal first
side-band modulation depth was calculated as MD; = ®,(r)/®,(r) prior to interpolation
to a regular grid using standard MATLAB functions.

Figure 3.14 plots the internal first side-band modulation depth MD; inside the slab in
the plane of the source. Figure 3.15 compares the MC simulation to the analytical solution
along the transmission and reflection planes of the slab.

Both figures demonstrate a minimum in the recorded MD; close to the source region
where the large unmodulated intensity is dominant. In figure 3.15 we note considerable
disagreement between the MC and analytical models in the same region. This discrepancy
occurs because the analytical model, employing the diffusion approximation, requires the ap-
proximation of a collimated source incident on the medium with a point source internal to
the medium: that is to say that we expect the analytical solution to be invalid in these regions.

Close to the ultrasound location the optical field is principally diffuse. Given that the
ultrasound column has constant intensity over its extent, modulated light radiates outwards
from this ‘virtual source’ in a relatively uniform manner (contrasted with the exponentially
decaying unmodulated source incident on the boundary). The MD, as the ratio of the afore-
mentioned quantities, is thus found to be maximised in those areas closest to the virtual
source where the unmodulated flux is smallest: this effect is manifest as a shadow of high
MD, emanating from the ultrasound column, directed away from the unmodulated source

position.



3.4. Results

72

— 0.1

- 10.09

I 10.08

I 10.07

I | 0.06

0.05

0.04

Modulation depth, MDO [-]

0.03

0.02

0.01

‘ 0
0 5 10 15 20

x (mm)

Figure 3.14: First harmonic internal modulation depth for a cut through the slab in the plane
of the source. The source is incident normal to the slab surface at x = Omm, y = 10mm. The
the column of ultrasound is centred at x = 10mm, y = Omm, as indicated by the white

circle.

Overall, excellent agreement is found over the region in which the diffusion approxi-
mation is valid. The MC results agree excellently with those presented in the original work
[118].

In each of the simulations performed for the validation procedure the explicit acoustic in-
tegration technique was employed since this is exact in the case of plane-wave insonification.
Use of the numerical integration method with six points per wavelength produced results

which differed negligibly for this particular set of acoustic and optical properties.

3.4.3 Performance

To illustrate the performance of the simulation code, we compare its optical performance
against a recent CPU mesh-based MC model, MMCM [40]. We execute the simulation
of the inhomogeneous sphere in a scattering slab using the same mesh (MMCM Mesh 2) as
used by Fang, who reports a speed of 5.6 photon packets per millisecond (pp/ms) for asingle
thread, scaling to 21.2 pp/ms when executed over four threads. Our GPU implementation

processes 39.8 pp/ms whilst executing on a single nVidia GTX 250 graphics card.
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Figure 3.15: First harmonic modulation depth evaluated along the reflection (x = Omm,
lower curve) and transmission (x = 20mm, upper curve) surfaces of the slab in the plane of
the source as calculated by the simulation program and the correlation diffusion equation.
Excellent agreement is seen with the diffusion equation away from the source location in the

reflection surface (x =0,y = 10mm).

The GPU implementation executes at almost eight times the speed of the single core
CPU implementation, or almost twice that of the four-core parallel implementation of Fang.
The GPU implementation may be executed on a server incorporating multiple GPUs, where
performance will scale linearly according to the number of devices available. Whilst calcula-
tion of the AO phase shifts was disabled at run-time, the overhead of variable definitions
at compile time still has considerable performance implications owing to the number of
threads which may execute simultaneously. Removal of the AO aspects of the simulation
code should be expected to significantly improve performance if only an optical simulation
is required.

Very little data has been published with which to compare the performance of the code
in the AO case. We recently presented the results of a GPU based slab geometry plane-wave
AO code and compared these to a CPU implementation [73] of the same. We now compare
the performance of the current simulation code to that of both the CPU and GPU codes
demonstrated previously.

A semi-infinite slab of depth 2cm (represented in the current simulation code as a slab of
lateral extent 10cm) with optical properties 7y = 1.33, u, =O0cm ™!, g =0, = 0.321 and
varying u, is illuminated on one surface and the MD; determined given insonification by

an plane-wave acoustic field of displacement amplitude A = 1.7nm and varying frequency.



y(em™) Execution Speed (photon packets/ms)
1MHz 1oMHz
CPU[73] | GPU Orig.[73] | GPU (Num. Int.) | GPU (Explicit) | GPU (Num. Int) | GPU (Explicit)

5 9.43 1449.27 (X 154) 232.15 (X25) 251.10 (X27) 71.85 (x8) 294.43 (X31)
10 4.60 1030.93 (X224) 166.17 (X36) 193.24 (X42) 62.08 (x13) 191.86 (x42)
20 2.25 568.18 (x253) 106.22 (X47) 109.80 (X49) 49.51 (X22) 109.24 (X49)
50 0.89 253.44 (X285) 44.54 (X50) 46.77 (X53) 30.38 (x34) 46.19 (X52)
100 0.44 87.57 (x199) 20.83 (x47) 20.64 (X47) 16.38 (x37) 19.52 (X44)
200 0.22 29.18 (x133) 8.71 (x40) 7.96 (X36) 8.29 (x38) 8.18 (x37)

Table 3.4: Execution speed (photon packets/ms) of alternative acousto-optic simulation programs and configurations. Numbers in parenthesis demonstrate the

speed-up relative to the CPU implementation.

symsay “F€

YL



3.4. Results

75

Table 3.4 details the speed of the simulations in numbers of photon packets per millisec-
ond. The previously reported simulation figures are given in the column labeled GPU Orrig,,
the speed of the current simulation is described for two frequencies and for both the numer-
ical integration of phase of equation 3.41, and the explicit integration of equation 3.43.

To understand the resultant performance data, we must consider the limiting factors in
each of the simulation algorithms. The performance of the original CPU and GPU codes is
primarily a function of the scattering coefficient, _, since this dictates the number of calcu-
lations which will be performed for a given photon packet’s simulation (as discussed further
in our earlier work [73]).

The new simulation code retains the same performance dependency whilst introducing

two further factors which may affect performance.

1. Ifthe average size of the mesh describing the simulation domain becomes smaller than
the average step size of a photon packet (i.e. atlow values of ¢, and with a dense mesh),
photon packet steps will routinely be truncated and geometry intersection tests will
begin to dominate the processing workload. In this region of operation, the perfor-

mance will be dependent upon the dimensions of the mesh.

2. When operating in the numerical integration mode a large photon packet step size
relative to the acoustic wavelength will result in a multiple memory reads and sets of
arithmetic operations to determine the value of the integral (i.e. N > 1 in equation
3.41). In this region, performance will depend upon the relative sizes of the average
step size of a photon packet and the acoustic wavelength. This limitation does not af-
fect the AO explicit integration mode, which currently performs only one calculation

per photon packet step.

The aforementioned qualities of the performance of the new simulation code are evident
in the performance data of table 3.4. Under insonification by ultrasound at a frequency of
1MHz (when the acoustic wavelength is long compared a mean free path) geometry inter-
section tests (and their associated memory access) dominate the execution time and the new
simulation code performs similarly under both integration regimes.

The increased flexibility and associated complexity of the new simulation decreases the
performance of the new code relative to the previously reported GPU implementation. The
new code achieves a performance varyingbetween 1/ 8 and 1/3™ of the previously reported
GPU code; as u; increases the speeds of the two GPU codes approach one another, since
fewer geometrical intersection tests are processed in the new code relative to the total com-
putational workload.

Under 10MHz insonification the explicit integration mode of the simulation maintains
similar execution speed to that of 1tMHz insonification, though the numerical integration
shows a significant relative degradation in performance at low values of .

In all but one of the examples investigated here the new simulation code is at least an

order of magnitude faster than the CPU implementation; though as discussed performance
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could be degraded by introducing a finer mesh, or in the case of the numerical integration

mode, a higher frequency of insonification.

3.4.4 Sensitivity Mapping

In recent work, Gunadi and Leung [52] demonstrated the measurement of spatial sensitiv-
ity maps for the AO sensing technique. In this work an optical absorber of 1, = 42cm™",
4, = 12em™!, and dimensions 5 X 5 X 12mm was moved around a tank of intralipid of neg-
ligible absorption and equal scattering to that of the absorber. In the first case a transmission
mode geometry was investigated, with an optical source and detector separated by 35mm.
The absorber was moved around the central region in 1mm steps over a 25 X 25 grid, in each
case the detected optical intensity (in the absence of ultrasound) and the AO MD, (in the
presence of ultrasound) were recorded. A reference measurement was taken in the absence
of an absorber such that the sensitivity can be be represented as | = (X ., —X)/X . X 100%,
where X may be optical intensity or AO MDy, and X, ¢ is the corresponding reference mea-
surement.

We thus recreate the experiment in simulation though we reduce the absorber size to a
1 X 1 X 12mm cube to achieve a higher spatial resolution. The linear acoustic field is gener-
ated by distributing monopoles over the surface of a spherical cap of equal dimension to the
transducer used in practice, and summing their contributions in the domain. The amplitude
is scaled to match that recorded by Gunadi and Leung. The mesh and absorptive inclusion
is built on the fly using the iso2mesh toolbox. Following simulation, the approximate ad-
joint method described in section 3.2.2 is used to calculate the detected MDO. Figure 3.16a
and 3.16b depict the optical and AO spatial sensitivity recovered by 1250 independent MC

simulations, each of two million photon packets.
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Whilst the smaller absorptive inclusion leads to differences in the absolute sensitivity
demonstrated by measurement and simulation, the form of the sensitivity distribution re-
tains the same qualities as described by the experimental observations of [52]. As would be
expected, the optical sensitivity remains concentrated around the source and detector loca-
tions. The AO sensitivity demonstrates localisation to the acoustic field and, more signifi-
cantly, a very low level of sensitivity close to the source and detector.

The second case studied in [52] is a reflection mode geometry with source-detector spac-
ing of 30mm. The ultrasound field is located centrally at a depth of 20mm from the input
and detection surface. The same optical absorber was moved around a scanning region of
30 20mm, located centrally and startingat a depth of 5.5mm from the input surface (owing
to the dimensions of the experimental absorber). This experiment was recreated in simula-
tion; figure 3.16c and 3.16d depict the optical and acoustic-optic spatial sensitivity recovered
by 1800 independent MC simulations of two million photon packets.

Once again, the absolute sensitivities of the simulation differ slightly to that of the ex-
perimental work owing to the differing absorber dimensions. The optical sensitivity has the
expected ‘banana’ shape between the source and detector, with sensitivity rapidly declining
at distances greater than around 10mm. The AO sensitivity is concentrated at a depth of
around 17mm from the input/output plane; the peak relative sensitivity is not within the
ultrasound focus region as the lack of light at these depths outweighs the higher acoustic
pressures. Close to the source/detector plane a region of negative AO sensitivity is found.
Negative sensitivity suggests that an absorptive perturbation has the effect of increasing the
measurement quantity. This can occur when the perturbation reduces the amount ‘unmod-
ulated’ light reaching the measurement position by an amount proportionally greater than it
reduces light which has been modulated into the first side-band. The form of the simulated
sensitivities shows excellent agreement with the experimental work of Gunadi and Leung.
We will revisit such sensitivity maps in chapter s where they will be employed in an image

reconstruction problem.

3.5 Conclusions

We have demonstrated the implementation of a highly parallel AO MC simulation code.
The optical model has been extensively validated against various analytical and numerical
solutions, and the AO model against an appropriate analytical example from the literature.
The performance of the simulation code has been compared against CPU and GPU im-
plementations of pre-existing optical and AO simulation codes. Whilst our previous GPU
implementation of an AQO simulation code provides better performance, this is at the cost of
significantly reduced flexibility in the form of the domain. The flexibility and performance
of the code have also been demonstrated in the generation of spatial sensitivity maps which

support published experimental work[s2].
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At the time of writing, the program developed here is the first GPU accelerated, mesh-
based, Monte-Carlo simulation code which has been demonstrated in the literature. Beyond
its use as a fast forward model in AO, various aspects of its implementation may be valuable
to the wider diffuse optics community. The removal of the AO calculations from the code
base is expected to considerably improve performance such that it may be appropriate for use
where voxelised simulations are currently used, despite their disadvantages [21].

The validity of the model is limited by the two components of the algorithm: the light
transport model, and the phase accrual expressions. The former component, derived from
the scalar RTE, is valid for the vast majority of conceivable experimental scenarios where
the weak-scattering approximation is valid; excepting measurements affected by interference
phenomena such as coherent back-scattering [ 56]. The latter component was derived here in
considerable generality, though we have made the assumption that the optical paths through
the medium are not themselves altered by the ultrasonically induced perturbations in the in-
dex of refraction. Sakadzié states this assumption to be reasonable for pressure amplitudes ex-
perienced in biomedical applications at moderate ultrasound frequencies £, < 10°Hz [117].

The primary limitation of the current model is that it is designed purely for monochro-
matic acoustic excitation. The implementation of a polychromatic acoustic field distribution
would permit the simulation of modulated continuous wave inputs, or pulsed ultrasound, as
employed to gain spatial selectivity in the axis of the ultrasound. This could potentially be
implemented in the style of Sakadzi¢’s voxelised CPU simulation [119].

It would also be of great value to extend the simulation to directly record the correlation
radiance in the meshed domain. This would permit the use of an unapproximated adjoint
method to calculate the result of PS/PD simulations, and more importantly, allow the model
to be used as part of an iterative inversion procedure to reconstruct unknown optical parame-
ters from acousto-optic measurements. We will examine this idea in greater depth in chapter

s where we employ a correlation diffusion approximation to achieve this goal.



Chapter 4

Approximations of correlation transport

by spherical harmonic expansions

4.1 Introduction

Forward models based upon truncated spherical harmonic (P;) expansions of the radiative
transport equation are ubiquitous in diffuse optical tomography [12]. The diffusion approx-
imation, found from the application of further simplifying assumptions to the P; approxi-
mation, has enjoyed particular attention. One attraction of the latter is that the resultant
parabolic (in the time dependent case) or elliptic (in the continuous-wave case) equations
are amenable to solution by fast and rigorous deterministic numerical methods.

The finite element method in particular has been used extensively for the numerical solu-
tion of the diffusion approximation([8, 15, 123, 124]. Owing to the tractability of the finite
element, the system matrices which define the discretised problem are of significant value
in forming sensitivity relations required for various image reconstruction techniques. Such
matters are discussed further in chapter s.

If an improved approximation is desired one option is to employ higher order Py, approx-
imations [129]. In three dimensions, this techniques quickly becomes too computationally
demanding to be used as the forward model in, for example, an iterative reconstruction al-
gorithm, since the number of equations grows as (N+ 1)2. Alternative methods such as dis-
crete ordinates (the S, approximation) also suffer from similar computational issues, with
the number of equations growing as N(N + 2).

An alternative approximation, originally applied to neutron transport in nuclear reactors,
is that of the simplified spherical harmonic approximations (SPy) [46]. As will be seen, this
approximation results in a system of parabolic/elliptic equations which are coupled by their
coefficients. These approximations were originally derived from the planar-form of the trans-
port equation before the gradient operators were extrapolated to their three-dimensional

equivalents. Whilst providing improved results over the standard diffusion equation (if be-

8o
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low that of the full higher order spherical harmonic methods) the lack of a rigorous mathe-
matical foundation prevented their widespread adoption in other fields such as the modelling
of light transport in diffuse optical tomography. Larsen et al. subsequently demonstrate that
the SP); approximations can be derived by an asymptotic approach which expands the trans-
port equation in a Neumann series [68—71]. More recently, Klose [65] applied the technique
to diffuse optical imaging.

A diffusion-style approach has also been applied to the problem of UOT. In work by
Sakadzi¢ and Wang [118], a simplified correlation transport equation was developed, and
the authors stated a diffusion-like approximation.

In this chapter we provide a full derivation for the diffusion approximation presented by
Sakadzi¢ and Wang, which has until now not been published. We extend this work by per-
forming the derivation in a general way which permits the consideration of a higher order
approximation of the phase increments which describe the underlying correlation transport
process. We also take another approach to simplifying the underlying transport equation
which permits us to form an SPy; approximation for UOT. This requires further approxima-
tions in the treatment of the acousto-optic phase increments which drive modulation of the
optical field, but should provide a more accurate model of the optical energy distribution in
a given domain. Each of these models are solved by the finite-element method, and the re-
sults compared with our reference Monte-Carlo simulation, the development of which was

described in section 3.

4.2 Theory

4.2.1  Correlation transport

Ackerson et al. [2] originally proposed a correlation transport equation for use in the field
of diffusing wave spectroscopy. Dougherty et al. [35] later provided a more rigorous deriva-
tion based upon multiple scattering (analytic) theory with moving scatterers, building on
the work of Ishimaru and Hong [57] and others [87, 128]. Dougherty’s integral formula-

tion reads,
G(r,,8,7) = Gy(ry,8,7)
r,
O I R e R T S P L A
o 47

(4.1)

This equation states that the radiance at a particular point in space ', with direction § is
given by the incident direct field (G,) plus the diffuse contribution scattered from direc-
tions §' into § along all the points r, along some line starting at a distant r to the point of
evaluation r;,. The equation differs from the radiative transport equation by the addition of
the term g1(§, ¢, 7); the single scattering correlation function which describes the decorrela-

tion of the optical field which occurs when partial waves undergo a scattering process from
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moving particles. We might think of this temporal decorrelation in the frequency domain
as the broadening of the line-width of a coherent source by a Doppler shift imposed by the
moving scatterers. An expression for g! under Brownian motion of the scatterers was pre-
sented in some of the original investigations of DWS as described by Maret and Wolf [89],

and Pine et al. [103],
1/~ A/ 1 2 A A
g'(5,8,7)=exp —gko()DBT(l—s-s , (4.2)

where Dy is the Brownian diffusion component and 6Dzt = (Ar?(7)) where (Ar%(1))
is the mean-square displacement of the scattering particles. As a function of § - §' this term
can be managed in the same manner as the phase function under expansion into a series of

spherical harmonics. Specifically, when T < (ZDB/ez)_1 the term can be Taylor expanded,

g(ssr)_l—szT+2D/€T ZY )Y, 5). (4.3)

m=—1
By this method, a diffusion style equation for correlation transport was derived by a number

of authors; see Boas [23] for a full derivation.

4.2.2  Correlation transport under acoustic modulation

In the case of a medium under harmonic insonification, Sakadzi¢ and Wang

citeSakadzic:2006tx derived a correlation transport equation amenable to solution by Py,
approximation methods. The ‘locality’ required for such an approximation is achieved by
various approximations and assumptions which we will explore here. The approximated in-

tegral form of the equation reads,
G(r,,8,t,7) = Gy(r},8,¢,7)
+u, F P58)G(r,, 8,1, T)exp(—pa 1y — 1, )W(ryr,05 £, 7) ], — 1, 5.
4n
(4-4)
In this equation the function ¥(r,r,,8, ¢, T) describes the temporal decorrelation of the

field due to transport in an insonified medium between two scattering points located at r,,

and r;, following scattering into § from direction §’ at r,. The function is given by

U(r,,r,,s,t,7) =exp(j Ap), (4.5)

and

. 1 . r,—r,
Agp =2Asin <—wﬂ7> sin <kﬂ- >
2 2

1
X |:Sa(§ -§,)sin <a)ﬂt + 79T k,-

r, +rb

+6-4,)

1 r +r
sin <wﬂt+5wa'r—kﬂ-ﬂ—b+¢>i| , (4.6)

U
(8-s,) 2
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where A = 2kony Py /(k,0v?), ky is the optical wavenumber i vacuo, ny is the refractive
index of the medium, P, is the local pressure amplitude of the acoustic field, p the density of
the medium, v, the speed of sound, 7) was defined in section 2.4.2, §, and ¢a are the relative
scattered displacement amplitude and phase offset, respectively, § is a unit vector represent-
ing the direction of propagation of the partial wave, and 8, is the local acoustic propagation
direction. Asis evident from their coefficients, the first term describes the increment of phase
due to the displacement of the optical scatterers, and the second describes the phase incre-

ment due to modulation of the refractive index.

Approximating the phase increment

To develop this correlation transport equation into a form suitable for expansion in spher-
ical harmonics, we will follow the approach of Sakadzi¢ and Wang in averaging the phase
increment over space, and over free paths. The N* order approximation is given by [118]
N n
U(r,,r,,8,6,7)~1—¥(,8,7)y=1— MZ(—]'")%, (4.7)
s n=1 :
where [, = /1;1 is the optical mean free path, and (A(p")r“[ is the average of the phase incre-
ment over space (r, = (r,+r,)/2) and free paths (/ = |r,, —r,,|). This approximation limits
the acoustic pressures over which the model is valid. SakadZi¢ and Wang demonstrated the
development of the second order phase perturbation, but we shall proceed with generality to
permit, e.g, higher ultrasound pressures to be tolerated, by the inclusion of a greater number
of terms in the phase increment.
To find (Ago")r( . wefirstaverage AN over the centre-of-gravity co-ordinater, = (r, +

rb)/Z in avolume Vj ~ 153,

1
(Ag™), =— | Ap"dr. (4.8)
p Vv, v,
The dependent variable appears in A (equation 4.6) only as the argument of a sine function.

By de Moivre’s identity, and employing the binomial theorem, we note that

X, 0, for 7 odd,
lim — [ sin”(x)dx= n! (4.9)
x—=00 X —_—, for 7 even.
2"((n/2)})

We now make the assumption that the transport mean free path is much greater than
the acoustic wavelength, &,/ > 1. This approximation might be thought of as the high-
frequency limit of acousto-optic modulation, permitting us to treat the individual phase
increments accumulated between scattering events as uncorrelated (at least in the case of
isotropic scattering).

Assuming a typical transport mean free path of Imm™!, and a speed of sound v, =

1480ms™!, this approximation requires that we employ ultrasound frequencies in excess of
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2MHz (which gives a value of (k, /) & 8.5). Experimentally it is desirable to use lower fre-
quencies of ultrasound to minimise the increasing effects of acoustic attenuation; this model
may be unsuitable in such scenarios. In a practical application, one may wish to minimise
the size of the ultrasonic transducer— this can be achieved without increasing the volume
of the focal region (and hence decreasing the spatial resolution) by the use of higher acous-
tic frequencies. Throughout the development of UMOT, increasingly sensitive detection
mechanisms have been designed which can ameliorate the reduction in detected modula-
tion experienced at greater depth due to the application of higher acoustic frequencies. We
thus consider the restrictions imposed by this approximation to be acceptable.

Within this regime we may use the relationship in equation 4.9 to perform the integral.

The resulting averages are zero for odd 7, and for even 7,

(Ag™), = ((n;lﬁ(g'[&ﬁsin” <%wﬂr> sin” <ka L ;r“>

x [ = 28,meos(d )5 8,7 +526-5,] "

Ashighlighted by Sakadzi¢, the assumption E [ > 1has,viathe averaging process, removed

a’tr

(4.10)

the time dependence of the equation, thus rendering it wide-sense stationary. We proceed
to calculate (A¢”), ; by finding the expected value of the expression given the probability

distribution of a mean free path,

1 [ [
@".=7 | exp<—l—><Ago">r dl (410

s s ¢
which is performed by noting that

sin” <ka L _rd> =sin” <M> . (4.12)

2 2

Completing the integration we have, for even N > 0,

Nf2 (2m—1) w,T
A", =T Ankztnw(L)
( 4 )r[,l 1+(mkﬂltr(§‘§ﬂ))2 (a r) sin P

m=1

x [ =28, ncos(p, )38, +576-3,)']"". (413)

The differential form

Following the averaging of the phase-increments, the (optically steady-state) correlation trans-
port equation is no longer dependent on time, but only lag 7. The phase-averaged integral

form of the correlation transport equation reads
G(rb, §, T) = Go(rb, §, T)
b
7] 00 D esplopnlry —r DL U6, e —n 4,
vy J4rm

(4.14)
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where the N order approximation to the acousto-optic coefficients ¥(8, §,, T ) was given
in equation 4.7. We convert this to the more familiar differential form by application of §- V

to the integral equation [56],

[3-V+u,+] G(r,3,7)= #SJ

2(3,8)G(r,5,7)[1=T(5,8,,7)y] 8"+ S(r, 8, 7),
4

(4.15)

where §(1,$, 7) is a source of correlation radiance.

4.2.3 Correlation diffusion approximation

We will now approximate the correlation transport equation of equation 4.15 to form a cor-
relation diffusion approximation following the style of Ishimaru [ 56]. A necessary condition
of the derivation of the correlation transport equation was that the phase increments accrued

during successive free paths are uncorrelated; this requires the use of an isotropic phase func-

tion,
~A A 1
p(8,8)=—. (4.16)
4r
We approximate the correlation radiance,
~ 1 3 ~
G(r,8,7)= [—G(r, )+ —F(r,7)- s] (4.17)
4r 4r
where
G(r,7)= J G(r,s,7)ds (4.18)
4
is the correlation density, and
F(r,7)=F(r,7)8y = J; G(r,s,7)sds (4.19)

is the correlation flux.

Conservation of energy
To develop the approximation we begin by formingan energy balance equation by integrating
equation 4.15 over all 477 of solid angle, having introduced the isotropic phase function,
[8:V+pu,] Gr,s,7)ds
4

= £ |:1 —U(s,s8,, T)NJ G(r, ¢, T) ds’' + S(r,s, T)i| ds. (4.20)
47 4 4

We use the previous definitions of correlation density and correlation flux to complete the

integration of the left hand side of equation 4.20, and the integral over § involving G(r, §,7)

on the right hand side. Rearranging, we get

V-E(r,7)+ @, G(r,7) = —I—SG(r,T)J [V(,8,T)y] ds+So(r,7),  (4.21)
T 4
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where So(r,7) = [, _S(r,8, 7) is an isotropic source of correlation fluence. To complete the
TT
energy balance expression we must integrate the phase increment; we will demonstrate this

procedure to the second order here. From equation 4.13 with N =2,

1 ~ o~ ~ A? . [ W, T (ka tr)
— | ¥(5,8,,7),ds=—sin ( >J TR
47 ) 4r 87 2 4 (B 1) (5+8,) +1

a”“tr

x [7% =278, cos(¢,)(3-8,)7 + S2(5-3,)'] ds. (4.22)

We proceed by integrating the terms in 7 which describes the phase increments due to index

of refraction variation,

7]2 (ka ltr)z

————d&i=7(k,] Uk '
47'C 477 (kaltr) (ggﬂ)z_i_l § 77 ( a tr)tan ( a tr) (4 7_3)

the terms in §' ;,

52 k1) 4 1 1 arctan(k [

( a tr) ( ;z) ds= 2|2 . + ( “3") , (424)
47—5 4 (ka tl’) ( 'Sa) +1 “13 (ka tr) (ka tr)
and finally the cross terms,

28 r;cosgz’) J kY-8,

arctan(k,/,)

d§:2$ar;cos¢a |:1 i| . (425)

k)38, + (kL)
Thus,
1 A?
— | W63, d8= h(r,0), = = [k, L) an k)
47'E 47 2

11 arctan(k, tr)i| cos |: _arctan(/ea tr)i|:|
5 [3 Gl iy ) TSt |ty | 49

a’tr a”“tr

which we substitute into equation 4.21,

V-F(r, 1)+ [, + . h(r, 1), ] G(r,7) = So(r, 7). (4.27)

In this form the nature of this balance equation is revealed. The divergence of the correlation
flux (V - F) represents the net gain or loss of correlation flux for an infinitesimal point in the
medium. Our derivation shows this to be equal to any sources at that point, less losses due

to absorption (u, G(r, 7)), and decorrelation (u, A(r, T),).

Fick’s Law

The second element of the approximation requires that we form an equivalent of Fick’s law for
the correlation transport process. In an analogue of its optical counterpart, this expression

will describe the diffusion of correlation from regions of high correlation density to those of
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low correlation density by properly defining the correlation flux vector with respect to the
diffusion coefficient. To form the expression we multiply equation 4.15 by § and integrate

over all 47 steradians. After inserting the isotropic phase function,

J [$-V+pu,] Gr,3,7)8 ds
4

_ 4

4 4

[J G(r,8,7)[1 = U(5,8,,7)y] 8" + S(r, §)] §ds.  (4.28)
4
For arbitrary vector A [56],
J §[s-V(A-5)] ds=0 (4.29)
4
and,
4
j S(A-3)ds= ?A (4.30)
4

such that we may complete the integral involving the term in § - V. The term in u, can be

integrated given our definition of correlation flux. Accordingly,
1
5VG(1‘,T)+{ulF(r,T):Sl(r, 7). (4.31)

where S;(r,7) = S(r,8, )8 d8 is a source of correlation flux, and the term in G(r, ¥, 7)
1 47

has reduced to zero under integration over .

Forming the diffusion approximation

Having derived the energy balance equation, and an equivalent of Fick’s law, we may pro-
ceed to combine the resulting equations to form the diffusion approximation. Rearranging

equation 4.31 in terms of the flux vector F,
F(r,7)=—-D[VG(r,7)—3S,(r,7)], (4.32)

where we define the isotropic diffusion coefficient,
1
D=—-——.
3y + 1)

We complete our diffusion approximation by inserting this expression of the flux vector into

(433)

the energy balance expression of equation 4.27 and assuming only isotropic sources such that
§,(r,8)=0,

[-V DV + u, + pu,hy(r,7)] G(r, ) = Sy(x, 7). (4.34)
By analogy with light transport we equip the diffusion approximation with a Robin (or

impedance) boundary condition,

G(r,7)+2An-DVG(r,7) =0, (4.35)
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where 11 is the outward unit normal to the boundary, the term A = (14 R)/(1—R) accounts
for the potential mismatch of refractive indices at a boundary, and R is a reflection parameter
which can be obtained empirically, or by Snell’s laws [61]. In the case of a matched refractive
index A = 1 and the Robin boundary condition provides a straightforward expression for
the outward correlation flux on the boundary (our measurement) G (r, 7) = G(r, 7)/2,
redq.

To arrive at the expression stated by SakadZi¢ and Wang [118] we recall that our deriva-

) > 1. Assuch, terms in h,(r, T) which contain (k,/,,)

tion made the assumption that (k,/,,
raised to lower than some power may be discounted without significant error. All terms with
(k 5 ZU) to a power of zero or below were removed from the expression presented in the origi-

nal work.

4.2.4 Correlation diffusion with pre-averaged phase

In the context of the standard diffusion approximation to light transport in scattering media,
it is understood that the spatial distribution of light remains approximately constant under
variation of the scattering coeflicient £, and scattering anisotropy g, under the condition
that the #ransport scattering coefficient ,ui = u,(1 — g) remains constant. Sakadzi¢ and
Wang also demonstrated an approximate similarity relation for acousto-optic modulation
[114]: the phase-increments in an anisotropically scattering medium can be approximated
by replacing u by lui in equation 4.47. In this case, the average phase increment is calculated
with a maximum error of circa 10% for values of the product &,/ & 2.

In equation 4.7 an expression was provided for the approximate phase perturbation over
a given path length, averaged over both the spatial co-ordinate and the mean-free path. We
might attempt to employ this similarity relation formally by replacing the scattering mean-
free path with the transport mean free path and repeating the derivation. If we were to take
this approach, we must consider that the transport mean free path ltr =1 s /(1= g)isdefined
in terms of the scattering anisotropy g = Ln p(s, §')8-§ d8 and thus a product of the phase
function and acousto-optic phase increment must be integrated. Both the phase function
and the acousto-optic phase increment individually define some closed surface with symme-
try, but the angle of symmetry in the phase function (around the incident direction), and the
phase increment (around the ultrasound propagation direction), are different, and hence the
standard approaches taken to form the diffusion approximation can no longer be employed.

Even if the integrals were straightforward, this value of this approach is debatable since
the phase perturbation expression is only approximate in the case of anisotropic scattering,
and the presence of the phase function is only to scale the phase perturbation according to
the mean cosine of the scattering, angle g. By performing the averaging procedure of sec-
tion 4.2.2 we have already decoupled the accumulation of phase increments from the light

transport model.
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Angular pre-averaging

An alternative approach is to further average the phase increments over all solid angle prior to
forming our diffusion approximation. That is to say that we will redefine the approximation

of equation 4.7,

4

1
U(ry,r,,8,t,7)~1—(1— g)—J U(s,s,, )y ds
41

Ity —r,| &S, . 1J (Ap™) 1
—1—(1—g) 25—y — | 045, (436
(1-¢g) ] ;:1( 7) o - 5, (436)

4
Whilst this process further reduces the accuracy of our approximation of the phase incre-
ments, this decoupling permits the derivation of higher order (in the spherical harmonic
sense) light transport models, and the incorporation of standard phase function models. In
the context of diffusing wave spectroscopy, this procedure was demonstrated by Ackerson,
where he referred to the procedure as pre-averaging [2]. Under this modified approximation

the transport equation of equation 4.15 becomes

[8:V+pu,]Gr,s,7)=u[1—(1—g)h(r, 1')N]J4 2(5,8)G(r,8,7) d8' + S(r,8,7),

(437)
where

1
br )y = o~ f 08,3, 7)y ds (4.38)

4r
was calculated to the second order (N = 2) during our derivation of the conservation of

energy expression (equations 4.22 through 4.25) in the preceding section.

Correlation diffusion with pre-averaged phase increments

Having averaged the angular dependence of the acousto-optic phase term, we may now pro-
ceed to re-derive the correlation diffusion approximation with an anisotropic phase function.
Here we choose the oft-employed Henyey-Greenstein phase function [s4] to describe the
probability density function of the change in scattering angle between incoming and outgo-
ing correlation radiance. This derivation is performed in the same way as the isotropic case.

Under the modified approximation, the conservation of energy expression becomes

V-F(r,7t)+ [y, + [ugh(r, )]G, 7) = Sy(1, ), (4.39)

where the (1 — g) term causes replacement of u, with Iug = u,(1 = g). There are some-
what greater differences in the derivation of Fick’s law. We recommence the derivation from

equation 4.28 which now reads
J [§ -V+ /‘z] G(r,s,7)sds
4r

=u[1-(1—- g)h(r,T)N]J [L p(§,§’)G(r,§’,T)d§'+S(r,§)]§d§. (4.40)

4
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We insert our approximation of the correlation radiance from equation 4.17 before perform-

ing the integral on the left hand side, and of the source term, as per the isotropic case,
1
3 VGE D)+, F(r, 1) =, [1= (1= g)h(r, 7)y]

xf U P8 [%G(r,f)+iF(r,r).§/] d§’]§d§+$l(r,r). (441)
47 47 Y 47

We first consider the integral over §': the first term can be completed according to our def-
inition of correlation fluence; the second term is completed by recognising that due to the
phase function, only the component of the flux vector along § provides a contribution to the
integral. For a diagrammatic explanation, see [94]. Wk align our co-ordinate system to the

incident scattering direction to simplify the resulting integral,
1
SV, 7)1, Fle )= 1= (1= )b, )]

X Ln [i G(r,7)+ %F(r, T)- §Lﬂ p(0)cos(d) d§] §ds+S,(r,7), (4.42)

where 8 is the angle between § and §'. We previously described the scattering anisotropy

factor g as begin defined as the mean cosine of the scattering angle, hence,

1
SV, 7)1, Flr )= 1, 1= (1= )b, 7))
XJ I:LG(r T)+3—gF(l‘ T)'§] §ds+S,(r, 7).  (4.43)
4 LT ’ 4 nees +

The integral of G(r, 1) goes to zero under the integration in product with §, and using equa-

tion 4.30 we can complete the integration of the flux vector,

1
3 VGO D)+ F(r, 1) = g [1 = (1= g)h(n, Oy JF(r, 1)+ 5,(1,7). (444)

We may now proceed to form the diffusion approximation as per the anisotropic case of

section 4.2.3. Rearranging equation 4.44 in terms of the flux vector, recalling that Iug =

u(1—g)

F(r,7)=-D[VG(r,7)=3S(r,7)], (4.45)
where the anisotropic diffusion coefficient is now
1
D= (4.46)

- .
3 [+ 1+ gh(r,7)N]]

In the case of isotropic scattering with g= 0 this expression collapscs to the prcviously de-

rived diffusion coefficient. Inserting the definition of the flux vector into the anisotropic

energy balance expression, and assuming isotropic sources, we arrive at the final form of the

diffusion approximation,

[—V-DV + p, + ¢ by(r,7)] G(r,7) = Sy(r, 7). (4.47)
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In practice, since A(r, T)y <& 1, the standard diffusion coefficients of D = 3/1:71 orD =
3 /ug_l may be employed with a negligible error.

4.2.5 Simplified spherical harmonic approximation

Much work performed in the context of nuclear reactors has come to be used in the mod-
elling of diffuse optics. This is particularly true in Monte-Carlo applications, but diffusion
theory, and extensions thereof, are of common interest. One of the tools to have been devel-
oped in this context was the simplified spherical harmonic method first explored by Gelbard
[46]. Here we will apply this method to the correlation transport problem, employing the
angularly pre-averaged expression developed in the preceding section.

When we wish to consider problems in optical tomography close to sources, or bound-
aries, significant errors arise in the diffusion approximation. One approach to provide im-
proved results is to rely upon a higher order spherical harmonic (Py) approximation. Un-
fortunately the number of equations to be solved grows with the square of the order of the
spherical harmonic approximation. When such systems are subsequently solved using nu-
merical techniques, the size of the discretised problem grows similarly. Attempts have been
made to mitigate this problem via hybrid and variable-order schemes [129, 132]. In the orig-
inal derivation of the simplified spherical harmonic technique (SPy), the one-dimensional
transport problem is approximated by the Py; method to a given order, and the derivatives of
the resulting equations are replaced by their multi-dimensional counterparts in a somewhat
ad-hoc manner. By this approach, the set of equations to be solved scales linearly with the
order of the approximation. Whilst this method was demonstrated to provide improved ac-
curacy over the standard diffusion approach, it did not find significant application in diffuse
optics when contrasted with the standard diffusion approximation. Arguably, this was due
to the intuitive replacement of the one-dimensional derivatives with their multi-dimensional
counterparts, a process which lacks the rigour of the full Py; approximations.

More recently the SPy approach was solved by an asymptotic derivation in both the
diffusion limit [69—71] and more generally in the context of a transport approximation [43,
68, 104]. This approach yielded the same set of equations as the previous ad-hoc method,
thus validating the approach. The older method still retains some advantages, notably in the
simplicity by which suitable boundary conditions can be found.

The first formal application of the SPy, method to light transport in tissue was provided
by Klose and Larsen [65]. In this work, Klose and Larsen replace the neutron scattering
function with the Henyey-Greenstein model, suitable for use in diffuse optics. The authors
derive the simplified spherical harmonic approximation to the seventh order according to the
original ad-hoc method, including the partially reflective boundary conditions required for
diffuse optics. The resultant model is found to provide a significant improvement in accuracy
compared to the diffusion approximation, and requires only 2.5 times the computational

effort: the authors contrast this with a discrete ordinates (Sy,) [13 1] solution which provides
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similar results but at the cost of three-orders of magnitude increased computational effort
over the diffusion model.
Subsequent to the work of Klose, Chu and Dehghani have demonstrated demonstrated

the reconstruction of diffuse optical tomography images using the SP,; model [30].

The plane-parallel correlation transport equation

The plane-parallel geometry under consideration is an infinite slab in which optical prop-

erties are constant in the x and y directions such that the correlation radiance G(r,$, 7) is
dependent only upon & and z. We assume that a collimated source of correlation radiance
is incident perpendicularly to the surface of the slab. We denote u = cos@ and thus the
differential solid angle element d§ = sin@ d6 d¢p = — du d. Rewriting the correlation

transport equation of equation 4.37 in this geometry,

d
[ﬂgﬂtt} G(z, 4, ¢,7)

= L= ] | [ b )6 o204 ' +5(0, 10 ),

(4.48)

We proceed by completing the integration of equation 4.48 over ¢,

d
|:lud_+lut:| G(z, 4, 7)
VA

1
=p[1-(1- g)/v(r,f)]f polpss )G (2, ', 7) dp' +278(2, 4, 7), - (4:49)
-1
where
2w 27
polps 1) = J f p(pd 1, ¢) dg’ dgp. (450)
o Jo
The angle between (u, ¢) and (i, ') is denoted y and
cosy =cos@cos +sinbsin& cos(¢ — ¢').

If the phase function is symmetric about the incident wave, and thus is a function of only y,

it can be expanded in a series of Legendre polynomials,
Pl o' ¢) = pleosy) = 3 W, P, (cosy). (1)

n=0
The term P, (cosy) is expanded by a summation formula [1] and integrated over ¢ and ¢/,

ol ) =D W, P, (u)P, (1), (452)
n=0

If we employ the Henyey-Greenstein phase function, as per the previous derivation, the

weights W, are given by S
n+

W = . .
i 78 (4.53)
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The plane-parallel Py; approximation

We define the Legendre moments of the correlation radiance,

1
Guler)= | PG 7). (454

multiply the azimuthally integrated planar CTE (equation 4.49) by P, () and integrate over
s

d
|:/ud_ +Iuti| G,(z,7)
VA

1 1
= L= ] | P00 [ s 6o ) a8, 75015,
(4.55)

where the Kronecker delta limits contributions from the source to the zeroth Legendre poly-
nomial. Into this expression we substitute the Legendre expansion of the phase function

from equation 4.52,

2m+1
2

d 1
[ﬂ— + #t} G,(z,7)= p,[1- (1= g)h(r,7)] g” L P,(1)P,, ()

dz

1
XJ P (U)G(z, i/ 7)dy du+ 8 ,47S(z, uy 7). (4.56)
1

The integral over ' can be replaced with the expression of the Legendre moments of corre-

lation radiance from 4.54,

d
|:1u +Iut+i| G,(z,7)
dz

2m+1 !
= 4 L= NG 2) 0" [ PP ) 8,4755(2,10).
(4:57)
The Legendre polynomials have an orthogonality relationship,
1 2
f_1pm(#)l’n(#) =0, (4-58)

which is used to simplify the final integration over y, and to redefine the indices of the im-

plied summations such that 7 = 7 as the Kronecker delta eliminates all cross terms,

d
[ﬂng} G,(2,7) = 1, [1=(1= )h(5, )]G, (2, 7)g" +8,4S(2, 1,7). (4:59)

Rearranging, we get

d
|:1UE g [1-(1- g)b(raf)]:| G,(z,7)=3,478(z, u, 7). (4.60)
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We seck to develop this expression using the recurrence relation for the Legendre poly-

nomials,

n+1 n
uP, (1) = Pyia(@) 5 Poa (1) (4.61)

2n+1 +1

which is applied to the first term of the operator in square brackets in equation 4.60,

d [n+1 C n c
dz |:2n+1 it n ﬂ_l’]
+ [/h —u g 1-(1- g)h(r,’r)]] G,(z,7)=8,4nS(z, u, 7). (4.62)

To proceed we convert this system of first order differential equations into a series of second
order equations by eliminating the odd order moments of the correlation radiance. Rear-

ranging in terms of G, (z, ) for 7 odd,

G (2,7) 1 d |: n+1 G .+ n G ] (4.63)
zZ,7T)=— — . 1| .
" Yen(z,7) dz [ 2741 o ! #o3

and inserting this expression into equation 4.62 for the even order moments,

n+1 d 1 d |:n+2 n+1 ( ]
2n+1dz u,,,, dz e

n d 1 d|: n G ( )+n—1G ( ):|
mtldzp,,  dz [ 20—1 """ T gy 20T

+ Men Gn(z’ T) = 871477’—5(2’ M T)' (4-64)

In the latter expressions, adopting the nomenclature of Klose [65], the 7 order correlation

absorption coefficient is given by,

Men = My _Iusgn [1_<1 - g)})(l‘,T)]

It should be noted that this series of equations is still equivalent to the original planar corre-
lation transport equation — no approximation of the underlying transport equation has yet

taken place.

The SPy; approximation

We arrive at the three-dimensional SPy; approximations by the replacement of the derivative

operators with their multi-dimensional counterparts. Accordingly equation 4.64 becomes,

G, )+ ——G,(r,7)

n+1 1 |:n+2 n+1 ]
2n+3 2n+3

- 27’l+ 1 luc,n+1
n

- 27’l+ 1 /uc,n—l

n—1
2n—1

V|G, (6 1) + =G, ,(r,7)
55 )

+ e p G,(r,7)= 3n4nS(r, /I,T). (4.65)



4.2. Theory

95

We will now find the first two coupled moments in this series which will be used to form

the spcciﬁc approximations ofa given order. For n =0in equation 4.65,

1 2 1
-V.—V |:§G2(r, T)+ gGO(r, T)] + 0 Go(r, 7) = 4nS(x, 7). (4.66)
luc,l

For 7 = 2 in equation 4.65, we obtain

4 3
--V.—V [—G4(r, T)+ = G,(r, T)]
7 7
2 1 2 1
--V.—V |:—G2(r,r)+ = Gy(r, T)] + 1. ,Gy(r,7)=0. (4.67)
5 luc,l 3 3 '

We derive the SP; approximation by setting all contributions to the correlation radiance
G,(r,7)=0forn >0,

1

-V. 3 VGy(t,7) + u o Go(r, 7) = 478(r, 7). (4.68)

luc,l
From equation 4.2.5 we find Moo= Mg+ ,ué/o(r, T)y»and Meq = Mgt lu; [1+ gh(r,7)],
ergo the SP; approximation is identical to the anisotropic diffusion approximation presented

1) stated

in equation 4.47. In turn, with ¢ = O (and under the approximations regarding (k
carlier) the expression is equivalent to the original result of Sakadzi¢ and Wang [118].
The SP; approximation is found by discounting all contributions to the correlation radi-

ance for 7 > 3 which generates the following coupled expressions:

1
-V. 3 [Go(r, 7) +2G, (1, )] + o Gy(r, 7) = 47 S(r, 7), (4.692)
c,1
9 2
=V VG 7)+ ey Gl 7) = ¢ [ #00Go(r,7) = S(r,7)] (4.69b)

where the second expression is found by substitution of the first into the term for Gy(r, 7)

in equation 4.67.

Boundary conditions

One of the advantages of deriving the SP,; equations by extrapolating the three-dimensional
form from the planar transport form, is that the boundary conditions can be determined by
the same technique: that is to say that the planar boundary conditions are developed and
extrapolated to their three dimensional form.

We will not repeat this process here, but the derivation for the case of diffuse optics can be
found in [65]. If we assume that our acoustic field is zero on the boundary, then exactly those
conditions found in the aforementioned work are valid, otherwise the 7™ order correlation

absorption coefficients must be used in place of the standard coefficients.
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4.2.6  Finite element implementation

To compare each of the models developed in this chapter with our reference Monte-Carlo
implementation, we solve the resultant partial differential equations in a domain of inter-
est. A direct analytical solution is impractical for all but the most simple of geometries and
acoustic field configurations, and thus we approach this problem numerically.

In this work, we solve each of the equations by the finite element method. It is beyond
the scope of this work to provide a detailed treatment of the method, so only a brief overview
will be provided for the case of the isotropic correlation diffusion equation. The anisotropic
case is identical, save for modified coeflicients. Solution of the equations of the SPy; approxi-
mation are slightly more involved, since we must solve for two unknowns, but the principles
are the same. For details regarding the solution of the SPy; approximations by the finite el-
ement method, see [30]. In any case, the application of the finite element method to the
solution of elliptic partial differential equations (or coupled systems thereof ) is well detailed
in the literature, for particular examples in the case of diffuse optics, see [8, 13, 53].

To solve the diffusion approximation, equation 4.47 is multiplied by a test function
which obeys the boundary conditions, and whose zeroth and first derivatives are integrable
over the domain. The boundary conditions are incorporated by the subsequent integration
by parts. The domain is subdivided into a mesh of non-overlapping elements joined at N
vertex nodes. On this mesh we define a set of piecewise linear basis functions such that
u;(r;) = ‘Si/‘ forz,j =1,...,N where r; located at the 7™ vertex node. We subsequently
approximate the solution G(r, 7) & Z?] u;(r)G;(7). Selecting the basis functions in the
weak formulation to be the same as the mesh basis allows us to write the resulting linear sys-

tem of equations:
A(7)[x]G(r)=q, (4.70)

where A is the finite element system matrix. We express the parameters of the forward model,
x(r), the absorption-like decorrelation function })(r), and the diffusion coefficient D using

the same basis functions such that, for example, u (r) = > I (r)u b Consequently,
AG, = [ 3[BT 0) 0
Q p

[ (Ot 55,0V ()] Mi(r)%/(r)] &'

1
+aLQui(r)uJ~(r)d”1r, (4.71)

and,
q; :J g;u;(r)dr. (4.72)
Q

Solution of the matrix equation 4.70 yields the correlation fluence throughout the do-
main. To determine the measurable exiting flux on the boundary we employ the boundary

condition of equation 4.35. In discrete form, with a matched boundary, the exiting flux at
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some point r; is therefore given by application of a linear operator D]T =1/2u(r,;) ro the

solution vector G(1).

4.3 Results

4.3.1  Simplified spherical harmonic approximation

To assess the capabilities of the SP; correlation approximation developed in this chapter, we
will compare the results of a simulation with the original P; method proposed by Sakadzi¢
and Wang [118], and the reference Monte-Carlo code developed in chapter 3.

For this study we create a cuboid simulation domain of dimensions (30, 30, 20)mm with

I I

optical properties of ¢, = 0.0lmm™", ¢, = 20mm™", an anisotropy factor of g = 0.9, and
hence a reduced scattering coefficient of ! = 2mm™". Inside this domain a small cuboid
region of absorption coefficient ¢, = Imm™", and with dimensions (2,2, 12)mm is located
with its centre at (13,9, 10)mm. The medium has density p= 103kg m~?, and the whole
space is assigned a refractive index of 7 = 1.33. A pencil beam of coherent light of wave-
length 532nm is incident perpendicular to the slab at (15,0, 10)mm travelling in the positive
y direction: this is implemented directly in the Monte-Carlo simulations, and in the corre-
lation diffusion simulations this was approximated by a point-source of coherent light at a
distance of one transport mean free path under the surface at (1/ lui ), as is standard practice
in the diffusion approximation. The medium is insonified by a plane-wave ultrasound beam
with a Gaussian amplitude profile of full-width half-maximum of 4.7mm, travelling in the
positive x axis with its centre located at (9, 10)mm in the y—z plane. The peak amplitude
of the beam is 200kPa.

In the Monte-Carlo simulation, 3 x 10° photon packets were simulated and the fluences
at the zeroth and first harmonics were directly recorded on the mesh. In the finite element
simulations, eleven runs of the forward model were executed for both the P, and SP; approxi-
mations at evenly spaced pointsin lag, T, over asingle acoustic cycle. The un-normalised field
autocorrelation coefficient was recorded at each node of the mesh, and this was converted to
the fluence values at the zeroth and first harmonic by application of a discrete cosine trans-
form. In both cases the first harmonic modulation depth was then found by taking the ratio
of the first to the zeroth harmonic of the correlation fluence. The resultant fields were evalu-
ated in their linear-basis over a regular grid extending throughout the x-y plane, at a height
of z =10 x 107>, We will begin by inspecting the fluence distributions in each of the indi-
vidual harmonics.

Figures 4.1 through 4.3 show the correlation fluence distribution at the zeroth harmonic
for the Monte-Carlo simulation, the P; approximation and the SP; approximation, each dis-

played to the same colour scale’. Dashed lines indicate the extent of the ultrasound field.

'The striations visible in the images are a graphical artefact, and whilst of a similar scale to the ultrasound

wavelength are not an effect of the insonification.
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Figure 4.1: Zeroth harmonic correlation fluence (log,, Go(r)), as calculated by the reference

Monte-Carlo simulation.
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Figure 4.2: Zeroth harmonic correlation fluence (log,q Gy (1)), as calculated by the standard
correlation diffusion approximation, equivalent to first order simplified spherical harmonic

method.
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Figure 4.3: Zeroth harmonic correlation fluence (log,q Go(r)), as calculated by the third
order simplified spherical harmonic (SP;) approximation to the correlation transport equa-

tion.

The most noticeable difference between the two simulations is seen around the source re-
gion. This is unsurprising given the approximation of a collimated source used in each of the
spherical harmonic approximations: the point-source in each of figures 4.2 and 4.3 is visible
in the diagrams as the region of greatest correlation fluence. The P, simulation demonstrates
a slightly reduced correlation fluence at areas far from the source, when compared to the
Monte-Carlo and SP; simulations.

Figures 4.4 through 4.6 show the correlation fluence distribution at the first harmonic
for each of the simulations. These figures demonstrate more significant differences than were
seen at the zeroth harmonic. It is immediately evident that the SP; approximation signifi-
cantly over-estimates the first harmonic correlation fluence, when compared with both the
reference Monte-Carlo simulation, and the SP; approximation. This explains the reduced ze-
roth order correlation fluence in the P; approximation: the energy in the fluence in the first
harmonic is sourced from the input energy at the zeroth harmonic. Small contour pertur-
bations in the first harmonic correlation fluence are seen in both of the spherical harmonic
approximations; a greater reduction is seen in the SP; approximation which we expect to
provide improved performance at higher absorption values. This reduction of correlation
fluence is not seen in the Monte-Carlo result due to the spatial averaging required to smooth
the solution.

Figures 4.7 through 4.9 show the modulation depth distribution for each of the simula-

tions. The first figure indicates the reference solution. Close to the source position, the mod-
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Figure 4.4: First harmonic correlation fluence (log,, G,(r)), as calculated by the reference

Monte-Carlo simulation.
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Figure 4.5: First harmonic correlation fluence (log,, G,(r)), as calculated by the standard

correlation diffusion approximation, equivalent to first order simplified spherical harmonic

method.
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Figure 4.6: First harmonic correlation fluence (log,, G,(r)), as calculated by the third order

simplified spheric harmonic (SP;) approximation to the correlation transport equation.
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Figure 4.7: Internal first harmonic modulation depth distribution, MD(r) [-], as calculated

by the reference Monte-Carlo simulation.
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Figure 4.8: Internal first harmonic modulation depth distribution, MD(r) [-], as calculated
by the standard correlation diffusion approximation, equivalent to first order simplified
spherical harmonic method. Note that the colour scale is limited to that of the reference

solution.
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Figure 4.9: Internal first harmonic modulation depth distribution, MD(r) [-], as calculated
by the third order simplified spheric harmonic (SP;) approximation to the correlation trans-

port equation.
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Figure 4.10: Percentage error modulation depth between P, correlation diffusion approxi-

mation and reference Monte-Carlo solution.

ulation depth is suppressed by the large amount of unmodulated light being directed into the
medium. The modulation depth peaks in the directly insonified regions furthest from the
source location. Away from both the source and the acoustic insonfication the modulation
depth stabilises and becomes more uniform — whilst all of the harmonics are being atten-
uated in these regions, this occurs proportionally such that the modulation depth remains
constant. We see good agreement when comparing the SP; simulation of figure 4.9 with the
reference Monte-Carlo simulation of figure 4.4. The ‘steady-state’ modulation depth of circa
0.2 matches up with the reference solution, as does the peak modulation at around 0.25. In
figure 4.8 we find that the original P, simulation performs less well: the modulation depth
through the domain is over-estimated when compared with the reference solution. Note
that the large white region in the figure is due to limiting of the colour scale to the reference
solution. We will compare these errors more carefully in the following figures which plot the
percentage difference between the finite-element and Monte-Carlo simulations.

In figure 4.10 the over-estimation of the correlation diffusion approximation is evident.
An expected error is seen near to the source location, but deep in the medium where the
correlation diffusion equation should provide a reasonable approximation, the modulation
depth is calculated with approximately an 80% error. Furthermore, we note that an increased
error is found close to the region of high absorption. In figure 4.11 the SP; approximation
is shown to provide a solution much closer to the reference. In the region of insonification
a maximum error of approximately 20% is found. Deeper into the medium the modulation

depth is under-estimated by this approximation, by around 30%.
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Figure 4.11: Percentage error modulation depth between SP; approximation and reference

Monte-Carlo solution.

4.4 Conclusions

In this chapter we have provided a full derivation of a correlation diffusion approximation
originally proposed by Sakadzi¢ and Wang [118]. This equation has been derived with gen-
erality such that it can be used to calculate higher order phase increments.

We have also taken an alternative approach in which the phase increments were aver-
aged over angle. This has permitted the direct use of an anisotropic phase function in a stan-
dard diffusion approximation. This approach also permitted approximation by the simpli-
fied spherical harmonic method.

Significant errors were found in the anisotropic simulation using the diffusion (or first
order simplified spherical harmonic) approximation. The third order (SP;) approximation
demonstrated good agreement with the Monte-Catlo solution, however. These results are of
particular value: despite further approximation of the phase increment, the improved model
can be solved without significant additional computational effort. This model could easily
be extended to a higher order in terms of both the light transport (by inclusion of more terms

in the SP) series), and also of the acousto-optic phase increment (by inclusion of more terms

in h(r, T)y).



Chapter s

Linear image reconstruction in ultrasound

modulated optical tomography

5.1 Introduction

The purpose of imaging and sensing techniques such as ultrasound-modulated optical tomog-
raphy is the production of images or spatially defined quantitative measurements of some
parameter of interest. In the field of optical biomedical imaging this is typically an image of
the optical absorption coeflicient within a diffuse medium at one or more wavelengths. The
vastly different spatial resolutions of the acoustic and diffuse optical aspects of ultrasound-
modulated optical tomography encourages various approaches to the generation of images
or spatially localised measurements depending upon the nature of the optical configuration
and ultrasound excitation.

The most basic approach is that of direct mapping; when the measurement inherently
posseses sufficient and controllable spatial selectivity a measured datum may be assigned di-
rectly to the region of assumed sensitivity in an image. This approach is common in systems
where the energy which is used to probe the system travels in straight lines without diffuse
reflection from interfaces or multiple scattering by a participating medium. For example, an
ultrasound image may be constructed from multiple A-lines, the signals from which are as-
sumed to reflect the change in the acoustic properties of the medium perpendicular to the
transducer face. A standard two-dimensional X-ray is another example in which the direc-
tivity of the probe is assumed in order that an image may be formed directly (this is common
to most optical-imaging systems). In a sensing application the ‘image’ is essentially a single
region, but the implicit assumption of spatial resolution remains. An example of a sensing
application is the ubiquitous pulse oximeter; this instrument relies upon the differential ab-
sorption of two wavelengths of light which propagate diffusely within the tissue. A mea-
surement is made with the implicit (and in this case reasonable) assumption that the light

samples a region of tissue that is perfused with a representative sample of blood.
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In each of these cases the measurement may be a proxy for the parameter; in the example
of a standard two-dimensional X-ray the transformation for the measured data (the integrals
of X-ray absorption along paths from the source and detector) to the relevant parameter
(such as the presence of bone) is made by the person interpreting the X-ray. Furthermore,
processing subsequent to acquisition of the measured data may be applied to transform the
measurement into a more useful form; a set of two-dimensional X-rays may be transformed
to produce cross sectional images by tomographic reconstruction.

In UOT the sensitivity of the system is defined approximately by the product of the op-
tical sensitivity and acoustic amplitude in the system. Depending upon the application, the
spatial resolution afforded by a focussed or time gated ultrasound field is arguably sufficient
to delineate regions of biological interest. If we neglect acoustic absorption and assume a con-
stant ultrasound excitation amplitude probes each region in a given experiment, a UOT im-
age produced via direct mapping records the scaled optical sensitivity in the medium (rather
than the optical absorption).

In transmission mode configurations of a UOT experiment with a large optical étendue
(such as those employing photo—rcfractivc [26, 102, 109], spectral—holc buming [82], CCD
[77], digital holography [s1], or speckle contrast [80] based detection mechanisms) the op-
tical sensitivity through an homogeneous medium transverse to the optical axis is relatively
constant when contrasted with the exponentially varying sensitivity parallel to the axis of
light collection. Since optical absorbers embedded in a turbid region reduce the optical sen-
sitivity of the system in their vicinity, a transverse scan of the ultrasound probe can provide
useful images of the embedded absorbers. Few demonstrations have been provided of more
complicated absorption patterns in which shadowing of the optical sensitivity may distort
the image, or of systems where an image is generated by a scan parallel to the optical axis in
a high étendue system.

In low étendue systems that employ point-like source and/or detection mechanisms, the
optical sensitivity varies significantly throughout the image in all optical configurations and
scan directions irrespective of the homogeneity of the medium. In the context of UOT this
point was highlighted succinctly by the images produced by Lev and Sfez 75, 76]. In this
case, and in that of a high étendue system with significant heterogeneity, the fundamental
problem is that the optical sensitivity of the system is not uniform.

In the case of pure diffuse optical tomography (DOT), it is the very non-uniformity of
the optical sensitivity which is used to generate images of optical absorption. In DOT it is
recognised that the spatial resolution for a pair of point-like optical source and detector is
unsuitable for direct image reconstruction, and instead a model-based inversion procedure
is employed. In the most general sense, this approach employs a forward model to predict
the spatial sensitivity of the measurement and this is used to drive the update of an image
based upon the measured data. The DOT problem remains ill-posed, and a-priori informa-
tion regarding the solution is typically imposed to constrain the reconstruction. A similar

approach was taken in UOT by Bratchenia et al. [28].
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Figure s.1: Hlustration of the form of the measurement in autocorrelation UOT. The DC
and AC measurement types are found from the non-decaying autocorrelation flux measured
on the boundary of a static medium (black line). A fitting algorithm must be used in the case

of measurements in a fluid exhibiting decorrelation to Brownian motion (grey line).

In this work we specifically consider the case of single fibre point-source and point-detector
measurements of the field autocorrelation under monochromatic acoustic excitation. In
chapters 3 and 4 we examined alternative forward models which describe the acousto-optic
effect in ultrasound-modulated optical tomography. In this chapter we will apply the tech-
niques typically employed in DOT to develop a basic and robust model-based image recon-

struction approach, that of a linear difference-data reconstruction, to autocorelation UOT.

5.2 Theory

5.2.1 Autocorrelation measurements

In an autocorrelation based UOT experiment we measure the lag (7) dependent autocorre-
lation of the flux exiting the medium at a particular location (r) on the boundary, y(r, 7),
redNin response to the insonification of the coherently illuminated medium. In practice,
this value must be derived from the intensity autocorrelation function via the Seigert relation
[19]. Neglecting an exponential decay in the correlation function due to Brownian motion,
the data contain an oscillatory component at the acoustic frequency and its harmonics; this
is depicted in figure s.1. In this work we consider ultrasound pressures of amplitudes small
enough to ensure that only the fundamental frequency is significant; more details of the as-

sumptions employed are presented later when we consider the forward model in section 5.2.3.
We consider three measurement types:
DC _ T . . . s
. y(r)PC = GD C(r) is equal to the continuous wave DOT intensity;

2. y(r)AC = Gic(r) is the AC correlation flux;

3. m(r) = Gic(r)/GgC(r) is the modulation depth flux, which is defined as the quo-

tient of the previous two quantities.
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s.2.2 Linear image reconstruction

In this work we will employ a linear (difference data) reconstruction technique. Whilst
strictly limited to the recovery of qualitative information [25], its simple formulation allows
us to investigate many basic aspects of the UOT inverson, including its sensitivity to noise,
and the effects of the a-priori information required to circumvent the ill-posedness of the
underlying problem.

Consider a turbid medium parameterised by its spatially varying absorption coefficient,
x(r) = u,(r). The measured data y(r, 7) are found by application of the non-linear operator
F,

y(r, )= F(7)[x(r)]. (s.1)
The operator F incorporates the physics of the problem under the given parameterisation,
the boundary conditions, a given set of optical sources and detectors, and a particular ultra-
sound configuration.

In a linear reconstruction we typically consider the change in a measurement Ay =
¥(r, T) — yo(r, T) brought about by a perturbation in the parameters Ax(r) = x(r) — x,(r).
Expanding equation s.1 in a Taylor series around x4 and dropping the spatial and lag depen-

dent notation momentarily,

1
Y=o +F/[xo](x —xp) + E(x - xO)TF”[xO](x —Xg)F s (s.2)
and then discounting the higher order terms and rearranging, we get:
Ax(r) & (F(7) [x]) ™ Ay(r, 7). (5:3)

F' is the first-order Fre¢het derivative of the forward model [12]. In the case of the modula-

tion depth measurement,

oy /)]
P T O]

Expanding this expression in a series around a baseline x;, discounting higher order terms

m(r) (5-4)

and rearranging,

Ax(r)=

|:y0(r)ACF (0) [xo] = 30(r)pc F (T'/2)[xo]
[yo(r)Dc] ’

ur task is thus to develop an expression tor £°: in this work we will develo e discrete
Our task is thus to devel for F’ th k 1l develop the d t

} Am(r). (s-5)

form of this operator which is the Jacobian matrix, J [14]. The inversion procedure of equa-

tion 5.3 (or its equivalent modulation depth formulation) is then given by,

Axy = (J(T) %] 0p) " Ay, (5.6)
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5.2.3 Forward model

In chapter 4 we provided a full derivation for a diffusion style approximation to a correla-
tion transport equation, originally proposed by Sakadzi¢ and Wang [118]. In this chapter
we employ the anisotropic correlation diffusion approximation with second order phase per-
turbations as our forward model. We restate the pertinent theory here, but refer the reader
to the previous chapter for details of the limitations and assumptions made during the deriva-

tion. From equation 4.47 our model of the correlation fluence in the domain is given by,
[—V-DV + p, + u by(x,7)] G(x,7) = Sy(r, 7). (5.7)

where h,(r, ), defined in chapter 4, is proportional to the square of the applied acoustic
field pressure, G(r, 7) is the correlation fluence in the medium, S, is an isotropic source term,
/ug =u S(l — g)is the reduced scattering coefficient, and g is the scattering anisotropy. D =
(3 [ué )71 is the diffusion coefficient, which we have modified from the original form given in
chapter 4 by exploiting the fact that the diffusion approximation is valid only for u; > u,.
This further approximation will slightly simplify the image reconstruction procedure to be
outlined in this chapter. For more details on the nature of the diffusion coefficient, a topic

which has generated considerable debate, see e.g. [7, 17, 36, 37, 44, 48].

Sources, boundary conditions and detectors

A collimated source of coherent light is approximated by an isotropic point source located at

adepth 1/ Iug below the incident surface. We employ a modified Robin boundary condition,
G(r,7)+2An-DVG(r,7)=0, redf (5.8)

where 11 is the outward normal to the boundary at r, and A depends upon the refractive index

mismatch across the boundary [124]. The outgoing correlation flux is given by,
y(r,7)=—n-DVG(r,7), redN. (5.9)

In the case of an indexed matched boundary where A = 1 equations 5.8 and 5.9 may be

combined to give

1
y(r,T):EG(r,T), redN A=1. (s.10)

Finite-element implementation

We will employ the same finite-element approach to the solution of the forward problem as
was detailed in chapter 4. Having derived the weak form of the equations, and descritsed the
domain, we arrived in equation 4.70 at an expression for the correlation fluence throughout

the domain,

A(D)[x]G(r)=q (s.11)
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To make a measurement at a point r; equation s.10 is implemented by a linear operator D
in which the appropriate elements of the row vector are initialised. D]T =1/2u ]-(rl-). We

may now express a single measurement of equation s.1 in a discrete form,

¥(0),u = F(2)[x],, =D, A(7)[x], 'q,,- (s.12)

The subscript 72 indicates that this expression considers a single UOT experiment involving
one source location r 7,m> one detector location r; ,,,, and a single ultrasound pressure distri-
bution p(r, T),,. For a single measurement the linear inversion of equation 5.3 may thus be

written,
Axx [(DTAD)%];'q,) ] Ay(e),,. (5.13)

5.2.4 Correlation measurement density functions and the Jacobian

In equation 5.13, the term (D;A(T)[xo];llqm Y represents the sensitivity of the measure-
ment to a perturbation in the parameters of the forward model. In the context of diffuse op-
tical comography, Arridge generalised such sensitivity functions in the framework of photon-
measurement density functions [9, 13]. This work followed earlier derivations of the measure-
ment sensitivity to perturbations in absorption by Schotland et al. [122], who termed this
thephoton hitting dmsity, and others [29, 42,1 25].

We now explore the correlation measurement density functions (CMDFs) which arise in
correlation based UOT. We assume that both the scattering coefficient 1 and the acoustic
field distribution p(r, 7) do not change between measurement of the baseline and the per-
turbed state in our linear reconstruction. At higher acoustic frequencies where the model is

valid (that is to say where (k_/,

a“tr

) > 1), the term bz(r, 7) is only weakly dependent on the
optical properties, and we neglect this dependence in the following analysis. Under these
assumptions, and given that the coherent source term is independent of absorption, we take
the derivative of the forward model, expanding the derivative of the inverse system matrix
[1],
T 145 ) T A1 /a1
(D, A%, q,) =D A AL A G, (514)

The system is parameterised by only the absorption coeflicient of the medium, and we
thus take the derivative of the system matrix with respect to each basis coefficient 1, ;,

AG@[x],), = jﬂ ()0 ) i, (5.15)

/
Mak
We substitute this result back into equation 5.14 which provides an expression for the k™
element of the m™ CMDE By definition, this also defines the E™ column of the m™ row
of the Jacobian which we seek.

I x)? ) = DL A [, A ],), A@] e, (516)
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To transform this expression into a more useful form, we exploit the reciprocity of the corre-
lation diffusion equation. Arridge expresses this reciprocity in the context of the diffusion
equation [10],

D’ A[x]™'q,,=q] A[x]"'D,,. (5.17)

This expression states that the correlation flux across a point on the boundary of the medium
due to an internal source of correlation fluence is equal to the correlation fluence measured
at the same point in the medium due to an adjoint source of correlation flux across the same
point on the boundary of the medium, when this source is scaled according to the appropriate
measurement operator, here D [9]. In the discrete case this reciprocity manifests itself in the
symmetry of the finite element system matrix. To proceed we apply the reciprocity expressed

in equation s.17 to the expression of the Jacobian in equation s.16,

Il =— (A, a,) A@Lx]), A@K]D,.  (519)

where we have exploited the symmetry of the system matrix, its inverse and derivatives, and
the properties of the transpose operation. Finally we denote the solution to the forward
problem G(T)f’ = A(7) [xo] ;”1 q,, » and the solution to the adjoint problem (in which the

source term is the measurement operator) G(7), ,, = A(T)[xo],_nle Thus,
UL = G, AR ],), e, (5:19)

Here we see that the Jacobian for a perturbation of absorption in the £ node can be found by
taking the inner product of the correlation fluence in the domain due to the (standard) source
term, with the product of the basis function derivative term and the correlation fluence in
the domain due to the adjoint source. We may thus compute the correlation measurement
density function for a given ultrasound configuration by two computations of the forward

model.

The AC and modulation depth CMDFs and Jacobian

The CMDFs and Jacobian for the DC measurement type described in section s.2.1 are given
directly by equation s.19. For the AC measurement type the appropriate expression is straight

forward,
(Per1), = (OL), - (/27 (5.20)

The modulation depth sensitivity functions are given by substituting equation s.19 into

equation s.s, as follows:

e (JOL), =055 (T /201,

(JMD[X];)/e
il

(s.21)
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5.2.5 Regularisation

Whilst we expect an improvement in the localisation of our UOT sensitivity functions over
that of pure DOT, our present model still describes a diffusion process: thus the problem of
reconstructing an internal parameter distribution from data measured on the boundary re-
mains ill-posed, and effectively under-determined. The consequence of these considerations
is that even if sufficient measurements were available to form a square Jacobian, direct solu-
tion of equation 5.6 would fail to produce a stable solution, as noise in the measurements
amplifies high-frequency oscillations in the resultant reconstruction.

In order to seck a useful and stable solution, it is conventional to apply some form of reg-
ularisation to the problem. One commonly employed approach is to make the assumption

that a ‘good’ solution is one which balances the norm of the residual ||(J(7) [x,])Ax . Ayl|

with the norm of the solution ||Ax g| , or its derivatives. This approach is that of the general
form of Tikhonov regularisation in which we replace the matrix equation 5.6 with a minimi-

sation problem,
Ax, = arginin (ID(x)[xo] Ay — Ax|2 + 2| Ax][3) (5.22)
For the under-determined case, this minimisation procedure is equivalent to solving [20],

Ax, = (J(2)[x) T2 [xo] + L) T J() ] Ay, (s523)

In the following section we employ zeroth-order Tikhonov regularisation such that L =1,
where I is the identity matrix. We select the regularisation parameter A according to the I-
curve method, though the point of maximum curvature was chosen by inspection when the

algorithm failed to find the correct point.

5.3 Results

Having derived a technique for the linear reconstruction of images in ultrasound-modulated

optical tomography we will now investigate the technique numerically.

1. We will observe the form of the correlation measurement density functions for absorp-
tion perturbations. This analysis will involve both reflection and transmission mode
measurements under all of the previously described measurement types. Comparison
of the UOT measurement types with the continuous DOT case will demonstrate the
potential improvement in spatial resolution achieved under acoustic modulation, and
direct observation of the UOT sensitivity functions will provide some qualitative ap-

preciation of the nature of UOT sensitivity in correlation based measurements.

2. The reconstruction of a simple absorption perturbation distribution against an homo-

geneous background will be demonstrated. A single optical source and detector will
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be employed such that the effects of regularisation under increasing noise will be ev-
ident in the reconstructed image. We will compare the reconstructed results with a

direct mapping approach to demonstrate the problems suggested in section s.1.

5.3.1 Correlation measurement density functions

In section s.2.4 we derived the correlation measurement density functions for three measure-
ment types: the zero-lag measurement (equivalent to continuous wave diffuse optical tomog-
raphy), the AC measurement type, and the modulation depth measurement. We will now
inspect these sensitivity functions to gain insight into the sensitivity and spatial localisation
offered by these measurements.

A two-dimensional square domain of side 50mm is located with its bottom left corner
at (0,—25)mm. The domain is assigned a uniform absorption coefficient u, = 0.0lmm™!
and reduced scattering coefficient ,ug = 1mm~! with isotropic scattering g = 0. The refrac-
tive index of the domain is 1.4 and a matched boundary is employed. An ultrasonic field
with a Gaussian profile of full width half maximum 2mm and peak amplitude of 0.2MPa is

projected through the plane.

Reflection mode

In the first instance we investigate a reflection mode geometry. An isotropic point source is
placed at position (1,20)mm to approximate a collimated source incident perpendicular to
the boundary at (0,20)mm. The diffuse detector is located at (0, —20) and integrates the
outgoing correlation flux according to a Gaussian profile with full width half maximum of
0.1mm.

To begin we investigate the sensitivity to absorption in the zero-lag measurement which

is equivalent to the continuous wave sensitivity in diffuse optical tomography. Figure 5.2 de-
T

picts the negative zero-lag (intensity) sensitivity function for a given measurement, =J(0)[x,], .
The approximated collimated source is indicated with the inwards arrow at the appropriate
location, and the centre of the diffuse detector with the outwards arrow. The figure demon-
strates the characteristic ‘banana’ shaped absorption sensitivity profile often seen in the liter-
ature of diffuse optical tomography [9, 42, 122]. The scale of the linear plot is truncated in
the positive direction; regions close to the source and detector demonstrate extremely high
sensitivity to absorption perturbations. This sensitivity function is insensitive to the acoustic
field location: each row of the DC Jacobian which corresponds to a particular optical source
and detector pair will be identical. Since in this work we consider only one such pair, a re-
construction using this information can only result in a scaled and regularised image of the
same form as the sole unique sensitivity function depicted in figure s5.2. To produce a more
detailed image would require that many more optical sources and detectors be employed.
We now turn our attention to the absorption sensitivity for the AC measurement type.

Figures 5.3, 5.4, and 5.5 demonstrate the absorption sensitivity with the acoustic field scanned
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Figure s.2: —J(O)[xo]]: [Wm™]: UOT absorption sensitivity in reflection mode at lag
T =0, with a 40mm source-detector spacing. This sensitivity function is equivalent to that
of an absorption photon measurement density function in continuous-wave diffuse optical

tomography.

to locations of (5, —15), (15, —10), and (20, 10)mm, respectively. The location of the acous-
tic field is indicated by the crossed circle. In the first of these images the acoustic scan loca-
tion is in a region of high optical sensitivity close the source. In these circumstances the form
of the sensitivity function does not deviate too greatly from the zero-lag case against which
these figures may be compared, though it is evident that alarger region of sensitivity is formed
around the acoustic focal region. In the latter two ﬁgurcs the acoustic field is scanned to a
location of lower optical sensitivity where the effect of the acoustically driven decorrelation
of the field is more evident. In both cases we see a region of increased sensitivity at the focus
of the acoustic field which extends to the source and detector locations. As the acoustic field
is scanned to regions of decreased optical sensitivity, the AC intensity falls commensurately.

Finally we consider the modulation depth absorption sensitivity functions. Infiguress.6
to 5.8 the ultrasound field is scanned to the same locations as figures 5.3 to s.5. The firstand
most noticeable quality of each of the figures is the bipolar nature of the sensitivity functions
(note however that the colour scale significantly enhances the contrast of the negative change
over that of the positive). Each figure demonstrates that this measurement type is insensitive
to perturbations close to the source, detector, and on a smooth path connecting the two.
Placing an optical absorber along this path of insensitivity will reduce the amount of corre-

lated and uncorrelated light reaching the source from the detector by an equal amount such
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Figure 5.3: —JA€ [xo]z [W m™"]: UOT absorption sensitivity in reflection mode foran AC
measurement type, with a 4cm source-detector spacing. The ultrasound focus is located at

(5,-15)mm, close to the detection position.
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Figure s.4: —JA€ [xOJIZ [W m™]: UOT absorption sensitivity in reflection mode foran AC
measurement type, with a 4cm source-detector spacing. The ultrasound focus is located at

(15,-10)mm in the region of interest which is typically assumed to be probed duringa DOT

experiment.
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Figure s.5: —JA€ [xo]kT [Wm™]: UOT absorption sensitivity in reflection mode foran AC
measurement type, with a 4cm source-detector spacing. The ultrasound focus is located at

(20,10)mm on the periphery of the sensitive region.
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Figure 5.6: —JMP [xo]z [m™"]: UOT absorption sensitivity in reflection mode for a mod-
ulation depth measurement, with a 4cm source-detector spacing. The ultrasound focus is

located at (5,-15)mm, close to the detection region.
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Figure 5.7: —JMP [xo]g [m™']: UOT absorption sensitivity in reflection mode for a mod-
ulation depth measurement, with a 4cm source-detector spacing. The ultrasound focus is
located at (15,-10)mm, in the region of interest which is typically assumed to be probed dur-

inga DOT experiment.

that whilst the overall light level falls, the modulation depth remains constant. This argu-
ment is clearly supported by the analytical form of the sensitivity function given in equation
5.4. The modulation depth sensitivity functions demonstrate high sensitivity in the region
of the applied acoustic field. Moving away from the acoustic focus, across the path of zero
sensitivity, we encounter a region of negative sensitivity where a perturbation in absorption
will attenuate more correlated light, than uncorrelated light.

Comparing figures 5.6 and 5.7 with figure 5.8 we can clearly see that the modulation
depth sensitivity reduces as we move further from the region of optical sensitivity. In fig-
ure 5.9 we plot the sensitivity functions for an x — y scan of the acoustic field through the
medium where the bipolar nature of the sensitivity, and its dependence upon the local optical
sensitivity can clearly be seen. Note that the scale in each of the images is fixed. Note in par-
ticular that when the acoustic field location is placed directly in the path of greatest optical
sensitivity the sensitivity function appears to have the tightest spatial localisation, with two
regions of negative sensitivity appearing in the sensitivity function. This may be problematic
in a direct mapping approach in the sense that complex absorption perturbations will be av-
eraged over the entire region of sensitivity, but is automatically accounted for in the image

reconstruction process.
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Figure 5.8: —JMP [xo]kT [m™']: UOT absorption sensitivity in reflection mode for a modu-
lation depth measurement, The ultrasound focus is located at (20,10)mm, on the periphery

of the sensitive region.

Transmission mode

We now consider a transmission mode system. An isotropic point source is placed at position
(0.1,0)mm to approximate a collimated source incident perpendicular to the boundary at
(0,0). A diffuse detector of the same configuration as the reflection mode case is located at
(50,0)mm.

We again begin our inspection with the zero-lag case depicted in figure s.10. The figure
depicts a characteristic DOT sensitivity similar to that found in the reflection mode case
of figure s.2. Since the source and detector spacing in this experimental configuration has
increased to 50mm, from 40mm in reflection mode, the peak sensitivity is slightly reduced.

The transmission mode absorption sensitivity for the correlation measurement made for
an AC measurement is displayed in figure 5.1 1. The results in transmission mode echo those
in reflection mode: a region of high sensitivity is found at the location of the acoustic focus
which extends outwards to the source and detector location.

We plot the modulation depth sensitivity for the same acoustic field location. Figure s.12
demonstrates the modulation depth sensitivity for the transmission mode measurement with
the acoustic field scanned to a location (20, 10)mm. Once again we find a bipolar function
with positive sensitivity in the region of the acoustic focus. Close to the locus of peak optical
sensitivity a zero-crossing is present upon which perturbations in absorption will equally af-

fect the modulated and unmodulated components of the detected correlation flux, leading



5.3. Results

119

D D
W e | i® :

< 2
<
(@L
@
@

< 2
S
@
o>
@
O

-
@

-
®
©

A/
. '®
4 PR <

Figure 5.9: UOT absorption sensitivity in reflection mode for a modulation depth measure-

ment over thirty-six of the ultrasound scan locations employed in the reflection mode recon-

struction sequence.
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Figure s.10: —J(0) |:xo:|]z~ [W m™"]: UOT absorption sensitivity in transmission mode at lag
T = 0, with a 5cm source-detector spacing. This sensitivity function is equivalent to that
of an absorption photon measurement density function in continuous-wave diffuse optical

tomography.

to zero net change in the modulation depth. The peak magnitude of the modulation depth
sensitivity is comparable to that of the reflection mode measurement for the same acoustic
scan location, since the optical sensitivities at this locations are similar for both measurement
modes. In figure 5.13 we demonstrate the modulation depth sensitivity as we scan the acous-

tic field through the medium, with a constant colour scale.

5.3.2 Image reconstruction: noise and regularisation

Havingexamined the form of the individual correlation measurement density functions which
together form the Jacobian, we will proceed to reconstruct an image in both reflection and
transmission modes, under varying degrees of noise. The purpose of this investigation is
twofold: first, the procedure will evaluate the functioning of the reconstruction process, sec-
ond, the regularisation required as a function of noise will be assessed. We will perform the
reconstruction on both the AC and modulation depth measurements.

The amount of noise added to the simulated data has been chosen to demonstrate the
maximum proportional noise which can be tolerated before the presence of individual ab-
sorption features along the path of optical sensitivity can no longer be discerned. It is self-
evident that at such levels of noise, not only will a qualitative interpretation of the results be

severely degraded, but also the quantitative values returned by the reconstruction procedure.
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Figure s.11: —JA¢ [xo]/z [Wm™]: UOT absorption sensitivity in transmission mode for
an AC measurement, with a 5cm source-detector spacing. The ultrasound focus is located at

(20,10)mm on the periphery of the sensitive region.
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Figure 5.12: JMP [xo]kTUOT absorption sensitivity in transmission mode for a modulation
depth measurement, The ultrasound focus is located at (20,10)mm on the periphery of the

sensitive region.
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Figure 5s.13: UOT absorption sensitivity in transmission mode for a modulation depth mea-
surement over thirty-six ultrasound scan locations, with a 5cm source-detector spacing, and

a fixed colour scale.
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Figure s.14: Absorption perturbation Ay, [m™] interpolated from the perturbation mesh
to the baseline mesh upon which the Jacobian is computed. The baseline mesh does not
include features of the perturbed geometry and hence the boundaries are seen to be slightly

blurred. Each of the 357 points in the image indicate a single acoustic scan location.

Thus, we shall determine the limit at which our data can no-longer provide physiologically
significant information. We will further consider the tolerance of our reconstruction to ad-
ditive noise in the subsequent discussion.

The reconstruction will be performed on an homogeneous background with a regular
set of absorption perturbations such that any aberrations in the reconstructed image will be
evident. The background domain is the same as employed in section s.3.1. The perturbation
domain is formed by adding an array of sixteen circular perturbations of radius 2.5mm with
a modified absorption coefficient of 0.02mm™!. The perturbed measurements were gener-
ated using an independent mesh from the background measurements lest we commit inverse
crime of generating measurements by the same model by which they are inverted [31]. To
demonstrate an ‘ideal’ reconstruction, the perturbed absorption coeflicient was interpolated
from its mesh to the baseline mesh upon which the Jacobian is computed, the resultant image
is displayed in figure 5.14.

The measurement set was generated by scanning an ultrasonic field with a Gaussian pro-
file of full width half maximum 2mm and peak amplitude of 0.2MPa through the domain
from (5, —25)mm to (—25,25)mm at 0.5mm increments in x and y. This resulted in a total

0f 17 x 21 = 357 measurements for both the baseline and perturbed measurement. The loca-
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Figure 5.15: Reconstruction of the absorption perturbation Ay, [m™] using only the zero-
lagJacobian, cquivalcnt to attemptinga reconstruction usinga singlc continuous wave source

detector pair in the DOT problem.

tion of the acoustic focal regions is depicted by the plus symbols in the target reconstruction
image of figure 5.14.

In each case the regularised system is solved by 5.23. The regularisation parameter was
chosen by the l-curve method, though on occasion the point of maximum curvature was
manually evaluated when the algorithm failed to choose the correct point. In the cases where
no noise was added to the measurements, a regularised solution was still sought owing to the

influence of slight numerical error in calculating the solution.

Reflection mode

We begin by evaluating the image reconstruction process in reflection mode. As per section
5.3.1 an isotropic point source is placed at position (0.1,20)mm to approximate a collimated
source incident perpendicular to the boundary at (0,20)mm. A diffuse detector is located
at (0, —20)mm and integrates the outgoing correlation flux according to a Gaussian profile
with full width half maximum of 0.1mm.

For completeness we begin by attempting to reconstruct the image using the zero-lag
Jacobian. The result of the noiseless reconstruction is depicted in figure s.15. Since the mea-
surement is unperturbed by the acoustic field at this point in the correlation function, the Ja-

cobian has a rank of one: all rows are identical to one another. The only information present
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Figure 5.16: Reconstruction of the absorption perturbation Ay, [m™] using AC Jacobian

absent of measurement noise.

in this inversion is the absorption sensitivity profile of figure 5.2; it is thus unsurprising that
the reconstructed image is merely a scaled copy of this single set of linearly independent data.

We now consider a reconstruction based upon the AC measurement type and its associ-
ated Jacobian. In figure s.16 we see that in the absence of noise the reconstruction produces
an image which captures the features of the perturbation up to a depth of 30mm. Beyond
this depth the sensitivity is so low that the solution has been forced to zero by regularisation.
We also note that the reconstructed image has peaks close to the source and detector; we note
from our analysis of the correlation measurement density functions of this measurement type
that whilst a distinct region of sensitivity was found at the acoustic focus, the measurement
was also sensitive near the source and detector location. The image demonstrates a spatial
resolution comparable to the full-width half maximum of the acoustic field, this result is ex-
pected given the spatial sensitivity demonstrated in the associated correlation measurement
density functions.

We now introduce 0.1% Gaussian noise onto the simulated measurement data, recalcu-
late the regularisation parameter A and reconstruct the image accordingly: the result is shown
in figure 5.17. With added noise the quality of the image decays as regularisation smooths the
regions of the image with low sensitivity which would otherwise, following inversion, dom-
inate the reconstructed image in the presence of noise. Useful results are demonstrated in

the image to a depth of over 20mm. Erroneous values near the source and detector locations
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Figure 5.17: Reconstruction of the absorption perturbation Ay, [m™] using the AC Jaco-

bian with 0.1% Gaussian measurement noise.

remain present in the image. Increasing the noise to 0.5% causes the regularisation process
to remove any useful features of the perturbation from the image.

Finally we consider the reconstruction based upon the modulation depth measurement
and its associated Jacobian. The noiseless reconstruction is shown in figure 5.18 The noise-
less modulation depth reconstruction demonstrates good image quality throughout the re-
constructed image. Owing to the nature of the measurement type, the source and detector
locations are completely suppressed in this reconstruction. The image close to the source
is in good agreement with the ideal reconstruction presented carlier, demonstrating an ab-
sorption change approaching the actual value Ay, = 10 x 10~ >mm™!. Even without noise,
numerical inaccuracy is such that image decays into the region of lowest optical sensitivity.

In figures 5.19 and 5.20 we add 0.1% and 1% Gaussian noise to the simulated mea-
surements and repeat the reconstruction process.  These figures demonstrate that as the
amount of noise in the measurement is increased, regularisation gradually suppresses the re-
constructed images in the regions of least sensitivity. The modulation depth reconstruction
demonstrates significantly improved tolerance to measurement noise than was demonstrated
by the reconstruction based upon the AC measurement type. In the latter case, only 0.5%
Gaussian noise could be added to the image before the resultant image became unusable, in
the present case, noise of up to 1% can be added to the measurement whilst still resolving

features of the image to a depth beyond 10mm.
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Figure 5s.18: Reconstruction of the absorption perturbation Ay, [m™] using the UOT

modulation depth Jacobian absent of measurement noise.
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Figure s.19: Reconstruction of the absorption perturbation Ay, [m™] using the UOT

modulation depth Jacobian with 0.1% Gaussian noise.
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Figure s.20: Reconstruction of the absorption perturbation Ay, [m™] using the UOT

modulation depth Jacobian 1% Gaussian noise.

In the introduction to this chapter we noted that on many occasions a simple ‘direct-
mapping’ approach was used for the generation of images in an acousto-optic experiment.
We dismissed this approach in the case of a low-étendue system, or in a scenario where the
optical sensitivity varies rapidly over the plane of the image. To demonstrate the improve-
ment of the reconstructed images over that of a direct mapping approach, we generate an
image by the direct mapping approach in the absence of noise by directly assigning the mod-
ulation depth difference measurement, Am(r), to pixels located at the centres of the acoustic
foci.

Figure 5.21 demonstrates that the absorption perturbations along the axis of optical sensi-
tivity (figure s.10) can be distinctly located. Without compensating for the spatially varying
optical sensitivity, those absorbers off axis are imperceptible. Moreover, the resulting unit-
less image provides no quantitative information as would be required if we wished to attempt
arecovery of a clinically relevant parameter. It is a common feature of many hybrid imaging
modalities that the relationship of the data to the desired parameter is often unclear. We also
note that in the presence of noise a variety of rigorous regularisation strategies can be applied
in a reconstruction to stabilise the recovery of the underlying parameters. In a direct map-
ping approach we may attempt to reduce the deleterious effects of the noise by some form of
spatial filtering (for example, convolution with a smoothing kernel), but any such approach

is somewhat ad-hoc.
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Figure s.21: Direct mappingapproach to reconstruction of an absorption perturbation using

a modulation depth measurement in reflection mode without noise.

Transmission mode

We now briefly consider the transmission mode scenario for the modulation depth exper-
iment. As per section s.3.1 an isotropic point source is placed at position (O.I,O)mm to
approximate a collimated source incident perpendicular to the boundary at (0,0)mm. A dif-
fuse detector of the same configuration as the reflection mode case is located at (50, 0)mm.
The reconstructions of figures 5.22 through 5.24 demonstrate the modulation depth re-
construction in the case of measurements absent of noise, with 0.1%, and 1% Gaussian noise.
Without noise, the reconstruction process provides an excellent approximation to the actual
perturbed absorption profile. Under noise we see that regularisation smooths the regions of
lower sensitivity which are now located off the transmission mode axis, echoing the results
of the reflection mode measurements. Qualitatively, the transmission mode reconstructions
appear to more accurately portray the actual absorption perturbation than their reflection
mode counterparts: this is largely due to the more even optical sensitivity profile through

the medium than in the reflection mode case.

5.4 Conculsions

The sensitivity functions and associated reconstructed images presented in this work provide

considerable insight into the potential of autocorrelation based UOT. It has been shown that
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Figure 5s.22: Reconstruction of the absorption perturbation Ay, [m™] using the UOT
modulation depth Jacobian in a transmission mode configuration without measurement

noise.

by moving the focus of an acoustic field in the medium, additional spatial resolution can be
introduced into the UOT reconstruction: in the case of CW DOT, this would require that
additional optical sources and detectors were employed, with associated cost and complexity.
Whilst it is arguably unfair to directly compare a CW DOT image with the UMOT image,
since the former was acquired with only two measurements compared to the latter’s set of 372
measurements, it is nonetheless important to recognise the potential advantages of a system
capable of reproducing such images with a small number of optical sources and detectors,
owing to the implications in terms of cost and complexity. The low source-detector count
demonstrated here suggests that a single (planar) optical source and point detector may be
capable of reproducing images of optical parameters with sub-centimetre resolution, with
the scanning of the acoustic focus achieved electronically by means of a phased array. Such
a system would be mechanically straightforward and avoid many of the cost and complexity
issues of a multi-channel DOT system.

Reconstructions based directly upon the AC measurement type are, in the absence of
noise, capable of reproducing a fair representation of the underlying absorption perturba-
tions. A disadvantage of this measurement type is the significant erroneous absorption in-
dicated near the source and detector position: this is a direct consequence of the extreme

sensitivity of the measurement in these regions. If an absorption perturbation were placed
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Figure 5s.23: Reconstruction of the absorption perturbation Ay, [m™] using the UOT

modulation depth Jacobian in transmission mode configuration with 0.01% Guassian noise.
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Figure 5s.24: Reconstruction of the absorption perturbation Ay, [m™"] using the UOT

modulation depth Jacobian in transmission mode configuration with 1% Gaussian noise.
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near the source or detector, the influence of this measurement change would dominate the
resulting image.

Inareconstruction employing both the AC and DC measurements, regularisation would
suppress the contributions from the AC measurements in which the perturbation from the
DC value is below the noise floor. In this sense the enhancement of a DOT imaging system
with ultrasound modulated correlation measurements will lead to a worse-case imaging res-
olution equivalent to that of CW DOT, with improved ultrasound modulated resolution
where noise permits. The influence of the high regions of sensitivity near the source and
detector remains a problem, however.

In contrast, the modulation depth measurement type completely suppresses sensitivity
near the source and detector positions. Furthermore, the image reconstruction process is
capable of producing acceptable results at levels of noise higher than in the AC measurement
reconstruction. Suppressing sensitivity in regions close to the source and detector may be
valuable in biomedical applications where physiological changes in a superficial region may
otherwise dominate the measurement [130].

The amount of noise added to these reconstructions was chosen to explore the level at
which the reconstructed images are degraded to the extent that they no longer provided any
qualitatively useful information. In the case of the modulation depth measurement, accurate
(£10%) reconstructions were achieved on the axis of optical sensitivity with additive noise of
1% applied to the simulated measurement data. The signal to noise ratio (SNR) of an actual
experiment will vary significantly depending upon the chosen detection mechanism. In this
work primarily consider autocorrelation based UOT which can employ photon counting
detectors—such systems are inherently shot-noise limited. In this regime the available SNR
is proportional to the square root of the detected signal level. Absolute values of 1% are not
unreasonable, but this is highly dependent upon the properties and geometry of that which
is being probed. In biological tissues, the optical input power may be maximised according to
relevant safety limits, in this case decreasing detected signal levels (due to source-detector ge-
ometry, or the optical properties of the medium) will require that the integration time of the
measurement be increased: this may potentially become (experimentally, or clinically) unvi-
able. Interferometric methods such as digital holography utilise heterodyne mixing gain to
achieve shot-noise limited performance [51], in this case the reference beam power must be
increased to retain performance, with the requisite increases in cost and size of the coherent
laser required for this function decreasing the utility of the technique.

In summary, we have demonstrated that standard techniques for image reconstruction
in DOT can be successfully employed in UOT. The alternative measurement types available
in UOT demonstrate sensitivity with a significantly improved spatial resolution over that of
continuous-wave DOT. The modulation depth measurement type, and associated sensitiv-
ity functions, demonstrate particularly attractive qualities in suppressing the high sensitivity
close to the source and detector, whilst also providing better noise immunity than direct use

of the AC measurement data.



Chapter 6

Future work and summary

6.1 Future work

The methods and techniques presented in this work, and those which it references, represent
a first step towards the clinical application of quantitative imaging in UOT. In this chapter
we will consider both the challenges faced in moving towards clinical application, and some
specific technical examples of how the development of the forward models and inversion

techniques presented here may be extended.

6.1.1 Forward modelling

In this work we have considered two types of forward model which we may broadly categorise
as statistical: Monte-Carlo sampling of the underlying transport equation, and deterministic:
finite-element solutions to approximated forms of the transport equation. We consider the

potential development of both.

Deterministic methods

In chapter 4 we derived a diffusion style model originally proposed by SakadzZi¢ and Wang
[118]. This model is closely related to earlier work by Wang in which the acousto-optic prob-
lem was treated in the style of diffusing wave spectroscopy [135], insofar as the phase incre-
ments are averaged and used within a diffusion style model of light transport.

We demonstrated that the accuracy of the model can be greatly improved when incorpo-
rated into a more advanced light transport model: we used an SP; model in this work. If the
limitations of the model, in terms of the maximum permissible pressure amplitudes, and the
requirement (k 3 ltr) > 1 can be accepted in a practical setting, then it would be of interest
to explore higher order SPy;, or even Py, approximations. Such an investigation would be
relatively straightforward given the extensive literature available in the field of diffuse optics,
and the way that we have shown the AO phase increments to be integrated with the light

transport model.
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Even the simplest diffusion style models developed in this work represent a considerable
computational burden for a reconstruction scheme, since a pair (forward and adjoint) of so-
lutions must be formed for each ultrasound location, for each point of lag required for the
solution. If the insonification generates an extra correlation absorption perturbation which
is sufficiently small, it would be interesting to split the system matrix into the static compo-
nent, absent of insonification, solve the system, and then approximate the effects of the small
perturbation in correlation absorption due to the acoustic field by a Born series — that is to
say that we would linearise the effects of the acoustic decorrelation on the optical field.

Alternatively, we could take an iterative approach (which with further investigation is
likely to be related to the Born series). In our application we would replace the solution of
equation 4.70,

A(7)[x]G(r)=q, (6.1)
with,

[As[x] +H(7)]G(7) =g, (6.2)

where,
Ao[x]i/ = LZ [”D,k(r)DkV”i(r)‘V”]’(r)‘i‘ “H,k(r)#a,k”i(r)”]’(r)] d’r
k

1

and,

H(r), = L;ub,ku)hk(r)nl-(r)nj(r) &', (64)

The inverse of the matrix sum in the resultant equation can be found iteratively, the tech-
nique being described by Miller [96]. We recognise that in practice, solution of the matrix
equation is not found by computing the inverse of the system matrix, and ostensibly this 7s
required for the proposed method. Instead we anticipate that since the matrix need only be
computed once, for all insonification profiles, a great deal of computational time would be
saved compared to the present solution.

Either of these approaches would vastly decrease the amount of time required to form
the Jacobian in a linear, or straightforward non-linear inversion procedure, although the ef-
fects on the accuracy of the resulting solution are unknown. Indeed, if the Jacobian is to be
calculated, and regularisation to be applied, it may be appropriate to integrate these iterative
approaches into the calculation of the SVD of the system matrix prior to application of the
regularisation, since this may provide some indication of the level of iteration required before

convergence is reached with respect to the noise floor of the measurements.

Statistical methods

We demonstrated in chapter 3, and in ecarlier work [73], that a significant amount of extra

computation is required in a Monte-Carlo model of UOT in order to calculate the AO phase
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increments. Given the encouraging results seen in coupling averaged phase increments with
higher order light models (the SP; model of chapter 4), it may be interesting to incorpo-
rate these averaged increments in a Monte-Carlo light transport model. This would vastly
increase the speed of simulation not only due to the reduced computation required, but also
because the large acoustic dataset could be reduced in size (since propagation direction in-
formation is not required for averaged phase increments).

Even with such approximations, a Monte-Carlo approach to UOT image reconstruction
will require another layer of parallelisation (i.e. a cluster of GPUs) to achieve the necessary
simulation speed for use in an inversion process. Moreover, Monte-Carlo codes of the form
described in this work, record the fluence in the domain which, if used in an inversion pro-
cess, somewhat negates the extra accuracy afforded by the Monte-Carlo approach (the sim-
plifications were detailed when we formulated an approximate adjoint method in chapter
3).

To properly exploit the transport qualities of a Monte-Carlo solution requires a model
which records the R/CTE field variable - (correlation) radiance. This could be achieved by
extending each spatial point of the mesh used in the domain representation of the Monte-
Carlo model in this work, with an associated angular mesh. If accelerated sufficiently, this
would be of significant interest not only for UOT inversions, but also within the DOT and

PAT communities.

6.1.2 The inverse problem

One of the most immediate investigations to be considered from the current work is to con-
sider the recovery of the scattering coefficient, rather than just the absorption coefficient, ina
UOT experiment. To do so would involve extending the derivation in chapter s to consider
the gradient with respect to the scattering coefficient, and forming a compound Jacobian
accordingly. A more subtle consideration is that of uniqueness — can certain independent
changes in the scattering and absorption coefficients lead to the same measured boundary
data? This problem is common to many inverse problems, and the author of a work which
considers this problem in DOT [11] has suggested taking a similar approach in the UOT
problem.

Given the substantial improvements demonstrated using the SP; model of chapter 4, it
would be of value to reformulate the inversion procedure using this model. Such an approach
has been reported for DOT [30], and good results were found in general, though instability
in the solution was noted for higher order approximations. It is unclear without further
investigation if such problems would be encountered in a UOT inversion.

Irrespective of a more developed understanding of uniqueness, the present work lends
itself to be developed into a non-linear iterative inversion. This would permit absolute and
quantitative imaging. A first step, which utilises the theoretical framework developed in this

thesis, may be implementing a Gauss-Newton algorithm in which the Hessian is approxi-
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mated using the Jacobian, which itself is repeatedly recalculated as the solution converges.
We noted carlier that even the most computationally basic forward models presented in
this work require significant computational effort, but that this would likely be viable if the
proposed iterative approach to the addition of the acoustically induced correlation absorp-
tion were implemented. Alternatively the application of quasi-Newton methods such as the
Broyden-Fletcher-Golfdarn-Shanno algorithm, or Krylov subspace methods such as conju-

gate gradients or GMRES could be explored.

6.1.3 Towards clinical application
Detection mechanisms, and data types

In chapter 2 we explored the large number of detection mechanisms that have been applied to,
or developed for, UOT. Each of these techniques have advantages and disadvantages which
lend themselves to different applications in biomedical imaging, and it is thus desirable that
the development of an image reconstruction technique be applicable to as many existing and
future techniques as possible.

The first difficulty which is encountered is that the different techniques each generate
data of different forms. In UOT, the fundamental measurement is that of the power-spectral
density (PSD) of the optical flux emanating from the medium being probed. In contrast,

consider the data generated by three common detection mechanisms.

e Autocorrelation based techniques such as those considered in this work record the
time (lag) domain intensity autocorrelation. This can be transformed to power-spectral
density, but absolute units are only available if the intensity autocorrelation function
is un-normalised, and if the optical system is properly characterised to permit applica-

tion of the Seigert relationship.

o Interferometric techniques are typically capable of determining the flux shifted by the
acoustic frequency (or its harmonics). An absolute measurement will require knowl-

edge of the heterodyne gain in the system.

e Photo-refractive measurement systems, dependingupon their configuration, may mea-
sure the total ‘unmodulated flux; or alternatively, the ‘modulated flux This measure-

ment is scaled by the mixing gain of the system.

Indeed, the only techniques in which the PSD can be directly measured are those which
employ some form of extremely narrow-band filtering, such as spectral-hole burning.

Raw power spectral-density may not be the best candidate for a standard measurement-
type, not least because some measurements techniques are unable to measure it, but also
because in a clinical setting numerous practical matters will affect the absolute quantity of
flux collected. This is akin to the preference for normalised measurement types in fields such

as diffuse optical tomography.
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A more sensible standard would be that of the normalised power spectral density, where
in the absence of the acoustic modulation the power in the DC component of the flux is
normalised to unity. In the CW case, this is equivalent to knowledge of the n™ harmonic
modulation depths employed in this work, and others. Most of the techniques discussed in
this work can be modified to provide this data type.

The presence of a (de-facto, or otherwise) standard data type would permit a focused ap-
proach to the development and evaluation of forward models in UOT, in addition to the
benefits inherent in developing a common language between researchers employing the var-

ious techniques.

Imaging, sensing, and the UOT acoustic source

Future clinical UOT devices may include imaging systems which seek to recover quantitative
images of optical coefficients (or chromophore concentrations) within a three-dimensional
volume, or simpler sensing devices which can be tuned to recover a point-wise measurement.
Reconstruction will be essential in both, but practical matters suggest different approaches
may be taken.

It is likely that a clinical UOT imaging system would be based around an existing di-
agnostic ultrasound system, since such devices contain the hardware to safely generate the
requisite acoustic field distributions whilst simultaneously providing extra clinically relevant
information in the form of a standard echography image. In this scenario the UOT acoustic
source would take the form of a short pulse of moderate amplitude with a centre frequency
in the 1-10 MHz range. Lateral scanning would be achieved by beam-forming by the ul-
trasound system, and depth resolution would be achieved by time-gating: this approach
has been demonstrated using the photo-refractive detection mechanism. In these physical
circumstances the diffusion style approach to the forward modelling and reconstruction of
UOT images may be applicable. The computational efficiency of these techniques, which
are only applicable at higher acoustic frequencies, are key to allowing volume reconstruc-
tions with spatial resolution equivalent to that which can be offered by the spatio-temporal
acoustic field distribution provided by such hardware.

A point-wise sensing system may be developed from the ground up with an acoustic trans-
ducer suitable for the specific application. For example, in a device designed to achieve mea-
surement at significant depth it may be prudent to choose a lower operating frequency (to
minimise attenuation), and higher peak power levels than would be employed in traditional
diagnostic ultrasound. One may also choose to exploit acoustic non-linearity to directly gen-
erate higher harmonics in the UOT measurement which are confined to smaller volumes in
the tissue. Each of these design choices suggest that diffusion style models may be ill-suited,
and that a transport model should be employed in the reconstruction process to properly
capture the underlying physics. The vastly increased computation effort required to execute

such models may be offset in this case by the requirement to reconstruct parameters in a
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single, fixed, volume.

Acoustic modelling

The acoustic component of UOT receives little attention in the literature. This is perhaps
because the focused or pulsed transducers employed experimentally can be characterised by
hydrophone measurements in media of similar acoustic properties to the (optically inhomo-
geneous) UOT phantoms which they scan. Knowledge of the acoustic field distribution is
critical for image reconstruction in UOT—moving towards clinical application will require
greater consideration of the acoustic properties within the biological tissues of interest.

In the simplest cases of imaging soft tissues, the principle concern will be to account
propetly for attenuation as the ultrasound propagates. For a single transducer pulsed mea-
surement made at moderate pressures, it may be sufficient simply to rescale the measured
UOT data according to the distance travelled by the pulse at the instant the data is recorded.
Measurements with a focused (pulsed, or CW) field may require some level of simulation to
ensure that the region of interest is appropriately insonified.

The very presence of contrast in ultrasound images of soft tissues informs us that such
media are acoustically inhomogeneous. Typical acoustic reflection coeflicients between soft
tissues soft tissues should not cause problems in maintaining suitable amplitudes for driving
acousto-optic modulation, but as per the case of absorption, simulation may be required to
properly understand the effects on a given focal region. In the case of an imaging system
integrated with an ultrasound scanner, one possibility might be to use the information from
a standard ultrasound scan to attempt to approximate the acoustic impedance mismatches,

and thus the distortion of the acoustic field driving the UOT measurement.

6.2 Summary

Ultrasound modulated optical tomography is a hybrid imaging modality with numerous po-
tential clinical applications. A great deal of effort has been expended by the research commu-
nity in optimising the spatial selectivity of the technique, and in the development of more
sensitive detection mechanisms. Significantly less effort has been applied to the problem of
modelling and image reconstruction, especially when compared with more mature areas of
research, such as diffuse optical tomography.

One reason for this disparity may be that the promise of UOT lies in the use of an acous-
tic field to control the spatial resolution of the technique, and thus unlike areas which rely
upon image reconstruction to achieve their results, such as DOT, this aspect of the research
has been of a lower priority. In fact, image reconstruction is essential if we wish to recover
quantitative information regarding the optical properties of the medium.

By employing some of the latest techniques in parallel computation, we developed a fast,
flexible and efficient reference forward model by which we could evaluate the models of chap-

ter 4 which were more suited for use as part of an image reconstruction process. Following



6.2. Summary

139

the work of others in the field, we improved the accuracy of a diffusion-style approximation
for UOT by integrating the acousto-optic modulation with a more accurate model of light
transport. Finally, we employed the diffusion-style approximation to the forward model in
an image reconstruction method where we followed many of the approaches taken in DOT
— not only benefiting from the rigorous methods of this field, but hopefully permitting the

appreciation and development of this work by a wider audience.
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