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The effect of coupling on bubble fragmentation acoustics
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(Received 6 October 2009; revised 6 July 2010; accepted 7 October 2010)

Understanding the formation and evolution of bubble populations is important in a wide range of situa-

tions, including industrial processes, medical applications, and ocean science. Passive acoustical tech-

niques can be used to track changes in the population, since each bubble formation or fragmentation

event is likely to produce sound. This sound potentially contains a wealth of information about the

fragmentation process and the products, but to fully exploit these data it is necessary to understand the

physical processes that determine its characteristics. The focus of this paper is binary fragmentation,

when turbulence causes one bubble to split into two. Specifically, the effect that bubble-bubble cou-

pling has on the sound produced is examined. A numerical simulation of the acoustical excitation of

fragmenting bubbles is used to generate model acoustic signals, which are compared with experimental

data. A frequency range with a suppressed acoustic output which is observed in the experimental data

can be explained when coupling is taken into account. In addition, although the driving mechanism of

neck collapse is always consistent with the data for the larger bubble of the newly formed pair, a differ-

ent mechanism must be driving the smaller bubble in some situations.
VC 2011 Acoustical Society of America. [DOI: 10.1121/1.3514416]

PACS number(s): 43.30.Nb [KGF] Pages: 74–84

I. INTRODUCTION

Relatively little is known about the evolving bubble

populations in the first second after a wave breaks, due to the

difficulty of making direct measurements. Highly turbulent

conditions cause large bubbles to fragment repeatedly, until

they are small enough for surface tension to stabilize them

by preventing significant distortion. Soon after this, the larg-

est bubbles will rise to the surface and be lost from the popu-

lation. It has been shown that bubbles from breaking waves,1

and particularly the brief existence of larger bubbles,2,3 has

significant consequences for air-sea gas exchange, and so

accurate measurements of the evolving bubble population

are highly desirable.

The evolution of bubble clouds in turbulence is a com-

plex process, and several methods have been used to follow

the rapidly changing bubble population. Optical data4 are

difficult to acquire and require very careful analysis but are

capable of measuring very early bubble populations directly.

Active acoustic methods can be very effective at inferring

the bubble population by measuring its effect on the bulk

acoustic properties of the water.5,6 However, in the first sec-

ond after a wave breaks, very high air fraction will cause sig-

nal attenuation in excess of 100 dB/m, which is too much for

a useful measurement. Passive acoustic techniques have also

been used when individual bubble pulses can be identified,7–9

and these interpret the sounds produced naturally by the

evolving cloud to infer the bubble population within. Passive

acoustic methods have the advantage of being remote and

therefore non-intrusive. Improving these methods is the aim

of the research presented in this paper. It is well-known that

a newly formed bubble oscillates at its natural frequency

(which is determined largely by the bubble radius) and so

the frequency of the acoustic emission has commonly been

used as a proxy for the bubble size.8,10,11 This approach suf-

fices for a quick and simple measurement, but it ignores the

physics of the fragmentation processes by which new bub-

bles are formed in turbulent conditions. A better knowledge

of this physics and the associated mechanisms of sound pro-

duction could improve interpretation of passive acoustic data

significantly.

Many researchers have considered the sounds produced

by bubble oscillation,12–14 but almost all of them studied a

spherical bubble driven by an external periodic pressure oscil-

lation. In nature, oscillations are also likely to be excited by a

single impulsive event associated with bubble formation. Sev-

eral authors15–19 have speculated on the mechanisms which

link the bubble formation event to the sound-producing vol-

ume oscillation. Suggestions have included an internal pres-

sure increase associated with the Laplace pressure, hydrostatic

pressure effects, and shape mode coupling. Most recently,

Deane and Czerski20 showed that the sound produced by a

bubble formed at a nozzle was consistent with the forcing

caused by the rapid collapse of the neck of air left after bubble

pinch-off. This mechanism could also be active when one bub-

ble splits into two during turbulent distortion, and long necks

have been observed at the moment of fragmentation.21 In the

same paper, it was shown that for symmetrical fragmentation

events, this mechanism produces amplitudes similar to those

seen in fragmentation experiments.

The aim of this paper is to examine the effects of bubble-

bubble coupling on the sound produced by a binary fragmenta-

tion event. The two new oscillators are very close, and the

sound radiated by each one would be expected to influence the

other.22,23 The approach here is to use the neck-collapse mech-

anism to drive two axisymmetric bubbles, simulating two bub-

bles just after binary fragmentation. By numerically solving

the equations describing the bubble dynamics for the two
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coupled bubbles, we can assess the effects of this coupling and

explore its influence on future analysis of passive acoustic

signals.

II. MODEL

The numerical simulations done were straightforward, but

it is important to discuss some of the details and assumptions

involved. The model is summarized here to provide a context

for the details which follow. Before each individual simulation,

the radii of the two new bubbles were specified. The simulation

starts at the moment of separation (pinch-off), when the two

bubbles are assumed to have conical necks which almost touch

at the apex, and the system has cylindrical symmetry. Figure 1

shows the initial bubble shape and the chosen parameters. As

the simulation proceeds, each neck collapses inward toward the

bubble center because of the newly unbalanced surface tension

forces. This rapidly reduces the volume of each individual

bubble and therefore stimulates sound-producing volume

oscillations.20 Each bubble response is calculated using the

Rayleigh-Plesset equation, and the acoustic signal produced by

each bubble is calculated from its surface acceleration [Ref. 13,

Eq. (3.128)]. For each simulation, the user chooses whether to

include non-linear terms in the Rayleigh-Plesset equation and

whether the bubbles are coupled. At the end of the simulation,

the superposed pressure pulses from the two bubbles are calcu-

lated at one meter from the rupture point and these are treated

as simulated data to be compared with the superposed pulses

measured in a fragmentation experiment. The total model

coupled and uncoupled pulses are fitted with two decaying si-

nusoids, which were then compared with the individual pulse

components from each bubble in the pair in order to assess the

effect of the non-linear terms and bubble-bubble coupling.

A. Details of the model calculations

The coupled Rayleigh-Plesset equations used here are

set out below.24 The bubbles are labeled 1 and 2, with equi-

librium radii R1 and R2.

d2r1

dt2
¼ �3L

2

dr1

dt

� �2

� 3jr1P0

qR2
1

� 0:0025
x1

2p

� �1=3

x1

dr1

dt

� NðR1; h; tÞ � K
R3

2

DR2
1

d2r2

dt2
(1)

d2r2

dt2
¼ �3L

2

dr2

dt

� �2

� 3jr2P0

qR2
2

� 0:0025
x2

2p

� �1=3

x2

dr2

dt

� NðR2; h; tÞ � K
R3

1

DR2
2

d2r1

dt2
; (2)

where r1,2 are the radii of bubbles 1 and 2 (not the fractional

change in radius, as is used by some authors), t is time, L is 0

or 1 depending on whether the non-linear term in the

Rayleigh-Plesset equation is being included or not, N(R1, ht) is

the forcing on bubble 1 from its own conical neck (discussed

below) and the final term represents the pressure forcing on

bubble 1 from bubble 2 or vice versa. K is 0 or 1 depending on

whether the bubbles are to be coupled or not. Po is the hydro-

static pressure in the water surrounding the bubbles, j is the

polytropic index (assumed to be 1.4 throughout), q is the den-

sity of water, D is the separation of the bubble centers (dis-

cussed below), h is the semi-angle of the conical neck (which

is the same for both bubbles) and x1,2 is the natural frequency

of the bubble.

The third term on the right-hand side of Eqs. (1) and (2)

accounts for damping of the bubble breathing mode oscilla-

tions through radiation losses and thermal effects. The term

used is an approximation following that in Medwin25 for the

damping of a bubble at its natural frequency. For larger bub-

bles like the ones considered here, radiation and thermal

damping are expected to be significantly more important than

viscous damping. A complete calculation would allow the

damping to vary with the driving frequency, as set out by

Prosperetti,12,26 but these full calculations are far more com-

putationally expensive and would only change the value

slightly in this case. An important point to note is that the

damping terms in the Rayleigh-Plesset equation are derived in

frequency space for a steady driving force and a continuous

response.12 The driving term here (the neck collapse) is not

periodic, but we assume that a result correct to first order may

be obtained by simply adding in the non-periodic forcing in

place of a periodic forcing function. This approach produced

reasonable results in Deane and Czerski.20

The Rayleigh-Plesset equations for each bubble are

simultaneously numerically integrated with respect to time

using fourth order Runge-Kutta integration. Each simulation

starts at the point where the bubbles have just separated and

runs for 20 ms. This allows time for at least 30 oscillations

for the larger bubble and more for the smaller bubble, which

is more than adequate to fit the signals.

B. Forcing terms

The rapid volume decrease resulting from the neck col-

lapse is caused by the dynamics of the surface, not by the gas

inside or the water outside the bubble. The inward acceleration

of the bubble wall caused by the small radius of curvature

results in a rapid bubble volume decrease as the neck collapses,

so that a rarefaction propagates outward into the liquid. For a

short period just after pinch-off, the bubble wall displacement,

velocity, and acceleration are all simultaneously directed

inward, and it is this unusual situation that leads to the rarefac-

tion. The bubble is then assumed to respond to the rapid vol-

ume forcing according to the Rayleigh-Plesset equation, and

FIG. 1. (Color online) The bubble configuration assumed in this model at

the point of pinch-off (t ¼ 0). The bubbles have cylindrical symmetry about

their long axis, and each bubble is assumed to have the same conical neck

angle h. R1 is always the radii of the larger bubble.
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the volume forcing is assumed to be spherically symmetric.

The subtleties of this mechanism are discussed in more detail

in Deane and Czerski.20

Previous research20,21 has suggested that the forcing f
from the conical neck for a bubble with radius R ¼ 2 mm

slowly released from a nozzle can be approximated by

f ðh; tÞ ¼ 9jrPo tan2 h
4q2R5 sin h

t469:5tþ1:955: (3)

This equation resulted from a study of one bubble size only,

and for the model described here we need to model bubbles

with a range of radii. Bubbles of different sizes would not be

expected to have the same forcing with time, so it was neces-

sary to estimate the change in the time-dependence of the

forcing term with radius. Close to the start of the cone col-

lapse, we expect the form of the forcing term to remain

unchanged, since it seems reasonable that the shape and size

of the rest of the bubble has little effect at very early times.

We assume that the collapse is entirely driven by surface ten-

sion, dependent only on the cone angle, but after some time

other factors will limit this collapse. To estimate this effect

we chose to use a “window” function to adjust the driving

force in a qualitatively reasonable way for different bubble

radii. The neck-collapse forcing shown in Eq. (3) decays with

time because the rest of the bubble starts to influence the dy-

namics of the collapse. We expect that this forcing will decay

more quickly for smaller bubbles because the rest of the bub-

ble will influence the dynamics after a shorter time. Conse-

quently, we chose to modulate the forcing term in a way that

depends on bubble size. We use an arctangent function

because it is a continuously differentiable function, which

does not produce discontinuities in the time derivatives. In

addition, the cut-off position and steepness is easy to control.

The complete term for the neck-collapse function is

given by

Nðr1; h; tÞ ¼
1

2
� 1

p

� �
tan�1fBðt� AR1Þg

� 9jrPo tan2 h

4q2R5
1 sin h

t469:5tþ1:955; (4)

where A is a constant with the value of 1 and dimensions of

m�1s. B is a constant with the value 5000 and dimensions of

t�1. A and B were chosen arbitrarily so that a 2 mm bubble

(on which Eq. (3) was based) has forcing which is almost

unchanged, but a 0.5 mm bubble has forcing which only

reaches a peak half as high as the 2 mm bubble. Figure 2

shows that the window function produces a reasonable but

small variation in the forcing function with bubble size. The

actual effect of these constants on the final acoustic signal is

small because the dominant time period for driving the

acoustic signal is the first few hundred microseconds, and

this modulation has a limited effect during that period.

The second forcing term in Eq. (1) describes the effect

of the pressure field radiated by bubble 2 on bubble 1, and

vice versa. The acoustic pressure caused by the first bubble

at 1 m distance is scaled to the pressure produced at the dis-

tance of the center of the second bubble, discussed below.

C. Assumptions and limitations

The parameter D (the distance between the centers of

the new bubbles) is estimated based on the angle h. For bub-

bles produced slowly at a nozzle, the ratio that is the distance

from the conical tip to the rounded end of the bubble divided

by the bubble diameter was observed to be 1.4. The meas-

ured angle h of the conical part of these bubbles is 40�. To

FIG. 2. The effect of the window on the driving

force (see text for a full explanation). The dot-

ted line in each case shows the forcing with

time predicted by Eq. (3) for a 2 mm bubble.

The dashed line shows the magnitude of the

window term used to modulate the output of

Eq. (3), and the heavy solid line shows the

resulting forcing calculated from Eq. (4). The

window used maintains the steep rise at the start

(expected to be the same for all bubbles), but

modulates the forcing with time after that.
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estimate the distance D for other values of h, it was first

assumed that the distance from the bubble center to the coni-

cal point was proportional to cos ~h. However, bubbles frag-

menting in turbulence have very irregular shapes. Figure 3

shows a representative image taken during the experiment

described in Deane and Stokes21 with a silhouette to show an

approximately equivalent event for bubbles shaped as if they

were emerging from a nozzle. Examination of several simi-

lar images from that experiment suggests that the real bubble

spacing is approximately twice that suggested by the simple

nozzle model, so we use a value for D which is given by:

D ¼ 2ðR1 þ R2Þð1þ 1:04 cos hÞ: (5)

This term is important because the acoustic pressure gener-

ated by a bubble falls off as 1/R, and so the value used for D
determines the magnitude of the pressure oscillation acting

on the other bubble. Since the bubbles are so close together,

the radiated pressure from the first bubble measured at the

near and far sides of the second bubble will be significantly

different. In this model, we assume that the pressure is uni-

form across the surface of the second bubble and that it can

be represented as the pressure at the bubble centre, i.e., a dis-

tance D away from the first bubble.

For all the acoustic calculations, the bubbles are

assumed spherical. Since the wavelength of the sound pro-

duced is so much larger than the bubble itself (the natural os-

cillation of a 2 mm radius bubble produces sound with a

wavelength of approximately 0.9 m in water), we assume

that the volume oscillation is the important process and that

higher-order details of the shape of that volume are less sig-

nificant. We take the shape into account in calculating the

driving term produced by the bubble neck collapse, but

assume a spherical bubble afterward. Longuet-Higgins27

found that the additional volume due to the distortion of the

bubble when it has a conical neck can be neglected, so we

make no distinction between the radius of curvature of the

top half of the bubble at the point of pinch-off and the radius

of the spherical bubble used for acoustic calculations.

We assume that the acoustic traces can be adequately fitted

with a decaying sinusoid. This form will not match the trace

well within the first period of oscillation when there is signifi-

cant forcing but is a good approximation after that. In addition,

this is the most practical fit to use when analyzing real data

where the exact bubble shapes are unknown, so there is no point

in refining the method for one type of idealized bubble here.

The neck angle is assumed to be the same for both bubbles,

irrespective of the ratio of their radii. We justify this starting

assumption with two points. The first is the observed behavior

when a single bubble emerges from a nozzle. As the bubble

grows, it is joined to the parent body of gas with a neck of air,

and before detachment this neck narrows to a point. At the

moment of pinch-off, the cone of air joined to the parent body

of gas and the cone of air which is part of the bubble have very

similar angles. This seems intuitive; as the neck radius decreases,

the narrowest part of the neck will move along the neck toward

the point where the surface tension parallel to the long axis

of the bubble is approximately balanced. This balance can only

occur if the neck angles are equal. The second point is that the

original motivation for the neck-collapse model is the observed

correlation between the energies of the two bubble fragments,

suggesting symmetry in the dynamics driving the two bubbles

into oscillation. Fragmentation in turbulence is a very dynamic

event and it is unlikely that the bubble necks are conical with

equal angles. However, it is a reasonable starting point for this

model to estimate the magnitude of the driving force.

III. MODEL PROCEDURE

The radius of the initial (parent) bubble was specified.

The parameter L was chosen to include or exclude the non-

linear terms, and the angle h for the neck was specified. A

set of radius ratios r1/r2 for the two new bubbles was defined

and for each value of r1/r2 the radii of the two daughter bub-

bles were calculated by conserving the volume of gas in the

parent bubble.Then Eqs. (1) and (2) were integrated with

time to get the surface displacement as the necks collapsed.

The first simulation allowed the bubbles to interact with

each other (the coupled case) and a separate, second simula-

tion would allow them to respond to their own neck collapse

only, ignoring the influence of the other bubble.

The acceleration of each bubble wall was then used to

calculate the acoustic signal 1 m away from the pinch-off

point for both coupled and uncoupled bubbles, and also the

total acoustic signal due to each pair. These model results

were then treated in the same way as experimental data would

be, and they were analyzed by fitting decaying sinusoids to

each computed acoustic signal. The general expression for a

decaying sinusoid is given by

S1 ¼ A1 cosðx1ðt� t1Þ þ /1Þeð�x1d1tÞ=2: (6)

In general there are five parameters to be fitted: The ampli-

tude A1, frequency x1, start time t1, phase shift /1, and

FIG. 3. A photograph of a real bubble close to the moment of pinch-off,

compared with the silhouette of a two model bubbles with the same shape as

bubbles from nozzles. In this and similar photographs, the complex shape of

a real fragmenting bubble means that the actual bubble separation appears to

be close to twice the separation of the simple model. This is the reason for

the factor of 2 in Eq. (5).
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dimensionless damping constant d1. Because we use simu-

lated data here, the start time is known and so we set t1 ¼ 0,

which results in a four-parameter fit for one bubble and eight

parameters for two bubbles [when we fit the sum of two

decaying sinusoids of the form shown in Eq. (6)]. The eight-

parameter fit from the simulations was then compared with

the results of the experiment described in Deane and Stokes.21

The simplex search method was used to fit each acoustic

trace and then the results were checked by eye. An example

of a complete set of acoustic signals and the fits produced by

each simulation is shown in Fig. 4. Signals for each bubble

in both the coupled and uncoupled situations are fitted and a

separate fit of the total coupled acoustic signal is also made.

Most of the simulations were carried out with a parent bub-

ble radius of 2 mm, because this is approximately the size used

in the experiments by Deane and Stokes, and we would like to

make a direct comparison with those results. A few simulations

were done with 1 mm radius bubbles to see whether non-linear

effects were more important for these smaller bubbles.

The radius ratio r1/r2 was limited to a maximum of 4.

This is because of the uncertainty about both the neck-col-

lapse function for the smaller bubble and the windowing

increases as this ratio increases. These uncertainties arise

because the forcing mechanism for small bubbles is not

well-understood and consequently the simulation results for

very small bubbles should be considered speculative. The ra-

dius ratio ranging from 1 to 4 is sufficient to make a compar-

ison with the majority of the Deane and Stokes results.

The semi-angle of the conical neck is an important pa-

rameter. The analysis in Deane and Stokes21 suggested that a

range of semi-angles could account for the observed distribu-

tion of pressure pulse amplitudes, and a range of angles has

been used in the calculations here. A bubble formed slowly at

a nozzle has a neck angle of 40� and we ran the model for val-

ues of 20�, 30�, 40�, 50�, and 60�. The surface tension used

was always 0.07 Nm�1.

IV. EXPERIMENTAL DATA

The data that we are using for comparison were initially

presented and analyzed in Deane and Stokes.21 The relevant

features of the method will be summarized here for com-

pleteness, but for a full description the reader should consult

the original publication.

Bubbles of approximately 2 mm radius were released

from a nozzle at a rate of one every 2 s. As they rose through

the water column, they passed through a region of turbulence

caused by two opposing but offset jets. In many cases, this

caused them to fragment into two or more daughter bubbles.

A hydrophone placed 25 cm away recorded the acoustic

emissions for subsequent analysis. The experiment was car-

ried out at a depth of approximately 2 m in a large pool,

which reduced the effects of reverberation to insignificant

levels. Binary fragmentation events were fitted with two

decaying sinusoids in a ten-parameter fit as described in Sec.

III. These fitted parameters form the data set that we used to

compare with the numerically simulated data generated for

this study. The original acoustic signals were also available

for comparison and are discussed in Sec. VI. The response

of the hydrophone to a compression or rarefaction is an im-

portant element in the discussions which follow and this was

carefully verified with the experimental hydrophones by

both a squeeze test and discussion with the manufacturer.

V. COUPLING EFFECTS

In addition to our numerical simulations, we carried out

a brief theoretical analysis to show the expected results for a

system of coupled bubbles. With the exception of Fig. 5

(which shows the results of this section), all the results

shown in this paper were calculated using the full damping

terms show in Eqs. (1) and (2). However, in this section and

since bubbles of this size have a high quality factor, we will

ignore damping for the purposes of this simple calculation.

FIG. 4. Calculated acoustic signals for a 2 mm

radius parent bubble with h ¼ 40 degrees and

R1/R2 ¼ 3. In each plot, the axes are the same.

The bold line is the calculated acoustic output

in Pascal at 1 m distance and the dotted line is

the sinusoidal fit. The top two plots show the

individual signal from the larger and smaller

bubbles, respectively. The fitted amplitudes A1

and A2 are quoted on each plot. The third plot

shows the eight-parameter fit to the combined

signal, and the part cancellation of the higher

frequency is evident in the fitted amplitude A2.

78 J. Acoust. Soc. Am., Vol. 129, No. 1, January 2011 H. Czerski and G. B. Deane: Coupling of newly fragmented bubbles

 31 M
ay 2024 15:41:33



We start with the coupled equations of motion for each bub-

ble, which are simplified linear versions of Eqs. (1) and (2):

d2r1

dt2
¼ � 3jr1Po

qR2
1

� R3
2

DR2
1

d2r2

dt2
;

d2r2

dt2
¼ � 3jr2Po

qR2
2

� R3
1

DR2
2

d2r1

dt2
: (7)

These can be written in a coupled matrix form so that the

eigenvalues k of this equation will give the frequencies of

the modes and the eigenvectors will give the relative ampli-

tudes of the bubble displacements:

a b
d c

� �
e1

e2

� �
¼ €e1

€e2

� �
¼ k

e1

e2

� �
and k = x2: (8)

Solving Eq. (8) allows us to calculate the expected oscillation

modes for a system of two undamped coupled bubbles. The

expected frequencies of this system of bubbles are shown in

Fig. 5 as the ratio of bubble radii changes. As might be

expected, coupled bubbles of similar size have eigenfrequen-

cies significantly different from those of the uncoupled indi-

vidual bubbles. The first mode corresponds to the two bubbles

oscillating in phase and the second to antiphase oscillation.24

A gap can be seen in Fig. 5 indicating that for a fixed size of

parent bubble, there are some frequencies which cannot be

produced by the daughter bubbles, even if they have sizes cor-

responding to those frequencies in a non-coupled situation.

The addition of damping or a decrease in the coupling

strength narrows the frequency gap. The existence of a sup-

pressed range of frequencies is one of the most interesting

consequences of accounting for bubble-bubble coupling, and

it is also observed in the data, as shown in the Sec. VI.

It is important to note that while a bubble is a high-Q os-

cillator, it can still be forced by nearby bubbles, especially

considering the close proximity of other daughter bubbles

from the same parent bubble. Sound is scattered and re-radi-

ated by the second bubble so that the acoustic pulse from

each individual bubble can have multiple frequencies associ-

ated with it.

VI. MODEL RESULTS

A. Non-linearity

One of the aims of this research was to assess the effect

of the non-linear terms in the Rayleigh-Plesset equation for

fragmenting bubbles. Every simulation was run twice, once

with and once without the non-linear terms. The difference

that the non-linear terms make to the fitted amplitude is less

than 2% for all radius ratios up to 4. This applies even under

the most extreme conditions tested here: A parent bubble size

of 1 mm and h ¼ 60�. These differences are not significant

when the spread in the experimental data is considered. Only

a small fraction of fragmentation events produce one bubble

with a radius less than one quarter of the parent bubble radius

and bubbles with radii less than 1 mm are expected to be sta-

ble against further fragmentation. We conclude that non-lin-

ear effects can be ignored in the interpretation of passive

acoustic signals from bubbles fragmenting in turbulence

within the range of bubble sizes investigated here.

B. Antiphase mode

Figure 6 shows the fitted amplitude against frequency

for both the simulated data and the real data, and although

the frequency gap matches well, the high-frequency ampli-

tudes do not. The discrepancy is associated with the anti-

phase mode, which always has the higher frequency. The

energy from this mode is radiated in dipole form, so the con-

tributions from each component of the system partially can-

cel each other out. The acoustic signals generated by the

model were re-analyzed to investigate this. Table I shows

FIG. 5. (Color online) The calculated frequencies of the system of two

daughter bubbles as a function of the bubble radius ratio. Thick solid lines

indicate the frequencies in the uncoupled case, and the thin solid and dashed

lines show the modified frequencies for a perfectly coupled system. This

simple calculation ignores damping, but demonstrates the principle that a

frequency gap is expected. Frequency is plotted relative to the natural fre-

quency of the parent bubble, x0. The thin solid lines represent bubbles with

separation D (as shown in Fig. 1), which have acone angle of 40 degrees.

The dashed lines represent bubbles with separation 2D, to illustrate how the

effect of coupling decreases as bubble separation increases.

FIG. 6. (Color online) A comparison of the amplitude and frequency meas-

ured in an experiment and predicted by the model. Experimental data are

shown by hollow symbols. Asterisks indicate the model results for different

values of h. Larger values of q produce more energetic oscillations and the

values used in the model are 20� (with the lowest amplitudes), 30�, 40�, 50�,
and 60� (with the highest amplitudes). The frequency gap is a clear feature

in both data sets, and the amplitudes of the larger bubbles are well-predicted

by the model. As discussed in the text, the model underpredicts the ampli-

tude of the smaller bubbles.
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the antiphase cancellation effect on the fitted parameters.

Each individual bubble acoustic signal is fitted with two

decaying sinusoids in an eight-parameter fit. It can be seen

that once the two individual signals are added together and

fitted again, the higher frequency is suppressed. In the case

shown, R1/R2 ¼ 1.3 and the fitting algorithm fails to isolate

the higher frequency. In these cases where there is only one

dominant frequency, the fitting algorithm produces an arti-

fact at a second very low frequency. These have been

removed from the results shown in this paper. The domi-

nance of the lower-frequency mode in this case suggests that

it may not be possible to tell from the acoustic signal that bi-

nary fragmentation has occurred, since the oscillation seen is

at one frequency only.

The reduced total amplitude of the antiphase mode is

not observed in the experimental data, suggesting either that

this mode starts with more energy than the in-phase mode,

or that coupling effects are weak at the larger radius ratios.

We discuss whether assumptions in the model could be re-

sponsible for this discrepancy in Sec. VI D below, but fur-

ther work is required to explain this result.

C. Energy correlation

The original motivation for the symmetrical neck-col-

lapse model was that the large and small bubbles in a pair

were observed to have highly correlated energies. Figure 7

shows two plots comparing the radiated acoustic energy of

one bubble in a pair against the energy of the other bubble

from the same pair. In both cases, the larger bubble is repre-

sented on the x-axis and the smaller bubble on the y-axis.

The experimental data shows highly correlated energies. In

the coupled model data there is a broad correlation over

many orders of magnitude. However, the effect of the can-

cellation from the antiphase mode is evident, and the radi-

ated energy at the lower frequency is almost always greater

than the radiated energy at the higher frequency.

D. General model discussion

The amplitude of modeled coupled bubbles as a function

of frequency for various neck angles is shown in Fig. 6,

along with experimental data. Both modeled and observed

bubble systems show a similar suppressed frequency band at

approximately 2.2 kHz. The distribution of the amplitudes at

the lower frequencies is approximately reproduced by the

range of semi-angles considered, although we have no direct

evidence that different neck angles were responsible for this

amplitude spread in the experimental data. However, the fact

that varying this parameter reproduces the observed ampli-

tude range suggests that the natural variation in bubble

shapes as they fragment (and the consequences for the forc-

ing mechanism) may account for the amplitude spread.

The amplitudes at the higher frequencies for the model

data are almost an order of magnitude smaller than in the ex-

perimental data. This significant discrepancy between the

predicted and observed amplitudes of the higher frequency

radiation could be caused by either assumptions made about

parameters in the model or the applicability of the model

itself. There are several assumptions in the model, which

could account for the discrepancy between the theoretical

and experimental results. These are as follows:

(1) Neglect of the difference between the incident pressure on

the near and far side of each bubble. Geometrical spread-

ing of the acoustic radiation will cause a difference.

(2) The separation of the bubble centers was estimated by a

simple model that was not based on experimental frag-

mentation results. This separation is the largest single

factor controlling the coupling strength.

TABLE I. The individual modeled acoustic outputs from each daughter

bubble can be analyzed separately, before they are added together to form

the total acoustic output of the system. This table shows the results for R1/R2

¼ 1.3, so coupling is expected to be significant. A1and F1 are the fitted am-

plitude and frequency of the lowest frequency fit, and A2 and F2 are the cor-

responding parameters for the higher-frequency fit. Parameters are shown

for each bubble’s acoustic signal individually and then for the fit to the total

signal (which is the sum of the two components). In this case, the fitting

algorithm could not find the high-frequency signal in the total signal, so an

artifact was produced which is not shown here.

A1 F1(Hz) A2 F2(Hz)

Bubble 1 0.165 10 670 �0.06 15 784

Bubble 2 0.049 10 659 0.078 15 699

Total signal 0.183 10 704 — —

FIG. 7. (Color online) The panel on

the left shows the experimental

results for the total acoustic energy

radiated at each frequency and is

taken from Ref. 21, Fig. 8. The panel

on the right shows the equivalent

results from the models described in

this paper. Series A is the basic

model as described in Sec. II. Series

B is a repeat of the simulation with

the bubble separation arbitrarily

halved. Series C shows model data

with a single modification. The cone

angle of the smaller bubble is 20�

greater than the cone angle of the

larger bubble, and this is an example

of a small systematic change which

will approximately produce equipar-

tition of energy.
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(3) The bubbles are not spherical and this could affect cou-

pling if the radiated acoustic signal is not the same in all

directions in the near field.

(4) We assumed that the bubble neck angles are equal in any

single pair. The fact that the energies in a pair are corre-

lated suggests that the neck angles are correlated (see

Fig. 7), but this does not necessarily imply that they are

equal.

We will now examine each of these assumptions to

determine whether they can account for the discrepancy in

small bubble amplitudes seen in Fig. 6.

1. Varying pressure across the bubble surface

The parameter D is used to approximate the separation

of the bubble centers, and the forcing term assumes that the

pressure at any given instant is the same everywhere on the

surface of the bubble. However since the bubbles are sepa-

rated by only a few radii, geometric spreading of the acoustic

energy from the first bubble (assumed to radiate with spheri-

cal symmetry) will mean that the pressure on the near side of

the second bubble is significantly higher than the pressure on

the far side. This is ignored in the simulations described here

because the Rayleigh-Plesset equations assume uniform

pressure across the surface. We can do a simple calculation

to estimate the effect of this assumption by integrating the

pressure over the surface of the bubble while taking the geo-

metric spreading into account. The bubble surface is consid-

ered to be made up of infinitesimally thin rings with the

same axis as the bubble pair axis. The pressure at each dis-

tance is calculated assuming spherically diverging pressure

from the first bubble, and we integrate PdA over the whole

bubble surface. This can then be compared with the equiva-

lent pressure at the bubble center multiplied by the bubble

surface area, the quantity assumed in these calculations. In

this simple calculation, these two quantities fortuitously turn

out to be exactly equal, so we conclude that the method of

using the fixed quantity D does not significantly affect the

model results and is accurate to first order.

2. Bubble separation at the point of pinch-off

The coupled system has two oscillation modes, and the

frequency gap between those two modes for equal-sized bub-

bles depends on the magnitude of the coupling. In this case,

the extent of the interaction between the bubbles is almost

entirely dependent on the bubble separation. We have

assumed here that the separation of the bubble centers D is

related to the neck angle, based on the shapes of bubbles

emerging slowly from a nozzle. This leads to a typical esti-

mate for D being approximately four times the sum of the

bubble radii, given in Eq. (5). This value for D will have a

large influence on the pressure coupling between the bub-

bles, since the radiated pressure decreases as 1/R, and so we

examine its influence on the results here. Figure 8 shows the

effect of repeating the simulations shown in Fig. 6, but with

the separation D arbitrarily changed by factors of 0.5, 0.75,

1, and 1.25. Reducing the coupling has two effects: The fre-

quency gap narrows and the radiated pressure at the higher

frequency increases significantly. Using the value of D as stated

in Eq. (5) leads to a frequency gap which is well-matched with

the gap in the data and also corresponds well with the photo-

graphic evidence. It is likely that the distance which separates

the centers of the bubble volumes will vary from event to event,

and Fig. 8 demonstrates that the tested range of bubble separa-

tions could lead to scatter in the measured high-frequency am-

plitude of about 15%. It seems that the distance D calculated in

Eq. (5) is a reasonable estimate because the width of the fre-

quency gap matches that in the data.

3. Non-spherical bubbles

Real bubbles fragmenting in turbulence are far from

spherical. It is known that the acoustic pulse scattered from

non-spherical bubbles is not spherically symmetrical.28 In

that study, elliptical bubbles only produced significantly

non-spherical scattering when their aspect ratio was above

10. Bubbles fragmenting in turbulence can be highly dis-

torted, but it seems unlikely that the aspect ratio would reach

10 without further fragmentation so this effect is discounted

here. If it were significant during fragmentation events, it

would decrease the effect of one bubble on the other slightly,

since the bubbles in this study have a common long axis.

4. Equal neck angles

The symmetrical neck model was motivated by the high

degree of correlation between the energy of each bubble in a

pair. However, our results show that if the oscillatory energy

for each bubble is approximately equal (a consequence of

having equal neck angles) and the system is coupled, the

radiated energies will not be equal. Figure 7 is a comparison

of radiated energies at each of the two frequencies and shows

the offset. Over many orders of magnitude there is still a

strong correlation in energy, but the asymmetry is clear. The

FIG. 8. (Color online) These are the model results for a 2 mm parent bubble

and a cone angle of 40�. In each series, the distance separating the bubbles

is the distance calculated using the different values of the prefactor J in

Eq. (5). Most of the data shown in this paper were calculated with J ¼ 2,

and here we compare this with values of 1, 1.5, and 2.5. The central black

line shows the expected amplitudes for uncoupled bubbles, for comparison.

It can be seen that uncertainty in the bubble separation makes a considerable

difference to the extent of the coupling. As J increases and the coupling

strength decreases, the antiphase cancellation decreases and the frequency

gap also decreases.
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main assumptions affecting the coupling (detailed in the im-

mediately preceding paragraphs) cannot explain this discrep-

ancy. The effect of the small bubble on the larger bubble is

to force oscillations in antiphase to the original oscillations,

which cancel out a significant fraction of the total energy

radiated at that frequency. This suggests that the smaller

bubble may be systematically more energetic than this model

predicts, compensating for the antiphase effect. There are

two features of our model that could be altered to create this

effect. One is the effect of the windowing process on the

forcing. The other is the assumption of equal neck angles.

For example, an approximate match to the real data is

achieved if the neck angle of the smaller bubble is arbitrarily

chosen to be 20� greater than the neck angle of the larger

bubble. Figure 7 illustrates this. We are not suggesting that

the neck angle of the smaller bubble actually is necessarily

20� higher, but we are simply pointing out that a relatively

modest increase in neck angle is sufficient to account the

equipartition of energy between the oscillatory modes.

VII. COMPARISON OF MODEL RESULTS AND DATA

An important feature of all the total acoustic signals gen-

erated in this study is that they always start with a rarefaction,

and this is also the case for a single bubble released from a

nozzle.20 The acoustic signal generated by the larger bubble

of the pair will have a higher-frequency component generated

by coupling with the smaller bubble, and this may mean that

this larger bubble alone does emit a signal starting with a

compression. However, the hydrophone can only record the

sum of both signals and energy conservation makes it impos-

sible for this initial high-frequency compression of the larger

bubble to radiate with a greater amplitude than the emitted

rarefaction from the smaller bubble. This means that a direct

consequence of having a driving mechanism caused by an

initial volume decrease in both bubbles is that the overall pair

acoustic signal must begin with a rarefaction. However, ex-

amination of the acoustic signals recorded shows that many

binary fragmentation signals begin with a compression.

The binary fragmentation signals can be organized into

three groups by their shape in the first millisecond. The first

group starts with a rarefaction, which is the same as a single

bubble released from a nozzle. The second group is a border-

line group, having either a very small compression or a very

small rarefaction before the first large oscillation. Members of

the third group start with a significant compression. Represen-

tative examples of each case are shown in Fig. 9 and the

acoustic signal produced by a single bubble at a nozzle is

shown at the top for comparison. In the data set shown here,

there are 194 cases where the acoustic signal starts with a

clear compression and 58 start with a clear rarefaction. Forty-

eight cases fall into the middle category. In every case, the

compression was in the high-frequency component, and the

lower-frequency component always started with a rarefaction.

This suggests that the neck-collapse model applies consis-

tently for the larger bubble of the pair, but only approximately

a quarter of the time for the smaller bubble.

Figure 10 shows the same frequency and amplitude data

as Fig. 6, but different symbols are used for signals with an

initial compression and an initial rarefaction. It can be seen

that the initial rarefaction occurs in the majority of cases

where the radius ratio is between 1 and 2, and rarely at larger

radius ratios, and so there is a size dependence. Although the

mechanism appears to be related to bubble size, the oscilla-

tion energy does not appear to depend on the mechanism. As

stated earlier, there is no means whereby the current model

for the neck-collapse process can account for a wave with an

initial compression. This suggests that the double-neck col-

lapse model investigated here is appropriate for fragmenta-

tion events that produce large or equally sized bubbles, but a

modification is required to understand the other cases. The

discussion of coupling effects in this paper is still valid,

FIG. 9. (Color online) Four exam-

ples from the acoustic data collected

in the experiment carried out by

Deane and Stokes:21 (a) A parent

bubble emerging from the nozzle;

(b) A binary fragmentation event

which starts with a rarefaction, as (a)

does, which can be explained by the

neck-collapse model; (c) An inter-

mediate case, where there is a small

compression at the start of the acous-

tic signal; (d) The category of acous-

tic signal into which most of the

measured events fall. The signal

starts with acompression in the high-

frequency component, although the

lower-frequency component can be

seen to start with a rarefaction simi-

lar to that in (a). This initial com-

pression of the small bubble is not

explained by the neck-collapse

model outlined in this paper.

82 J. Acoust. Soc. Am., Vol. 129, No. 1, January 2011 H. Czerski and G. B. Deane: Coupling of newly fragmented bubbles

 31 M
ay 2024 15:41:33



since the driving mechanism only affects the amplitude and

not the frequency of oscillation or the coupling behavior. We

will not speculate on the mechanism driving these small bub-

bles, other than to note that it must be associated with a rapid

volume increase on pinch-off, in order to generate the initial

compression observed.

VII. DISCUSSION

The effect of coupling on frequency (and therefore on the

interpretation of bubble size) is only significant for similarly

sized pairs of bubbles. Understanding of the gap in the fre-

quency histogram in Fig. 6 is clearly important for interpreting

the acoustics of bubbles that start with a known size and then

fragment. However, in a population of naturally occurring bub-

bles (where the parent bubbles have a range of sizes), the size

of the parent bubble is not known. An important question to

address is whether knowledge of the effects of coupling would

have a significant effect on the interpretation of acoustic data

arising from such a situation. Its importance will depend on

the likelihood of different fragmentation ratios. If the probabil-

ity of an equal volume split is high, the effect of coupling

would be more significant, whereas if those events are rare, the

effects of coupling on interpretation would be negligible.

Interpretation of passive acoustic signals from fragmenta-

tion could be affected by coupling in two main ways. The

mixture of the in-phase and antiphase modes for bubbles of

roughly equal size depends on the initial boundary conditions,

which will be altered if the two new bubbles have different

timescales of neck collapse. If the dominant mode is the in-

phase one, the acoustic signal may resemble that of a single

excited large bubble instead of two similarly sized smaller

ones. If the dominant mode is the antiphase mode,the acoustic

radiation from the two bubbles may largely cancel out. This

would reduce the likelihood of detection, and it may explain

our observation that fragmentation events resulting in two

similarly sized bubbles tend to be quiet. Either way, the bub-

ble population would be underestimated. These effects are

mostly likely to matter when the bubbles are similarly sized

(with a radius ratio between one and two) and it might be pos-

sible to correct for them if the fragmentation probability den-

sity function was better known. The case of the in-phase

mode dominating to produce a single frequency signal is dis-

tinguishable from a single excited bubble because the damp-

ing is different (it is greater by a factor of approximately 2).

However, the cases when the antiphase mode dominates so

that the event is very quiet are harder to correct for. Labora-

tory observation might provide an indication of the relative

likelihood of these two events, allowing for a correction.

Bubble coupling and the existence of the in-phase mode

could account for the “type A2” bubbles observed by Medwin

and Beaky.29 These were identified as those which produce an

acoustic signal similar to that of a single spherical bubble, but

with an initial damping almost twice as great as the theoretical

damping. We noticed that this may be explained by a compar-

ison of the acoustic signal from a single new bubble with ra-

dius R (for example, a new bubble formed at a nozzle), and

the acoustic signal produced by a bubble of radius R frag-

menting into two equally sized new bubbles. Our coupled

model predicts that for equally sized daughter bubbles, the

damping of the lower-frequency signal is approximately twice

that expected for the single bubble with the radius of the par-

ent bubble. The higher-frequency component is almost com-

pletely cancelled out, so the acoustic signal from the

fragmenting bubble appears to be that of a single bubble with

twice the expected damping, as they describe. The overall

effect would be to allow the sound pulse from a binary frag-

mentation event to be inadvertently identified as coming from

a single larger bubble, but with an anomalous damping.

A. Model applicability

One of the most obvious effects of coupling is that new

bubble pairs with equal energy partition radiating more

energy at the lower frequency than the higher one. The ener-

gies inferred from analysis of the modeled coupled bubble

acoustic pulses are strongly correlated, but not equal,

whereas an uncoupled analysis of the experimental data

implies equal energy partition. The explanation for the dis-

crepancy is likely to be one of three issues. The first is that

the assumptions made in the simplified model used here are

inadequate, and that the real distorted bubble shapes and sur-

rounding flow field have a strong influence on the acoustic

output. The second is that the neck-collapse model is not

appropriate for smaller bubbles, either because some other

mechanism is driving the smaller bubble or that our assump-

tions for how the neck forcing changes as bubble size

decreases are inadequate. The third is that the simplified

description of bubble interaction presented here does not

apply for bubbles of very different sizes. That is, a fragmen-

tation pair composed of a very large and a very small bubble

may not behave as a coupled system. Further work is

required to understand why the smaller bubble is more ener-

getic than our simple neck-collapse model would predict.

VIII. CONCLUSIONS

It was recently found that the sound emitted by a newly

formed single bubble is consistent with the volume forcing

FIG. 10. (Color online) These are the data shown in Fig. 6, but the circles

represent events where the acoustic signal began with a compression, and

the asterisks indicate events where the acoustic signal began with a rarefac-

tion. It can be seen that rarefaction events are most likely when the two new

bubbles are very similar in size, and that these events do not produce the

highest amplitudes.
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caused by the rapidly collapsing neck of air accompanying

formation. In the research described here, this neck-collapse

model was extended to simulate one bubble fragmenting into

two coupled bubbles, and the resulting calculated acoustic

signals were compared with experimental data. The acoustic

coupling of the two new bubbles had a significant effect on

the amplitude and frequency of the emitted acoustic pulse,

especially when the ratio of the radii of the two new bubbles

was between 1 and 2. For any given parent bubble size, cou-

pling causes a gap in the frequencies that can be produced

because the two new bubbles form a single oscillatory sys-

tem with an in-phase mode and an antiphase mode. The ini-

tial conditions at the moment of fragmentation determine

which mode dominates. The frequency gap is seen in both

the theoretical results and the experimental data of Deane

and Stokes.21 Dominance of the in-phase mode of equal-

sized bubble products from a fragmentation event can also

explain Medwin and Daniels’ observation of A2 type bubble

pulses.

The lower-frequency part of the acoustic signal always

starts with a rarefaction, both in the model results and the ex-

perimental data. This is consistent with the larger bubble

always being driven by neck collapse. The neck-collapse

model also predicts the range of amplitudes seen in the ex-

perimental data for the larger bubble. One quarter of the

acoustic signals observed imply that the small bubble signal

started with a rarefaction and so the double-neck collapse

model can account for these. However, in the remaining

fragmentation events the small bubble oscillation started

with a compression, implying a different or modified driving

mechanism. For example, the jet of water generated by the

collapsing neck may play a dominant role in the excitation

of small bubble products.

The comparison of experimental data and model results

demonstrates that acoustic coupling is important for bubble

fragmentation products of approximately equal size. We

expect that knowledge of these coupling effects will improve

the interpretation of passive acoustic data from bubbles frag-

menting in turbulence.
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