
Connectivity Changes Underlying Neurofeedback
Training of Visual Cortex Activity
Frank Scharnowski1,2,3,4*, Maria Joao Rosa5, Narly Golestani2,6, Chloe Hutton1, Oliver Josephs1,

Nikolaus Weiskopf1., Geraint Rees1,2.

1 Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, University College London, London, United Kingdom, 2 UCL Institute of Cognitive Neuroscience,

University College London, London, United Kingdom, 3 Institute of Bioengineering, Swiss Institute of Technology Lausanne (EPFL), Lausanne, Switzerland, 4 Department

of Radiology and Medical Informatics – CIBM, University of Geneva, Geneva, Switzerland, 5 Department of Neuroscience, Institute of Psychiatry, King’s College London,

London, United Kingdom, 6 University Medical School, University of Geneva, Geneva, Switzerland

Abstract

Neurofeedback based on real-time functional magnetic resonance imaging (fMRI) is a new approach that allows training of
voluntary control over regionally specific brain activity. However, the neural basis of successful neurofeedback learning
remains poorly understood. Here, we assessed changes in effective brain connectivity associated with neurofeedback
training of visual cortex activity. Using dynamic causal modeling (DCM), we found that training participants to increase
visual cortex activity was associated with increased effective connectivity between the visual cortex and the superior
parietal lobe. Specifically, participants who learned to control activity in their visual cortex showed increased top-down
control of the superior parietal lobe over the visual cortex, and at the same time reduced bottom-up processing. These
results are consistent with efficient employment of top-down visual attention and imagery, which were the cognitive
strategies used by participants to increase their visual cortex activity.
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Introduction

Successful visual perception depends on the interplay in visual

cortex between ongoing spontaneous activity and that evoked by a

stimulus [1,2,3,4,5]. While the latter is mainly determined by

stimulus characteristics, the former can be modulated by general

factors including visual-spatial attention [6,7]. Alternatively, real-

time functional magnetic resonance imaging (fMRI) neurofeed-

back has recently been used to modulate regionally specific

spontaneous brain activity [8,9,10]. In the field of vision, two

studies applied this new method in order to train participants to

voluntarily control the level of ongoing spontaneous activity in

visual cortex activity [11,12]. Both studies showed that after

successful training, perception improved when participants volun-

tarily increased activity in a circumscribed region of their early

visual cortex.

However, the mechanisms underlying neurofeedback learning

are still unresolved [8,13]. Learning voluntary control over activity

within a region of interest (ROI) can induce network changes

[14,15,16,17]. Consistent with this, in our earlier study we found

that learning control over early visual cortex activity correlated

with increased functional connectivity between the visual target

ROI and the superior parietal lobe contralateral to the visual

target ROI (cSPL) [12]. The SPL is involved in directing covert

visual-spatial attention and cognitive control [18,19,20,21,22,23]

and the increase in functional connectivity between the visual ROI

and the cSPL with training might thus be a correlate of increasing

attentional and cognitive control to learn self-regulation.

These results were obtained using an exploratory psychophys-

iological interaction analysis (PPI), which is a data-driven measure

of effective connectivity. In general, a PPI analysis allows for

identifying correlations between haemodynamic time series

measured in different brain areas, and whether they changed

depending on a psychological task [24]. In our experiment, the

PPI analysis was used to identify brain areas whose connectivity to

the visual target ROI changed depending on whether participants

were up-regulating or not. However, PPI has three important

limitations: (1) PPI does not allow inferences about the direction-

ality of any connectivity because it only identifies correlations

between haemodynamic signals, (2) PPI is a static model that

ignores time-series properties of the data, and (3) the causal

interpretability of PPI is limited because it operates at the level of

the blood-oxygen-level-dependent (BOLD) signal rather than on

the neuronal level [25].

Here, we overcame these limitations by re-investigating the

neural underpinnings of successful self-regulation in our previous

study but now using dynamic causal modeling (DCM)

[26,27,28,29,30]. DCM is a measure of effective connectivity that

allows for investigating how brain areas interact during different

experimental conditions. In contrast to PPI, DCM (1) allows for
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determining directionality of connectivity, (2) describes how neural

dynamics propagate through a network, and (3) allows for

modeling effective connectivity at the neuronal level. DCM is a

model-based approach that makes use of prior knowledge about

the ROIs involved, about the connections between these ROIs,

and about the context dependent manipulations of the network.

Based on the results of our previous exploratory PPI analysis [12],

we focused the DCM analysis on characterizing effective

connectivity changes between the (trained) visual ROI and the

cSPL. We hypothesized that neurofeedback training leading to up-

regulation of the visual ROI was mediated by increased top-down

effective connectivity from the cSPL to the visual ROI that evolved

with training. Further, we hypothesized that these changes would

be specific to those participants who learned self-regulation of the

visual ROI (the learners), i.e. participants who did not learn

control over their visual ROI (the non-learners), and participants

who received sham feedback (the controls) and therefore also did

not learn self-regulation will not show such connectivity changes.

Materials and Methods

Details about the data acquisition, the participants, and the

neurofeedback training can be found in [12]. For completeness,

the main parameters are repeated here.

Ethics Statement
The research was conducted in accordance with the Declaration

of Helsinki, and all participants gave written informed consent

prior to participating in the experiment. The study was approved

by the ethics committee of the Joint NHS National Research

Ethics Service of the National Hospital for Neurology and

Neurosurgery & the Institute of Neurology, UK.

fMRI Data Acquisition
All experiments were performed on a 3T Magnetom Allegra

head only scanner, using a standard transmit-receive head coil

(Siemens Healthcare, Erlangen, Germany). Functional data were

acquired with a single-shot gradient echo planar imaging sequence

(matrix size: 64664; field of view: 1926192 mm; isotropic

resolution: 36363 mm; 32 slices with ascending acquisition; slice

thickness: 2 mm; slice gap: 1mm; echo time TE: 30 ms; TR:

1920 ms; flip angle: 90u; receiver bandwidth: 3551 Hz/Px). In the

middle of each scanning session, double-echo FLASH fieldmaps

(TE1:10 ms; TE2:12.46 ms; resolution: 36362 mm; slice gap:

1 mm) were acquired and used to correct geometric distortions in

the images due to field inhomogeneities.

The neurofeedback setup used Turbo-BrainVoyager (Brain

Innovation, Maastricht, The Netherlands), custom real-time image

export tools programmed in ICE VA25 (Siemens Healthcare)

[31], and custom scripts running in MATLAB (Mathworks Inc.,

Natick, MA, USA). This allowed participants to be shown visual

representations of BOLD signal changes in specific brain regions

(in the form of a thermometer display projected into the scanner)

with a delay of less than 2 s from the acquisition of the image.

Head motion was corrected in real-time using Turbo-BrainVoya-

ger. Heart rate and respiration were continuously monitored

throughout the experiment (setup similar to [32]).

Participants
Sixteen naı̈ve human volunteers (6 male, ages between 18 and

37 years, all right handed) with normal or corrected-to normal

vision took part in the study. Before the experiment, they received

written instructions describing that they will learn to regulate their

visual cortex activity with the help of neurofeedback. The

instructions included an explanation of the neurofeedback

thermometer display (Figure 1a) and recommended as potential

regulation strategies the use of visual imagery with high resolution

details as well as changing stimulus quality (color, shape) and

intensity (brightness) spatially overlapping with the target ROI.

We also suggested that participants prepare a few imagined

patterns in advance and to try them repeatedly. It was emphasized

that participants should find an individual strategy that worked

best for them. Further, they were instructed to fixate on the central

fixation point throughout the experiment, to breathe steadily, and

to remain as still as possible. After each scanning session,

participants were asked to fill in a written questionnaire and

amongst other questions, describe how they tried to manipulate

the feedback signal (including drawing any visual imagery), how

effective their strategy was, and how they rated the attentional

demands.

Delineation of the Visual Target ROI
In a separate scanning session before the neurofeedback

training, we collected from each participant a high resolution

T1-weighted structural scan of the whole brain (3D MDEFT;

1 mm isotropic resolution; matrix size: 2566240 mm; field of

view: 2566240 mm; 176 sagittal partitions; echo time 2.4 ms;

repetition time: 7.92 ms; inversion time: 910 ms; flip angle: 15u;
readout bandwidth: 195 Hz/pixel; spin tagging in the neck with

flip angle 160u in order to avoid flow artifacts) for superposition of

functional maps [33]. In this first session, we also determined the

visual target ROI from which participants received neurofeedback

by acquiring 2 functional localizer runs of 150 volumes each. The

Figure 1. Feedback display and feedback run. (a) Custom-made software was used to continuously provide visual feedback of local brain
activation to the participant in the scanner. The neurofeedback display consisted of a thermometer, and the temperature reading indicated the
current level of activity in the visual cortex ROI. A dashed line indicated the target activation level, which could either be high (up-regulation
condition) or low (baseline condition). (b) In each neurofeedback training session, volunteers participated in an average of ,2 feedback runs of
8.3 min each. A feedback run was composed of 38 s baseline blocks (grey) interleaved with 38 s up-regulation blocks (red).
doi:10.1371/journal.pone.0091090.g001

Neurofeedback
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visual localizer consisted of a flickering circular checkerboard

(100% contrast, 10 Hz contrast reversal) with a diameter of 2u
visual angle which was presented for ,13 s in each of the four

quadrants of the visual field (eccentricity: 3u visual angle), with a

baseline condition of the same duration once after the stimulus

had been presented in each quadrant. Participants received

feedback from the visual ROI corresponding to active voxels in

occipital cortex that responded to stimulation in the lower left or

the lower right visual field (randomly assigned). The target ROI

for the control group, i.e. the ventral striatum, was anatomically

defined using Brain Voyager QX (Brain Innovation, Maastricht,

The Netherlands).

Neurofeedback Training
Participants took part in at least three neurofeedback training

sessions spread over the course of several days. The same ROI was

targeted in all training sessions. For each training session,

participants performed on average 2 training runs of 8.3 min

each. The training runs were composed of seven 38 s baseline

blocks interleaved with up-regulation blocks of the same duration

(Figure 1b). During the baseline blocks the target level indicator of

the thermometer display was low, which indicated to the

participants that they should mentally count backwards from 99

in steps of 27 in order to maintain a stable baseline activity

(Figure 1a). During the up-regulation blocks, the target level

indicator moved up, which indicated to the participants that they

should increase activity in their visual ROI. Participants were

presented feedback about their success via the thermometer

reading, which indicated the percentage of signal change

compared to the previous baseline block. With the help of the

feedback, participants attempted to learn, by trial and error and

using a freely chosen strategy, to up-regulate the activity in their

visual ROI to the target level. No other visual stimuli were

presented.

Offline Data Pre-processing
Offline data analysis used SPM8 (Wellcome Trust Centre for

Neuroimaging, Queen Square, London, UK; http://www.fil.ion.

ucl.ac.uk/). The first 3 volumes of each run were excluded from

Figure 2. Model space partitioning. (a) For family-level inference the model space was partitioned into 4 subsets with different patterns of
connectivity. (1) No connection between the visual ROI and the cSPL, (2) a bottom-up connection from the visual ROI to the cSPL, (3) a top-down
connection from the cSPL to the visual ROI, and (4) a bottom-up as well as a top-down connection between the visual ROI and the cSPL. (b) As an
example, the bottom-up model family contained 8 different models, which differed in how up-regulation affects the network. Up-regulation can
affect both ROIs, either of the ROIs, or no ROI, and it can affect the bottom-up connection between the visual ROI and the cSPL.
doi:10.1371/journal.pone.0091090.g002

Figure 3. BMA parameters. Based on the fully connected model, 6
BMA parameters were investigated: The bottom-up connection
strength from the visual ROI to the cSPL (V-SPL), the top-down
connection strength from the cSPL to the visual ROI (SPL-V), the effect
of up-regulation on the visual ROI (up_V), on the cSPL (up_SPL), on the
bottom-up connection strength (up_V-SPL), and on the top-down
connection strength (up_SPL-V).
doi:10.1371/journal.pone.0091090.g003
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statistical analysis since it takes a few volumes for T1-related

equilibration to occur at the start of each fMRI run. The

remaining images were corrected for slice time acquisition

differences, realigned to the first scan of each run, corrected for

static magnetic field (B0) inhomogeneities [34], coregistered to the

structural scan and smoothed with an isotropic Gaussian kernel

with 4 mm full-width-at-half-maximum (FWHM). Functional

images were normalized to the MNI standard template using

DARTEL [35]. Images of those participants whose visual target

ROI was located in the left hemisphere were flipped so that all

visual target ROIs were displayed on the right side.

DCM Analysis
For our analysis, we used DCM 10 as implemented in SPM 8.

Due to the inter-participant variability in our study and in order to

generalize the results to the population, we used a random effect

(RFX) Bayesian model selection approach for our DCM analysis

[36]. We used a hierarchical approach, in that we first applied

family-level inference procedures to investigate which general

model structure underlay successful up-regulation. Subsequently,

we used parameter-level inference procedures to investigate which

changes in connectivity strength mediated learning to up-regulate

the visual cortex. The analysis was carried out separately for the

three experimental groups, i.e., the learners (N = 7), the non-

learners (N = 4), and the controls (N = 5).

Model space. Based on the results from our previous study,

we considered 2 ROIs for our DCM analysis: the visual ROI and

the cSPL. The visual ROI corresponded to the individually

localized ROI from which the respective participant received

neurofeedback. The cSPL was based on the group result from the

previous PPI analysis (MNI coordinates: (22, 258, 63), [12]). For

each participant, the time courses for the visual ROI and for the

cSPL were extracted, and detrended with linear and quadratic

terms. Due to the small number of nodes (visual ROI, cSPL) and

having only one external input (up-regulation), we did not have to

limit our model space and took all possible connectivity

architectures into account.

Avoiding double dipping or circularity in the

analysis. Whereas the visual ROIs were defined with separate

functional localizer runs, the cSPL ROI was defined based on data

from the last neurofeedback training run. Specifically, it was

defined based on a voxelwise one-sample t-test of the PPI

interaction term contrast image of each learner’s last training

run. The data of the DCM analyses from the non-learners, from

the controls, and from all but the last training run of the learners is

therefore independent of the ROI selection, thus avoiding

circularity [37]. However, an analysis of the last training run

based on models containing the cSPL ROI might result in

circularity of the analysis. We therefore ran the same analyses

excluding the last run, making these analyses independent of the

cSPL ROI selection. Because the results were similar, we report

here the results for the complete neurofeedback training data

(including the last training run), but also report the results for the

data excluding the last training run.

Family-level inference. To investigate which general model

structure underlay successful up-regulation, we partitioned the

model space in subsets of four model families that differed in the

connectivity pattern between the visual ROI and the cSPL. The

first family contained all models where there was no connection

between the visual ROI and the cSPL (4 models), the second

family contained all models where there was a bottom-up

connection from the visual ROI and the cSPL (8 models), the

third family contained all models where there was a top-down

connection from the cSPL to the visual ROI (8 models), and the

fourth family contained all models where there was a bottom-up as

well as a top-down connection between the visual ROI and the

Figure 4. Estimated family-level probabilities. Both, the (a) expected family posterior probabilities as well as the (b) exceedance family
probabilities did not show a clearly dominant model family in the first neurofeedback training run. For the last training run, the fully connected model
family was more likely than the other model families, and this in all experimental groups.
doi:10.1371/journal.pone.0091090.g004

Neurofeedback
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cSPL (16 models) (Figure 2a). As an example, all models of the

bottom-up family are illustrated in Figure 2b. Using Bayesian

model selection (BMS), information over models in each model

family was pooled and compared collectively [38]. Results were

reported as expected and as exceedance family probabilities

separately for each experimental group. A probability higher than

0.25 indicated dominance of one particular model family

compared to the other model families. To assess changes across

neurofeedback training, the analysis was carried out separately for

the first and for the last training run.

Parameter-level inference. Having identified the fully-

connected model family as the most likely model architecture

(see Results, below), we then investigated the parameters of the

models within that family. The parameters of interest were the

bottom-up connection strength (effective connectivity) from the

visual ROI to the cSPL (V-SPL), the top-down connection

strength from the cSPL to the visual ROI (SPL-V), the effect of up-

regulation on the visual ROI (up_V), on the cSPL (up_SPL), on

the bottom-up connection strength (up_V-SPL), and on the top-

down connection strength (up_SPL-V) (Figure 3).

Because the optimal model differed between the experimental

groups, we applied Bayesian model averaging (BMA) to the 16

models comprising the fully connected model family. BMA

computes a weighted average of each model parameter within

the model family, where the weighting depends on the evidence

for each of the contributing models, i.e., the posterior probability

[38,39]. In order to compare between the experimental groups,

BMA was applied separately for each group. In order to assess

changes across neurofeedback training runs, BMA was applied

separately for each of the 6 neurofeedback training runs.

For statistical analyses of the BMA parameters, we calculated a

36266 mixed analysis of variance (ANOVA) with between-

subjects factors group (learners, non-learners, or controls), and

within-subjects factors training run (first run, last run) and BMA

parameters (V-SPL, SPL-V, up_V, up_SPL, up_V-SPL, up_SPL-

V). Due to a strong 3-way interaction trend, and due to the

predicted differential performance of the BMA parameters after

compared to before training across the three groups, we performed

2-way repeated measures ANOVAs, with the factors training run

and BMA parameter in the 3 groups separately. To better

characterize connection strength increases or decreases across all 6

neurofeedback training runs in the learners, we calculated linear

regressions of each BMA parameter across runs. The statistical

significance was thresholded at p,0.05.

Table 1. Family-level inference.

Expected family posterior probabilities: first training run

experimental group model families

not connected bottom-up top-down fully connected

learners 0.24 0.27 0.23 0.27

non-learners 0.21 0.21 0.23 0.36

Controls 0.25 0.25 0.25 0.25

Expected family posterior probabilities: last (second to last) training run

experimental group model families

not connected bottom-up top-down fully connected

learners 0.12 (0.14) 0.15 (0.20) 0.13 (0.30) 0.60 (0.35)

non-learners 0.21 (0.18) 0.21 (0.19) 0.20 (0.22) 0.39 (0.41)

Controls 0.15 (0.25) 0.19 (0.26) 0.18 (0.25) 0.48 (0.24)

Exceedance family probabilities: first training run

experimental group model families

not connected bottom-up top-down fully connected

learners 0.23 0.28 0.21 0.28

non-learners 0.18 0.19 0.21 0.42

Controls 0.25 0.26 0.25 0.25

Exceedance family probabilities: last (second to last) training run

experimental group model families

not connected bottom-up top-down fully connected

learners 0.03 (0.06) 0.05 (0.16) 0.04 (0.34) 0.88 (0.44)

non-learners 0.17 (0.13) 0.17 (0.14) 0.16 (0.19) 0.49 (0.54)

Controls 0.08 (0.26) 0.13 (0.26) 0.12 (0.24) 0.67 (0.25)

doi:10.1371/journal.pone.0091090.t001
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Results

As reported previously, 7 participants successfully learned to

control activity in their visual ROI [12]. Specifically, these

individuals showed a significant BOLD signal increase in the

visual ROI associated with training and a significant difference in

signals comparing blocks in which they were asked to increase the

level of ongoing BOLD signals in the visual target ROI with

baseline blocks in which active control was not exerted. Four

participants did not learn to increase visual cortex activity,

although they did not differ from the learners with respect to the

composition of the visual ROI, the size of the ROI, the amount of

training, the mental strategies used, their attentional efforts, or

their vividness of visual imagery. Participants in the control group

were provided with the same instructions and underwent the

identical training procedure but received feedback from an area

not involved in visual processing, i.e., the ventral striatum.

Participants in this group did not learn to control visual cortex

activity.

Family-level Inference
An analysis of the estimated expected family posterior

probabilities and the exceedance family posterior probabilities

revealed that for the first neurofeedback training run, none of the

model families dominated in any of the experimental groups

(Figure 4; Table 1). However, in the last neurofeedback training

run, the fully connected model family clearly dominated. For the

learners, the exceedance probability of the fully connected model

reached 0.88, for the non-learners 0.49, and for the controls 0.67.

Hence, there is strong evidence that the fully connected model is

the best model architecture to explain the data in the last training

run, and this for all experimental groups.

Parameter-level Inference
Having identified the fully connected model family as the most

likely model architecture, we subsequently analyzed the model

parameters resulting from BMA within that family. The 36266

mixed ANOVA with between-subjects factors group (learners,

non-learners, or controls), and within-subjects factors training run

(first run, last run) and BMA parameter (V-SPL, SPL-V, up_V,

Figure 5. BMA parameter changes across neurofeedback training runs. While there were no significant changes in BMA parameter for the
non-learners (red) and for the controls (blue), the learners (green) showed a significant increase in the top-down connection strength from cSPL to
the visual ROI (SPL-V) that is independent of up-regulation. Further, the learners showed a significant increase in the effect of up-regulation on the
visual ROI (up_V), and in the effect of up-regulation on the cSPL (up_SPL). The learners also showed a significantly decreasing effect of up-regulation
on the bottom-up connection from the visual ROI to the cSPL (up_V-SPL). Shaded areas represent one standard error of the mean.
doi:10.1371/journal.pone.0091090.g005

Figure 6. Connectivity changes underlying neurofeedback
training. Successfully learning control over visual cortex activity was
associated with increased top-down connectivity from cSPL onto the
visual ROI. Further, up-regulation increasingly activated the visual ROI
and the cSPL, but progressively reduced the bottom-up connection
from the visual ROI onto the cSPL.
doi:10.1371/journal.pone.0091090.g006

Neurofeedback
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up_SPL, up_V-SPL, up_SPL-V) revealed a significant main effect

of group (F(1,2) = 5.49, p = 0.04), a significant main effect of BMA

parameter (F(1,5) = 3.66, p = 0.01), and a strong trend towards

significance in the 3-way interaction between group6training

run6BMA parameter (F(1,10) = 1.91, p = 0.06). When replacing

the last training run with the second to last training run (in order to

avoid potential double dipping), there was no more main effect of

group, no more main effect of BMA parameter, but the 3-way

interaction between group6training run6BMA parameter was

significant (F(1,10) = 2.44, p = 0.01).

Due to the strong 3-way interaction trend, and due to the

predicted differential performance of the BMA parameters after

compared to before training across the three groups, we performed

the following tests in the 3 groups separately. A 2-way repeated

measures ANOVA, with the factors training run and BMA

parameter in the learners, revealed a significant main effect of

BMA parameter (F(1,5) = 3.06, p = 0.02), and a significant

interaction between the factors training run6BMA parameter

(F(1,5) = 7.52, p,0.01). The interaction between the factors

training run6BMA parameter was also significant when replacing

the last training run with the second to last training run (in order to

avoid potential double dipping; F(1,5) = 4.00, p,0.01).

The same test in the non-learners revealed no significant main

effect nor interaction (all ps .0.05), and the controls only showed

a main effect of BMA parameter (F(1,5) = 2.91, p = 0.04;

F(1,5) = 6.90, p,0.01 when replacing the last with the second to

last training run). To better characterize connection strength

increases or decreases across all 6 neurofeedback training runs in

the learners, we plotted the BMA parameter changes over runs

(Figure 5), and calculated linear regressions for each of them. We

found a significant increase in the top-down connection strength

from cSPL to the visual ROI (SPL-V, r2 = 0.77, F(1,4) = 13.11,

p = 0.02; r2 = 0.77, F(1,3) = 9.83, p = 0.05 when replacing the last

with the second to last training run) which is independent of the

factor up-regulation. Further, we found a significant increase in

the positive effect of up-regulation on the visual ROI (up_V,

r2 = 0.78, F(1,4) = 14.34, p = 0.02; r2 = 0.85, F(1,3) = 17.46,

p = 0.03 when replacing the last with the second to last training

run) and on the cSPL (up_SPL, r2 = 0.88, F(1,4) = 29.13, p,0.01;

r2 = 0.81, F(1,3) = 12.83, p = 0.04 when replacing the last with the

second to last training run), and a significant decrease in the effect

of up-regulation on the bottom-up connection from the visual ROI

to the cSPL (up_V-SPL, r2 = 0.93, F(1,4) = 52.86, p,0.01;

r2 = 0.88, F(1,3) = 21.46, p = 0.02 when replacing the last with

the second to last training run). No significant changes were found

for the non-learners and the controls (all ps .0).

Discussion

We showed that neurofeedback training of visual cortex activity

is associated with increased effective connectivity between the

visual ROI and the cSPL. In the first neurofeedback training run,

no specific model architecture dominated (Figure 4; Table 1). In

contrast, in the last neurofeedback training run, the fully

connected model family clearly dominated. Hence, the interaction

between the visual ROI and the cSPL increased with neurofeed-

back training of visual cortex activity.

However, the increased dominance as training progressed of the

fully connected model family was found in all experimental

groups. It thus might reflect practicing self-regulation, but it

cannot explain how learning visual cortex control is mediated, and

why some participants learned self-regulation of visual cortex

activity but others did not. Any neural substrate underlying

successful learning of control over visual cortex activity must (a)

show a systematic change across the neurofeedback training runs,

and must (b) be specific to the learners (i.e. not be found in the

non-learners or controls). When investigating the parameters of

the fully connected model family, we found connectivity changes

that fulfilled these two criteria (Figure 5). Specifically, we found

that there was a systematic increase in top-down connectivity

strength from the cSPL onto the visual ROI, which was only found

in the learners. Also, the effect of up-regulation on the visual ROI

and on the cSPL increased with training, and this only in the

learners. Most pronounced and again only found in the learners,

the effect of up-regulation on the bottom-up connectivity from the

visual ROI onto the cSPL decreased significantly from positive to

negative BMA parameter levels. This indicates that with training,

the learners decreased the bottom-up connectivity from the visual

ROI to the cSPL during up-regulation. Overall, these results

suggest that learned control over visual cortex activity was

mediated by increasingly effective top-down control, and by a

reduction in bottom-up processing (Figure 6).

The connectivity pattern we found is in line with the use of

visual-spatial attention and imagery, which was the cognitive

control strategy that participants reported using (on debriefing) to

control the neurofeedback signal [12]. Indeed, top-down control

mechanisms such as attention and imagery can modulate visual

cortex activity [40,41,42,43,44,45,46]. Moreover, the SPL is

involved in directing covert visual-spatial attention [18,19,20,21]

and in cognitive control [19,22,23]. Finally, other recent DCM

studies show that visual attention and imagery is associated with

modulation of parietal cortex activity, and with strengthening of

top-down connections from parietal to visual areas

[26,47,48,49,50].

In our previous study, we did not find differences between

participants who learned to control their visual cortex activity and

those who did not with respect to introspective measures obtained

during participant debriefing and psychological questionnaires.

Learners as well as non-learners/controls used similar cognitive

strategies, and showed the same attentional effort and vividness of

visual imagery [12]. Our previous exploratory PPI analysis

suggested however that control over the visual cortex was

mediated by the interaction between the visual ROI and the

cSPL. Our current DCM analysis confirms this hypothesis. It

reveals that successful neurofeedback training of visual cortex

activity involves specific parietal-visual network changes that may

be closely linked to efficient deployment of top-down visual

attention and imagery. The absence of such changes in effective

connectivity in the non-learners and controls might explain their

failure at learning to regulate visual cortex activity using

neurofeedback.

Using neurofeedback to learn control over a brain ROI requires

the recruitment of, and changes in, associated brain networks

[14,15,16,17]. In order to understand the neural underpinnings of

successful neurofeedback learning, it will thus be important to

identify the underlying network dynamics. Although the underly-

ing network changes are specific to the trained ROI, character-

izing these changes might allow the efficiency of future neurofeed-

back training studies targeting similar ROIs to be increased. Such

analyses will potentially also help to identify brain networks that

might be more efficiently trained using the recently developed

real-time DCM neurofeedback approach, which allows to train

brain networks directly [51]. Finally, identifying the connectivity

changes associated with training a specific ROI might allow to

evaluate the clinical relevance of the neurofeedback approach,

especially for neuropsychiatric conditions which are associated

with abnormal patterns of connectivity, such as hemispatial neglect

[52,53], depression [54,55], and anxiety disorders [56,57].
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