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Abstract
The goal of this study was to determine dominant factors affecting treatment
response in pancreatic cancer photodynamic therapy (PDT), based on clinically
available information in the VERTPAC-01 trial. This trial investigated the safety
and efficacy of verteporfin PDT in 15 patients with locally advanced pancreatic
adenocarcinoma. CT scans before and after contrast enhancement from the
15 patients in the VERTPAC-01 trial were used to determine venous-phase
blood contrast enhancement and this was correlated with necrotic volume
determined from post-treatment CT scans, along with estimation of optical
absorption in the pancreas for use in light modeling of the PDT treatment.
Energy threshold contours yielded estimates for necrotic volume based on
this light modeling. Both contrast-derived venous blood content and necrotic
volume from light modeling yielded strong correlations with observed necrotic
volume (R2 = 0.85 and 0.91, respectively). These correlations were much
stronger than those obtained by correlating energy delivered versus necrotic
volume in the VERTPAC-01 study and in retrospective analysis from a prior
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clinical study. This demonstrates that contrast CT can provide key surrogate
dosimetry information to assess treatment response. It also implies that light
attenuation is likely the dominant factor in the VERTPAC treatment response,
as opposed to other factors such as drug distribution. This study is the first
to show that contrast CT provides needed surrogate dosimetry information to
predict treatment response in a manner which uses standard-of-care clinical
images, rather than invasive dosimetry methods.

Keywords: photodynamic therapy, dosimetry, NIRFAST, optical modeling
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1. Introduction

Pancreatic cancer is the fourth leading cause of cancer-related death in the United States
(Hariharan et al 2008), with an estimated 37 390 deaths from the disease in 2012. The overall
5-year survival rate is estimated at 5.8%, and treatment options are limited, with surgical
removal as an option for only 15% of patients (Howlader et al 2012). Patients unable to undergo
surgery are generally treated with chemotherapeutics which offer marginal improvements in
survival, and thus an urgent need exists for alternative strategies to treat pancreatic cancer
more effectively.

Photodynamic therapy (PDT) is a minimally invasive and nontoxic method of treating
cancer using the interaction of light and a photosensitizer, in the presence of oxygen, to
kill tumor cells (Wilson and Patterson 1986). A photosensitizer is a drug, usually injected
intravenously, that is activated by a specific wavelength of light. Activation produces singlet
oxygen from molecular oxygen which in turn causes necrosis (Weishaupt et al 1976). There is
also indirect cell death caused by induced hypoxia through tumor vasculature damage. Since
the effect is photochemical, rather than thermal, there is no significant damage to connective
tissues (Barr et al 1987).

There is a thresholding effect in photodynamic therapy for causing cell death, based
on the number of photons absorbed by the photosensitizer (Patterson et al 1990). It is not
plausible to measure this threshold value accurately in vivo, due to the complexity of tissue
optics and heterogeneity. The degree of necrosis is determined by photosensitizer dose and
distribution, light dose, and tissue oxygenation (van Gemert et al 1985). When necrosis is
achieved, the thresholding effect creates a sharp boundary to the necrotic region (Berenbaum
et al 1982, Potter 1989). A major hindrance in identifying the appropriate threshold value
is the lack of in vivo light dosimetry information, due in part to the difficulties associated
with finding consistent tissue optical properties (Wilson and Patterson 1986). Furthermore,
there are vital structures very close to the pancreas such as the stomach, major blood vessels,
biliary tree, and duodenum. Although necrosis has been shown to heal safely in some of these
structures, there is a potential risk of significant complications (Bown et al 2002). Thus it
would be valuable to provide an estimator for patient treatment response to photodynamic
therapy based on the threshold of necrosis, with the intent of informing treatment parameters
to achieve improved treatment outcomes. There are several examples of using multi-modal
imaging for dosimetry applications in photodynamic therapy. Contrast-enhanced MR has
been used to assess treatment response based on devascularized tissue (Haider et al 2007).
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Similarly, MR-based necrosis measurements have been used to correlate energy delivered with
the extent of necrosis (Betrouni et al 2011). The use of contrast CT information for dosimetry
in photodynamic therapy is an application of multi-modal medical imaging for pre-treatment
planning with significant potential.

A common reason for surgery not being an option in patients with pancreatic cancer is
tumor involvement of major blood vessels, including the superior mesenteric and portal veins
(Bown et al 2002). The prevention of vascular damage further motivates the need for a good
predictor of the extent of necrosis produced by photodynamic therapy, to provide a viable
treatment option in these cases. This paper presents an analysis of 15 patients with locally
advanced pancreatic cancer treated with photodynamic therapy, and estimates the extent of
treatment response based on information derived from contrast CT scans. Robust predictors
of treatment response could reduce the risk of damage to healthy tissue, as well as increase
the chance of full tumor treatment in pancreatic cancer.

2. Materials and methods

The VERTPAC-01 trial investigated the safety and efficacy of PDT in 15 patients with
locally advanced pancreatic adenocarcinoma (Huggett et al 2013). Verteporfin was used as
the photosensitizer, with benzoporphyrin derivative as the photoactive constituent. Light at
690 nm was delivered via a light-emitting diffusing-cylindrical tip fiber through transcutaneous
needles into the tumor lesions. For 13 of the patients, a single 1 cm tip fiber was used. For
one patient, three fibers were used of length 2 cm each. For one patient, two fibers were used
of length 1 cm each. The energy delivered per cm of fiber length was increased in a dose
escalation protocol from 5 J cm−1 for three patients, 10 J cm−1 for three patients, 20 J cm−1 for
three patients, and 40 J cm−1 for the remaining six patients.

Figure 1 outlines the imaging, treatment, and follow-up process for the study. High
resolution contrast and non-contrast CT scans were acquired approximately 60–90 min prior
to treatment for each patient.

The contrast scans were obtained for both arterial and venous phases. In addition to these
scans, several low resolution CT scans were acquired about the plane of the tumor location to
aid in needle/fiber placement. The limited volume captured by these low resolution scans was
chosen to limit radiation dose to the patients. Verteporfin is cleared rapidly, leading to a short
period of photosensitivity (Huggett et al 2013), and thus patients were treated approximately
60–90 min after administration. Post-treatment high resolution contrast CT scans to identify
response were taken 3–5 days after treatment, in arterial and venous phase. The pre-treatment
contrast CT scans were used to estimate values for arterial and venous blood content in the
pancreas tissue as well as the blood vessels. Venous blood content was calculated as

vtissue,ven/vblood,ven (1)

where vtissue, ven is the difference between the mean grayscale value in the region of interest in
the venous contrast scan and the non-contrast scan, and vblood, ven is the difference between the
mean grayscale value in a major blood vessel (the superior mesenteric is used as reference) in
the venous contrast scan and the non-contrast scan. The region of interest is chosen to match the
tumor tissue region as accurately as possible. This is done using manual delineation on the pre-
treatment contrast CT scans, where the tumor region shows characteristic contrast compared
with the surrounding tissue. This approach of calculating venous blood content assumes that
the difference value in blood corresponds to 100% blood content, and thus the difference
values in tissue regions scale blood content relative to this value. Arterial blood content was
calculated similarly using the arterial phase scans. Factors such as body movement and the use
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Figure 1. Patient imaging and treatment workflow. The initial two scans are high
resolution, pre- and post-contrast. The lower resolution scan shows the fiducial markers
on the fiber, evident in the CT scan as two bright spots with star artifacts from x-ray
beam hardening. The post-treatment contrast CT scan shows necrotic tissue as a dark
area, circled in red on the scan. The scans are all of axial orientation.

of a needle-placement grid placed on the patient caused significant registration differences
between pre- and post-contrast CT scans. The high degree of deformation made image
registration intractable. Optical heterogeneity in the surrounding pancreatic tissue around
the light-emitting fiber caused less than a 1% difference in light dose map calculations as
compared with using bulk optical properties in these regions, and so homogeneous optical
properties were assigned in these regions using the calculations described above.

To investigate the ability to predict treatment response using light-dose modeling, the CT
images were converted into numerical meshes suitable for light propagation calculations. This
was accomplished using image processing and mesh creation techniques described in previous
work (Jermyn et al 2013), which describes how CT scans were used to create 2D masks of
tissue types, and subsequently a 3D tetrahedral mesh. All image processing and modeling
was done using NIRFAST (Dehghani et al 2009, Jermyn et al 2012), an open-source light
modeling package. Figure 2 shows the tissue segmentation alongside the original medical
images for a representative patient, and the resulting tetrahedral mesh. The volume considered
contains the pancreas and nearby blood vessels, and was chosen to be large enough to ensure
the boundaries have little effect on the light propagation modeling in the regions of interest.

The venous and arterial blood content values were used to estimate optical absorption in
the pancreas tissue and blood vessels based on known chromophore extinction spectra and
estimates of venous and arterial oxygenation, in the following manner:

CdeoxyHb � (1 − RSO2,ven) ∗ (vtissue,ven/vblood,ven)+(1 − RSO2,art) ∗ (vtissue,art/vblood,art) (2)

CHbO � RSO2,ven ∗ (vtissue,ven/vblood,ven) + RSO2,art ∗ (vtissue,art/vblood,art) (3)

μa(λ = 690 nm)= εwater ∗ Cwater + εdeoxyHb ∗ CdeoxyHb + εHbO ∗ CHbO. (4)

Here CdeoxyHb and CHbO are the concentration of deoxy-hemoglobin and oxy-hemoglobin
respectively. RSO2,ven and RSO2,art are the blood oxygen saturation for venous and arterial
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(a)

(b)

(c)

Figure 2. (a) A single axial DICOM slice of the pancreas and surrounding tissue is
shown from the pre-treatment contrast CT scans. Bright areas are indicative of contrast
enhanced major blood vessels, while the dark areas in the top left and top right are air.
(b) Segmentation of the same axial slice into different regions based on tissue type: blue
is pancreatic or surrounding tissue, red is blood vessels, and black is air. (c) Rendering
of a 3D tetrahedral mesh of the pancreas and surrounding tissue in blue, and blood
vessels in red. It is clipped by a plane to visualize the interior of the mesh.

phase, using literature values of 0.70 and 0.99 respectively (Baele et al 1982, Miller 1982,
Huckabee 1965, Stainsby and Otis 1964, Edwards Lifesciences 2002). ε is the molar absorption
coefficient for each absorber at the wavelength of light used. Literature values of 0.5 and
0.98 mm−1 were used for the reduced scattering coefficient in blood vessels and pancreatic
tissue respectively (Wilson et al 2009, Sandell and Zhu 2011, Cheong et al 1990, Pedersen et al
1976). These optical properties were assigned in the numerical mesh and the light distribution
from the diffusing-tipped fibers was calculated using NIRFAST, producing a light fluence field
around the fiber location. Fluence fields were then converted into maps of light dose by scaling
to the total energy distributed for each patient.

The post-treatment CT scans were used to identify the region of necrosis caused by
treatment, distinguished as a dark area around the fiber location. Using guidance from
radiologist-determined values of the two major diameters of necrosis, the necrotic volume
was estimated for each patient. These measurements of the necrotic region were made by
multiple radiologists, to ensure accurate necrotic volume estimation.

3. Results

Figure 3(a) shows a representative image for obtaining the necrotic volume for the post-
treatment CT scan for one patient. Necrotic volumes determined for all patients, categorized
by light energy delivered, are plotted in figure 3(b).
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(a)

(b)

Figure 3. (a) An axial slice of the pancreas from post-treatment CT scans, with the
indicated area in the center as necrotic tissue. (b) The volume of the necrotic tissue
region is shown for each patient in the study, determined from the segmentations of the
post-treatment CT scans.

Figure 4(a) shows a plot of necrotic volume plotted as a function of the venous
blood content values derived from contrast CT information. The three patients administered
5 J cm−1 energy of light were omitted from analysis because there was no visible necrosis
in the post-treatment scans, under the presumption that this energy level was too low to
produce necrosis in human tissue. Patient 7, administered 20 J cm−1, was omitted because
no pre-treatment arterial scan was acquired for that patient. Patient 12 was omitted because
pre-existing necrosis prior to treatment hampered the ability to measure necrosis caused by
treatment. These data were re-analyzed by normalizing the necrotic volume based on energy
delivered. Normalized necrotic volumes are plotted versus venous blood content in figure 4(b).
This approach produces a very high correlation between these parameters (R2 = 0.85). Arterial
blood content showed no significant correlation with necrotic volume, giving an R2 value
of 0.22.

The light dose maps produced from light modeling can be used to estimate necrotic
volume provided a suitable energy threshold value is determined. In this study, the threshold
value is unknown, therefore, we determined the threshold value which exhibited the strongest
correlation between predicted and measured volume of necrosis. This value was found to be
0.003 J cm−3, and defines a 3D contour of values greater than the threshold in the 3D light dose
maps for each patient, which then defines an estimated volume of necrosis. Figure 5 shows

1916



Phys. Med. Biol. 59 (2014) 1911 M Jermyn et al

(a)

(b)

Figure 4. (a) Correlating necrotic volume with venous blood content, as derived from
the contrast CT scans. (b) Necrotic volume is normalized as V/(n∗d∗log(E)), where V
is the necrotic volume in cm3, n is the number of fibers used in treatment, d is the fiber
size in cm, and E is the energy delivered over the fiber in J cm−1. This is then correlated
with the contrast derived venous blood content.

visualizations of the light dose contours in a patient produced by light modeling, for use in
estimating necrotic volume. Figure 6 demonstrates the strong correlation between predicted
and measured necrotic volume using this value.

4. Discussion

Contrast derived venous blood content shows a high correlation with necrotic volume,
with an R2 = 0.85. This suggests that the optical attenuation produced by venous blood
content is a dominant factor in treatment response to photodynamic therapy in the pancreas
as opposed to photosensitizer concentration. The high negative correlation with venous
blood content indicates that drug variation did not have a significant effect on treatment
response. This suggests that drug distribution was reasonably uniform. Thus parameters such
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(a)

(b)

Figure 5. (a) A single axial slice of the pancreas from the pre-treatment CT scans is
overlaid with computed contours of light fluence levels around the fiber location. This
was simulated using blood content information for tissue absorption from contrast CT.
(b) A volume rendering of the blood vessels around the pancreas overlaid with the light
dose map in the fiber location, in the same patient. Please see supplementary material
at stacks.iop.org/PMB/59/1911/mmedia.

as photosensitizer dose, time interval between administration and treatment, and vascular
properties will be important to consider in obtaining a similarly strong correlation in different
organs or with different photosensitizers. A strong correlation was observed between the
volume of necrosis calculated using this surrogate estimate of venous blood content and
standard light modeling tools and that measured by post-treatment CT, with an R2 = 0.91.
This observation indicates that light attenuation, specifically that derived from venous blood,
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Figure 6. Correlating actual necrotic volume with the estimated necrotic volume from
light modeling, using absorption values estimated from contrast CT information and
literature values for scattering. A particular energy threshold, 0.003 J cm−3, with the
highest correlation was picked to determine the estimated necrotic volume using the
contour defined by this threshold.

dictates the treatment volume for this therapy, and implies that this response can be reliably
predicted using contrast CT. This would represent a major breakthrough in PDT for pancreas
cancer and could facilitate light dose administration tailored to individual patients with
significantly less effort than using invasive or time consuming dosimetry measurements.

A prior clinical pilot study for the use of photodynamic therapy with mTHPC in the
treatment of pancreatic cancer using similar methods reported necrotic volume and energy
delivered for 16 patients (Bown et al 2002). In a retrospective analysis of their data, correlating
the logarithm of energy delivered versus necrotic volume of their patients resulted in a linear
fit with R2 = 0.37. This value was larger than without taking the logarithm, so was the best fit,
but still clearly indicates a low linear fit quality. Similarly, correlating the logarithm of energy
delivered versus necrotic volume in the VERTPAC-1 study gives R2 = 0.67. Thus, both of
these values are considerably weaker than the R2 values reported herein using contrast CT as a
surrogate for the deposited dose. This suggests that there is significant value in using contrast
derived venous blood content to aid in predicting necrotic volume produced by treatment,
rather than relying on estimates based upon energy delivered. It is important to note that
there is often post-treatment swelling associated with photodynamic therapy, a phenomenon
which occurs frequently in interstitial procedures. No swelling data was available in this
study; however it may be useful to study the effect of swelling on the observed correlations,
particularly with regard to calculating necrotic volume from the post-treatment CT scans.

The implications of this study are important, because acceptance of PDT is at least partially
limited by the complexity of having to manage drug and light doses separately, and the extreme
complexity which can go into dose verification measurements. There have been very complex
arrangements to measure drug levels in vivo, in several clinical trials, and while scientifically
outstanding, are often so complex or expensive that they become inhibitive to advancing the
clinical implementation of PDT. The concept tested in this study was to see if simpler clinical
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data could provide a surrogate measurement, and this seems to be the case. The surrogate
measurement here appears correlated to blood volume, which is not well defined, but suggests
that perhaps the attenuation from light is the major factor. One might think that higher blood
volume would lead to better drug perfusion of the tumor, yet if that were true the tumors with
higher blood volume might have more treatment effect. Since the opposite seems to be true
here, this indicates that drug perfusion is a minor factor in the planning of treatment delivery,
and so measurement of this parameter might be neglected in future work. Light delivery is
hypothesized to be the dominant factor, and so a future prospective study might investigate
delivering more light to those tumors which have higher venous contrast. This would test if
the light delivery is the limiting factor, and lead to better treatment efficacy for more perfused
tumors.

5. Conclusion

In summary, information from contrast CT provides the opportunity to assist in pre-treatment
planning for photodynamic therapy of pancreatic cancer. Contrast derived venous blood content
displays a significant correlation with necrotic volume, with high correlation, indicating that
light attenuation is the dominant factor in treatment response in the pancreas. Concomitantly,
light modeling has the ability to determine this contribution and possibly yield further
improvement in estimating necrotic volume, with an R2 value of 0.91. Due to the presence of
important structures in and around the pancreas, such as major blood vessels and the stomach
wall, predicting the extent of necrosis is valuable in avoiding damage to these structures.
Estimation of treatment response will also provide more confidence in treating the entire
tumor, which will potentially improve the efficacy of this minimally invasive and nontoxic
alternative to surgery for treating locally advanced cancer in the pancreas.
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