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Dopamine transporter deficiency syndrome due to SLC6A3 mutations is the first inherited dopamine ‘transportopathy’ to be described,

with a classical presentation of early infantile-onset progressive parkinsonism dystonia. In this study we have identified a new cohort

of patients with dopamine transporter deficiency syndrome, including, most significantly, atypical presentation later in childhood with

a milder disease course. We report the detailed clinical features, molecular genetic findings and in vitro functional investigations

undertaken for adult and paediatric cases. Patients presenting with parkinsonism dystonia or a neurotransmitter profile characteristic

of dopamine transporter deficiency syndrome were recruited for study. SLC6A3 mutational analysis was undertaken in all patients.

The functional consequences of missense variants on the dopamine transporter were evaluated by determining the effect of mutant

dopamine transporter on dopamine uptake, protein expression and amphetamine-mediated dopamine efflux using an in vitro cellular
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heterologous expression system. We identified eight new patients from five unrelated families with dopamine transporter deficiency

syndrome. The median age at diagnosis was 13 years (range 1.5–34 years). Most significantly, the case series included three

adolescent males with atypical dopamine transporter deficiency syndrome of juvenile onset (outside infancy) and progressive par-

kinsonism dystonia. The other five patients in the cohort presented with classical infantile-onset parkinsonism dystonia, with one

surviving into adulthood (currently aged 34 years) and labelled as having ‘juvenile parkinsonism’. All eight patients harboured

homozygous or compound heterozygous mutations in SLC6A3, of which the majority are previously unreported variants. In vitro

studies of mutant dopamine transporter demonstrated multifaceted loss of dopamine transporter function. Impaired dopamine uptake

was universally present, and more severely impacted in dopamine transporter mutants causing infantile-onset rather than juvenile-

onset disease. Dopamine transporter mutants also showed diminished dopamine binding affinity, reduced cell surface transporter,

loss of post-translational dopamine transporter glycosylation and failure of amphetamine-mediated dopamine efflux. Our data series

expands the clinical phenotypic continuum of dopamine transporter deficiency syndrome and indicates that there is a phenotypic

spectrum from infancy (early onset, rapidly progressive disease) to childhood/adolescence and adulthood (later onset, slower disease

progression). Genotype–phenotype analysis in this cohort suggests that higher residual dopamine transporter activity is likely to

contribute to postponing disease presentation in these later-onset adult cases. Dopamine transporter deficiency syndrome remains

under-recognized and our data highlights that dopamine transporter deficiency syndrome should be considered as a differential

diagnosis for both infantile- and juvenile-onset movement disorders, including cerebral palsy and juvenile parkinsonism.

Keywords: dopamine; dopamine transporter (DAT); juvenile; parkinsonism; dystonia; SLC6A3

Abbreviations: CFT = 2b-carbomethoxy-3b-[4-fluorophenyl]-tropane; DAT = dopamine transporter; DTDS = dopamine transporter
deficiency syndrome

Introduction
Dopamine dyshomeostasis is associated with several neurological

and neuropsychiatric conditions including Parkinson’s disease, de-

pression, schizophrenia, attention deficit hyperactivity disorder,

autism and drug addiction (Carlsson, 1987; Greengard, 2001;

Adinoff, 2004; Mehler-Wex et al., 2006; Mazei-Robison et al.,

2008). A key step in the duration and intensity of dopamine sig-

nalling is the reuptake of extracellular dopamine that is principally

mediated by the presynaptic dopamine transporter (DAT), a Na +/

Cl�-dependent neurotransmitter sodium symporter, expressed by

dopaminergic neurons (Torres et al., 2003a). Recently, we have

described loss-of-function mutations in the gene encoding DAT

(SLC6A3) in a clinical syndrome of autosomal recessive infantile

parkinsonism dystonia with raised dopamine metabolites in CSF

(Assmann et al., 2004; Kurian et al., 2009, 2011a). The classical

dopamine transporter deficiency syndrome (DTDS) phenotype is

characterized by an infantile-onset hyperkinetic movement dis-

order with progression to severe parkinsonism during early child-

hood (Kurian et al., 2009, 2011a). In this new study we describe a

unique cohort of patients with DTDS and expand the phenotypic

spectrum and disease continuum to include adolescents and young

adults with atypical disease features.

Materials and methods

Clinical cases
Patients presenting with childhood onset parkinsonism dystonia and,

where available, a neurotransmitter profile characteristic for DTDS

[raised CSF homovanillic acid: 5-hydroxyindoleacetic acid (HVA:

5-HIAA) ratio 44.0] (Kurian et al., 2009, 2011a) were identified through

international contact with child neurologists with specialist expertise in

movement disorders and clinical geneticists. Referring clinicians con-

tacted M.A.K directly to see whether the clinical and biochemical features

of their patients were suggestive of DTDS. Thus, eight such patients were

identified for SLC6A3 analysis and inclusion in this study. Each patient’s

clinical case notes were reviewed in detail to determine: (i) the clinical

features at presentation; (ii) results of neurological investigations includ-

ing CSF neurotransmitters; (iii) disease course; (iv) response to medica-

tion; and (v) long-term clinical outcome. All patients underwent

neurological examination and video footage of the movement disorder

was undertaken with written informed consent obtained from participant

families. Three cases did not consent to video recording because of cul-

tural beliefs but were thoroughly clinically assessed to document move-

ment disorder and neurological features. Five cases consented to video

recording and a detailed video was taken to demonstrate the general

phenotype, gross motor features at rest, fine motor tasks and eye move-

ments. Four child neurologists with specialist interest in movement dis-

orders (J.N., V.L., M.R., M.A.K.) reviewed the videos available to obtain

consensus opinion. Videos on Cases 1–3 and 6 are available in the

Supplementary material.

SLC6A3 mutational analysis
For Cases 1–3 (three siblings from a consanguineous Pakistani family)

we performed whole exome sequencing on one affected individual

(Case 3), using a HiSeq 2000 sequencer with a paired-end

2 � 100 bp protocol after enrichment of exonic and adjacent splice

site sequences with the SeqCap EZ Human Exome Library v.3.0 en-

richment kit. This resulted in a mean coverage of 97;79% of target

sequences were covered at least 30� . Data analysis and filtering

was performed as previously described (Basel-Vanagaite et al.,

2012). Validation of variants detected by exome sequencing and

co-segregation analysis in the family were performed by Sanger

sequencing of PCR products on an ABI 3730 DNA Analyzer using
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BigDye� chemistry v3.1. The novelty of all identified variants was

determined by comparison with established variant databases

(including dbSNP137, 1000 Genomes SNP calls and the NHLBI

Exome Sequencing project) as well as direct sequencing of ethnic-

ally-matched 150–300 control chromosomes. For Cases 4–8, direct

Sanger sequencing of SLC6A3 was undertaken using gene primers

covering all coding exons and flanking intronic regions.

In vitro heterologous expression system
In vitro functional studies of identified missense mutations (Ala314Val,

Gly386Arg, Tyr470Ser, Arg85Leu, Arg445Cys, co-expressed

Arg85Leu–Arg445Cys) were performed after preparation of mutant

constructs of human DAT from wild-type pCIN4-hDAT, as previously

described (primers available on request) (Kurian et al., 2009, 2011a;

Stouffer et al., 2011). Culturing and transient transfection of LLC-PK1

cells with mutant and wild-type human DAT was performed by use of

Lipofectamine� 2000 (Invitrogen) as previously described (Kurian

et al., 2009, 2011a). Uptake of 3H-dopamine (10 nM final concentra-

tion, 48 Ci/mmol, Perkin Elmer) into suspended cells expressing human

DAT was measured for 5 min at 21�C, and to monitor cocaine

analogue binding, cells were incubated with 4 nM 3H-CFT (2b-

carbomethoxy-3b-[4-fluorophenyl]-tropane, 85.9 Ci/mmol, Perkin

Elmer) for 20 min at 21�C; for saturation analysis, 0.1–100 nM non-

radioactive CFT was also present. Briefly, uptake and binding assays

used a high sodium, low potassium buffer containing glucose and

tropolone, and the non-specific binding was defined with 1 mM CFT

as in our previous work. (Kurian et al., 2009, 2011a). In one set of

experiments the Km and Vmax of 3H-dopamine was monitored in intact

attached LLC-PK1 cells as described previously (Stouffer et al., 2011).

The binding affinity (Kd) and the maximum binding of 3H-CFT were

calculated with non-linear regression by use of Radlig software (KELL

program). Half maximal inhibitory concentration was estimated by lo-

gistic fitting of data by the ORIGIN software (Origin Lab Co.); this

value was then entered into the Cheng- Prusoff equation to calculate

the potency (Ki) of dopamine in inhibition of 3H-CFT binding. Km and

Vmax values for uptake were calculated with the KELL program as in

previous work (Li et al., 2004).

Immunoblotting studies
Cells transiently expressing wild-type or mutant human DAT were

washed with cold PBS and incubated with sulpho-NHS-SS-biotin

(1 mg/ml PBS; Pierce Biotechnology) for 60 min at 4�C, before incu-

bation with 100 mM glycine in PBS for 20 min and extensive washing.

The washed cells were lysed in mammalian protein extraction reagents

(Thermo Scientific) supplemented with a protease inhibitor cocktail

(Thermo Scientific) for 10 min at 21�C and transferred into eppendorf

vials. The vials were incubated for 60 min on ice with vortexing every

5 min. The lysate was then centrifuged at 14 000 g for 15 min at 4�C

and supernatant was collected for preparing total lysates and separat-

ing biotinylated cell surface proteins. The biotinylated proteins were

separated with immobilized monomeric NeutrAvidin (Thermo

Scientific) and eluted with SDS-PAGE sample buffer. The total lysates

and biotinylated proteins were resolved on 8% Tris-glycine mini gels

and probed with polyclonal anti-DAT antibody against the C-terminal

of DAT (Millipore), before horseradish peroxidase-conjugated goat

anti-rabbit antibody. Polyclonal anti-b-actin antibody (Sigma-Aldrich)

was used as an internal control for loading. The transporter signal was

visualized using Thermo Scientific SuperSignal� West Pico

Chemiluminescent Substrate solution (Thermo Scientific).

Statistical analysis
Each case was assessed for transporter properties with corresponding

wild-type controls. Wild-type values were combined in the overall

statistical analysis of 3H-CFT binding data. The latter binding results

for wild-type and mutant human DAT were first compared by one-

way ANOVA. If this test indicated significant differences between

groups, the Dunnett multiple comparisons test was used to compare

each mutant value with wild-type. For statistical analysis of 3H-dopa-

mine uptake by mutants, Ki values for wild-type human DAT (controls)

were used from the same set; thus values for Cases 1–3 constituted

one set and values for Case 8 another set (Case 6 and 7 were not

included in this statistical analysis as there was no specific transporter

activity). The mutant Ki values were expressed as % Control with

Control = wild-type, set to 100%; the mutant values were then sub-

jected to a one-sample Student’s t-test (Bonferroni-corrected for mul-

tiple comparisons). Km and Vmax values were obtained for one mutant

and compared with wild-type values obtained in the same set by un-

paired Student’s t-test. Indicated as n is the number of independent

experiments (each assayed in triplicate), for which mean � standard

error (SE) was calculated. We regarded P-values of 0.05 or lower as

statistically significant.

Amperometry
Amperometry studies were possible for mutant Arg445Cys as there

was appreciable expression on the cell surface. HEK293 cells were

cultured and transiently transfected as previously described (Bowton

et al., 2010). Patch-clamp electrophysiology was performed using an

Axopatch 200B amplifier and Clampex9 software (Molecular Devices).

Amperometric measurement of dopamine was performed by a second

Axopatch 200B. A 5 mm carbon fibre electrode was juxtaposed to the

plasma membrane and held at + 700 mV (a potential greater than the

oxidation potential of dopamine). Amperometric signals were sampled

at a rate of 200 Hz and low-pass filtered at 10 Hz. Traces were digitally

low-pass filtered offline at 1 Hz for display only. For patch loading of

dopamine, quartz recording pipettes with a resistance of 3–5 M� were

filled with a dopamine-containing internal solution (2 mM dopamine,

110 mM KCl, 10 mM NaCl, 10 mM HEPES, 0.1 mM CaCl2, 2 mM

MgCl2, 1.1 mM EGTA, 30 mM D-glucose, pH 7.35). Cells were

washed with external bath solution (130 mM NaCl, 10 mM HEPES,

34 mM D-glucose, 1.5 mM CaCl2, 0.5 mM MgSO4, 1.3 mM KH2PO4,

pH to 7.35). Upon gaining whole-cell access to the cell, dopamine-

containing internal solution was allowed to diffuse into the cell

under current clamp for 10 min before amphetamine or cocaine

application.

Results

Clinical features of the cohort
The clinical features of all eight cases are summarized in Table 1.

Our data indicates that some patients (n = 5) presented 51 year

of age (akin to previously reported children with DTDS) but

there were others who presented beyond the infantile period

(n = 3).

Expansion of the DTDS spectrum Brain 2014: 137; 1107–1119 | 1109

 at U
C

L
 L

ibrary Services on M
ay 14, 2014

http://brain.oxfordjournals.org/
D

ow
nloaded from

 

http://brain.oxfordjournals.org/


T
ab

le
1

Su
m

m
ar

y
o
f

C
li

n
ic

al
fe

at
u
re

s

Fa
m

il
y

Fa
m

il
y

1
Fa

m
il

y
2

Fa
m

il
y

3
Fa

m
il

y
4

Fa
m

il
y

5

C
as

e
1

(S
u
p
p
le

m
en

ta
ry

V
id

eo
1
)

2
(S

u
p
p
le

m
en

ta
ry

V
id

eo
2
)

3
(S

u
p
p
le

m
en

ta
ry

V
id

eo
3
)

4
5

6
(S

u
p
p
le

m
en

ta
ry

V
id

eo
4

1
,2

)

7
8

C
u
rr

en
t

ag
e

(y
ea

rs
)

1
6

2
6

2
8

3
5

d
ie

d
at

1
0

7
4

3

G
en

d
er

M
M

M
F

F
M

M
F

Et
h
n
ic

it
y

P
ak

is
ta

n
i

P
ak

is
ta

n
i

P
ak

is
ta

n
i

M
ix

ed
Eu

ro
p
ea

n
M

ix
ed

Eu
ro

p
ea

n
It

al
ia

n
M

ix
ed

Eu
ro

p
ea

n
M

ix
ed

A
sh

ke
n
az

i

Je
w

/I
ra

n
ia

n
/

Y
em

en
i/

T
u
rk

is
h

C
o
n
sa

n
g
u
in

it
y

Y
es

Y
es

Y
es

Y
es

Y
es

N
o

Y
es

N
o

P
re

se
n
ti
n
g

ag
e

(y
ea

rs
)

1
1

1
1

1
1

3
m

o
n
th

s
2

m
o
n
th

s
3

m
o
n
th

s
3

m
o
n
th

s
9

m
o
n
th

s

P
re

se
n
ti
n
g

sy
m

p
to

m
s

T
re

m
o
r

T
re

m
o
r

T
re

m
o
r

D
ys

to
n
ia

p
ar

ki
n
so

n
is

m
D

ys
to

n
ia

p
ar

ki
n
so

n
is

m
D

ys
to

n
ia

p
ar

ki
n
so

n
is

m
D

ys
to

n
ia

p
ar

ki
n
so

n
is

m
D

ys
to

n
ia

p
ar

ki
n
so

n
is

m

D
ys

ki
n
et

ic
m

o
ve

m
en

ts
D

ys
ki

n
et

ic
m

o
ve

m
en

ts
D

ys
ki

n
et

ic
m

o
ve

m
en

ts
D

ys
ki

n
et

ic

m
o
ve

m
en

ts

A
g
e

at
d
ia

g
n
o
si

s
(y

ea
rs

)
1
6

ye
ar

s
2
5

ye
ar

s
2
8

ye
ar

s
3
4

ye
ar

s
1
0

ye
ar

s
(d

ie
d
)

5
.6

ye
ar

s
3

ye
ar

s
1
.5

ye
ar

s

C
u
rr

en
t

sy
m

p
to

m
s

T
re

m
o
r

T
it
u
b
at

io
n

T
it
u
b
at

io
n

T
it
u
b
at

io
n

H
an

d
tr

em
o
r

N
o

N
o

N
o

N
o

H
an

d
tr

em
o
r

H
an

d
tr

em
o
r

H
an

d
tr

em
o
r

P
ar

ki
n
so

n
is

m
N

o
H

yp
o
m

im
ia

H
yp

o
m

im
ia

B
ra

d
yk

in
es

ia
N

o
B
ra

d
yk

in
es

ia
B
ra

d
yk

in
es

ia
B
ra

d
yk

in
es

ia

B
ra

d
yk

in
es

ia

Im
p
ai

re
d

b
al

an
ce

D
ys

to
n
ia

N
o

N
ec

k
N

o
Y

es
Li

m
b
s

+
ax

ia
l

h
yp

o
to

n
ia

Li
m

b
s

+
ax

ia
l

h
yp

o
to

n
ia

Li
m

b
s

+
ax

ia
l

h
yp

o
to

n
ia

Li
m

b
s

+
ax

ia
l

h
yp

o
to

n
ia

G
en

er
al

iz
ed

d
ys

ki
n
et

ic

m
o
ve

m
en

ts

N
o

N
o

N
o

N
o

Y
es

Y
es

Y
es

Y
es

C
h
o
re

a
C

h
o
re

a

Ey
e

m
o
ve

m
en

t
N

o
rm

al
N

o
rm

al
O

cu
la

r
fl
u
tt

er
N

o
rm

al
N

o
rm

al
O

cu
lo

g
yr

ic
cr

is
is

N
o
rm

al
Sa

cc
ad

ic
in

tr
u
si

o
n

o
n

sm
o
o
th

p
u
rs

u
it

B
u
lb

ar
d
ys

fu
n
ct

io
n

N
o

Lo
ss

o
f

sp
ee

ch
to

si
n
g
le

w
o
rd

s

C
o
m

p
le

te
lo

ss
o
f

sp
ee

ch

G
as

tr
o
st

o
m

y
G

as
tr

o
st

o
m

y
G

as
tr

o
st

o
m

y
G

as
tr

o
st

o
m

y
G

as
tr

o
st

o
m

y

T
re

at
m

en
ts

tr
ie

d
,

(n
o

re
-

sp
o
n
se

u
n
le

ss
o
th

er
w

is
e

st
at

ed
)

n
/a

n
/a

n
/a

L-
D

O
P
A

(i
n
it
ia

l
m

ild
)

L-
D

O
P
A

L-
D

O
P
A

H
al

o
p
er

id
o
l

(m
ild

)
L-

D
O

P
A

(u
n
su

st
ai

n
ed

im
p
ro

ve
m

en
t

w
it
h

d
ys

ki
n
et

ic

m
o
ve

m
en

ts
an

d

ir
ri
ta

b
ili

ty

B
en

zo
d
ia

ze
p
in

e

(i
m

p
ro

ve
d
)

B
en

zo
d
ia

ze
p
in

e

T
et

ra
b
en

az
in

e
T
et

ra
b
en

az
in

e
P
er

g
o
lid

e
T
yr

o
si

n
e

d
ie

ta
ry

re
st

ri
ct

io
n

Se
le

g
ili

n
e

(i
m

p
ro

ve
d

b
ra

d
yk

in
es

ia
)

T
ri
h
ex

yp
h
en

yd
yl

T
ri
h
ex

yp
h
en

yd
yl

B
ac

lo
fe

n

H
al

o
p
er

id
o
l

H
al

o
p
er

id
o
l

T
et

ra
b
en

az
in

e

n
/a

=
n
o
t

ap
p
lic

ab
le

1110 | Brain 2014: 137; 1107–1119 J. Ng et al.

 at U
C

L
 L

ibrary Services on M
ay 14, 2014

http://brain.oxfordjournals.org/
D

ow
nloaded from

 

http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/awu022/-/DC1
http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/awu022/-/DC1
http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/awu022/-/DC1
http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/awu022/-/DC1
http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/awu022/-/DC1
http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/awu022/-/DC1
http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/awu022/-/DC1
http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/awu022/-/DC1
http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/awu022/-/DC1
http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/awu022/-/DC1
http://brain.oxfordjournals.org/


Atypical dopamine transporter
deficiency syndrome: Juvenile
Parkinsonism Dystonia
We identified three brothers (Cases 1–3; currently aged 16, 26

and 28 years) from a Pakistani family with a clinical diagnosis of

juvenile-onset parkinsonism presenting with tremor and progres-

sive parkinsonian symptoms. The parents are consanguineous first

cousins sharing common paternal grandparents (Fig. 1). There is

no family history of movement disorders, Parkinson’s disease or

attention deficit hyperactivity disorder or other psychiatric illness.

The three brothers have five unaffected sisters aged between

18–42 years (Fig. 1).

All three brothers had a normal birth history, neonatal

course, and achieved normal early developmental milestones

in infancy. Age appropriate cognitive, motor and speech and

language skills were reported in the first decade of life with

no neurodevelopmental concerns. At 10–11 years of age,

they all developed tremor affecting the head, with progres-

sion of symptoms in their 20 s, clearly observed in the elder

brothers.

Currently at 16 years old, the youngest brother (IV:8; Case 1)

has normal eye movements and facial expression, with predomin-

ant head tremor/titubation (Supplementary Video 1). He has

normal speech, good balance and normal gait. He also reports

intermittent tremor affecting hands and lower limbs. The second

brother (IV:5; Case 2) now 26 years old, presented in the same

manner as his younger brother with mild tremor affecting the

head and hands. His movement disorder has evolved to develop

cervical dystonia resulting in cervical antecollis with hypertrophy of

trapezius muscles. He has frontalis hyperactivity with an associated

intermittent low amplitude fine head tremor. He has normal eye

movements with hypomimic facies (Supplementary Video 2). He

also reports intermittent fine hand tremor and deterioration in

speech and now speaks in single words only. The eldest brother

is aged 28 years (IV:4; Case 3) and presented with the same

symptoms as his two brothers initially. Over the past 20 years

his symptoms have progressed and he is the most severely af-

fected of the three. He now has prominent head tremor, a

coarse resting hand tremor with ocular flutter and hypomimia

(Supplementary Video 3). He experiences recurrent falls associated

with poor balance and difficulty in initiating movements. His

speech deteriorated initially to the use of single words from 20

years old onwards and now he is non-verbal. There is no evidence

of cerebellar or pyramidal signs on neurological examination of

any of these patients to date. Unfortunately CSF neurotransmit-

ter studies and neuroimaging studies are not available to this

family who are from a rural area of Pakistan, and medication

trials with L-DOPA, dopamine agonists or others have not been

undertaken.

Family 1

I:1 I:2

II:1 II:2 II:3 II:4

I:2

II:1

III:3 III:4

II:2 II:3 II:4

III:2III:1 III:5

SLC6A3 941C T ( Al 314V l ) CT CT
4696Age (years)

SLC6A3 c.941C>T (p.Ala314Val ) CT CT

IV:8IV:4 IV:5 6:VI2:VI1:VI 7:VI3:VI

42 39 36 28 26 20 18 16
CT CT CT TT TT CC CC TT

Age (years)
SLC6A3 c.941C>T (p.Ala314Val )

Figure 1 Family tree for Cases 1–3. Four generation family tree representing family members and ancestral relatives of Patients 1 (IV:8),

2 (IV:5) and 3 (IV:4). These brothers are three of eight children from Pakistani consanguineous first cousin parents. They have five

healthy unaffected sisters. The parents’ (III:3 and III:4) fathers (II:2 and II:3) are brothers. Females are represented by circles and males

by squares. DTDS disease status is indicated by black shading. Consanguinity is represented by a horizontal parallel double bar.

Diagonal lines indicate deceased individuals (I:1 and I:2). Genotypes are indicated for SLC6A3 mutation c.914C4T (p. Ala314Val)

and indicate that parents (III:3 and III:4) are both heterozygous carriers (CT), the affected children (IV:4 IV:5 IV:6) are homozygous

for the mutation (TT) and the unaffected siblings are either wild-type (CC) (IV:6 and IV:7) or heterozygous carriers (CT) (IV:1 IV:2

and IV:3).
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Classical dopamine transporter
deficiency syndrome: Infantile
parkinsonism dystonia
Five patients (Cases 4–8; two males) were identified with a clinical

phenotype and CSF neurotransmitter profile (undertaken in 4/5

cases) compatible with DTDS. They all presented during infancy

with a complex movement disorder and motor developmental

delay at a median age of 6 months (range 2–9 months). All re-

ported a preceding normal perinatal history, birth weight and head

circumference. There was no history of a movement disorder,

Parkinson’s disease or psychiatric symptoms in either parents or

siblings. On review, there was also an associated early history of

irritability and feeding difficulties from the neonatal period to age

3 months in all these patients.

Of particular interest was the clinical progress of Case 4 who is

the oldest surviving adult patient with classical DTDS—infantile

parkinsonism dystonia (now aged 34 years). She presented at 3

months with feeding difficulties and irritability and progressed to

develop dystonia and rigidity in infancy associated with motor

delay. During early childhood she was able to mobilize with a

Kay-walker and had functional use of her upper limbs to steer

her electric wheelchair. During adolescence, her movement dis-

order evolved to progressive bradykinesia and currently at 34

years, she has an asymmetric resting tremor with bradykinesia

and minimal purposeful movements in her upper limbs with akin-

etic lower limbs, muscle wasting and osteopenia. She is hypomimic

and non-verbal, requiring gastrointestinal tube feeding. In con-

trast, her younger sister (Case 5) presented with an early history

of feeding difficulties and irritability, then developed a progressive

hyperkinetic dystonic phenotype (without parkinsonian features)

and died at age 10 years from pneumonia. Both siblings were

only recently genetically diagnosed with DTDS in 2010, after dis-

covery of the disease-causing gene. Indeed before diagnosis, Case

4 had a diagnostic label of ‘juvenile parkinsonism’.

Case 6 represents the most classical clinical phenotype

(Kurian et al., 2011a) with initial infantile hyperkinesia (dyskin-

esia/dystonia) and axial hypotonia, progressing in childhood to a

parkinsonian bradykinetic movement disorder (Supplementary

Video 4; section 1). Three children were noted to have axial hypo-

tonia at presentation and with time all five cases developed a

movement disorder characterized by axial hypotonia, hypomimia,

ridigity, generalized bradykinesia, generalized dystonia with dys-

tonic tremor (Supplementary Video 4; section 2). Two children

developed chorea of their lower limbs and had paroxysmal dys-

tonic storms. Two cases had eye movement abnormalities with

saccadic intrusion on smooth pursuit in one and recurrent oculo-

gyric crises in the other. These two were also noted to have

orolingual dyskinesia as well as dystonic tremor of tongue and

limbs. All patients developed bulbar dysfunction and required arti-

ficial feeding through the nasogastric/gastrostomy route.

Cases 4 and 6–8 underwent neurotransmitter analysis and all

found to have raised CSF HVA: HIAA ratio in keeping with

DTDS (median ratio 7.2, range 6.8–31.9, and normal ratio range

1.0–4.0, Table 2). MRI brain imaging was normal in all those who

had imaging for Cases 4–8 and included standard axial and cor-

onal T1, T2 sequences with FLAIR and diffusion-weighted imaging.

Medical treatments tried in Cases 4–8 included L-DOPA, other

dopaminergic drugs, anticholinergics, gamma-aminobutyric acider-

gic agents and dietary tyrosine restriction. Case 8 was noted to

have a minimal (but unsustained) response to L-DOPA with im-

provement in her irritability and dyskinesia and also showed some

marginal temporary improvement in her bradykinesia with selegi-

line therapy. Overall this group of patients with classical DTDS

experience a progressive parkinsonism dystonia movement dis-

order that is medically refractory.

SLC6A3 gene mutational analysis
All eight patients in this cohort were found to harbour either

homozygous or compound heterozygous missense or splice site

mutations in the SLC6A3 gene (Table 3). In Case 3, whole

exome sequencing data were interrogated for candidate genes

causing parkinsonism dystonia, thereby revealing a homozygous

change (c.941C4T; Ala314Val) in SLC6A3. Retrospective single

nucleotide polymorphism (SNP) array analysis confirmed that this

SLC6A3 variant was contained within a 1.4 Mb region of homo-

zygosity shared by the three affected siblings (Cases 1–3), with a

different haplotype combination evident in both parents and the

unaffected sisters (Fig. 1).

For Cases 4–8, mutations were identified by direct Sanger

sequencing of SLC6A3. The mutations in Cases 4 and 5 were

briefly reported previously (Puffenberger et al., 2012). Novel pre-

viously unreported mutations were identified in all others. The

interval from presentation to definitive genetic diagnosis was

Table 2 CSF neurotransmitter profiles and results of magnetic resonance brain imaging

Case Age at lumbar
puncture

CSF HVA nmol/l
(age-related normal limits)

CSF HIAA nmol/l
(age-related normal limits)

HVA:HIAA ratio
(normal range 1–3.7)

MRI
brain

4 34 years 584 (145–342) 86 (67–140) 6.8 Normal

5 – – – – Normal

6 7 months 1705 (238–867) 218 (114–336) 7.8 Normal
1 year 2 months 10075 (238–867) 319 (114–336) 31.9

4 years 5 months 1342 (231–840) 199 (68–220) 7.1

10 months 1271 (294–1115) 185 (129–520) 6.8 Normal

8 9 months 3523 (295–932) 632 (114–336) 6.8 Normal

HVA = homovanillic acid; HIAA = hydroxyindoleacetic acid.
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markedly delayed (median 8 years, range 0.5–18). Within every

patient’s family, identified mutations segregated appropriately

with disease status, with parents being heterozygote carriers and

siblings being either wild-type or carriers. None of the familial

heterozygote carriers (parents or siblings) had symptoms of a

movement disorder or psychiatric disease. None of the identified

mutations were reported polymorphisms in genomic databases

including the 1000 Genomes project (www.1000genomes.org/),

dbSNP137 and the NHLBI Exome Sequencing project. Sequence

alignment for novel missense mutations showed Ala314, Gly386,

Tyr470, Arg85 and Arg445 amino acid residues to be highly con-

served throughout mammalian species. The splice site mutations

were predicted to cause deleterious splicing leading to either

nonsense-mediated decay or a truncated protein product

(Berkeley Drosophila Genome project’s splice site prediction,

www.fruitfly.org/seq_tools/splice.html).

In vitro heterologous expression system
for dopamine transport assay and cell
surface expression studies
For all identified missense mutations (atypical DTDS presenta-

tion mutant protein = Ala314Val; classical DTDS presentation

mutant proteins = Arg85Leu, Tyr470Ser, Arg85Leu, Arg445Cys,

co-expressed Arg445Cys–Arg85Leu), the transporter activity of

mutant human DAT proteins was compared to that of wild-type

human DAT after transient expression of mutant human DAT in

LLC-PK1 cells (Table 4). Wild-type human DAT had normal trans-

port activity and amongst all human DAT mutants, Ala314Val

(atypical DTDS) displayed the highest 3H-dopamine uptake at

8.83 + 0.71% of wild-type and this enabled us to monitor its

uptake characteristics in more detail revealing unchanged Km,

Table 4 Dopamine transport and cocaine analogue binding by wild-type and mutant human DAT

Case DTDS Type Human DAT mutant 3H-dopamine uptake 3H-CFT binding

Kd, (nM) Bmax, (pmol/mg) Inhibition by
dopamine,
Ki (mM)

Wild-type Controla 14.1 � 2.6 3.47 � 0.66 4.22 � 0.44

1–3 Atypical Ala314Val 8.83 � 0.71% of WTc 5.31 � 1.47 d 0.24 � 0.03 d 1.10 � 0.19 d

6 Classical Gly386Arg 0 b 5.78 � 1.42 0.55 � 0.15 d 8.59 � 1.13

7 Classical Tyr470Ser 0 b 34.4 � 8.8 0.41 � 0.12 d 19.2 � 4.9 d

8 Classical Arg445Cys 5.65 � 0.18% of WTc 128 � 25 d 2.93 � 0.54 382 � 189 d

Arg85Leu 0.50 � 0.06% of WTc 20.8 � 7.1 0.65 � 0.12 d 1574 � 364 d

Arg445Cys with Arg85Leu 1.82 � 0.19% of WTc 90.1 � 19.1 d 2.06 � 0.40 d 307 � 97 d

Each case was assessed for transporter properties with corresponding wild-type (WT) controls.
Cases 4 and 5 harboured intronic mutations and experiments were only undertaken in missense mutations identified in Cases 1–3,6,7 and 8 and thus there were four sets of
experiments.
Wild-type values were combined in the overall statistical analysis of 3H-CFT binding data. All results are for transiently transfected cells. Values shown are mean � SE.
aUptake was measured with 10 nM 3H-dopamine in the assay. Control 3H-dopamine uptake activity was �0.15 pmol/mg protein/min for the four sets of experiments.
bNo specific transporter activity (n = 3).
cP50.05 compared with wild-type (one-sample Student’s t-test, with wild-type in the set at 100%, Bonferroni-corrected for multiple comparisons; n = 3 for each
expression condition).
dP5 0.05 compared with wild-type (one-way ANOVA followed by Dunnett multiple comparisons with wild-type; n = 9 for wild-type and n = 3–4 for each mutant
expression condition).

Table 3 SLC6A3 mutations identified in new patients with DTDS

Case Family Ethnic origin Parental
consanguinity

Mutation status Location of mutation and
mutation type

Mutations in DNA Predicted
effect
on protein

1 1 Pakistani Asian Yes Homozygous Exon 7, missense mutation c.941C4T Ala314Val

2 1 Pakistani Asian Yes Homozygous Exon 7, missense mutation c.941C4T Ala314Val

3 1 Pakistani Asian Yes Homozygous Exon 7, missense mutation c.941C4T Ala314Val

4 2 Mixed European Yes Homozygous Intron 9, splice site mutation c.1269 + 1G>A Not known

5 2 Mixed European Yes Homozygous Intron 9, splice site mutation c.1269 + 1G>A Not known

6 3 Italian No Compound
heterozygous

Intron 3, splice site mutation c.287-5_287-2delinsAAC
c.1156G4A

Not known
Gly386ArgExon 8, missense mutation

7 4 Mixed European Yes Homozygous Exon 3, missense mutation c.1408_1409delinsAG Tyr470Ser

8 5 Mixed Jewish Ashkenazi/
Iranian/Yemen/
Turkish

No Compound
heterozygous

Exon 2, missense mutation c.254G4T
c.1333C4T

Arg85Leu
Arg445CysExon 10, missense mutation
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but significantly reduced Vmax (to 9.9 � 0.6% of wild-type,

mean � SE, n = 4, P = 0.007, Student’s t-test). All other mutant

proteins showed absent transporter activity (Gly386Arg,

Tyr470Ser) or severely reduced activity at �0.5–5.65% of

normal (Arg85Leu, Arg445Cys) compared with wild-type human

DAT. Activity was not further lowered in co-expressed

Arg445Cys–Arg85Leu (1.82%).

Compared with the Kd of 3H-CFT binding in wild-type human

DAT (14.1 nM), the Kd was decreased for Ala314Val (5.31 nM)

and increased (i.e. reduced affinity) in the mutants Arg445Cys

and co-expressed Arg445Cys–Arg85Leu (90.1–128 nM). The

values for Gly386Arg, Tyr470Ser and Arg85Leu (5.78–34.4 nM)

were not statistically different from the wild-type Kd.

The Ki of dopamine inhibiting cocaine-analogue binding was

decreased for Ala314Val (1.1mM) but increased (i.e. reduced

affinity) in most other mutants compared with that of wild-type

human DAT with the most marked affinity reduction in Arg85Leu

(Ki = 1574 mM versus 4.22mM in wild-type human DAT). Again,

co-expression of Arg445Cys–Arg85Leu did not lead to further

lowered dopamine affinity.

Maximal binding of 3H-CFT to cells mainly represent surface

binding (Chen et al., 2004) and this was reduced up to 14

times compared with wild-type in all current human DAT mutants;

again, it was not further reduced upon co-expression of

Arg445Cys–Arg85Leu.

Analysis of whole cell lysates by immunoblotting with anti-C-

terminal DAT antibody (Fig. 2A bottom portion) showed complete

absence of mature glycosylated DAT (85 kDa) in mutants

Gly386Arg and Tyr470Ser. There was appreciably reduced expres-

sion of mature (glycosylated) DAT for mutants Ala314Val,

Arg85Leu, and co-expressed Arg445Cys–Arg85Leu. Mutant

Arg445Cys (classical DTDS) showed most expression of mature

DAT being only slightly reduced compared with wild-type. In all

mutants, the ratio of mature to immature/unglycosylated DAT

(55 kDa) had shifted towards the immature species with almost

equivalent amounts of unglycosolated DAT compared with wild-

type observed in mutants Gly386Arg and Tyr470Ser (with asso-

ciated absence of glycosolated DAT in these). The biotinylation

experiments (Fig. 2A) revealed essentially the same expression

pattern.

Amperometry
Amperometry studies were possible for mutant Arg445Cys as

there was appreciable expression on the cell surface, unlike

other mutants. Cells expressing wild-type and mutant human

DAT Arg445Cys were loaded with dopamine (2 mM) by a

whole-cell patch clamp pipette. Amphetamine (10 mM) induced a

robust dopamine release from wild-type human DAT cells (quan-

tified by amperometric current). Amphetamine failed to induce

dopamine release from mutant human DAT Arg445Cys cells

(*P50.05 Student’s t-test wild-type human DAT versus human

DATArg445Cys, n = 4). The DAT inhibitor cocaine (10 mM) did not

alter the amperometric current signal in human DAT nor human

DATArg445Cys (n = 3), indicating that there was no constitutive

DAT-mediated dopamine efflux (Fig. 3).

Discussion
DTDS is a recently described neurotransmitter disease that is clas-

sically characterized by an infantile onset, complex progressive

motor disorder that is pharmacoresistant and life-limiting (Kurian

et al., 2009, 2011a). We now present the clinical, biochemical and

genetic features of a cohort of newly identified DTDS patients

including atypical disease presentation in adolescents and the

first patient with infantile onset DTDS surviving into

adulthood. We propose that mutations in SLC6A3 not only

cause disease in infancy, but can also result in a phenotypic spec-

trum of severe progressive movement disorders with onset in

childhood/adolescence and also in adulthood (Henriksen et al.,

2012) that has not been previously reported. We propose that

DTDS should now be recognized as a phenotypic continuum

with variable age of onset from infancy (classical DTDS, disease

onset 51 year), atypical juvenile and adult onset DTDS (Henriksen

et al., 2012).

Our cases highlight the presentation of adolescents who have

DTDS associated with SLC6A3 mutations, with later disease pres-

entation and a case of classical infantile DTDS patients surviving

into adulthood. We describe the clinical course of three brothers

presenting in early adolescence with tremor with severe disease

progression leading to a ‘juvenile parkinsonism’ phenotype with

onset of hypomimia, speech difficulties and then frank parkinson-

ism with hand tremor, bradykinesia and ocular flutter over two

Figure 2 Immunoblotting studies of mutant human DAT. LLC-

PK1 cells transient transfected with indicated human DAT con-

structs were subjected to cell surface biotinylation. Biotinylated

proteins (A, top) and whole cell lysates (A, bottom) were ana-

lysed by western blotting with antibodies against DAT (A) and

b-actin (B). Equal amounts of total lysate protein were loaded

for each mutated human DAT as for wild-type examined in the

same experiment. There were four sets of experiments with their

own wild-type (WT) controls, performed at different points in

time, on Tyr470Ser, Gly386Arg, Arg445Cys/Arg85Leu/

Arg445Cys-Arg85Leu, and Ala314Val.
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decades. Our finding of this phenotypic spectrum and later disease

onset is further corroborated by an abstract documenting a 40-

years-old patient with early-onset Parkinson’s disease presenting

with unilateral hand tremor at 28 years, associated with abnormal

DAT scan imaging. This patient with clinical features of early-onset

Parkinson’s disease was found to be compound heterozygous for

SLC6A3 mutations (Ile312Phe, Asp421Asn) (Henriksen et al.,

2012).

In Family 1 with atypical DTDS, unusually all male children are

affected whereas the five sisters are unaffected. Overall in DTDS

there does not appear to be a clear specific gender bias, as our

previously reported cohort of infantile DTDS (Kurian et al., 2011a)

included nine females and two males. Review of all current cases

of DTDS suggests a slight female preponderance of 1.5 females: 1

male (data collated from current manuscript; Kurian et al., 2011a;

Henriksen et al., 2012), but it is not possible to consider a mean-

ingful gender effect in DTDS with such limited sample size.

The eye movement abnormalities of DTDS include oculogyric

crises, ocular flutter and saccade initiation failure (Kurian et al.,

2011a). Oculogyric crises are also characteristically seen in other

monoaminergic neurotransmitter disorders associated with dopa-

mine deficiency, including tyrosine hydroxylase deficiency, alpha

aromatic decarboxylase deficiency and pterin defects (Willemsen

et al., 2010; Kurian et al., 2011b) and also as drug-induced-

phenomena (Darling et al., 2013). Although many ophthalmic

symptoms are observed in other extrapyramidal movement dis-

orders (including Parkinson’s disease-associated dry eye, decreased

blink rate, vergence dysfunction, progressive supranuclear palsy-

related lid retraction, frequent square-wave jerks and supranuclear

palsy) (Clark and Eggenberger, 2012), oculogyric crises and flutter

are rarely reported and therefore may aid in the clinical discrimin-

ation of patients with DTDS with atypical late-onset disease from

other adult parkinsonian syndromes or other monogenic causes of

Parkinson’s disease.

In this report, we additionally describe the first patient with

infantile onset DTDS surviving into adulthood who was only gen-

etically confirmed at 34 years of age. At this stage in her 30 s, she

had features of parkinsonism with prominent bradykinesia, and

was clinically labelled as having ‘juvenile parkinsonism’. Although

she showed many of the early features of classical infantile DTDS

(including early childhood dystonia, pharmacoresistance to thera-

peutic agents and eventual clinical progression to akinesia) (Kurian

et al., 2009, 2011a) her relative longevity into adulthood suggests

that there may be a subgroup of adults with ‘juvenile Parkinson’s

disease’ who have undiagnosed DTDS, in whom either the early

disease course was not recognized or CSF neurotransmitter ana-

lysis has not been undertaken. Interestingly, the sister of the pa-

tient described above (with the same homozygous SLC6A3

mutation), presented differently, with a hyperkinetic dystonic

movement disorder who died at age 10 years. We postulate

that such intrafamilial variation in clinical disease severity and pres-

entation may be due to other currently undetermined genetic in-

fluences and/or environmental factors.

DAT consists of 12 transmembrane protein domains (TM1–12;

Fig. 4) functioning as a gated channel with two conformations

either open exclusively to the extracellular or intracellular milieu

(Yamashita et al., 2005). These are delineated as outward-facing

and inward-facing, respectively, and when the extracellular sub-

strate binds to its primary binding site termed S1, alongside Na +

and Cl�, this results in a conformational change from outward-

facing to inward-facing (Yamashita et al., 2005; Kniazeff et al.,

2008; Shan et al., 2011). In the bacterial leucine transporter LeuT

molecular model (Yamashita et al., 2005; Singh et al., 2007; Zhou

et al., 2007) the conformational change mechanism is a result of

continuous interruption and reformation of a salt bridge between

Arg60 in the N-terminus close to the cytoplasmic end of TM1 and

Asp346 at TM8; this salt bridge is stabilized by a cation-� inter-

action between Arg60 and Tyr335 at the cytoplasmic end of TM6

(Kniazeff et al., 2008). Another binding site termed S2 is located

at the inner end of the extracellular cavity of the transporter, just

above the extracellular gate, which (when closed) includes a salt

bridge between Arg85 in TM1 and Asp476 at the top of TM10

(Torres et al., 2003b; Kniazeff et al., 2008; Shan et al., 2011). The

S2 site is considered to be relevant in the overall substrate trans-

location cycle (Beuming et al., 2006; Shi et al., 2008).

The Ala314Val (atypical juvenile DTDS) is an intriguing mutant

and distinct among the mutants studied here, retaining the highest

residual dopamine uptake capability [8.8% for uptake measured at

a dopamine concentration far below its Km (Table 4) and 10% as

inferred from a 90% drop in Vmax with unchanged Km, data not

shown]. This may, in part, underlie the later-onset juvenile parkin-

sonism associated with this mutation in comparison to the muta-

tions identified in classical DTDS. Ala314 is the direct neighbour of

Asp313, an S2 residue in human DAT studied by our group

Figure 3 Amperometry studies for human DAT variant

Arg445Cys. (A) HEK293 cells expressing human DAT or human

DATArg445Cys were loaded with dopamine (2 mM) by a

whole-cell patch clamp pipette. Amphetamine (10 mM) induces

a robust dopamine release from human DAT cells (quantified by

amperometric current). Amphetamine fails to induce dopamine

release from human DAT Arg445Cys cells (*P50.05 Student’s

t-test human DAT versus human DAT Arg445Cys, n = 4). (B)

The DAT inhibitor cocaine (COC; 10 mM) does not alter the

amperometric current signal in human DAT nor human DAT

Arg445Cys (n = 3), indicating that there is not a constitutive

DAT-mediated dopamine efflux.
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previously (Chen et al., 2004). In our LeuT-based homology model

(Fig. 5), the aliphatic side-chain of Ala314 is pointing outward with

respect to the S2 pocket, and thus its increased bulk when replaced

by valine can be expected to have less impact on DAT function than

the other DAT-mutants identified in the classical DTDS with infantile

parkinsonism dystonia phenotype. For example, the mutation of

Arg85Leu (classical DTDS) is part of the extracellular gate and this

point mutation inhibits normal gate closure during transport, and

therefore would be expected to interfere with DAT function more

severely than Ala314Val. The Tyr470 (classical DTDS) is just outside

S2 (Fig. 5), at the beginning of TM10 at the extracellular side; it is

conceivable that its mutation conformationally affects nearby resi-

dues identified as part of the extracellular permeation pathway (Shan

et al., 2011). In addition the Gly386 (classical DTDS, Fig. 5) is located

in extracellular loop 4 (EL4), a region with great conformational mo-

bility and likely to be involved in the cycle for substrate translocation

(Shan et al., 2011). The corresponding Ala319 in LeuT also changes

position with antidepressant binding to LeuT (Singh et al., 2007).

Our homology modelling of DAT based on LeuT shows EL4 as a

hairpin folding back into the membrane interior, with arginine in

the 386 position pointing its side chain with steric bulk into the S2

binding site, thereby obscuring it and likely interfering with substrate

translocation.

The Arg445 is located in the lower portion of TM9 and

Arg445Cys (classical DTDS, Fig. 5) effects on DAT structure-

function relationships are less predictably deleterious and appears

distinct to the other mutations identified. Our immunoblot studies

for Arg445Cys human DAT show appreciable levels of mature

DAT compared with wild-type, suggesting that for this mutant,

unlike the majority of other mutants, there is both near-normal

DAT glycosylation and trafficking of the mature transporter to the

cell surface. Despite this, it is clear that Arg445Cys does indeed

negatively impact DAT function with impaired dopamine uptake,

dopamine recognition and binding (Table 4). In addition we have

demonstrated the striking loss of amphetamine-mediated dopa-

mine efflux for Arg445Cys, further indicating this mutation is

likely to severely impact on general DAT conformational capability,

in either inward or outward flux direction. It is understood that

amphetamine (as is dopamine) is taken up by DAT and thus,

reduced substrate uptake capability may limit intracellular amphet-

amine accumulation and therefore amphetamine-induced dopa-

mine efflux. However, Arg445Cys does maintain some substrate

Figure 4 Schematic representation of the dopamine transporter. The DAT consists of 12 transmembrane domains (TM1–12) connected

by extracellular (EC) and intracellular (IC) loops, some of which include helical portions (e2, e3, e4a, e4b, and i1, i5, respectively). Amino

acids are indicated by white circles and mutated amino acids by red circles. All amino acids subject to missense mutation are identified:

Arg85 (R) is shown at transmembrane domain 1 b, Gly386 (G), in the e4b portion of EC loop 4, Ala314 (A) at domain 6 a, Arg445 (R)

at the bottom of TM9 and Try470 (Y) at the top of TM10.
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transport capacity [amphetamine was applied at a concentration

(10 mM) much higher than Km for human DAT], amphetamine

uptake, and the hydrophobicity of amphetamine likely permits

some translocation across the plasma at high concentrations

(Sulzer et al., 2005). The total lack of dopamine efflux even

with 2 mM dopamine directly perfused into the cytoplasm is strik-

ing and suggests a direct effect of Arg445Cys on the reverse

transport capability of DAT.

Our present studies on mutant human DAT demonstrate im-

paired transporter function is likely to be multifactorial and in-

volves: (i) loss of the primary function of DAT as indicated by

absent or severely reduced dopamine uptake; (ii) reduced DAT

cell surface binding; (iii) in most cases reduced affinity of DAT

for dopamine; (iv) generally reduced dopamine recognition by

DAT; and (v) decreased expression of mature DAT with an pre-

dominance of excess unglycosylated DAT, which is known to

negatively impact both the transport function of DAT and also

trafficking of DAT to the cell surface (Torres et al., 2003b;

Torres, 2006). Our data highlight that further work is required

to determine the exact mechanisms by which mutant human

DAT, and Arg445Cys in particular, lead to disease and the

newly identified DTDS clinical phenotypes, such as further inves-

tigation of undetermined effects of structure, aberrant DAT fold-

ing and oligomerization defects. In our previous work on DTDS,

the postulated disease mechanism is loss of dopamine re-uptake,

which leads to depleted presynaptic dopamine stores and exces-

sive extraneuronal dopamine, which may also overstimulate pre-

synaptic D2 autoreceptors leading to inhibition of tyrosine

hydroxylase and subsequently reduce dopamine production

(Blackstone, 2011). Excess extraneuronal dopamine may also

cause further consequences such as desensitization of postsynaptic

dopamine receptors (with alterations in downstream signalling)

and dopamine-induced genotoxicity (Gainetdinov and Caron,

2003; Stopper et al., 2009).

As reported in this study and by our group previously, the ma-

jority of infantile cases the mutant human DAT retain 0–5% re-

sidual DAT activity whereas the human DAT mutants Ala314Val

(atypical juvenile DTDS cases) retain higher residual dopamine.

Furthermore human DAT mutants of atypical juvenile DTDS

cases demonstrate some residual and even up to normal levels

of expression of mature transporter protein at the cell surface

(Henriksen et al., 2012), whereas surface expression of mature

DAT in classical infantile-onset DTDS is severely reduced or

absent (Kurian et al., 2009, 2011a). These atypical juvenile and

adult DTDS (Henriksen et al., 2012) cases provide insight into

potential genotype–phenotype correlations in DTDS and suggest

that different SLC6A3 genotypes may therefore have a differential

impact on DAT dysfunction. Our eldest atypical DTDS patient at

age 28 years appears to have a more severe disease progression

than that of the patient described by Henriksen et al. (2012) and

this may be explained by differing DAT residual activity. Our find-

ings in combination, would suggest that residual DAT activity may

result in postponing DTDS disease onset from infancy to adoles-

cence or even adulthood. It is also likely that other currently un-

determined genetic and environmental factors may play a role in

onset and severity of disease.

Our study suggests that mutations in SLC6A3 lead to a con-

tinuum of DTDS phenotypes whereby the clinical phenotype ap-

pears to be related to residual DAT function, which determines the

onset and severity of symptoms. Higher residual DAT activity may

postpone the age of disease onset. Similar phenotypic continuums

(influenced by the level of residual protein function) are observed

in other neurotransmitter disorders such as tyrosine hydroxylase

deficiency (Willemsen et al., 2010; Pons et al., 2013).

The differential diagnosis for genetic dystonia parkinsonism con-

tinues to grow with an ever expanding number of causes and

syndromes identified in both infants/children (neurotransmitter de-

fects, metal storage diseases, mitochondrial disorders, lysosomal

storage disorders) (Garcı́a-Cazorla et al., 2011) and adolescents/

adults (parkin, DJ1 and PINK1-related Parkinson’s disease,

PLA2G6-associated neurodegeneration, Kufor-Rakeb disease and

beta-propeller protein-associated neurodegeneration syndrome)

(Schneider and Bhatia, 2010; Haack et al., 2012). In addition to

these disorders, we propose that DTDS should now also be a dif-

ferential diagnosis for juvenile Parkinson’s disease. We advocate

that in adolescents or adults with a clinical picture of juvenile

parkinsonism (onset 520 years) investigations for DTDS should

be considered, including: (i) CSF neurotransmitter studies; (ii)

DAT SPECT scan (abnormal in DTDS) (Kurian et al., 2011a); and

(iii) SLC6A3 sequencing. Such investigations should assist differen-

tiation of juvenile parkinsonism as a result of DTDS from other

parkinsonian disorders.

In conclusion, we report a cohort of patients with DTDS identi-

fied in infants and adolescents and provide data corroborating loss

of DAT function in this condition. DTDS is now not only described

in children with infantile-onset parkinsonism dystonia, but also in

Figure 5 Structural homology modelling of DAT based on

LeuT. Transmembrane domains and loops are in grey; mutated

amino acids affected by missense mutations in yellow and bound

ions in purple (Na + ) and green (Cl�).
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adults with juvenile-onset parkinsonism and a new case report of

early onset Parkinson’s disease (Henriksen et al., 2012). DTDS can

mimic a number of movement disorders and should therefore be

investigated in atypical dystonic/dyskinetic/spastic cerebral palsy,

progressive childhood movement disorders, juvenile parkinsonism,

parkinsonism dystonia and early onset Parkinson’s disease in

adults. Further elucidation of disease mechanisms related to this

transportopathy will provide insight into the processes underpin-

ning this progressive disorder, as well as identifying potential

therapeutic targets for this pharmacoresistant condition.
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