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Abstract

Estimators and tests are developed and analyzed for a general class of vector error

correction models which allow for asymmetric and non-linear error correction. For a given

number of cointegration relationships, general hypothesis testing is considered, where

testing for linearity is of particular interest as parameters of non-linear components vanish

under the null. To solve the latter type of testing, we use the so-called sup tests, which

here requires development of new (uniform) weak convergence results. These results are

we believe useful in general for analysis of non-stationary non-linear time series models.

We provide a full asymptotic theory for estimators as well as standard and non-standard

test statistics. The derived asymptotic results prove to be new compared to results found

elsewhere in the literature due to the impact of the estimated cointegration relations.

With respect to testing, this makes implementation of testing involved, and bootstrap

versions of the tests are proposed in order to facilitate their usage. The asymptotic

results regarding the QML estimators extend and improve results in Kristensen and

Rahbek (2010, Journal of Econometrics) where estimation, but not testing, of symmetric

non-linear error correction was considered. A simulation study shows that the �nite

sample properties of the bootstrapped tests are satisfactory with good size and power

properties for reasonable sample sizes.
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1 Introduction

We develop estimators and test statistics for a class of nonlinear vector error correction

models with r unknown cointegration vectors, �, with r known. Estimators and test statistics

are based on the Gaussian (quasi-)likelihood, and we propose both Lagrange Multiplier (LM),

Wald and Likelihood Ratio (LR) test statistics. Our framework allows for testing a wide

range of relevant hypotheses. Of particular interest is the hypothesis of nonlinearity, where

in general nuisance parameters entering the nonlinear component vanish under the null. We

solve this problem by employing sup-tests as advocated in Andrews and Ploberger (1994,

1995), Davies (1987), Hansen (1996) and Hansen and Seo (2002). We derive the asymptotic

distributions of both estimators and test statistics under explicit conditions involving the

nonlinear transfer function and existence of relevant moments. As part of the theoretical

analysis, new functional central limit theorems along with (uniform) weak convergence of

stochastic integrals are developed which should be of independent interest in the analysis of

nonlinear, non-stationary models.

Allowing for unknown cointegration relations complicates the analysis and the resulting

asymptotic distributions of both the quasi-maximum likelihood estimators (QMLE�s) and

test statistics considerably. In particular, we �nd non-standard limiting distributions of both

estimators and test statistics, when compared to the ones established in linear cointegration

models and for nonlinear stationary models, including cointegration models with known long-

run parameters. This is due to the fact that the limiting distributions of the estimators of

the long-run and short-run parameters are not asymptotically independent. This again spills

over to the distribution of the test statistics which are in�uenced by both the estimated

long-run and short-run parameters. This happens even in the case when the null hypothesis

only involves restrictions on either of the parameters. If in addition parameters vanish under

the null, as is often the case in testing for linearity in the short-run dynamics, the limiting

distributions complicate further, and the proposed sup-tests are shown to converge towards

a supremum of a squared non-Gaussian process. As such, our results show that one cannot

ignore the estimation of the long-run parameters if these are unknown. This also explains

why our �ndings are di¤erent from existing results on testing in nonlinear time series models.

In particular, as discussed in further detail below, previous studies investigating sup-tests in

cointegration models either assume that the cointegrating relations are known, or that the

additional estimation error due to unknown (super consistent) relations does not a¤ect the

tests.

We would like to stress that while our framework allows for testing a broad range of

di¤erent hypotheses, we do not address the issue of testing for the number of cointegration

relationships, r. To be more precise, we require throughout that � is identi�ed under null.

This rules out testing for the number of cointegrating vectors. In order to develop cointe-

gration rank tests, we need to specify how the error correction mechanism changes as the

number of cointegration relation changes. While this is obvious in a linear setting, this is

non-trivial in our general, nonlinear framework. For speci�c parameterizations of the non-

linear transfer function, it should be possible to analyze cointegration rank tests using the
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techniques developed in this paper. We leave this for future research.

The paper o¤ers a number of novel contributions relative to the existing literature: First,

the asymptotic theory for the QMLE�s extend the ones of Kristensen and Rahbek (2010)

who restrict themselves to a smaller class of nonlinear error correction models that does

not include asymmetric adjustments. Our class of models contains their model as a special

case, and in addition include, but is not restricted to, asymmetric smooth transition (see e.g.

Saikkonen, 2008), as well as the (possibly asymmetric) polynomial models (see e.g. Baghli,

2005 and Escribano, 2004). This is an important extension since asymmetric adjustments

have been found in many empirical studies; see e.g. Hansen and Seo (2002) and Kilic (2011).

Our results for the QMLE�s also complement the ones of Seo (2011) who consider estimation

of threshold error correction models using kernel smoothers to handle discontinuities implied

by the thresholds.

Second, to the authors�knowledge, this is the �rst paper to develop a rigorous framework

for testing in smooth, multivariate models with non-stationary regressors. There is a large

literature on sup-testing in a stationary setting: Hansen (1996) develops an asymptotic theory

for sup-tests in a stationary setting. In this case, the limiting distributions can be written

as a supremum over squared Gaussian processes. This theory is extended to threshold and

smooth transition cointegration models with known cointegrating relations (�) in Gonzalo

and Pitarakis (2006), Kilic (2011) and Seo (2006). Since � is assumed known, all regressors

can e¤ectively be treated as stationary; as consequence, their models and results are in line

with Hansen (1996).

Taking into account the estimation of � proves to be a non-trivial extension since we have

to deal with non-linearities and non-stationary regressors simultaneously. The most related

study that also deals with these two features is Caner and Hansen (2001) who test for linear-

ity in univariate threshold autoregressions with unit roots using a sup-test. We �nd in the

multivariate case, as they do for the univariate case, that the limiting distribution of the sup

test statistic consists of two terms: A stationary component due to the short-run parame-

ters and a non-stationary component due to the presence of unknown long-run parameters.

Hansen and Seo (2002) and Nedeljkovic (2009) also develop sup-tests of linearity in threshold

and smooth transition cointegration models respectively. However, they (implicitly) assume

that the estimation uncertainty of � has no impact on the asymptotic behaviour of their test

statistic, and so e¤ectively are back in the aforementioned framework of Hansen (1996).

In a di¤erent vein, some studies have proposed to test for linearity by approximating the

true model using a Taylor expansion of the non-linear component (Choi and Saikkonen, 2004;

Kapetanios, Shin and Snell, 2006). This removes the problem of vanishing parameters, but

on the other hand one will in general expect loss of power against the nonlinear alternative of

interest, since a misspeci�ed model is being employed in the testing; see, for example Franq

et al (2010), for Monte Carlo evidence in the stationary case.

To establish our theoretical results, it proves necessary to develop a new functional central

limit theorems (FCLT�s) uniformly over the unidenti�ed parameters, as well as uniform weak

convergence to stochastic integrals. Such results are useful in the analysis of nonlinear models

with non-stationary components, and we therefore establish uniform FCLT�s in a general
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framework that includes, but is not restricted to, the particular class of non-linear error

correction models of this study. These results generalize the ones established in Caner and

Hansen (2001, Section 2) and will be useful in the analysis of other non-linear time series

models; as such, they should be of independent interest.

Due to the highly non-standard limiting distribution of estimators and test statistics, we

propose to implement the estimation and testing procedures using bootstrapping based on the

ideas developed in Cavaliere, Rahbek and Taylor (2010a-b, 2011). In particular, we propose

to use the wild bootstrap, which should make the bootstrap tests robust to heteroskedasticity.

Seo (2006, 2008a) and Gonzalo and Pitarakis (2006) also consider bootstrap methods for

testing in non-stationary time series models but in di¤erent settings. A simulation study

investigates the �nite sample performance of the proposed bootstrap version of the sup-LR

test. We �nd that the proposed testing scheme has good size and power properties and so

o¤er a convenient tool for inference in nonlinear error correction models.

The remains of the paper is organized as follows: We present the model and propose

estimators and test statistics of the parameters in Section 2. The auxiliary functional central

limit theorems (FCLT) are derived in Section 3. These are then in turn used in Section 4

and 5 to derive the limiting distributions of estimators and test statistics respectively. A

bootstrap procedure for evaluating the distribution of the test statistic is proposed in Section

6, while Section 7 presents the results of a simulation study. Section 8 concludes. All proofs

and lemmas have been relegated to Appendices A-B and C-D respectively.

Throughout, the following notation will be used: We let C[0; 1] and D[0; 1] denote the

space of continuous and cadlag functions respectively, and L1 (A) the space of uniformly
bounded functions on a given domain A; see van der Vaart and Wellner (1996, Ch. 1.5). We
use P! and D! to denote convergence in probability and distribution respectively on Rk; We
use W! to denote weak convergence on function spaces, where these will be speci�ed for each

case. All convergences take place as T !1. Furthermore, df (x; dx) denotes the di¤erential
of a mapping f (x) in the direction dx; by vec (a; b), we mean

�
vec (a)0 ; vec (b)0

�0
: For any

parameter �, �0 will denote its true, data-generating value; for any matrix m � n matrix A

of full column rank n � m, we de�ne �A = A (A0A)�1, and A? as a m� (m� n) matrix such
that [A;A?] has full rank m and A0A? = 0.

2 Framework

2.1 Model and parameters

Let Xt 2 Rp, t = 1; :::; T , be observations from the following error correction model (ECM),

�Xt = g
�
�0Xt�1

�
+�1�Xt�1 + :::+�k�Xt�k + "t; (2.1)

where �Xt = Xt � Xt�1 and the error term "t is a martingale di¤erence sequence. The

function g (�) describes the (potentially nonlinear) error correction towards the long-run
equilibrium. The equilibrium of the process is characterized by the cointegration relations;

namely, the r � 1 linear combinations �0Xt, with � 2 Rp�r.
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Without loss of generality, we specify g (�) as composed by a linear and nonlinear part:

g
�
�0Xt�1

�
= ��0Xt�1 + � 

�
�0Xt�1; �

�
: (2.2)

In this general class of speci�cations, the deviation from the basic linear ECM is given by

the r�-dimensional vector function  (�0Xt�1; �) multiplied by the (p� r�)-dimensional pa-
rameter �. The parameter � in the nonlinear component may contain matrices and we let

d� = dim (vec (�)) denote the dimension of the vectorized version of �. The above speci�ca-

tion is su¢ ciently general to cover most known nonlinear error correction models found in

the literature. Note that we here suppress the dependence of g (�) on the parameters, �; �
and �.

The form of g in eq. (2.2) embeds various smooth transition error correction models. In

general, allowing for S di¤erent regimes in  (�) indexed by s = 1; :::; S; we may write,

� (z; �) =

SX
s=1

�s s (z; �) with � := (�1; :::; �S) ,  (z; �) := ( 1 (z; �) ; :::;  S (z; �))
0 : (2.3)

Depending on the functional form of the  s, this formulation allow for both symmetric and

asymmetric response functions. A key example of the �rst type is the logistic STECM in

Kristensen and Rahbek (2010), where

 s (z; �) :=
�
1 + exp

�
(z � !s)0As (z � !s)

	��1
z; (2.4)

with As positive de�nite (r�r)-dimensional matrices, while !i are r-dimensional vectors, and
r� = Sr. The parameter � is given by � = (!;A) with ! = (!1; :::; !S) and A = (A1; :::; AS).

With  (z; �) chosen this way, observe that  (z; �) = o (1) as kzk ! 1 and, hence for

large deviations as measured by Zt = �0Xt, the linear component �z of g (z; 
) in eq. (2.2)

asymptotically dominates. Also note that the nonlinearity vanishes if indeed � = 0, in which

case the STECM reduces to the linear ECM with g (z; 
) = �z. To allow for asymmetric

responses, Saikkonen (2008) studies alternative general speci�cations of  : An example of

Saikkonen (2008) is

 s (z; �) =
�
1 + exp

�
a0s (z � !s)

	��1
z; (2.5)

with as being an r�dimensional vector. Depending on whether (z � !i) is orthogonal to as
as kzk ! 1;  s (z; �) will also asymptotically be contributing to the linear �z part in the
error correction. The above class of models also contains threshold models where  (z; �)

contains indicator functions, see e.g. Hansen and Seo (2003) and Seo (2011). However, we

shall impose smoothness restrictions on  (z; �) when analyzing our proposed estimators and

test statistics which rule out threshold models. These could potentially however be dealt with

by modifying our proposed estimators, replacing indicator functions by kernel smoothers, see

e.g. Seo (2011).

Our model does not include deterministic trends and/or exogenous (stationary) regres-

sors. We believe that our analysis could be extended to handle these more general cases, but

to avoid overly lengthy assumptions and proofs we leave such extensions for future research.

Regarding identi�cation, then as common in the cointegration literature the (p� r)-
dimensional parameter � is only identi�ed up to a normalization. A number of di¤erent
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normalizations of � exist in the literature; most of these can all be expressed in terms of a

(p� (p� r)) dimensional matrix �0, such that

� � �0 = �0b; (2.6)

and b is the ((p� r)� r) dimensional parameter to be estimated. Thus, b0 = 0 corresponds
to the true parameter value �0. We will here remain �exible regarding the speci�c choice

of �0 and merely assume that �0 has been chosen such that there exists a matrix sequence

KT with K
�1
T �00X[Ts] converging weakly, c.f. Assumption 4.5. In practice, the choice of �0

will normally be guided by two important issues: First, in many cases it will be useful to

choose �0 such that K�1
T �00X[Ts] has a convenient asymptotic limit. For example, for the

symmetric error correction model in Kristensen and Rahbek (2010), �0 is chosen such that

the limiting distribution is split into a stochastic and deterministic component. We allow for

this normalization, but do not restrict our attention to this particular choice since in other

(asymmetric) models such a decomposition may not be available. Second, depending on the

hypotheses of interest, �0 should be chosen accordingly. Consider, for example, the case p = 2

and r = 1 such that � = [�1; �2]
0 2 R2; if one is interested in testing hypotheses involving

only �2, a convenient choice is �0 = [0; 1] such that �1 is �xed while �2 is a free parameter;

see Luukkonen, Ripatti and Saikkonen (1996) for a further discussion of normalization in

cointegrating VAR systems.

Given the chosen normalization, we can rewrite the model in eq. (2.1) as a nonlinear

regression model:

�Xt = g
�
Z0;t�1 + b

0Z1;t�1
�
+�Z2;t�1 + "t; (2.7)

where Z0;t, Z1;t and Z2;t are de�ned as

Z0;t := �00Xt 2 Rr; Z1;t := �00Xt 2 Rp�r; Z2;t :=
�
�X 0

t; :::;�X
0
t�k+1

�0 2 Rpk: (2.8)

As argued in Kristensen and Rahbek (2010), the estimator of the error covariance matrix, 
,

will be asymptotically independent of the estimators of the other parameters (appearing in

the conditional mean speci�cation). We therefore collect all the conditional mean parameters

in # and leave out 
 which is treated separately. Finally, note that under the null of linearity

(� = 0) the parameter � vanishes. To emphasize the role played by the vanishing parameter

�, we introduce � which contains all parameter in # except for �. Furthermore, we di¤erentiate

between short-run and long-run parameters and collect the former in �. Thus the parameters

of interest are given by:

# := (�; �) = (b; �; �) ; � := (�; �;�) = (�; �;�1;�2; :::;�k) : (2.9)

We let � and � denote the parameter spaces of � = (�; �) and � respectively.

2.2 Estimation

Our proposed estimators are based on the Gaussian log-likelihood. In order to write the

log-likelihood function, de�ne the residuals,

"t (�; �) = �Xt � �
�
Z0;t�1 + b

0Z1;t�1
�
� � 

�
Z0;t�1 + b

0Z1;t�1; �
�
� �Z2;t�1: (2.10)
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Then, given T observations, X1; X2; :::; XT , and with the initial values X0;�X0; :::;�X�k
�xed, the log-likelihood function based on Gaussian errors takes the form,

LT (�; �;
) = �
T

2
log j
j � 1

2

TX
t=1

"t (�; �)
0
�1"t (�; �) : (2.11)

We de�ne the corresponding pro�led log-likelihood L�T (�; �) = LT (�; �;

� (�; �)) where


� (�; �) =
1

T

TX
t=1

"t (�; �) "t (�; �)
0 ;

and #̂ is found as,

#̂ := (�̂; �̂) = arg max
�2�;�2�

L�T (�; �) :

As we do not impose any distributional assumptions on the errors, #̂ = (�̂; �̂) and 
̂ = 
�(�̂; �̂)

are referred to as quasi-maximum likelihood estimators (QMLE�s).

2.3 Hypothesis Testing

We are interested in developing inference regarding both short-run (� and �) and long-run

parameters (�; or b) in the non-linear error correction model. We shall allow that the short-

run parameter � is not identi�ed under the null of interest, leading to non-standard testing

problems. On the other hand, as mentioned, we require throughout that � is identi�ed under

the null, which again rules out testing for the number r of cointegrating vectors.

We consider in turn hypotheses involving either short- or long-run parameters. Note that

we do not consider testing for joint hypotheses on both short and long-run parameters. Joint

testing is essentially straightforward in terms of writing up the test-statistics. However, there

are issues regarding identi�cation, see e.g. Johansen (2010) for the linear VAR model, which

we wish to address elsewhere.

2.3.1 Testing Short-Run Parameters

We wish to consider general hypotheses involving the short-run parameters � = (�; �;�) and

� (cf. eq. (2.9)). To do so, consider restrictions on the form,

H0 : R
0vec (�; �) = 0; (2.12)

where R is a known (m� d)-matrix of full rank with d = p (r + d� + pk) + d� and m � d,

and we have used the notation vec (�; �) =
�
vec (�)0 ; vec (�)0

�0
mentioned in the introduction.

Note that we require � to be identi�ed under H0.

Some key examples that are included in the above general formulation include:

Example 1 (Linear error correction) To see if the non-linear components are relevant in
explaining the error-correction mechanism, it is of interest to test for their signi�cance.

One can do so by testing that there are no nonlinearities in all variables, that is, � = 0;

or R0vec (�; �) = vec (�) = 0. Alternatively, we may wish to test for presence of non-

linear error-correction in individual variables. For example, R0vec (�; �) = R0�vec (�) =

0 for some matrix R�.
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Example 2 (Symmetric response) Suppose that our nonlinear component in eq. (2.2)
takes the form

� (z; �) =
2X
s=1

�s s (z; �) ;

where

 s (z; �) :=
�
1 + exp

�
(z � !s)0As (z � !s)

	��1
z; s = 1; 2;

such that we have 2 non-linear components in addition to the linear. It is then of

interest to test for symmetric responses. That is, R0vec (�; �) = vec (�1 � �2) = 0.

Example 3 (Weak exogeneity) Corresponding to notion of weak exogeneity in linear er-
ror correction models with respect to �, we may wish to test for no error correc-

tion (neither linear, nor non-linear) in some variables; that is, test for zero rows in �

and �, and, more generally, test for linear constraints involving these: R0vec (�; �) =

R0�;�vec (�; �) = 0 for some matrix R�;�. Note that for � to be identi�ed under H0 this

excludes Ra;� to be a full rank square matrix of dimension p (r + r�).

Example 4 (# lags) To choose the number of lags included in the model, the following
hypothesis is of interest, R0vec (�; �) = vec (�j) = 0, for some j 2 f1; :::; kg.

Under H0, some (if not all) parameters in � may vanish. One has to check this on a case-

by-case basis. One particular case is given in Example 1 where the parameter � vanishes

under the null of linearity. If this is the case, we face a non-standard testing problem, which

is here solved by employing so-called sup-tests. Thus, we treat the two cases of � being either

identi�ed or unidenti�ed under the null separately:

2.3.2 The parameter � identi�ed

First, suppose � is identi�ed under H0. In order to test the null, we �rst obtain the restricted

estimator of all parameters, # = (�; �), under H0 which we denote ~# = (~�; ~�):

(~�; ~�) = arg max
#

R0vec(�;�)=0

L�T (�; �) :

We then propose to test the null by either of the classic LR, LM or Wald-test statistics. The

LR statistic compares the log-likelihoods evaluated under the alternative and under the null

and is given by

LRT = 2
h
L�T (�̂; �̂)� L�T (~�; ~�)

i
: (2.13)

The LM statistic on the other hand, uses the score under the alternative evaluated at the

parameter estimates obtained under the null,

LMT = ST (~�; ~�)0H�1T (~�; ~�)ST (~�; ~�); (2.14)

where ST (�; �) and HT (�; �) are the score and Hessian matrices respectively as de�ned in
Section 2.4. Finally, the Wald statistic takes the form

WT = vec(�̂; �̂)0R
h
R0HT;�;�(�̂; �̂)R

i�1
R0vec(�̂; �̂); (2.15)
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where HT;�;�(�; �) is the Hessian for (�; �). Note that other versions of Lagrange and Wald
statistics could be used, see e.g. Newey and McFadden (1994, p. 2222). These will all

be asymptotically �rst-order equivalent under the null, and so we only analyze the versions

given above.

2.3.3 The parameter � unidenti�ed

Next, consider the case where � is unidenti�ed under the null of H0.1 As � = (�; �;�), and

lack of identi�cation of � can only be achieved from restrictions on �, the general null in eq.

(2.12) can in this case be written as

H0 : R
0
�vec (�) = 0;

for some matrix R�. The estimator of � = (b; �) under the null is given by

~� = arg max
�2�

R0�vec(�)=0

L�T (b; �; �) :

On the other hand, under the alternative, we compute a pro�le estimator of � for any given

value of �,

�̂ (�) = argmax
�2�

L�T (�; �) :

The sup-LR, sup-LM and sup-Wald test statistics are then obtained by taking supremum of

the corresponding standard test statistic over �:

supLRT := sup
�2�

LRT (�) ; LRT (�) = 2
h
L�T (�̂ (�) ; �)� L�T (~�; �)

i
; (2.16)

supLMT := sup
�2�

LMT (�) ; LMT (�) = ST (~� (�) ; �)0H�1T (~� (�) ; �)ST (~� (�) ; �); (2.17)

supWT = sup
�2�

WT (�) ; WT (�) = vec(�̂ (�))0R�
h
R0�HT;�(�̂ (�) ; �)R�

i�1
R0�vec(�̂ (�));

(2.18)

where HT;�(�; �) is the Hessian w.r.t. �.

2.3.4 Testing Long-Run Parameters

Next, consider hypotheses relating to the long-run parameter �. Recall that � is normalized

by eq. (2.6), so we may consider the following hypothesis involving the long-run parameter

b,

H0;b : R
0
bvec

�
b0
�
= 0; (2.19)

where Rb is a known (m� d)-matrix of full rank with d = (p� r) r and m � d. A key

example is the following:

1Of course, one may also have that a part of � is identi�ed, �1 say, while �2 with � = (�1; �2) is not. In

that case, rede�ne � to include also �1 and set � := �2 in the following.
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Example 5 (Cointegrating vectors) Economic theory often imposes, or implies, testable
restrictions on the cointegrating relations, for example that they are known. One

speci�c example (with p = 2 and r = 1) is � = (1;�1)0 corresponding to the spread
between the two variables being stable. In terms of b 2 R, this can be expressed as
R0bvec (b

0) = b = 0.

For simplicity consider the case where � is ident�ed. In this case the test statistics are

computed in the same way as in section 2.3.3. We �rst compute the restricted estimators

which for ease of notation we still denote ~� and ~�:

H0;b : (~�; ~�) = arg max
#

R0bvec(b
0)=0

L�T (�; �) :

The corresponding LR- and LM-test are then given as:

LRb;T = 2
h
L�T (�̂; �̂)� L�T (~�; ~�)

i
; LMb;T = ST (~�; ~�)0H�1T (~�; ~�)ST (~�; ~�); and (2.20)

Wb;T = vec(b̂0)0Rb
h
R0bHT;b(�̂; �̂)Rb

i�1
R0bvec(b̂

0):

2.4 Score and Hessian

As is standard, the analysis of likelihood-based estimators and test statistics focus on the

score and Hessian of the log-likelihood. For ease of notation, we here choose to de�ne

them in terms of �rst and second order di¤erentials of the log-likelihood since parameters

enter in the form of matrices; see Magnus and Neudecker (1988) for an introduction to the

concept of di¤erentials and their use in econometrics. We apply standard notation and let

dL�T (�; �; d�; d�) denote the �rst-order di¤erential of L
�
T (�; �) w.r.t. (�; �) in the direction

of d� and d� respectively. The vector score ST (�; �) = @L�T (�; �) =@vec(�; �) can then be

identi�ed from the di¤erential through the following identity:

dL�T (�; �; d�; d�) = ST (�; �)0vec (d�; d�) : (2.21)

Similarly, with d2L�T (�; �; d�; d�;d�
�; d��) denoting the second order di¤erential, the Hessian

HT (�; �) = @L�T (�; �) = (@vec(�; �)@vec(�; �)
0) is given through the following identity:

d2L�T (�; �; d�; d�;d�
�; d��) = vec (d��; d��)0HT (�; �)vec (d�; d�) : (2.22)

To derive expressions of the �rst and second order di¤erentials of the log-likelihood, some

further notation is needed: First, we introduce the di¤erentials of  (z; �) 2 Rr� with respect
to z 2 Rr and vec (�) 2 Rd� in terms of its partial derivatives,

d (z; �; dz) = @z (z; �) dz, @z (z; �) = (@ i=@zj)i;j 2 R
r��r; (2.23)

d (z; �; d�) = @� (z; �) vec (d�) ; @� (z; �) 2 Rr��d� :

Furthermore, de�ne the processes ut (�) 2 Rp(r+r�+pk), vt (�) 2 Rr and wt (�) 2 Rr by

ut (�) :=
�
u�;t (�)

0 ; u�;t (�)
0 ; u�;t (�)

0�0 ; vt (�) := [�0@� (Z0;t�1; �)]
0
�10 "t (�0; �) ; and

(2.24)

wt (�) := [�0 + �0@z (Z0;t�1; �)]
0
�10 "t (�0; �) ;
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with

u�;t (�) := vec
�

�10 "t (�0; �)Z

0
0;t�1

�
; u�;t (�) := vec

�

�10 "t (�0; �)Z

0
2;t�1

�
(2.25)

u�;t (�) := vec
�

�10 "t (�0; �) (Z0;t�1; �)

0� :
These processes prove helpful in the analysis of the score and Hessian of log-likelihood. For

example, the �rst-order di¤erential of L�T (�; �) evaluated at �0 can be expressed in terms of

these (see Appendix C for details),

dL�T (�0; �; d�; d�) = (vec (d�))
0
TX
t=1

ut (�) + (vec (d�))
0
TX
t=1

vt (�) +
TX
t=1

Z 01;t�1 (db)wt (�) :

Likewise, the second order di¤erential d2L�T (�0; �; d�; d�; d�
�; d��) ; or equivalently the Hessian

HT ; can be expressed in terms of similar processes based on Z0t, Z1t, Z2t and "t in addition
to �rst and second order derivatives of  ; we refer to Appendix C for explicit expressions.

We then wish to analyze the asymptotic properties of the �rst- and second order di¤er-

entials; in particular, in the case of � vanishing, weak convergence results for averages based

on ut (�), vt (�) and wt (�) need to hold uniformly in �. To this end, it proves necessary to

develop some new functional central limit theorems. The next section is dedicated to this

task.

3 Uniform FCLT and Convergence of Stochastic Integrals

In order to obtain the asymptotic distributions of the proposed estimators and test statistics

when parameters vanish under the null, we �rst establish novel functional central limits

results for double indexed random sequences, also referred to as partial sum processes in

van der Vaart and Wellner (1996, ch.2.12). The results extend Caner and Hansen (2001)

to the case of multivariate processes and parameters, and are of general interest for the

statistical analysis of non-linear time series models involving non-stationary components.

We therefore develop these in a more general setting, not restricted to the class of non-linear

error correction models introduced in the previous section.

Let xT;t 2 Rdx ; t = 1; :::; T , denote an appropriately normalized triangulary array, which
is assumed to converge weakly, see Assumption 3.3 below. Furthermore, let yt 2 Rdy be a
stationary sequence and et 2 Rde a Martingale di¤erence sequence with respect to the natural
�ltration, FT;t = F (et; xT;t; yt; et�1; xT;t�1; yt�1:::) : In terms of these, de�ne the following
two processes,

�T (s; �) :=
1p
T

[Ts]X
t=1

f (yt�1; �) et 2 Rdx ; and xT (s) := xT;[Ts] 2 Rdx , (3.1)

where f : Rdy � � 7! Rdx�de is a given function, � 2 � for some compact set � � Rd� and
s 2 [0; 1].

We then establish weak convergence results for these processes indexed by (s; �) 2 [0; 1]�
�, and associated stochastic integrals. To do so we impose the following regularity conditions:

11



Assumption 3.1 The sequence (et; yt) satis�es:

(i) (et; yt) is strictly stationary and ergodic.

(ii) et is a martingale di¤erence w.r.t. FT;t such that E [etjFT;t�1] = 0 and E [ete0tjFT;t�1] =

e for some constant, �nite matrix 
e 2 Rde�de.

Assumption 3.2 The sequences f (yt�1;�) and et satisfy for some integer m;n > 0:

(i) E [sup�2� kf (yt�1; �)km] <1 and E [ketkm] <1.

(ii) kf (yt�1; �)� f (yt�1; �0)k � B (yt�1) k� � �0k, for all �; �0 2 � and with E[B (yt�1)n] <
1.

Assumption 3.3 The process xT (�) := xT;[T �] 2 D[0; 1] satis�es:

(i) As T !1, xT (�)
W! x (�) on D[0; 1], where x (�) is continuous.

(ii) For some integer q > 0, sup1�t�T;T�1E [kxT;tkq] <1.

In terms of the nonlinear error correction model in eq. (2.1), we will choose (in the

case of no lagged di¤erences, or k = 0), � = �; yt = Z0;t; f (yt�1;�) =  (Z0;t; �), and

xT;t = K�1
T Z1;t for some appropriately chosen weighting matrix KT (see Assumption 4.5)

and with Zi;t de�ned in (2.8). Inparticular for the STECM examples in eq. (2.4) and (2.5),

Assumption 3.2 (i) and (ii) hold if E[kZ0;tkmax(m;n)] < 1. Assumption 3.3 holds for the
class of nonlinear error correction models introduced in Section 2 under suitable regularity

conditions as shown in Kristensen and Rahbek (2010) and Saikkonen (2005), see next section

for details.

Remark 1: In Assumptions 3.1 (ii) one may instead assume that E [ete0tjFT;t�1] = 
e;t, with

e;t stationary and E [k
e;tk] <1, thereby allowing for conditional heteroskedasticity.
The moment conditions will however in that case be very complicated and we therefore

leave this out here. Moreover, the covariance matrix � (s1; �1; s2; �2) de�ned in the

following theorem would have to be changed accordingly.

Remark 2: A general su¢ cient condition for Assumption 3.2 (ii) to hold is that f (�; �) is
continuously di¤erentiable in � with

E

 
sup
�;d�

kdf (yt�1; �; d�)kn
!
<1.

Theorem 3.4 (FCLT) Under Assumptions 3.1 and 3.2 with n;m � 2, the partial sum

process �T (�; �) 2 L1 ([0; 1]��) de�ned in (3.1), satis�es,

�T (�; �)
W! � (�; �) on L1 ([0; 1]��) ; (3.2)

where � (s; �) is multi-parameter Gaussian process with covariance kernel,

� (s1; �1; s2; �2) = (s1 ^ s2)E
�
f (yt�1;�1) 
ef (yt�1;�2)

0� :
12



The theorem is obtained by extending the arguments of Escanciano (2007, Theorem 1)

who provide a FCLT result for the stochastic process � 7! �T (1; �). A direct consequence

of Theorem 3.4 is the convergence of product moment matrices:

Theorem 3.5 Under Assumptions 3.1-3.2, with m;n � 2 and under Assumption 3.3 (i),

1

T

TX
t=1

x0T;t�1f (yt�1; �)
W!
Z 1

0
x (s)0 dsE [f (yt�1; �)] on L1 (�) :

In addition to the weak convergence in Theorem 3.4, we also need a convergence result

for stochastic integrals in terms of the limiting Gaussian process:

Theorem 3.6 (Convergence to Stochastic Integral) Assume furthermore that for any
�xed � 2 �, (xT (�) ; �T (�; �))

W! (x (�) ; � (�; �)) on D[0; 1].

(i) Under Assumptions 3.1-3.2 with m;n � 2 and Assumption 3.3 (i), for any given � 2 �:

1p
T

TX
t=1

x0T;t�1f (yt�1; �) et
D!
Z 1

0
x (s)0 d� (s; �) : (3.3)

(ii) Under Assumptions 3.1-3.3 with n � 4, m > 3d� and q > max (3d�; 4):

1p
T

TX
t=1

x0T;t�1f (yt�1; �) et
W!
Z 1

0
x (s)0 d� (s; �) on L1 (�) : (3.4)

Remark 3: The moment conditions on yt and et in Theorem 3.6(ii) are stronger compared

to the other results in this section. In particular, the moment restriction on f (yt�1;�)

on the form m > 3d� and q > max (3d�; 4) will, unless f is bounded, impose quite

strong restrictions on the moments of yt�1. The required number of moments increases

linearly in d�. This "curse of dimensionality" stems from the way we establish stochas-

tic equicontinuity or tightness of the stochastic integral, see proof of Theorem 3.6 in

the Appendix. We conjecture that the high order moment conditions, while su¢ cient,

are not necessary, and can be avoided by a di¤erent proof strategy when establishing

weak convergence to stochastic integrals indexed by � 2 �. By comparison, we ob-
tained the weak convergence to the double indexed Gaussian process in Theorem 3.4

with very modest moment restrictions. Similarly Theorem 3.5 is obtained under weak

moment restrictions since, contrary to convergence to stochastic integrals, this follows

(essentially) by application of the continuous mapping theorem.

Remark 4: Note that the equivalent Theorem 2 in Caner and Hansen (2001) does not

include the condition of joint pointwise convergence of (xT (�) ; �T (�; �)). However,
we establish pointwise convergence in Theorem 3.6 by verifying the classic conditions

of Theorem 2.2 of Kurtz and Protter (1991), or equivalently Theorem 2.1 of Hansen

(1992), which do require joint convergence of the two processes. The additional re-

quirement is of little concern in our applications though as we have xt and yt de�ned

in terms of the same underlying et, and the past of this, and so the joint convergence

condition will automatically be satis�ed.
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4 Asymptotics of Estimators and Test Statistics

Given the results of the previous section we are now in position to derive the asymptotic

distribution of the QMLE of #; both under the null hypothesis of interest and the alternative.

The results are used when studying the asymptotics of both the likelihood ratio test statistic

and Lagrange multiplier test for general null hypotheses, including the hypothesis of linearity,

�0 = 0. Furthermore, the results generalize the distributional results of Kristensen and

Rahbek (2010) to include the case of asymmetric adjustments in nonlinear error correction

models.

4.1 Asymptotics of the QMLE

We start by a list of assumptions on the processes in the score and Hessian, as well as on

the parameter space:

Assumption 4.1 The parameter space � for � is compact and #0 = (�0; �0) lies in the

interior of �� �.

Assumption 4.2 The function  (z; �) is three times di¤erentiable in z and �. The function
itself and its derivatives are polynomially bounded in z of order � � 1 uniformly over �,

k (z; �)k � C (1 + jzj�) for some C > 0.

Assumption 4.3 The error term "t is a martingale di¤erence with respect to Ft�1 =
F (Xt�1; Xt�2; :::). Furtermore, 
 � E ["t"

0
tjFt�1] and E k"tk

q" <1 for some q" � 2.

Assumption 4.4 The process (Z 00t; Z
0
2t)

0 can be embedded in a stationary and geometrically

ergodic Markov chain. Moreover, E [kZ0;t�1kq0 ] < 1 and E [kZ2;t�1kq2 ] < 1 for some

q0; q2 � 1.

Assumption 4.5 With �0 de�ned in (2.6) and for some sequence of diagonal matrices KT 2
R(p�r)�(p�r) satisfying K�1

T ! 0 as T !1, the non-stationary process Z1;t = �00Xt satis�es:

(i) K�1
T Z1;[T �]

W! F (�) on D ([0; 1]), for some continuous, stochastic process F (s) satisfyingR 1
0 F (s)F (s)

0 ds > 0 almost surely; (ii) supT�1 supt�T E


K�1

T Z1;t


q1 <1 for some q1 > 0.

Assumption 4.2 imposes smoothness restrictions and polynomial bounds on  (z; �). The

smoothness restrictions ensures that the �rst three derivatives of the likelihood w.r.t. the

parameters are well-de�ned, while the polynomial bounds are used in conjunction with As-

sumption 4.4 to ensure that appropriate moments of these derivatives are well-de�ned. All

proposed speci�cations of nonlinear error correction found in the literature satisfy this as-

sumption except for threshold models. Thus, we rule out threshold models for which a di¤er-

ent proof strategy needs to be used; see e.g. Seo (2011). It is worth pointing out though that

threshold models can be approximated up to any degree of precision by a smooth transition

model in the sense that as the scale parameter in the smooth transition model converges

to zero, the smooth transition model converges towards a threshold model. For example,

[1 + exp f(z � !s) =ag]�1 ! I fz � !sg as a ! 0+. This fundamental feature is the basic
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building block of the analysis in Linton and Seo (2010) of their smoothed estimators of

threshold parameters.

Regarding Assumption 4.4, for a precise de�nition of geometric ergodicity of a Markov

chain, we refer to Meyn and Tweedie (1993). Su¢ cient conditions for Assumptions 4.4 for

particular speci�cations of  can be found in Bec and Rahbek (2004), Kristensen and Rahbek

(2010) and Saikkonen (2005, 2008) amongst others. In particular, they give conditions for the

already mentioned STECM, see eqs. (2.4) and (2.5). Note in this respect that Assumption

4.4 can be replaced by the assumption that,�
Z 00t; :::; Z

0
0t�k; Z

0
2t�0?

�
=
�
X 0
t�0; :::; X

0
t�k�0;�X

0
t�0?; :::; ;�X

0
t�k�0?

�
is a geometrically ergodic Markov chain with drift function V (y) = 1 + kyk2q, q > 2,

but not necessarily stationary. This way, one is not required to have the initial values

of the observations drawn from the invariant distribution, as for example the law of large

numbers, and hence the central limit theorem, hold irrespectively of the choice of initial

values, see Jensen and Rahbek (2007) and Kristensen and Rahbek (2009). Assumption 4.4

is used to establish stationarity and ergodicity as required by Assumption 3.2 for yt; with

yt =
�
Z 00;t; Z

0
2;t

�0. Thus the alternative assumption of stationarity and ergodicity could be
used instead with no changes in the subsequent results. However, we do not know of any

results for stationarity and ergodicity of nonlinear error correction models which are not

derived as implied by geometric ergodicity.

In Assumption 4.5, �0 can be used to decompose Xt into trends of di¤erent orders. In
particular, as demonstrated in Kristensen and Rahbek (2010), when  is symmetric the

nonlinear error-correction process with Xt 2 Rp has p � r � 1 common stochastic trends,
while there is at most one linear trend. Thus, within their class of models, Assumption

3.3 holds with F (s) being a (p� r � 1)-dimensional Brownian motion, and a linear trend
component. In the general case where symmetry is not imposed, there are at most p � r

stochastic trends but the exact number depends on the speci�c form of  ; see Saikkonen
(2008, p. 308). Thus, by not specifying F (�), we accomodate for a large class of models,
such as the ones included in e.g. Saikkonen (2008).The restriction that

R 1
0 F (s)F (s)

0 ds > 0

almost surely is used to ensure that the information matrix associated with F is non-singular

almost surely; see, for example, Theorem 4.7.

As a �rst step towards establishing the properties of the QMLE�s under the null and

alternative, we analyze the behaviour of (ut (�) ; vt (�) ; wt (�)) and Xt where ut (�), vt (�) and

wt (�), as de�ned in (2.24)-(2.25), are the sequences that make up the score and Hessian of

the log-likelihood. By applying the general results of Theorem 3.4, we obtain the following

FCLT on L1 ([0; 1]� �) where F is de�ned in Assumption 4.5:

Lemma 4.6 Suppose that Assumptions 4.1-4.4 hold with q2; q" = 2 and q0 = 2�;, and

Assumption 4.5 (i) hold. Then, with ut (�), vt (�) and wt (�) de�ned in eq. (2.24) and Z1;t
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in Assumption 4.5,0@ 1p
T

[Ts]X
t=1

ut (�)
0 ;

1p
T

[Ts]X
t=1

vt (�)
0 ;

1p
T

[Ts]X
t=1

wt (�)
0 ;
�
K�1
T Z1;[Ts]

�01A (4.1)

W!
�
Bu (s; �)

0 ; Bv (s; �)
0 ; Bw (s; �)

0 ; F (s)0
�

on the function space L1 ([0; 1]� �). Here, Bu; Bv and Bw are Gaussian processes with
covariance kernel, (s1 ^ s2) � (�1; �2) where

� (�1; �2) := Cov

0B@
0B@ ut (�1)

vt (�1)

wt (�1)

1CA ;

0B@ ut (�2)

vt (�2)

wt (�2)

1CA
1CA :=

 
�(u;v);(u;v) (�1; �2) �(u;v);w (�1; �2)

�w;(u;v) (�1; �2) �w;w (�1; �2)

!
:

(4.2)

The above result will be used to establish (uniform) weak convergence of the score and

Hessian of the log-likelihood. The above FCLT result is used for the asymptotics of the sup

statistics where we treat the statistics LRT (�), LMT (�) and WT (�) de�ned in eqs. (2.16)-

(2.18) as sequences of stochastic processes. Note that when the parameter � is identi�ed, we

only need the above convergence to hold pointwise at � = �0.

In order to state the asymptotic distribution of the QMLE, de�ne the matrix of conver-

gence rates,

V
1=2
T = diag

�
V
1=2
�;T ; V

1=2
�;T

�
; where V 1=2�;T = diag

�
Ir 
KT Ip(r+r�+pk)

�
and V 1=2�;T = Id� .

(4.3)

Here, V�;T and V�;T contain the rates for the QMLE of � and � respectively. Again, we single

out � to be able to handle the case of this parameter vanishing.

We now state two separate results for the QMLE: We consider in turn the situations

where �0 6= 0, and �0 = 0 corresponding to the case where � is identi�ed and vanishes under
the nul respectively.

Theorem 4.7 Suppose that Assumptions 4.1-4.4 hold with q2; q" = 2 and q0 = 2�, and

Assumption 4.5 (i) hold. Assume furthermore that �0 6= 0, and � (�0; �0) > 0 where � (�0; �0)
is de�ned in (4.2). Then the following holds: With probability tending to one, there exists a

unique minimum point #̂ = (�̂; �̂) = (b̂0; �̂; �̂) of L�T (#) in the neighbourhood f# : jj���0jj < �;

jj� � �0jj < � and jjKT bjj < �g for some � > 0. Moreover, with VT de�ned in eq. (4.3),

T 1=2V
1=2
T vec

�
#̂� #0

�
D! H�1S; (4.4)

for a random matrix H and vector S, given by

H �
 R 1

0 F (s)F (s)
0 ds
 �w;w (�0; �0)

R 1
0 F (s) ds
 �w;(u;v) (�0; �0)R 1

0 F (s)
0 ds
 �(u;v);w (�0; �0) �(u;v);(u;v) (�0; �0)

!
; (4.5)

and

S �
 
vec

�Z 1

0
F (s) dB0w (s; �0)

�0
; B0u (1; �0) ; B

0
v (1; �0)

!0
: (4.6)

Finally, note that 
̂ P! 
0.

16



The above result, where �0 6= 0, is an extension of results in Kristensen and Rahbek (2010)
as we allow for asymmetry in the error correction as given by the  (�) function. Rather than
establishing the conditions of Kristensen and Rahbek (2010, Lemmas 11 and 12), we use

the more general formulation of Lemmas D.1 and D.2 in Appendix D which allow us also

to consider convergence uniformly in � in the next. The asymptotic distribution is akin to
ones derived in de Jong (2001, 2002) and Kristensen and Rahbek (2010) in the sense that

the short- and long-run parameter estimators are not asymptotically independent (as is the

case in linear error-correction models). The results in Theorem 4.7 complement the ones of

Seo (2011) who derive the asymptotics of estimators based on smoothed likelihood-functions

in discontinuous threshold error correction models.

The assumption that � (�0; �0) > 0 is an identi�cation condition that ensures that the

limiting distributions of the QMLE is non-degenerate. It proves di¢ cult to give primitive

conditions for this to hold. This is a general problem in nonlinear models, where identi�cation

has to be veri�ed on a case by case basis, see e.g. Kristensen and Rahbek (2009) and Meitz

and Saikkonen (2011).

Next, we examine the behaviour of the QMLE under the null where �0 = 0 such that � is

not identi�ed, or "vanishes". Thus, we state a result that holds uniformly over � which we

need for the asymptotic analysis of the supLR-test.

Theorem 4.8 For �0 = 0, suppose that Assumptions 4.1-4.5 hold with q0 = �max (4; 3d�) ;

q1; q" = max (4; 3d�) and q2 = 2. Assume furthermore that � (�1; �1) > 0 for all �1; �2 2 �,
where � (�1; �1) is given in eq. (4.2). Then the following hold uniformly over �: With

probability tending to one, there exists a unique minimum point �̂ (�) = (b̂ (�)0 ; �̂ (�)) of

L�T (�; �) in the neighbourhood f� : jj� � �0jj < � and jjKT bjj < �g for some � > 0. Moreover,
with V�;T de�ned in eq. (4.3),

T 1=2V
1=2
�;T vec

�
�̂ (�)� �0

�
W! H�1�� (�)S� (�) on L1 (�) ; (4.7)

for a random matrix process H�� (�) and random vector process S� (�), given by

H�� (�) �
 R 1

0 F (s)F (s)
0 ds
 �w;w

R 1
0 F (s) ds
 �w;u (�; �)R 1

0 F (s)
0 ds
 �u;w (�; �) �u;u (�; �)

!
; (4.8)

and

S� (�) �
 
vec

�Z 1

0
F (s) dB0w (s)

�0
; Bu (1; �)

0
!0
: (4.9)

We note that under the null, the DGP is a standard linear error correction model such

that, under the usual I(1) conditions of Johansen (1996), Assumptions 4.4 and 4.5 hold with

F (s) being a Brownian motion with covariance matrix �F;F = ��00;?C0
0C
0 ��0;?, where C0 :=

�0;?
�
�00;?

�
I �

Pk
i=1�0;i

�
�0;?

��1
�00;?, whileBu (s; �) =

�
B� (s)

0 ; B� (s)
0 ; B� (s; �)

0�0. Also,
again due to the model collapsing to a standard I(1) model, the expressions of the vari-

ables and parameters entering S� (�) and H�� (�) above simplify: The process Bu (s; �) be-
comes Bu (s; �) =

�
B� (s)

0 ; B� (s)
0 ; B� (s; �)

0�0 and Bw (s; �) = Bw (s) where B� (s), B� (s)

and B� (s; �) are the Brownian motions corresponding to the variables u�;t, u�;t and u�;t
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in eq. (2.24). Here, only B� (s; �) depends on � since u�;t = vec
�

�10 "tZ

0
0;t�1

�
; u�;t =

vec
�

�10 "tZ

0
2;t�1

�
and wt = �00


�1
0 "t under the null. Thus, F (s) is independent of the

processes (B� (s) ; B� (s)) and Bw (s), but is still dependent of B� (s; �) and hence of Bu (s; �).

Finally, the remaining covariances are: �w;w = �00

�1
0 �0 and

�w;u� = E
h�
�0


�1
0 "t

� �
vec

�

�10 "tZ

0
0;t�1

��0i
= E [Z0;t�1 
 I] 
�10 �0 = 0;

�w;u� = E
��
�0


�1
0 "t

�
vec

�

�10 "tZ

0
2;t�1

��
= E [Z2;t�1 
 I] 
�10 �0 = 0:

4.2 Asymptotics of test statistics

In this section we derive the asymptotic distributions of the tests proposed in Section 2.3.

We treat separately the case where � is identi�ed and vanishes under the null. We discuss

speci�c examples below.

First, consider the case where � is unidenti�ed in which case we employ the sup-Likelihood

Ratio (LR), sup-Lagrange Multiplier (LM) test and sup-Wald (W) tests introduced in eqs.

(2.16)-(2.18). As noted in Section 2, the null in this case can be written asH0 : R0�vec (�) = 0.

We then show in the appendix (see Proof of Theorem 4.9 below) that the restricted estimator

satis�es p
TV

1=2
�;T vec(

~� � �0)
D!M�

~H�1�� ~S�; (4.10)

where
~H�� : =M 0

�H�� (�)M�

��
R0�vec(�)=0

; ~S� : =M 0
�S� (�)

��
R0�vec(�)=0

; (4.11)

with M� = diag
�
I(p�r)r; (R�)?

�
, while S� (�) and H�� (�) are de�ned in Theorem 4.8. Note

here, that ~H�� and ~S� are independent of � as the restriction R0�vec (�0) = 0 through M�

removes the components of S� (�) and H�� (�) that depend on �.
The asymptotic distribution of the restricted estimators when � is identi�ed is shown to

be p
TV

1=2
�;T vec(

~#� #0)
D!M ~H�1~S; (4.12)

where
~H : =M 0HM

��
R0vec(�;�)=0

; ~S : =M 0S
��
R0vec(�;�)=0

; (4.13)

and M = diag
�
I(p�r)r; R?

�
, while S and H de�ned in Theorem 4.7. The following result is

then shown in the Appendix:

Theorem 4.9 Suppose Assumptions 4.1-4.5 hold with qi speci�ced below. Assume H0 :

R0vec (�; �) = 0 hold with R having full rank and � identi�ed:

1. If �0 is identi�ed under H0, then with q2; q" = 2 and q0 = 2�,

LMT
D! V0V; LRT

D! V0V; WT
D! V0V

where, with S and H given in Theorem 4.7,

V :=
�
M 0
?H

�1M?
��1=2

M 0
?H

�1S;
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2. If � is not identi�ed under H0, then with q0 = �max (4; 3d�) ; q1; q" = max (4; 3d�) and

q2 = 2,

sup
�2�

LMT (�)
D! sup

�2�
V� (�)0V� (�) ; sup

�2�
LRT (�)

D! sup
�2�

V� (�)0V� (�) ; and

sup
�2�

WT (�)
D! sup

�2�
V� (�)0V� (�) ;

where, with S�(�) and H��(�) given in Theorem 4.8,

V� (�) :=
�
(M�)?H��(�) (M�)?

��1
(M�)?H

�1
�� (�)S�(�)

Now consider the special case when E [ (Z0;t�1; �)] = 0 which, for example, is satis�ed

if  (Z0;t�1; �) is symmetric around zero. In this case, �w;u (�; �) = 0, such that

H�1�� (�) =

0@ hR 1
0 F (s)F (s)

0 ds
 �w;w
i�1

0

0 ��1u;u (�; �)

1A :

In this case, � 7! V (�) is a Gaussian process and the limiting distributions of sup�2� LMT (�)

and sup�2� LRT (�) are as in the stationary case reported in Hansen (1996). In particular,

the asymptotic distributions correspond to eq. (C�n) in Hansen and Seo (2001, p. 317)

who assume E [ (Z0:t; �)] = 0, and hence avoid the contribution from the non-stationary

component. Observe however that E [ (Z0:t; �)] = 0 does not necessarily hold, even when

the DGP is indeed a linear process. Thus, E [ (Z0:t; �)] 6= 0 in general, and so the limiting
distribution reported here is di¤erent from the one of Hansen and Seo (2001).

The general result with E [ (Z0:t; �)] 6= 0 is similar to the results for the sup-Wald test for
linearity in threshold unit root models derived in Caner and Hansen (2001) (see also Pitarakis,

2008, Proposition 2). There, the limiting distribution also has two components: One is

due to the stationary components of the process (in our case (Z0;t�1; Z2;t�1;  (Z0;t�1; �))

with corresponding score vector (S�(�);S�(�);S�(�))) and one due to the non-stationary
component (in our case Z1;t�1 with corresponding score vector Sb(�)) The presence of the
non-stationary component is due to the fact that b is unknown, and so has to be estimated.

Thus, our result demonstrates that in general one cannot ignore the fact that b is esti-

mated as opposed to known. This is in contrast to, for example, Kilic (2011) who assumes

that b is known, and thereby avoid the non-stationary component in the limiting distribution

of his sup-Wald test for linearity in error-correction models. Similarly, Nedeljkovic (2009)

derives the limiting distribution for a sup-LM test for linearity under the implicit assumption

that the estimation error arising from ~b can be ignored. In both papers, the limiting distri-

bution becomes a supremum over a squared Gaussian process as when E [ (Z0:t; �)] = 0.

As already mentioned on p. 9, the problem of vanishing parameters under the null may

only involve a subset of the parameters in �. For example, suppose that the non-linear

component takes the form � (z; �) =
PS
s=1 �s s (z; �s) and one wishes to test the hypothesis

�H0 : �s0 = 0 for some s0 2 f1; :::; Sg. Here, the parameter �s0 vanishes under the null. One
can easily apply the same arguments as used above to derive the asymptotics of sup-test

statistics corresponding to this hypothesis where the supremum is now taken over �s0 .
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Example 2 (continued) The null hypothesis of H0 : � = 0 corresponds to choosing R� =
[Om; Id� ] where Om is the m � m-matrix of zeros and m = dim (vec (�;�)). Under

the null, the model collapses to a standard linear cointegrating error-correction model

with implications discussed after Theorem 4.8. In particular, the restricted estimator,
~� = (~b0; ~�; ~�; ~�), where ~� = 0, is the standard Johansen Gaussian MLE. From Theorem

4.8 with �0 = 0 (or alternatively, Johansen, 1996), we obtain that

p
TV

1=2
�;T vec(

~� � �0)
D!M�

~H�1�� ~S�; M� = diag
�
I(p�r)r; (R�)?

�
; (4.14)

where, with B�;� (s) =
�
B� (s)

0 ; B� (s)
0�0, F (s) and Bw (s) being the Brownian motions

described immediately after Theorem 4.8,

~H�� �
 R 1

0 F (s)F (s)
0 ds
 �w;w 0

0 ��;�

!
; ~S� (�) �

 
vec

�Z 1

0
F (s) dB0w (s)

�0
; B�;� (1)

0
!0
:

(4.15)

One can easily check that M�
~H�1�� ~S� is the standard asymptotic distribution for the

Gaussian QMLE in a linear I(1)-model.

Next, we derive tests for the hypothesis H0;b involving the cointegration relations, H0;b :

R0bvec (b
0) = 0 or, equivalently, H0;b : vec (b0) = (Rb)? � for some free parameter � . The proof

strategy is identical to the one employed in Theorem 4.9 and so we state the result without

proof:

Theorem 4.10 Suppose Assumptions 4.1�4.5 hold with q2; q" = 2 and q0 = 2�, and H0;b :
R0bvec (b

0) = 0 hold with R having full rank. Then the LR and LM test of this hypothesis

satis�es

LMb;T
D! V0bVb; LRb;T

D! V0bVb; Wb;T
D! V0bVb;

where

Vb :=
�
M 0
bH

�1Mb

��1=2
M 0
bH

�1S;

with S and H given in Theorem 4.7 and Mb = diag
�
I(p�r)r; (Rb)?

�
Note that the we here avoid any of the complications normally found in the literature on

tests involving cointegration relations such as Johansen (1992, Theorem C.1) and Rahbek,

Kongsted and Jørgensen (1999, Appendix B). In these and other studies, one formulates

the hypotheses in terms of �; this has as consequence that one has to rotate the coordinate

system of the free parameter � in such a way that (Rb)
0
? Z1;t has a well-behaved asymptotic

distribution. In contrast, since we write the hypothesis H0;b in terms of the normalized

parameter b, we avoid this problem here.

5 Bootstrap Procedure

In order to draw inference for the parameters, we need to be able to evaluate the limiting

distributions in Theorems 4.7-4.10. These are highly non-standard and so we here propose

to use bootstrapping in their implementation.
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We here consider a bootstrap procedure similar to the one analyzed in Cavaliere, Rahbek

and Taylor (2010a-b, 2011). First, consider bootstrapping the distributions of the sup-LR

and sup-LM tests. We bootstrap under the null of �0 = 0 in which case the model is a

standard linear error-correction model. With ~� denoting the restricted estimator, we �rst

compute

�X�
t = ~�~�0X�

t�1 + ~�
�
�X�0

t�1; :::;�X
�0
t�k
�0
+ "�t ; t = 1; :::; T; (5.1)

where, as in Cavaliere et al (2010a-b, 2011), the resampled errors "�t are generated using the

so-called Wild bootstrap. That is, "�t := "̂t!t, where !t is i.i.d. N (0; 1) and "̂t; t = 1; :::; T ,

are the residuals obtained under the alternative,

"̂t := �Xt � �̂�̂0Xt�1 � �̂ 
�
�̂0Xt�1; �̂

�
� �̂

�
�X 0

t�1; :::;�X
0
t�k
�0
; t = 1; :::; T: (5.2)

If �̂ = 0, we �x �̂ at an arbitrary �xed value, say ��, chosen by the econometrician. Instead

of using the residuals obtained under the alternative, one could use the ones obtained under

the null. However, if the alternative is true, the residuals obtained under the null will not be

appropriately centered and so the bootstrap procedure would potentially diverge. Since the

goal of the bootstrap procedure is to obtain an estimate of the distribution under the null

(whether it is true or not), the use of residuals from under the null would be problematic;

see Paparoditisa and Politis (2005) for more details.

Given the bootstrap sample X�
t , t = 1; :::; T , we then compute the sup-test statistics with

the bootstrap sample replacing the original one. Computing, say, N , bootstrap samples,

we obtain N realizations of the test statistics, and we use their empirical distributions to

compute critical values.

In order to show that the above procedure is consistent under the null, we need to

establish that Lemma 4.6 holds for the bootstrap sample. As a �rst step towards showing

this, we note that Cavaliere et al (2010a, Lemma A.4) can be employed to show that X�
t has

the representation,

X�
t = ~C

tX
i=0

"�t�i +
p
TR�t ; (5.3)

where ~C = ~�?
�
~�0?

�
I �

Pk
i=1

~�i

�
~�?
��1

~�0?, sup1�t�T R
�
t = oP � (1) and P � denotes the

bootstrap probability measure conditional on data fXtg. Moreover,
Pt
i=0 "

�
t�i satis�es an

FCLT under P �, cf. Cavaliere et al (2010a, Lemma A.5). What remains to be shown is

that the remaining terms in Lemma 4.6 also satis�es a FCLT under P �, which in turn then

could be utilized to verify that Lemmas C.1-C.3 remain valid weakly in probability for the

bootstrap sample. We leave the theoretical proof of this last part for future research, and

instead verify the validity of the bootstrap procedure through simulations.

6 A Simulation Study

We here investigate some �nite-sample properties of the proposed tests in a speci�c example

of the smooth transition error correction model (STECM). We focus on the (sup) LR tests
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as we expect that the LM and Wald tests will perform similarly. The particular model used

in the simulation study is given as

�Xt = g
�
�0Xt�1

�
+��Xt�1 + "t; g

�
�0Xt�1

�
= ��0Xt�1 + � 

�
�0Xt�1; �

�
: (6.1)

We consider the bivariate case, p = 2, with r = 1 cointegrating relations, and with S = 1

symmetric nonlinear component on the form given in eq. (2.4),

 (z; �) =
�
1 + exp

�
(z � !)0A (z � !)

	��1
z; � = (A;!) :

We are interested in the following two hypotheses: The �rst hypothesis of interest is the one

of linearity in both components, H(1)
R : � = (�1; �2)

0 = (0; 0)0; in this case, � vanishes under the

null, and we have to employ the sup-version of the LR test. The second hypothesis examines

whether the spread is stable, H(2)
R : � = (1;�1)0, such that in this case the parameter � does

not vanish under the null. Given the second null, we choose the normalization � = (1; �2)
0

corresponding to �0 = (0; 1). c.f. discussion on p. 6.

We wish to analyze the performance of the bootstrapped tests under the null (empirical

size) as well as under the alternative (empirical power, or rejection probabilities). Under the

respective nulls (H(k)
R for k = 1; 2) and the corresponding alternatives, the data-generating

parameters were chosen to match estimates obtained by �tting the corresponding linear and

non-linear models to the bivariate term structure data considered in Bec and Rahbek (2004)2.

All parameter values used to simulate under the nulls and alternative are given in Appendix

E, and we choose the errors to be i.i.d. normally distributed. Note that Assumption 4.4 and

4.5 hold for the parameters chosen under the nulls and alternative employed.

As part of the LR test statistic, we need to compute the QMLE�s under null and al-

ternative; the numerical computation of the QMLE�s is discussed below. For the bootstrap

we use the set-up in eq. (5.1). In terms of notation, as previously de�ned in eq. (2.9),

set # = (�; �) = (�; �; �) ; with � := (b; �), � := (�; �;�) 2 R2�(2+2), � = (A;!) 2 R2 and
� = (1; b)0.

We �rst discuss the practical implementation of the supLRT test statistic for linearity

as given in eqs. (2.16): Under the null of H(1)
R the QMLE�s ~� = (~�; ~�) are standard, see

Johansen (1996), and L�T (~�) = �T
2 log j
̂

�(~�)j; with


̂�(~�) =
1

T

TX
t=1

"t(~�)"t(~�)
0:

Under the alternative H(1)
A , that is with (6.1) unrestricted, write the model on compact form

as,

�Xt = �0Wt�1 (�; �) + "t; Wt (�; �) =
�
X 0
t�1�;  

�
�0Xt�1; �

�
; Z 02;t�1

�0 2 R2r+pk:
Observe that pro�le estimators of � and 
 are given by standard OLS estimation,

�̂ (�; �) =
�PT

t=1Wt (�; �)Wt (�; �)
0
��1 �PT

t=1Wt (�; �)�X
0
t

�
; and (6.2)

2Note that, for this particular data set, Bec and Rahbek (2004), treating � as known, used conventional

LR-tests to conclude that H(2)
R was accepted
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̂� (�; �) =
1

T

PT
t=1"̂t (�; �) "̂t (�; �)

0 ; "̂t (�; �) = �Xt � �̂ (�; �)0Wt�1 (�; �) : (6.3)

Given these estimators, we can in turn estimate � for �xed �;

�̂(�) = argmin
b2R

log(j
̂� (�; �) j);

and �nally supLRT is computed as,

supLRT := T sup
�2�
(log j
̂�(~�)j � log j
̂�(�̂(�))j):

For the particular parameterization, we here choose � = f(A;!) : 0 � A � 1 and � 1 � ! � 1g,
and then computed the sup test in practice by evaluating log j
�(~�)j� log j
�(�̂(�)) on a dis-
crete uniform grid of size 50�50 over �, and then simply choosing the maximum value as an
approximation of supLRT . The choice of � is somewhat ad hoc and it would be of interest

to investigate the sensitivity of the test to the choice of �; we leave this for future research.

Next, consider the LRT statistic for testing H
(2)
R or stability of the spread: Under both

null and alternative, we proceed as before and �rst use OLS to obtain pro�le estimates �̂ (�; �)

and 
̂� (�; �). Next, under the null H(2)
A ; ~� = (1;�1)0 and ~� := argmin� log(j
̂�( ~�; �)j), while

under the alternative, cf. (6.2)-(6.3),

(�̂; �̂) := argmin
(�;�)

log(j
̂� (�; �) j);

and the LRT statistic readily follows, LRT := T (log j
̂�( ~�; ~�)j� log j
̂�(�̂; �̂)j); see eq. (2.13).
Three di¤erent sample sizes, T = 250; 500 and 1000; are considered. For each sample size,

1000 sample paths are simulated for the set of given parameter values (see Appendix E). Next,

parameters are estimated as described above using the MLE both under the alternative, and

under the null. For the bootstrap, we use N = 399 repetitions (see Andrews and Buchinsky,

2001; Cavaliere et al, 2010a,b).

The estimators, test statistics and the bootstrap procedure were implemented in Mat-

lab. In the implementation of the bootstrap procedure, the Matlab numerical maximization

routine used to compute the QMLE�s under the alternative did not converge for a few of

the bootstrap samples; this might be caused by non-identi�cation in the population of the

parameters. Moreover, Matlab in those samples reported a negative value of supLRT . For

these samples, we simply set supLRT = 0. Since supLRT > 0 this �x means that the esti-

mated distribution of supLRT is pushed to the left and so we will tend to overreject. It�s

not entirely clear to us how to adjust the bootstrap distribution for this e¤ect. One could

potentially leave out the bootstrap samples where non-convergence occurs.

Tables 1 reports the size (i.e. the rejection frequencies under the null) of the bootstrap

versions of the LRT test when we test for H
(1)
R . From these results, we see that for moderate

and large sample sizes (T = 500 and 1000) the bootstrap test have very good size properties

for both null hypohteses. In smaller sample sizes (T = 250), the size begin to deteriorate

but is still acceptable.
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1% nominal level 5% nominal level 10% nominal level

T = 250 0.4% 4.3% 9.9%

T = 500 1.3% 4.8% 10.1%

T = 1000 0.9% 5.4% 11.1%

Table 1: Size of bootstrap version of supLRT test for H
(1)
R : � = 0.

The corresponding size performance for the LRT test of H
(2)
R are reported in Table 2.

Qualitatively the same picture as for the test of H(1)
R appears: For moderate and large

samples, the size is good while in smaller samples it is less precise.

1% nominal level 5% nominal level 10% nominal level

T = 250 0.4% 4.7% 11.8%

T = 500 1.0% 5.3% 11.7%

T = 1000 1.3% 6.3% 11.7%

Table 2: Size of bootstrap version of LRT test for H
(2)
R : � = (1;�1).

Next, we examine the power of the LRT test for the two hypotheses. The results for H
(1)
R

are reported in Table 3 The test tends to have low power in small samples, and for example

only rejects the incorrect hypothesis of � = 0 with 16% probability for T = 250. However,

as the sample size grows, the power quickly improvves and with T = 500 observations the

bootstrap test exhibit acceptable power properties; for example, it rejects the incorrect null

of � = 0 with 67.6% probability at a 5% level. In large samples (T = 1000), the power is

very good for the sup-test with rejection probabilities close to 100%.

1% nominal level 5% nominal level 10% nominal level

T = 250 2.7% 16.0% 29.2%

T = 500 37.5% 67.6% 78.1%

T = 1000 93.5% 97.0% 97.8%

Table 3: Power of bootstrap version of supLR test for H(1)
0 : � = 0.

The power of the test of H(2)
R is not quite as impressive as can be seen in Table 4.

For example, it rejects at a 5% level with probability 49.5% and 76.4% for sample sizes

of T = 500 and T = 1000 which is signi�cantly lower than the corresponding rejection

probabilities reported in Table 3. This is to some extent probably a consequence of the

DGP, which under the alternative of H(2)
R is not too far away from the null with �0 having

been chosen as �0 = (1;�0:9282)0, cf. Appendix E. Hence it is more di¢ cult to detect the
departure from the null in �nite samples.

1% nominal level 5% nominal level 10% nominal level

T = 250 3.8% 17.0% 29.7%

T = 500 23.2% 49.5% 63.2%

T = 1000 63.5% 76.4% 81.4%
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Table 4: Power of bootstrap version of LRT test for H
(2)
0 : � = (1;�1).

7 Conclusion

We have here proposed and analyzed likelihood-based estimators and tests in a class of

nonlinear vector error correction models. The properties of estimators and tests prove to

be non-standard in two distinct ways: First, due to the dependence between short- and

long-run parameter estimators, their asymptotic distributions are not comparable to the

standard Dickey-Fuller type asymptotics found in linear models. This in term a¤ects the

test statistics. For example, tests only involving short-run parameters will in general not

follow �2 in contrast to the situation in the linear cointegration model. The distribution

of the test statistics get even more involved in the case of testing for linearity of the error

correction mechanism due to vanishing parameters under the null.

Due to the complicated nature of the distributions, we proposed to implement the tests

using a wild bootstrap procedure, and through simulations we demonstrated that the result-

ing class of tests perform well both in terms of size and power. It would be of interest to

show theoretically that the bootstrap procedure is consistent.
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A Proofs of Section 3

Proof of Theorem 3.4. By standard CLT for stationary martingales, we have that

(�T (s; �1) ; :::; �T (s; �k)) converges weakly towards (� (s; �1) ; :::; � (s; �k)) for any given �-

nite subset f�1; :::; �kg; see e.g. Brown (1971). The claimed result will now hold if we can
show that �T (s; �) is asymptotically tight, c.f. Theorem 1.5.4 in Van der Vaart and Wellner

(1996) [VW96]. For notational convenience, de�ne

GT (�) :=
TX
t=1

mT
t (�) ; mT

t (�) := f (yt�1;�) et=
p
T ;

such that �T (s; �) = G[Ts] (�). The idea is now to combine the arguments in the proof of

Theorem 1 of Escanciano (2007) [E07], who show tightness of � 7! GT (�) in a Martingale

setting similar to ours, and Theorem 2.12.1 in VW96, who show tightness of �T (s; �) when

(yt; et) is i.i.d.

As a �rst step, we verify that Assumptions W1-W2 of E07 hold so that we can apply

the same arguments as in E07�s Proof of Theorem 1. E07�s Assumption W1 follows straight-

forwardly by our Assumptions 3.1-3.2 combined with the uniform Law of Large Numbers

of Kristensen and Rahbek (2005, Proposition 1)3. To verify E07�s Assumption W2, we

establish the su¢ cient conditions stated in the discussion on p. 121 in E07: First, the

required Lipschitz conditions follows by our Assumption 3.2(ii). The requirement of a uni-

formly integrable entropy follows by Andrews (1994, Theorem 2) since our function class

ff (yt�1;�) et : � 2 �g is in Andrews�Class II.
Next, we now proceed as in the proof of Theorem 1 of E07 (see also the proof of Theorem

2.12.1 in VW96) and choose a nested sequence of partitions Pq = f�q;k : k = 1; :::; Nqg
of � for q = 1; 2; ::: which satis�es

P1
q=1 2

�qplogNq < 1 and Assumption W2 in E07.

Furthermore, for each �q;k, choose a �xed element �q;k 2 �q;k and de�ne

prq (�) := �q;k; �Tq;t (�) := sup
�1;�22�q;k



mT
t (�1)�mT

t (�2)


 if � 2 �q;k:

Then, according to Theorem 1.5.6 of VW96, it is su¢ cient to show that for every "; � > 0,

there exists � > 0 and q0 � 1 such that

lim sup
T!1

P �

 
sup

js1�s2j<�
sup
�2�



�T (s1; �)� �T �s2;prq0 (�)�

 > "

!
� �:

By the triangle inequality,

sup
js1�s2j<�

sup
�2�



�T (s1; �)� �T �s2;prq0 (�)�

 (A.1)

� sup
js1�s2j<�

sup
�2�

k�T (s1; �)� �T (s2; �)k+ sup
s22[0;1]

sup
�2�



�T (s2; �)� �T �s2;prq0 (�)�

 :
3Kristensen and Rahbek (2005) assume geometric ergodicity, but by inspection of the proof of their Propo-

sition 1, it is easily seen that all arguments are still valid when replacing the assumption of geometric ergodicity

with that of stationarity and ergodicity.
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First, consider the second term: For a given q0, introduce the same numbers and indicator

functions as in E07, p. 132 for all q � q0,

aq := 2
�q=
q
log (Nq+1);

CTq�1;t (�) := I
�
�Tq0;t (�) � aq0 ; :::;�

T
q�1;t (�) � aq�1

	
;

DT
q�1;t (�) := I

�
�Tq0;t (�) � aq0 ; :::;�

T
q�1;t (�) � aq�1 ;�

T
q;t (�) > aq

	
;

DT
q0;t (�) := I

�
�Tq0;t (�) > aq0

	
:

We may now rewrite mT
t (�)�mT

t

�
prq0 (�)

�
as (c.f. E07, eq. 11)

mT
t (�)�mT

t

�
prq0 (�)

�
=
�
mT
t (�)�mT

t

�
prq0 (�)

�	
DT
q0;t (�)

+
1X

q=q0+1

�
mT
t (�)�mT

t

�
prq (�)

�	
DT
q;t (�)

+
1X

q=q0+1

�
mT
t

�
prq (�)

�
�mT

t

�
prq�1 (�)

�	
CTq;t (�) :

By the same arguments as in E07, p. 131-132, it therefore follows that

sup
s2[0;1]

sup
�2�



�T (s; �)� �T �s;prq0 (�)�

 � I1 + I2 + 2II2 + II3 + III;

where, with
P[Ts]
t;q =

P[Ts]
t=1

P1
q=q0+1

and �mT
q;t (�) = mT

t

�
prq (�)

�
�mT

t

�
prq�1 (�)

�
,

I1 = sup
s2[0;1]
�2�








[Ts]X
t=1

�Tq0;t (�)D
T
q0;t (�)







 ; I2 = sup
s2[0;1]
�2�








[Ts]X
t=1

E
�
�Tq0;t (�)D

T
q0;t (�) jFT;t�1

�





 ;
II2 = sup

s2[0;1]
�2�








[Ts]X
t;q

E
�
�Tq;t (�)D

T
q;t (�) jFT;t�1

�





 ;
II3 = sup

s2[0;1]
�2�








[Ts]X
t;q

�
�Tq;t (�)D

T
q;t (�)� E

�
�Tq;t (�)D

T
q;t (�) jFT;t�1

�	






III = sup

s2[0;1]
�2�








[Ts]X
t;q

�mT
q;t (�)C

T
q;t (�) �E

�
�mT

q;t (�)C
T
q;t (�) jFT;t�1

�







 :
We show that each of the above terms converges in probability towards zero. Since the

arguments are more or less identical to the ones in E07, we only sketch them. To show

that I1 and I2 tend to zero, note that, using the de�nition of mT
t (�), �

T
q0;t (�)D

T
q0;t (�) �

2MtI
n
2Mt >

p
Taq0

o
=
p
T where Mt = F (yt�1) ketk and F is the envelope de�ned in As-

sumption 3.2. Thus, for any �xed q0,

I1 � sup
s2[0;1];�2�

[Ts]X
t=1



�Tq0;t (�)DT
q0;t (�)



 � 2p
T

TX
t=1

MtI
n
2Mt >

p
Taq0

o
� 2

aq0T

TX
t=1

M2
t I
n
2Mt >

p
Taq0

o
P! 0;
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since E
�
M2
t

�
= E

�
F 2 (yt�1)

�
E [ketk] <1. Similarly, I2

P! 0. By the same arguments as in

E07, p. 133,

II2 �
(
sup

q�q0+1
sup
�2�

TX
t=1



E ��Tq;t (�)DT
q;t (�) jFT;t�1

�

)�
8<:

1X
q=q0+1

2�2q

aq

9=;
� K

1X
q=q0+1

2�2q

aq

on the set 
TK =
�
supq�1 �T (Pq) =2�2q � K

	
, where �T (Pq) is de�ned in E07, p. 120 and

K > 0 is a given constant. Thus, II2 can be made arbitrarily small by choosing K and q0
large enough. As for II3, since on the set 
TK the following bounds hold

�Tq;t (�)DT

q;t (�)� E
�
�Tq;t (�)D

T
q;t (�) jFT;t�1

�

 � 2aq�1;
TX
t=1

E
h
�Tq;t (�)

2DT
q;t (�) jFT;t�1

i
� K2�2q;

we can apply Lemma 9 in Pollard (1984, p. 177) to obtain that

P

0@ sup
s2[0;1]

sup
�2�








[Ts]X
t=1

�
�Tq;t (�)D

T
q;t (�)� E

�
�Tq;t (�)D

T
q;t (�) jFT;t�1

�	





 >
p
12K2�2qj
TK

1A
� 3P

 
sup
�2�







TX
t=1

�
�Tq;t (�)D

T
q;t (�)� E

�
�Tq;t (�)D

T
q;t (�) jFT;t�1

�	




 > p3K2�2qj
TK
!
:

It now follows by the same arguments as in E07, p. 133-134 that II3 can be made arbitrarily

small in probability by choosing K and q0 large enough. Similarly, III can be controlled

by �rst applying Lemma 9 in Pollard (1984, p. 177) and then proceeding as in Escanciano

(2007).

Next, consider the �rst term in eq. (A.1): First, note that due to stationarity of (et; yt),

for any s1 < s2,

�T (s1; �)� �T (s2; �) =
1p
T

[Ts2]X
t=[Ts1]

f (yt�1; �) et
d
=

1p
T

[Ts]X
t=1

f (yt�1; �) et = �T (s; �) ;

where s = s2 � s1. We may therefore proceed as with the second term: With the same

de�nitions as before,

sup
js1�s2j<�

sup
�2�

k�T (s1; �)� �T (s2; �)k
d
= sup

s<�
sup
�2�

k�T (s; �)k � I1+ I2+2II2+ II3+ III + IV;

where I1, I2, II2, II3 and III are handled as before while

IV = sup
s2[0;�]
�2�








[Ts]X
t=1

mT
t

�
prq0 (�)

�





 :
Introducing the following functions,

�mT
q;t (�) := sup

�2�q;k



mT
t (�)



 ; CTq;t (�) := I
�
�mT
q;t (�) � aq

	
; DT

q;t (�) := I
�
�mT
q;t (�) > aq

	
;
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we have IV � 2IV1 + IV2 + IV3 where

IV1 = sup
s2[0;�]
�2�








[Ts]X
t=1

E
�
mT
t

�
prq0 (�)

�
DT
q0;t (�) jFT;t�1

�





 ;
IV2 = sup

s2[0;�]
�2�








[Ts]X
t=1

�
mT
t

�
prq0 (�)

�
DT
q0;t (�)� E

�
mT
t

�
prq0 (�)

�
DT
q0;t (�) jFT;t�1

�	






IV3 = sup

s2[0;�]
�2�








[Ts]X
t=1

mT
t

�
prq0 (�)

�
CTq0;t (�) �E

�
mT
t

�
prq0 (�)

�
CTq0;t (�)

�







 :
We can now employ the same arguments as before to show that each of the terms can be

made arbitrarily small in probability by choosing � > 0 small enough.

Proof of Theorem 3.5. De�ne the mean-zero sequence ut (�) = f (yt�1;�)�E [f (yt�1;�)]
and write

1

T

PT
t=1x

0
T;t�1f (yt�1;�) =

1

T

PT
t=1x

0
T;t�1E [f (yt�1;�)] +

1

T

PT
t=1x

0
T;t�1ut (�) :

By Assumption 3.3 and the Continuous Mapping Theorem, the �rst term converges towards

the claimed limit. We then need to show that the second term goes to zero in probability

uniformly in �. We follow the same arguments as in Caner and Hansen (2001, Proof of

Theorem 3): For any given � > 0, de�ne N = [1=�], tk = [k�T ] + 1 and t�k = tk+1 � 1, and
write

1

T

TX
t=1

x0T;t�1ut (�) =
1

T

N�1X
k=0

t�kX
t=tk

x0T;t�1ut (�)

=
1

T

N�1X
k=0

t�kX
t=tk

�
x0T;t�1 � xT;tk�1

�0
ut (�) +

1

T

N�1X
k=0

x0T;tk�1

t�kX
t=tk

ut (�) :

The �rst term is bounded by,

1

T

N�1X
k=0

t�kX
t=tk

kxT;t�1 � xT;tk�1k sup
�2�

kut (�)k �
(

sup
jt�t0j�T�



xT;t � xT;t0


)
� 1
T

N�1X
k=0

t�kX
t=tk

sup
�2�

kut (�)k ;

where, by the law of large numbers,

1

T

N�1X
k=0

t�kX
t=tk

sup
�2�

kut (�)k =
1

T

TX
t=1

sup
�2�

kut (�)k
P! E

�
sup
�2�

kut (�)k
�
<1;

and, by Assumption 3.3,

sup
jt�t0j�T�



xT;t � xT;t0

 D! sup
js�s0j��



x (s)� x �s0�

 :
The limit can be made arbitrarily small due to a.s. continuity of x (s). The second term is

bounded by

1

T

N�1X
k=0

kxT;tk�1k








t�kX
t=tk

ut (�)







 �
(
sup
1�t�T

kxT;tk
)
� 1

T

N�1X
k=0








t�kX
t=tk

ut (�)







 ;
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where sup1�t�T kxT;tk = OP (1). Next, sup�2� jj
PN
t=1 ut (�) =N jj

P! 0 by Kristensen and

Rahbek (2005, Proposition 1) as N ! 1, and hence the arguments following (A.10) in
Caner and Hansen (2001, proof of Theorem 3) imply that

sup
�2�

1

T

N�1X
k=0








t�kX
t=tk

ut (�)







 P! 0; as T� !1:

The proof of the second assertion follows by the same arguments.

Proof of Theorem 3.6. De�ne,

VT (�) =
1p
T

TX
t=1

x0T;t�1f (yt�1;�) et =
TX
t=1

x0T;t�1��T (t=T; �) 2 R:

It follows by standard results that the convergence for any � 2 � in (3.3) holds under the

listed assumptions, see e.g. Kurtz and Protter (1991, Theorem 2.2). Next, the uniform

convergence on L1 (�) in (3.4) holds by Kallenberg (2002, Corollary 16.9) by establishing
the tightness condition E kVT (�)� VT (�0)k2a � c k� � �0kd�+b, where d� = dim (�) and

a; b > 0. By Rosenthal�s inequality (Hall and Heyde, 1980, p.23) and Cauchy-Schwarz

inequalities, for a > 1, with ft (�) = f (yt�1;�),

E
h

VT (�)� VT ��0�

2ai
� C

T a

 
TX
t=1

E
h
E
�
kxT;t�1k2 ketk2



ft (�)� ft ��0�

2 jFt�1�i!a

+
C

T a

TX
t=1

E
�
kxT;t�1k2a ketk2a



ft (�)� ft ��0�

2a�
� C k
eka

��
sup
t
E kxT;t�1k4

�
E


ft (�)� ft ��0�

4�a=2

+ CT 1�aE

�
sup
t

�
kxT;t�1k2a ketk2a



ft (�)� ft ��0�

2a��
� C k
eka

�
sup
t
E kxT;t�1k4E



ft (�)� ft ��0�

4�a=2
+ CT 1�a

�
E sup

t
kxT;t�1k6aE ketk6aE sup

�2�
kft (�)k6a

�1=3
� C k
eka

�
sup
t
E kxT;t�1k4

�a=2 �
EB (yt�1)

4
�a=2 

� � �0

2a + o (1) .

Then with 2a > d� the result follows.

B Proofs of Section 4

Proof of Lemma 4.6. We show the result by verifying the conditions in Theorem 3.4.

Choose any d�, d� and d� and de�ne � = vec (d�; d�; d�). We consider the sequence

�T (s; �) :=
1p
T

[Ts]X
t=1

�
�0uut (�) + �

0
vvt (�) + �

0
wwt (�)

	
=

1p
T

[Ts]X
t=1

f (yt�1; �) et;
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with et := 
�10 "t, yt�1 =
�
Z 00;t�1; Z

0
2;t�1

�0, and
f (yt�1; �) := [d�Z0;t�1 + d� (Z0;t�1; �) + d�Z2;t�1]

0 :

Also note that � = �. Here, by Assumption 4.2

kf (yt�1; �)k � c (kZ0;t�1k+ k (Z0;t�1; �)k+ kZ2;t�1k) � c (kZ0;t�1k+ kZ0;t�1k� + kZ2;t�1k)

Thus,

kf (yt�1; �)km � c (kZ0;t�1km + kZ0;t�1km� + kZ2;t�1km) :

Hence the requirement that E kf (yt�1)k2 < 1, translates into E kZ0;t�1k2� ; E kZ2;t�1k2 <
1. Furthermore, by the di¤erentiability of  and the polynomial boundedness, a.s.

f (yt�1; �)� f �yt�1; �0�

 = 

 (Z0;t�1; �)�  �Z0;t�1; �0�



�





@ 

�
Z0;t�1; ��

�
@�








� � �0


� c kZ0;t�1k�



� � �0

 :
Thus, Assumption 3.3 (ii), holds with B (yt�1) = kZ0;t�1k�. Thus the requirement that
EB (yt�1)

2 < 1, translates into E kZ0;t�1k2� < 1. This veri�es that Assumptions 4.4-4.1
imply that the Assumptions 3.1-3.3 of Theorem 3.4 hold, and hence the result follows for

(u0t (�) ; v0t (�) ; w0t (�)). The joint convergence holds by the marginal convergence in Assumption
4.5, in conjunction with the fact that (u0t (�) ; v0t (�) ; w0t (�)) and Xt are de�ned in terms of
("s)s�t.

Proof of Theorems 4.7. For ease of notation, we treat 
 = 
0 as known such that

L�T = LT . The extension to unknown 
 is straigthforward and follows along the lines of

Kristensen and Rahbek (2010).

To establish the result, we apply a general formulation in Lemmas D.1 and D.2 in Appen-

dix D below which will allow us to consider convergence uniformly in �. To use the results in

Section D, set 
 = vec (#), � = �0; QT (
; �) = QT (#) = � 1
T LT (#), with LT (#) de�ned in

eq. (2.11), vT = T and UT = VT , where VT is de�ned in eq. (4.3). To prove consistency, we

verify the conditions of Lemma D.1: We have that condition (i) holds by Assumption 4.2,

while (ii)-(iii) follow by Lemmas C.1, C.2 and C.3:

dQT (#0; �0;U
�1=2
T d
) = � 1

T
dLT (#0;V

�1=2
T d
) = oP (1) ;

d2QT (#0;U
�1=2
T d
; U

�1=2
T d�
) = � 1

T
d2LT (#0;V

�1=2
T d
; V

�1=2
T d�
)

D! H1 (d
; d�
) ;

d3QT (#;U
�1=2
T d
; U

�1=2
T d�
; U

�1=2
T d�
) = � 1

T
d3LT (#;V

�1=2
T d
; V

�1=2
T d�
; V

�1=2
T d�
)

= OP (jjd
jjjjd�
jjjjd�
jj);
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with H1 (d
; d�
) given in C.2. The asymptotic distribution will follow from Lemma D.2

by verifying the additional condition (iv) in Lemma D.2. But this follows from Lemma C.1

since,

dQT (#0; �
1=2
T U

�1=2
T vec (d#)) = �T�1=2dLT (#0;V �1=2T vec (d#))

D! S1 (d#) ;

where S1 (d#) is given in Lemma C.1. We conclude that V 1=2T (vec(#̂T ) � vec(#0))
D!

vec(d#1); where #1 satis�es S1 (d#) = H1 (d#; d#1) for all directions d#. This together

with eq. (D.1) imply the results stated in Theorem 4.7.

Proof of Theorems 4.8. We proceed as in the proof of Theorem 4.7: Set 
 = vec (�),

� = vec (�) ; QT (
; �) = �L�T (�; �) =T , vT = T and UT = V�T , where V�T is de�ned in (4.3).

We can now apply Lemmas D.1 and D.2. The conditions stated there hold by Lemmas C.1,

C.2 and C.3.

Proof of Theorem 4.9. We give a proof of the most complicated case where � is not
identi�ed under the null; the proof of the other case is analogous. We rewrite the restriction

on � as vec (�) = (R�)? � where � is an unrestricted parameter vector. We �rst analyze

the restricted estimator ~�: Under the null � vanishes so the restricted log-likelihood does

not depend on this parameter. Thus, L�T (b; �) = ~L�T (b; �) and ~L
�
T (b; �) := L�T

�
b; (R�)? �

�
.

Taking di¤erentials w.r.t. (b; �),

d~L�T (b; �) = Sb;T (�)vec
�
db0
�
+ S�;T (�)0 (R�)? d�;

d2 ~L�T (b; �) = vec
�
db0
�0Hbb;T (�)vec �db0�+ d� 0 (R�)0?H��;T (�) (R�)? d�

+ 2vec
�
db0
�0Hb�;T (�) (R�)? d�;

where we suppress dependence on db and d� in the di¤erentials. Here, Sb;T (�) and Hbb;T (�)
are the score vector and Hessian matrix w.r.t. b de�ned as the solutions to dL�T (�; db) =

Sb;T (�)0vec (db0) and d2L�T (�; db; db) = vec (db0)0Hbb;T (�)vec (db0); similarly with S�;T (b; �),
H��;T (�) and Hb�;T (�). By the same arguments as used in the proof of Theorem 4.8, we now

obtain that (~b; ~�) satis�es

0 = d~L�T (b0; �0; d�) + d
2 ~L�T (b0; �0; d�; ~� � �0)

= Sb;T (�0)0vec
�
db0
�
+ S�;T (�0)0 (R�)? d�

+ vec(~b0)0Hbb;T (�0)vec
�
db0
�
+ (~� � �0)0 (R�)0?H��;T (�0) (R�)? d�

+ vec(~b0)0Hb�;T (�0) (R�)? d� + (~� � �0)
0 (R�)

0
?H�b;T (�0)vec

�
db0
�

for any directions (db; d�), where we ignore the higher-order remainder term. With vec (db0) =
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K�1
T d�h and d� = 1=

p
Td�� , Lemmas C.1-C.2 yield

Sb;T (�0)0vec
�
db0
�
= Sb;T (�0)0K�1

T dh
D! Sb;1(�0)0dh;

S�;T (�0)0 (R�)? d� = T�1=2S�;T (�0)0 (R�)? d��
D! S�;1(�0)0 (R�)? d�� ;

K�1
T Hbb;T (�0)vec

�
db0
�
= K�1

T Hbb;T (�0; �)K�1
T dh

D! Hbb;1(�0)dh

T�1=2R0?H��;T (�0) (R�)? d� = T�1R0?H��;T (�0) (R�)? d��
D! R0?H��;1(�0) (R�)? d�� ;

and similar for the cross terms. We conclude that

p
T

 
(Ir 
KT ) vec

�
~b0
�

~� � �0

!
= �~H�1�;T ~S�;T + oP (1) ;

where ~HT
D! ~H and ~ST

D! ~S with ~H�� and ~S� de�ned in eq. (4.11). Thus,

p
TV

1=2
�;T vec

�
~� � �0

�
=
p
TV

1=2
�;T

 
vec

�
~b0
�

vec (~�)� vec (�0)

!
= �M�

~H�1��;T ~S�;T + oP (1) ;

Next, from the proof of Theorem 4.8, for any �,

p
TV

1=2
�;T vec(�̂ (�)� �0) =

p
TV

1=2
�;T

 
vec(b̂ (�)0)

vec (�̂ (�))� vec (�0)

!
= �H�1��;T (�)S�;T (�) + oP (1) :

Given these results, we derive the asymptotic distributions of the sup-LR and sup-LM

test. Regarding the sup-LR test, use a second-order Taylor expansion to obtain

LRT (�) = 2
h
L�T (�̂ (�) ; �)� L�T (~�)

i
=
1

2
S�;T (�̂ (�) ; �)(�̂ (�)� ~�) + (�̂ (�)� ~�)0H��;T (�� (�) ; �)(�̂ (�)� ~�);

where �� (�) lies between �̂ (�) and ~�. Since �̂ (�) maximizes L�T (�; �), S�;T (�̂ (�) ; �) = 0, while
on L1 (�) ;

�
p
TV

1=2
�;T vec

�
�̂ (�)� ~�

�
= �

p
TV

1=2
�;T vec

�
�̂ (�)� �0

�
+
p
TV

1=2
�;T vec

�
~� � �0

�
= H�1��;T (�0; �)S�;T (�0; �)�M�

~H�1��;T ~S�;T + oP (1)
W! H�1�� (�)S�(�)�M�

�
M 0
�H��(�)M�

��1
M 0
�S�(�) = P (�)S�(�);

where we have employed Lemmas C.1-C.3, and

P (�) := H�1�� (�)�M�

�
M 0
�H��(�)M�

��1
M 0
� = H

�1
�� (�) (M�)?

�
(M�)?H��(�) (M�)?

��1
(M�)?H

�1
�� (�):

Thus,

LRT (�)
W! S�(�)0P (�)0H��(�)P (�)S�(�) = V� (�)0V� (�) on L1 (�) ;

where V� (�) is given in the theorem. For the LM test, use a �rst order Taylor expansion to

write the unrestricted score evaluated at the restricted estimators as

S�;T (~�; �) = S�;T (�0; �) +H��;T (�0; �)
p
TV

1=2
�;T vec(

~� � �0) + oP (1) ;
W! S�(�)�H��(�0; �)M�

~H�1�� ~S�
= H��(�)P (�)S�(�);
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In conclusion, on L1 (�),

LMT (�)
W! S�(�)0P (�)0H��(�)P (�0; �)S�(�0; �) = V� (�)0V� (�) :

C Asymptotics of derivatives of likelihood function

In the following, we use the notation V �1=2T d# = unvec(V
�1=2
T vec (d#)) to save space, and

similar for other parameters.

Lemma C.1 Under Assumptions 4.1-4.4 with q0 = 2�; q2 = 2 and Assumption 4.5 (i), the
log-likelihood function LT (#) de�ned in (2.11) with d# = (d�; d�) and d� = (db0; d�) satis�es:

1. If �0 6= 0, then as T !1;

T�1=2dLT (#0;V
�1=2
T d#)

D! S�;1 (�0; d�) + S�;1 (�0; d�) ;

where

S�;1 (�; d�) =

�
tr(db0

Z 1

0
F (s) dB0w (s; �))

�
+ vec(d�)0Bu (1; �) ;

S�;1 (�; d�) = (vecd�)
0Bv (1; �) ;

and (B0u; B
0
v; B

0
w; F

0)0 are de�ned in (4.1).

2. If �0 = 0, then as T !1;

T�1=2dLT (�0; �;V
�1=2
��;T d�) = S�;T (�0; �;V

�1=2
��;T d�)

W! S�;1 (�; d�) on L1 (�) (C.1)

Proof. The �rst order di¤erential of LT (�; �) is given by

T�1=2dLT (#;V
�1=2
T d#) = Sb;T

�
�; �;K�1

T db
�
+ S�;T (�; �; d�) + S�;T (�; �; d�)

where, with

Zt (b) := Z0;t�1 + b
0Z1;t�1 (C.2)

p
TS�;T (�; �; d�) =

TX
t=1

[d�Zt (b) + d� (Zt (b) ; �) + d�Z2;t�1]
0
�10 "t (�) ; (C.3)

p
TSb;T (�; �; db) =

TX
t=1

Z 01;t�1db (�+ �@z (Zt (b) ; �))
0
�10 "t (�) : (C.4)

p
TS�;T (�; �; d�) = (vec (d�))

0
TX
t=1

@� (Zt (b) ; �)
0 �0
�10 "t (�) : (C.5)

Proof of part 2 (�0 = 0): Evaluated at the parameter value #0 (�) = (0; �0; �), with �0 = 0;

we get

S�;T (�0; �; d�) =
1p
T
(vec (d�))0

TX
t=1

ut (�) ; Sb;T (�0; �; db) =
1p
T

TX
t=1

Z 01;t�1dbwt;
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where ut (�) 2 Rp(r+r�+pk) and wt 2 Rr are de�ned in eq. (2.24), where we note that wt (�)
does not depend on � when �0 = 0 and we therefore simply write wt. By Lemma 4.6,

S�;T (�0; �; d�) = T�1=2 (vec (d�))0
TX
t=1

ut (�)
W! (vec (d�))0

Z 1

0
dBu (s; �) on L1 (�) ;

and next, as Sb;T does not dend on �, apply Theorem 3.6 (i) with xT;t�1 := db0K�1
T Z1;t�1,

� = � and f (yt�1; �), et as in the proof of Lemma 4.6 to obtain,

Sb;T
�
�0; �;K

�1
T db

�
= T�1=2

TX
t=1

��
Z 01;t�1K

�1
T

	
db
�
wt

W!
Z 1

0

�
F (s)0 db

�
dBw (s) on L1 (�) :

The two convergence results above hold simultaneously. This proves the second part of the

theorem.

Proof of Part 1 (�0 6= 0): The convergence results of Part 2 holds, and in addition by Lemma
4.6,

S�;T (�0; �0; d�) = T�1=2 (vec (d�))0
TX
t=1

vt (�0)
D! (vec (d�))0

Z 1

0
dBv (s; �0) :

Lemma C.2 Under Assumptions 4.1-4.5 for qi speci�ed below, with d# = (d�; d�), d� =

(d�; db) and the log-likelihood function LT (�; �) de�ned in (2.11), the following hold:

1. If �0 6= 0, then with q0; q2 = 2 and q1 unconstrained,

� 1

T
d2LT (#0;V

�1=2
T d#; V

�1=2
T d�#)

D! H��;1(#0; d�; d��) +H��;1(#0; d�; d��) +H��;;1(#0; d�; d��) +H��;;1(#0; d�; d��)

where

H��;1(#; d�; d��) = vec (d�)0�u;u (�; �) vec (d��) + trfdb0
Z 1

0
F (s)F 0 (s) dsd�b�w;w (�; �)g

(C.6)

+

Z 1

0
F (s)0 dsdb�w;u (�; �) vec (d��) + vec (d�)

0�u;w (�; �) db
0
Z 1

0
F (s) ds;

H��;1(#; d�; d�) = vec (d�)0�u;v (�; �) vec (d�) + vec
�
db0
�0�Z

Fds
 �u;v (�; �)
�
vec (d�)

H��;1(#; d�; d�) = vec (d�)0�v;v (�; �) vec (d�) :

Here � is de�ned in (4.2) and (B0u; B
0
v; B

0
w; F

0)0 in (4.1).

2. If �0 = 0, then with q0 = �max (4; 3d�) ; q1 = max (4; 3d�) and q2 = 2 it holds,

� 1
T
d2LT (�0; �;V

�1=2
�;T d�; V

�1=2
�;T d��)

W! H��;1(�; d�; d��) on L1 (�) ;

where H��;1(�; d�; d��) given by (C.6) is evaluated at �0 (with �0 = 0).
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Proof. Note that,

� 1
T
d2LT (#0;V

�1=2
T d#; V

�1=2
T d�#) = H��;T (#0;V

�1=2
�;T d�; V

�1=2
�;T d��) +H��;T (#0;V

�1=2
�;T d�; V

�1=2
T d��)

+H��;T (#0;V
�1=2
�;T d�; V

�1=2
�;T d��) +H��;T (#0;V

�1=2
�;T d�; V

�1=2
�;T d��);

with

H��;T (#0;V
�1=2
�;T d�; V

�1=2
�;T d��) = H�;� (�) +Hb;b

�
�;K�1

T db;K�1
T d�b

�
+H�;b

�
�;K�1

T d�b
�

+Hb;�
�
�;K�1

T db
�
;

H��;T (#0;V
�1=2
�;T d�; V

�1=2
�;T d��) = H�;� (�) +H�;b

�
�;K�1

T d�b
�
;

H��;T (#0;V
�1=2
�;T d�; V

�1=2
�;T d��) = H�;� (�) ;

where we suppress dependence on all directions except db and have used the notation that

H�;b (�; db) = � 1
T d

2LT (�0; �; d�; d�b) and so forth.

Proof of part 2 (�0 = 0): First, consider H��;T at �0 = (0; �0), with �0 = 0 and � freely

varying. The following claims are shown to hold uniformly over � 2 �:

Claim 2.1 : H�;� (�)
P! vec (d�)0�uu (�) vec (d��) ;

Claim 2.2 : Hb;b
�
�;K�1

T db;K�1
T d�b

� D! trf(db)0
Z 1

0
F (s)F (s)0 ds(d�b)�w;wg;

Claim 2.3 : Hb;�
�
�;K�1

T db
� W! Z 1

0
F (s)0 dsdb�w;u (�; �) vec (d��) on L1 (�) :

Proof of Claim 2.1 : We have

H�;� (�) =
1

T

TX
t=1

[d� (Zt (b)) + d� (Zt (b) ; �) + d�Z2;t�1]
0
�10 (C.7)

�
�
d�� (Zt (b)) + d�� (Zt (b) �) + d��Z2;t�1

�
;

Evaluated at �0;

H�;� (�) =
1

T
vec (d�)0

TX
t=1

h�
Z 00;t�1;  (Z0;t�1; �)

0 ; Z 02;t�1
�0 �

Z 00;t�1;  (Z0;t�1; �)
0 ; Z 02;t�1

�

 
�10

i
� vec (d��) ;

and the result follows by the uniform law of large numbers in Kristensen and Rahbek (2005).

Proof of Claim 2.2 : Next, Hb;b
�
�; db; d�b

�
= H

(1)
b;b

�
�; db; d�b

�
+H

(2)
b;b

�
�; db; d�b

�
, where

H
(1)
b;b

�
�; db; d�b

�
=
1

T

TX
t=1

"t (�)
0
�10 �

�
Z 01;t�1db
 Ir�

�
@2zz (Zt (b) ; �) d

�b0Z1;t�1 (C.8)

=
1

T

TX
t=1

trfvec
�
Z 01;t�1db
 Ir�

�
vec(Z 01;t�1d�b)

0 �@2z (Zt (b) ; �) 0 
 "t (�)0
�10 �
�
g;
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with

@2zz (z; �) = @vec (@z (z; �)) =@z
0;

and

H
(2)
b;b

�
�; db; d�b

�
=
1

T

TX
t=1

�
f�+ �@z (Zt (b) ; �)gZ 01;t�1d�b

�0

�10

�
f�+ �@z (Zt (b) ; �)gZ 01;t�1db

�
:

(C.9)

At �0 with �0 = 0,H
(1)
b;b

�
�; db; d�b

�
= 0, applying Theorem 3.5, with xT;t�1 = d�b0K�1

T Z1;t�1,

Hb;b
�
�;K�1

T db;K�1
T d�b

�
= T�1

TX
t=1

�
d�b0K�1

T Z1;t�1
�0 �
�0


�1�0
�
db0K�1

T Z1;t�1

D! tr

�
d�b0
Z 1

0
FF 0dsdb�w;w

�
with �w;w = V ar (wt) = �00


�1
0 �0.

Proof of Claim 2.3 : We write Hb;� (�; db) = H
(1)
b;� (�; db) +H

(2)
b;� (�; db), where

H
(1)
b;� (�; db) =

1

T

TX
t=1

��
d��+ d��@z (Zt (b) ; �)

	
db0Z1;t�1

�0

�10 "t (�) (C.10)

H
(2)
b;� (�; db) =

1

T

TX
t=1

�
f�+ �@z (Zt (b) ; �)g db0Z1;t�1

�0

�10

�
d��Z0;t�1 + d�� (Zt (b) ; �) + d��Z2;t�1

�
(C.11)

With � = �0 (such that in particular b = 0), set f (1)t�1 (�) = (Ir; @z (Z0;t�1; �) ; 0) and

et = 

�1
0 "t, then

H
(1)
b;� (�; db) =

1

T

TX
t=1

Z
0
1;t�1dbf

(1)
t�1 (�) d��

0et: (C.12)

By the same arguments as in the proof of Lemma 4.6, we see that f (1)t�1 (�) satis�es Assumption

3.2 (i) with 


f (1) (yt�1; �)


 � c (1 + k@z (Z0;t�1; �)k) � c (1 + kZ0;t�1k�)

Furthermore, by the di¤erentiability of  ,


f (1) (yt�1; �)� f (1) �yt�1; �0�


 = 

@z (Z0;t�1; �)� @z �Z0;t�1; �0�

 �





@
�
@z 

�
Z0;t�1; ��

��
@�








� � �0


� c (1 + kZ0;t�1k�)



� � �0

 ;
Thus, the requirement in Theorem 3.6 (ii) translates into q0 = �max (4; 3d�) ; and q1 =

max (4; 3d�). Theorem 3.6 now implies that
p
TH

(1)
b;�

�
�;K�1

T db
�
= OP (1) and hence,H

(1)
b;�

�
�;K�1

T db
�
=

oP (1) ; uniformly in � as desired.

Consider H(2)
b;� (�; db) and observe that,

H
(2)
b;� (�; db) =

1

T

TX
t=1

�
�db0Z1;t�1

�0
f
(2)
t�1 (�)
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where

f
(2)
t�1 (�) = 


�1
0

�
d��Z0;t�1 + d�� (Zt (b) ; �) + d��Z2;t�1

�
Applying Theorem 3.5 gives at �0;

H
(2)
b;�

�
�;K�1

T db
� W! Z 1

0
F (s)0 dsdb�w;u (�; �) vec (d��) on L1 (�)

This �nishes the proof of part 2.

Proof of part 1 (�0 6= 0): We state the needed as claims again:

Claim 1.1 : H�;� (�0)
P! vec (d�)0�u;u (�0; �0) vec (d��) ;

Claim 1.2 : Hb;b
�
�0;K

�1
T db;K�1

T d�b
� D! trf(db)0

Z 1

0
F (s)F (s)0 ds(d�b)�w;w (�0; �0)g;

Claim 1.3 : Hb;�
�
�0;K

�1
T db

� D!
Z 1

0
F (s)0 dsdb�w;u (�0; �0) vec (d��)

Claim 1.4 : H�;� (�0)
P! vec (d�)0�u;v (�0; �0) vec

�
d��
�

Claim 1.5 : Hb;�
�
�0;K

�1
T db

� D!
Z 1

0
F (s)0 dsdb�w;v (�0; �0) vec

�
d��
�
:

Claim 1.6 : H�;� (�0)
P! vec (d�)0�v;v (�0; �0) vec

�
d��
�
:

Proof of Claims 1.1-1.3: They follow as before for claims 2.1-2.3.

Proof of Claim 1.4: The di¤erential H�;� (�) takes the form H�;� (�) = H
(1)
�;� (�) +H

(2)
�;� (�)

H
(1)
�;� (�) = �

1

T

TX
t=1

�
d�@� (Zt (b) ; �) vec

�
d��
��0

�10 "t (�) ;

H
(2)
�;� (�) =

1

T

TX
t=1

[d�Z0;t�1 + d� (Zt (b) ; �) + d�Z2;t�1]
0
�10 �@� (Zt (b) ; �) vec

�
d��
�
:

By Theorem 3.4, for # = #0; T
1=2H

(1)
�;� (�0) = OP (1), while by the LLN, H

(2)
�;� (�0)

P!
d�0�u;v (�0; �0) d�.

Proof of Claim 1.5: The di¤erential Hb;� (�; db) = H
(1)
b;� (�; db)+H

(2)
b;� (�; db) where, similar

to the proof of Claim 1.2, with

@2z;� (z; �) =
@vec (@z (z; �))

@vec (�)0
; (C.13)

we �nd,

H
(1)
b;� (�; db) =

1

T

TX
t=1

"t (�)
0
�10 �

�
Z 01;t�1db
 Ir�

�
@2z;� (Zt (b) ; �) vec

�
d��
�
; (C.14)

H
(2)
b;� (�; db) =

1

T

TX
t=1

�
f�+ �@z (Zt (b) ; �)g db0Z1;t�1

�0

�10 �@� (Zt (b) ; �) vec

�
d��
�
; (C.15)

By Theorem 3.6 (i), at #0, H
(1)
b;�

�
�0;K

�1
T db

�
= oP (1) and by Theorem 3.5, H(2)

b;�

�
�0;K

�1
T db

�
converges towards the claimed limit.

41



Proof of Claim 1.6: The di¤erential H�;� (�) = H
(1)
�;� (�) +H

(2)
�;� (�), where

H
(1)
�;� (�) =

1

T

TX
t=1

"t (�)
0
�10 �

�
vec (d�)0 
 Ir�

�
@2�;� (Zt (b) ; �) vec

�
d��
�
;

with

@2�;� (z; �) =
@vec (@� (z; �))

@vec (�)0
;

and

H
(2)
�;� (�) = (vec (d�))

0 1

T

TX
t=1

@� (Zt (b) ; �)
0 �0
�10 �@� (Zt (b) ; �) vec

�
d��
�
:

It follows by the LLN that at #0, H
(1)
�;� (�0)

P! 0 and H(2)
�;� (�0)

P! d�0�v;v (�0; �0) d��.

Lemma C.3 Suppose Assumptions 4.1-4.4 hold with q0 = 2�; q2 = 2 and Assumption 4.5

(i) holds. With d# = (d�; d�) and d� = (d�; db) and the log-likelihood function LT (�; �)

de�ned in (2.11), the following hold:

1. If �0 6= 0,

sup
#2NT (#0)

���� 1T d3LT (#; V �1=2T d#; V
�1=2
T d�#; V

�1=2
T d�#)

���� = OP (jjd#jjjjd�#jjjjd�#jj)

for a sequence of neighborhoods

NT (#0) = f# : jj� � �0jj < �; jj� � �0jj < � and jjKT bjj < �g :

2. If �0 = 0,

sup
�2NT (�0)
�2�

���� 1T d3LT (�; �; V �1=2�;T d�; V
�1=2
�;T d��; V

�1=2
�;T d��)

���� = OP (jjd�jjjjd��jjjjd��jj)

for a sequence of neighborhoods

NT (�0) = f� : jj� � �0jj < �; and jjKT bjj < �g :

Proof of Lemma C.3. Write the third order di¤erential as,

1

T
d3LT (�; �; d�; d��; d~�) =

X
i;j

d
�
H�i;��j (�) ; d

~�
�
.

Below we consider each of the terms normalized as indicated in the lemma and argue that

they are OP (1) as T ! 1 as desired. We focus on the most di¢ cult cases when �0 = 0,

and third order derivatives are considered w.r.t. b and �. The remaining cases (�0 6= 0 and
derivatives in other directions) proceeds in a completely analogous manner, and only di¤er

in terms of notation.
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Claim 1 : sup�



d�H�;� (�) ; d~��


 = OP (1). From the proof of Lemma C.2, recall that,

the di¤erential H�;� (�) = H
(1)
�;� (�) +H

(2)
�;� (�), where

H
(1)
�;� (�) =

1

T

TX
t=1

"t (�; �)
0
�10 �

�
vec (d�)0 
 Ir�

�
@2�;� (; �) vec

�
d��
�
;

H
(2)
�;� (�) =

1

T
(vec (d�))0

TX
t=1

@� (Zt (b) ; �)
0 �0
�10 �@� (Zt (b) ; �) vec

�
d��
�
;

with Zt (b) de�ned in (C.2). Thus,

d
�
H
(1)
�;� (�) ; d

~�
�

=
1

T

TX
t=1

"t (�; �)
0
�10 �

�
vec (d�)0 
 Ir�

� �
vec

�
d��
�0 
 I� @3��� (Zt (b) ; �) vec�d~��

� 1

T

TX
t=1

(�@� (Zt (b)) vec (d�))
0
�10 �

�
vec

�
d��
�0 
 Ir�� @2�;� (Zt (b) ; �) vec�d~�� ;

where

@3��� (z; �) =
@vec

�
@2�� (z; �)

�
@vec (�)0

:

Likewise,

Td
�
H
(2)
�;� (�) ; d

��
�

= (vec (d�))0
TX
t=1

@� (Zt (b) ; �)
0 �0
�10 �

�
vec

�
d��
�0 
 I� @2�� (Zt (b) ; �) vec�d~��

+
�
vec

�
d��
��0 TX

t=1

@� (Zt (b) ; �)
0 �0
�10 �

�
vec (d�)0 
 I

�
@2�� (Zt (b) ; �) vec

�
d~�
�
:

Hence, by Assumption 4.2,




d�H(1)
�;� (�) ; d

~�
�


 � c kd�k



d��




d~�


 1
T

TX
t=1

k"t (�; �)k (1 + jjZt (b) jj�)

� c kd�k


d��




d~�




� 1

T

TX
t=1

(k"tk+ jjZ0;t�1jj+ jjZ2;t�1jj+ jjZt (b) jj) (1 + jjZt (b) jj�) :

Next, note that with � 2 NT (�0); we can write, b = K�1
T h;where jjhjj < �; and hence,

jjZt (b) jj � jjZ0;t�1jj+ �


K�1

T Z1;t�1


 � jjZ0;t�1jj+ � sup

u2[0;1]



K�1
T Z1;[Tu]



 . (C.16)

As supu2[0;1]


K�1

T Z1;[Tu]


 = OP (1), we get by the uniform LLN (Kristensen and Rahbek,

2005), 


d�H(1)
�;� (�) ; d

~�
�


 = OP

�
kd�k



d��




d~�


� :
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Claim 2: sup�




d�H�;� (�) ;K�1
T d~b

�


 = OP (1). As in Claim 1, given the expression of

H�;� (�),

d
�
H
(1)
�;� (�) ; d

~b
�

= � 1
T

TX
t=1

Z 01;t�1d~b [�+ �@z (Zt (b) ; �)]
0
�10 �

�
vec (d�)0 
 Ir�

�
@2�;� (Zt (b) ; �) vec

�
d��
�
;

+
1

T

TX
t=1

"t (�; �)
0
�10 �

�
vec (d�)0 
 Ir�

� �
vec

�
d��
�0 
 I� @3��;z (Zt (b) ; �) d~b0Z1;t�1;

and

d
�
H
(2)
�;� (�) ; d

~b
�

=
1

T
(vec (d�))0

TX
t=1

@� (Zt (b) ; �)
0 �0
�10 �

�
vec

�
d��
�0 
 I� @2�;z (Zt (b) ; �) d~b0Z1;t�1

+
1

T

TX
t=1

h�
vec (d�)0 
 I

�
@2�;z (Zt (b) ; �) d

~b0Z1;t�1
i0
�0
�10 �@� (Zt (b) ; �) vec

�
d��
�
;

where @2�;z (Zt (b) ; �) is de�ned in eq. (C.13), and

@3��z (z; �) =
@vec

�
@2�� (z; �)

�
@z0

:

Thus, ���d�H(1)
�;� (�) ;K

�1
T d~b

����
� c kd�k



d��

 1
T

TX
t=1




Z 01;t�1K�1
T d~b




 (1 + k@z (Zt (b) ; �)k)

@2�;� (Zt (b) ; �)


+ c kd�k



d��

 1
T

TX
t=1

k"t (�; �)k


@3��;z (Zt (b) ; �)




d~b0K�1

T Z1;t�1





� c kd�k



d��

 1
T

TX
t=1



Z 01;t�1K�1
T



 (1 + kZt (b)k�)2
+ c kd�k



d��

 1
T

TX
t=1

(k"tk+ jjZ0;t�1jj+ jjZ2;t�1jj) (1 + kZt (b)k�)


K�1

T Z1;t�1


 ;

and so
���d�H(1)

�;� (�) ;K
�1
T d~b

���� = OP (1) by eq. (C.16).

By identical arguments,
���d�H(2)

�;� (�) ;K
�1
T d~b

���� = OP (1).
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Claim 3: sup�



d�Hb;b (�) ;K�1

T d~b
�


 = OP (1). Given the expression of Hb;b (�) in the Proof

of Lemma C.2, d
�
Hb;b (�) ; d~b

�
= d

�
H
(1)
b;b (�) ; d

~b
�
+ d

�
H
(2)
b;b (�) ; d

~b
�
, where

d
�
H
(1)
b;b (�) ; d

~b
�

=
1

T

TX
t=1

Z 01;t�1d~b [�+ �@z (Zt (b) ; �)]
0
�10 �

�
Z 01;t�1db
 Ir�

�
@2zz (Zt (b) ; �) d

�b0Z1;t�1

+
1

T

TX
t=1

"t (�; �)
0
�10 �

�
Z 01;t�1db
 Ir�

� �
Z 01;t�1d�b
 Ir�

�
@3zzz (Zt (b) ; �) d

~b0Z1;t�1

with

@3zzz (z; �) = @vec
�
@2zz (z; �)

�
=@z0;

and

d
�
H
(2)
b;b (�) ; d

~b
�

=
1

T

TX
t=1

h
(I 
 �) @2zz (Zt (b) ; �) d~b0Z1;t�1Z 01;t�1d�b

i0

�10

�
f�+ �@z (Zt (b) ; �)gZ 01;t�1db

�
+
1

T

TX
t=1

�
f�+ �@z (Zt (b) ; �)gZ 01;t�1d�b

�0

�10

h
(I 
 �) @2zz (Zt (b) ; �) d~b0Z1;t�1Z 01;t�1db

i
:

Thus, multiplying all directions with K�1
T and using eq. (C.16),

���d�H(1)
b;b (�) ;K

�1
T d~b

���� � c

T
kdbk



d�b




d~b


 TX
t=1



K�1
T Z1;t�1



3 [1 + kZt (b)k�] kZt (b)k�
= OP (1) ;

and, by identical arguments,
���d�H(2)

b;b (�) ;K
�1
T d~b

���� = OP (1).

D Auxiliary Lemmas

Consider QT (
; �) which is a function of observations X1; :::; XT and parameters 
 2 � � Rd

and � 2 � � Rk. Introduce furthermore 
0, which is an interior point of �. We then
state conditions under which 
̂ (�) = argmin
2�QT (
; �) is consistent and has a well-de�ned

asymptotic distribution. The proof is based on standard expansions of the likelihood function

similar to Kristensen and Rahbek (2010). However, the objective function, and thereby the

estimator, depends on a nuisance parameter �, and we state results that hold uniformly

over � 2 �. Let dQT (
0; �; d
) and d2QT (
0; �; d
; d�
) denote the �rst and second order
di¤erential of QT (
; �) w.r.t. 
.

Lemma D.1 Assume that:

(i) QT (
; �) is three times continuously di¤erentiable in 
 for all �.
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(ii) There exists 
0 in the interior of � and a sequence of nonsingular matrices UT 2 Rd�d

such that U�1T = O (1) and�
dQT (
0; �;U

�1=2
T d
); d2QT (
0; �;U

�1=2
T d
; U

�1=2
T d�
)

�
W! (0;H1 (�; d
; d�
)) ,

where the convergence takes place on L1 (�), and where the stochastic process inf�H1 (�; d
; d�
) >
0 a.s.

(iii) sup�2� sup
2NT (
0)
���d3QT (
; �;U�1=2T d
; U

�1=2
T d�
; U

�1=2
T d~
)

��� = OP (jjd
jjjjd�
jjjjd~
jj) over
the sequence of local neighborhoods

NT (
0) =
n

 : jjU1=2T (
 � 
0) jj < �

o
:

Then with probability tending to one, for any � 2 �, there exists a unique minimum point

̂ (�) of QT (
; �) in NT (
0) which solves @QT (
̂ (�) ; �)=@
 = 0.

It satis�es sup�2�



U1=2T (
̂ (�)� 
0)




 = oP (1).

Proof of Lemma D.1. Use a second order Taylor expansion to obtain for any bounded
sequence dT (�) 2 Rd such that 
0+U�1=2T dT (�) 2 NT (
0), such that in particular kdT (�)k <
�

QT (
0 + U
�1=2
T dT (�) ; �)�QT (
0; �) = dQT (
0; �;U

�1=2
T dT (�))

+
1

2
d2QT (�
 (�) ; �;U

�1=2
T dT (�) ; U

�1=2
T dT (�));

for some �
 (�) 2 [
0; 
0 + U
�1=2
T dT (�)] 2 NT (
0). De�ne the bounded sequence �dT (�) =

U
1=2
T (�
 (�)� 
0). Then, by another application of Taylor�s Theorem, there exists ~
 (�) 2
[
0; �
 (�)] 2 NT (
0) such that, using (iii) and kdT (�)k ;



 �dT (�)

 < �,

sup
�2�

���d2QT (�
 (�) ; �;U�1=2T dT (�) ; U
�1=2
T dT (�))� d2QT (
0; �;U�1=2T dT (�) ; U

�1=2
T dT (�))

���
= sup
�2�

���d3QT (~
 (�) ; �;U�1=2T dT (�) ; U
�1=2
T dT (�) ; U

�1=2
T

�dT (�))
���

= OP

�
kdT (�)k2



 �dT (�)

� = OP
�
�3
�
:

Thus,

QT (
0 + U
�1=2
T dT (�) ; �)�QT (
0; �)

= dQT (
0; �;U
�1=2
T dT (�)) +

1

2
H1 (�; dT (�) ; dT (�))

+
1

2

h
d2QT (
0; �;U

�1=2
T dT (�) ; U

�1=2
T dT (�))�H1 (�; dT (�) ; dT (�))

i
+OP

�
�3
�

=
1

2
H1 (�; dT (�) ; dT (�)) + oP (1) +OP

�
�3
�
;

where the second equality follows by (ii). Note here that since dQT (
0; �; d
) and d2QT (
0; �; d
; d
)

are linear and quadratic in d
 respectively, then the pointwise convergence in (ii) implies

uniform convergence in d
. As H1 (�; dT (�) ; dT (�)) > 0 a.s., � can be chosen su¢ ciently
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small such that QT (
; �) is convex with probability tending to one in the neighbourhood

NT (
0). In particular, there exists a unique minimizer 
̂ (�) = 
0+U
�1=2
T d̂T (�) which solves

the �rst-order condition, dQT (
̂; �; d
) = 0 for all d
. Since we can choose � arbitrarily

small, sup�



d̂T (�)


 = oP (1), and hence sup�




U1=2T (
̂ (�)� 
0)



 = oP (1) as desired.

Lemma D.2 Assume that assumptions (i)-(iii) of Lemma D.1 hold together with:

(iv) There exists a sequence of numbers �T 2 R+ such that ��1T ! 0 and:�
dQT (
0; �; �

1=2
T U

�1=2
T d
); d2QT (
0; �;U

�1=2
T d
; U

�1=2
T d�
)

�
W! (S1 (�; d
) ;H1 (�; d
; d�
)) on L1 (�) :

Then �1=2T U
1=2
T (
̂ (�)�
0)

W! �H�1 (�)S (�) on L1 (�) ; where H (�) 2 Rd�d and S (�) 2
Rd are stochastic process given through the following identities:

S1 (�; d
) = S (�)0 d
; d
0H (�) d�
 = H1 (�; d
; d�
) : (D.1)

Proof of Lemma D.2. By Lemma D.1, we know that 
̂T is consistent and solves the �rst
order condition. A �rst order Taylor expansion of the score and using (iii) together with the

same arguments as in the proof of Lemma D.1 yields

0 = dQT (
0; �
1=2
T U

�1=2
T d
) + d2QT (�
 (�) ; �;U

�1=2
T d
; U

�1=2
T �

1=2
T U

1=2
T (
̂ (�)� 
0))

= dQT (
0; �
1=2
T U

�1=2
T d
) + d2QT (
0; �;U

�1=2
T d
; U

�1=2
T �

1=2
T U

1=2
T (
̂ (�)� 
0)) + oP (1)

such that, by (iv),

�S1 (�; d
) = H1
�
�; d
; �

1=2
T U

1=2
T (
̂ (�)� 
0)

�
+ oP (1) :

This completes the proof.

E Model Speci�cations in Simulation Study

DGP under H(1)
R : �0 = 0: �0 = (1;�0:8724)0, �0 = (�0:0211; 0:0015)0, �0 = (0; 0)0 and

�0 =

"
0:2097 �0:0907
0:4468 0:4295

#
; 
0 =

"
0:0916 0:0242

0:0242 0:0415

#
:

DGP under H(2)
R : �0 = (1;�1)0: �0 = (1;�1)0, �0 = (14:3870;�0:2793)0, �0 = (�7:4947; 0:2975)0,

!0 = 0:1079, A0 = 0:0041, and

�0 =

"
0:2395 �0:0899
0:4201 0:4034

#
; 
0 =

"
0:0861 0:0251

0:0251 0:0417

#
:

DGP under H(1)
A : �0 6= 0 and H(2)

A : �0 6= (1;�1): �0 = (1;�0:9282)0, �0 = (14:7819;�0:2765)0,
�0 = (�7:3486; 0:1382)0, !0 = 0:1009, A0 = 0:0037, and

�0 =

"
0:2339 �0:0970
0:4193 0:4338

#
; 
0 =

"
0:0874 0:0247

0:0247 0:0415

#
:
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