UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Regional thalamic neuropathology in patients with hippocampal sclerosis and epilepsy: A postmortem study

Sinjab, B; Martinian, L; Sisodiya, SM; Thom, M; (2013) Regional thalamic neuropathology in patients with hippocampal sclerosis and epilepsy: A postmortem study. Epilepsia , 54 (12) 2125 - 2133. 10.1111/epi.12403. Green open access

[thumbnail of epi12403.pdf]
Preview
PDF
epi12403.pdf

Download (405kB)

Abstract

Purpose Clinical, experimental, and neuroimaging data all indicate that the thalamus is involved in the network of changes associated with temporal lobe epilepsy (TLE), particularly in association with hippocampal sclerosis (HS), with potential roles in seizure initiation and propagation. Pathologic changes in the thalamus may be a result of an initial insult, ongoing seizures, or retrograde degeneration through reciprocal connections between thalamic and limbic regions. Our aim was to carry out a neuropathologic analysis of the thalamus in a postmortem (PM) epilepsy series, to assess the distribution, severity, and nature of pathologic changes and its association with HS. Methods Twenty-four epilepsy PM cases (age range 25-87 years) and eight controls (age range 38-85 years) were studied. HS was classified as unilateral (UHS, 11 cases), bilateral (BHS, 4 cases) or absent (No-HS, 9 cases). Samples from the left and right sides of the thalamus were stained with cresyl violet (CV), and for glial firbillary acidic protein (GFAP) and synaptophysin. Using image analysis, neuronal densities (NDs) or field fraction staining values (GFAP, synaptophysin) were measured in four thalamic nuclei: anteroventral nucleus (AV), lateral dorsal nucleus (LD), mediodorsal nucleus (MD), and ventrolateral nucleus (VL). The results were compared within and between cases. Key Findings The severity, nature, and distribution of thalamic pathology varied between cases. A pattern that emerged was a preferential involvement of the MD in UHS cases with a reduction in mean ND ipsilateral to the side of HS (p = 0.05). In UHS cases, greater field fraction values for GFAP and lower values for synaptophysin and ND were seen in the majority of cases in the MD ipsilateral to the side of sclerosis compared to other thalamic nuclei. In addition, differences in the mean ND between classical HS, atypical HS, and No-HS cases were noted in the ipsilateral MD (p < 0.05), with lower values observed in HS. Significance Our study demonstrates that stereotypical pathologic changes, as seen in HS, are not clearly defined in the thalamus. This may be partly explained by the heterogeneity of our PM study group. With quantitation, there is some evidence for preferential involvement of the MD, suggesting a potential role in TLE, which requires further investigation. © Wiley Periodicals, Inc. © 2013 The Authors. Epilepsia published by Wiley Periodicals, Inc. on behalf of the International League Against Epilepsy.

Type: Article
Title: Regional thalamic neuropathology in patients with hippocampal sclerosis and epilepsy: A postmortem study
Open access status: An open access version is available from UCL Discovery
DOI: 10.1111/epi.12403
Publisher version: http://dx.doi.org/10.1111/epi.12403
Additional information: © 2013 The Authors. Epilepsia published by Wiley Periodicals, Inc. on behalf of the International League Against Epilepsy. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
Keywords: Thalamus; Gliosis; Mediodorsal nucleus; Hippocampal sclerosis;
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology > Clinical and Experimental Epilepsy
URI: https://discovery.ucl.ac.uk/id/eprint/1423728
Downloads since deposit
102Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item