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The local speeds of object contours vary systematically with the cosine of the angle
between the normal component of the local velocity and the global object motion
direction. An array of Gabor elements whose speed changes with local spatial orientation
in accordance with this pattern can appear to move as a single surface. The apparent
direction of motion of plaids and Gabor arrays has variously been proposed to result
from feature tracking, vector addition and vector averaging in addition to the geometrically
correct global velocity as indicated by the intersection of constraints (IOC) solution. Here
a new combination rule, the harmonic vector average (HVA), is introduced, as well as a
new algorithm for computing the IOC solution. The vector sum can be discounted as an
integration strategy as it increases with the number of elements. The vector average over
local vectors that vary in direction always provides an underestimate of the true global
speed. The HVA, however, provides the correct global speed and direction for an unbiased
sample of local velocities with respect to the global motion direction, as is the case for
a simple closed contour. The HVA over biased samples provides an aggregate velocity
estimate that can still be combined through an IOC computation to give an accurate
estimate of the global velocity, which is not true of the vector average. Psychophysical
results for type II Gabor arrays show perceived direction and speed falls close to the IOC
direction for Gabor arrays having a wide range of orientations but the IOC prediction fails
as the mean orientation shifts away from the global motion direction and the orientation
range narrows. In this case perceived velocity generally defaults to the HVA.
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INTRODUCTION
The first stage of motion analysis is not a global estimate of the
motion of an object as such, but a dense set of estimates of the
motion present at each location in the visual field. These local
estimates need to be grouped and combined to determine the
motion of the object as a whole. However, this local analysis can
be prone to the aperture problem (Wallach, 1935). The aperture
problem results from the redundancy inherent in a 1-dimensional
pattern, like a line or sine grating, embedded in a 2-dimensional
space. The true 2-dimensional velocity of an infinite line cannot
be determined. Neurons in the early part of the visual system have
small receptive fields. Contours for which the variation in orienta-
tion is small relative to the aperture of a receptive field will appear
approximately 1-dimensional. In the case of a 1-dimensional pat-
tern viewed through an aperture, human observers typically see
motion in the direction orthogonal to the contours (Wallach,
1935; Hildreth, 1984).

Strategies for combining motion estimates were initially intro-
duced to explain the neural computation of pattern motion
in plaids, which are formed from the superposition of two
1-dimensional gratings (Adelson and Movshon, 1982). It was
proposed that the grating components are initially processed
independently following orientation filtering by the visual system

and then the resulting velocities are combined. Each compo-
nent constrains the possible 2-dimensional pattern motion but
a unique velocity could be arrived at as the velocity that satis-
fies both constraints. This two-stage strategy is generally referred
to as the intersection of constraints (IOC) solution (Adelson and
Movshon, 1982).

However, a number of studies have shown that the ideal IOC
solution for plaids does not accurately reflect perceived velocity.
The plaid perceived direction is biased toward the high contrast
component although the IOC computation depends only upon
velocity (Stone et al., 1990; Champion et al., 2007). Manipulations
that would have been expected to alter the perceived speed of
one of the components, such as reducing its contrast (Stone
et al., 1990), altering spatial frequency (Smith and Edgar, 1991)
or adapting to motion in one component direction (Derrington
and Suero, 1991) shift the apparent direction of the plaid in the
direction that is consistent with the application of the IOC princi-
ple to the perceived motion of the components. However, changes
in perceived speed of components prior to an IOC computation
cannot explain all effects of changing component characteristics
on the perceived direction of plaids (Champion et al., 2007).

Ferrera and Wilson (1990) showed that if the grating compo-
nents were similar in direction and both moved to the right or
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left of the IOC direction (type II plaids), rather than straddling
the IOC direction (type I plaids), then the perceived direction of
the plaid was biased by an average of around 7.5 degrees toward
the vector sum of the components. At short durations, ≤60 ms,
Yo and Wilson (1992) reported that plaids were seen to move in
the vector sum direction but shifted toward the IOC direction at
longer durations. However, Bowns (1996) showed that whether
movement in the vector sum direction was seen or not at short
durations depended upon the component combination used in
the plaids. Some component combinations led to local motion
ambiguities in the plaid, which Bowns observed arose from the
motion of edge features in the vector sum direction and blob fea-
tures in the IOC direction. Bowns and Alais (2006) showed that
adaptation to grating motion in the vector average (VA) direction
shifted the perceived motion toward the IOC direction and vice
versa, indicating the balance between these alternatives could be
altered.

There has been less emphasis on plaid speed perception than
direction perception. Ferrera and Wilson (1991) reported that the
perceived speed of type I plaids was underestimated when com-
pared to a sine grating that had the same spatial frequency as the
components but matched the IOC speed when compared to a
sine grating whose period matched the period of the plaid nodes.
Castet and Morgan (1996) also showed an underestimate of IOC
speed for a plaid with constant component speed whose pattern
speed increased as the angle between the components increased.

Approaches to plaid motion recovery include the analysis of
the activity of a population of spatio-temporally tuned filters
(Simoncelli and Heeger, 1998), direct computation from spatio-
temporal gradients (Weiss et al., 2002; Johnston et al., 2003;
Dimova and Denham, 2009) and the encoding of the spatio-
temporal pattern of tracked features (Bowns, 2011). However,
some of these strategies for recovering the direction are highly
contextualized by the characteristics of plaids. The assumption
of the independent analysis of components requires unrealisti-
cally narrow spatiotemporal filtering, particularly with respect
to temporal frequency since there are only two or three tempo-
ral mechanisms spanning the temporal domain (Snowden and
Hess, 1992; Johnston and Clifford, 1995). Spatiotemporal gradi-
ent approaches to computing pattern motion are more generic
and do not make any special reference to the content of the image.

The global Gabor array (Amano et al., 2009; Rider et al., 2009;
Scarfe and Johnston, 2010, 2011) provides a simpler paradigm in
which to study the integration of local motion signals. In this case,
as in the case of windowed line motion (Mingolla et al., 1992), the
local spatial pattern is essentially 1-dimensional, and integration
necessarily occurs over space rather than potentially at a single
point in space.

A rigidly moving object generates a characteristic distribution
of normal velocities. The magnitudes of the local speeds are the
global speed times the cosine of the angle between the normal
component of contour motion and the global direction of motion
of the object (Figure 1A). Taking a cue from this, a pattern of local
motion can be generated by an array of Gabor patches, which
consist of moving sine gratings windowed by a Gaussian. When
the speed of the grating motion is set to conform to the pattern
for a rigidly moving contour, i.e., to be some global speed times

FIGURE 1 | (A) A velocity space diagram with vectors representing two
component normal velocities and constraint lines representing global
motion vectors that are consistent with the normal component. The
constraint lines for any two vectors lying on the same circle through
velocity space will intersect at a single point representing the global
motion. (B) Points on a circle through the origin inverted in the unit circle
about the origin project to a straight line in velocity space. The inverse of
the global motion (ioc) can be found as the vector that minimizes the
variation in the magnitude of the components of the projection of the
sample vectors onto this as yet undetermined vector. The global motion
(IOC) is the inverse of ioc. Note the average of any of the sample vectors
(hva) must lie on the line though the samples and the ioc, and its inverse,
the harmonic vector average (HVA), must lie on the circle through the origin.

the cosine of the angle between the normal component of the
sine grating motion and the global motion direction, the array
of patches typically appear to cohere into a single moving surface
(Amano et al., 2009).

The global percept can break down when the elements can
be grouped on the basis of carrier spatial frequency and the car-
rier frequencies are very different (Maruya et al., 2010). However,
in general, Gabor arrays appear to move approximately in the
IOC direction with the implied global speed. Arrays of plaid ele-
ments with the same pattern of velocities but in which the local
velocity is well defined and unambiguous appear to have a direc-
tion and speed consistent with the VA rule (Amano et al., 2009).
However, this is not the only way of combining vectors and other
alternatives should be considered. The natural alternative to the
IOC result is not the vector sum or VA but the harmonic vec-
tor average (HVA), which provides a way of aggregating local
velocities that takes into account the aperture problem. In the
HVA the directions of the vectors are unchanged but their mag-
nitudes are inverted. The magnitude of a vector is inverted by
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dividing it by its squared length. The harmonic average is often
used to average rates, particularly when the variable is on the
denominator (Ferger, 1931) e.g., averaging speeds over the same
distance. In our case the HVA arises naturally from the geom-
etry of the velocity space diagram (Figure 1). The HVA is not
to be confused with the inverse-vector-average rule (Verstraten
et al., 1994; Alais et al., 2005), which describes how the direc-
tion of the transparent motion aftereffect is accounted for by
a VA in which component directions are weighted according to
the sensitivity (inverse threshold) or duration of the component
MAEs.

We argue below that, if the aim of a vector combination calcu-
lation is to tell us something about the global motion of an object,
where the individual measures are ambiguous reflecting the aper-
ture problem, then the VA has little or no merit, since it does not
provide a useful measure of the speed of the global motion. We
will see that the HVA does carry useful information about the
global speed. The VA may, however, reflect the operation of the
visual system in recovering summary statistics of velocity fields.

THEORY
Although the underlying geometry of the IOC rule indicates it
should be possible to solve for the IOC velocity, given the com-
ponent velocities in the case of plaids or two normal component
velocities in the case of a pair of Gabor elements, there is no con-
sensus on the algorithm the brain might use to compute the IOC.
Given a description of the constraint lines the IOC can be calcu-
lated by the method described by Bowns (1996). Here we revisit
the velocity space geometry to describe a simple means of com-
puting the global velocity (as in the IOC strategy) from the sample
velocities, which does not explicitly represent the constraint lines
or their intersections (Jasinschi et al., 1992) and which readily
accommodates multiple samples. We also introduce the HVA,
which provides a viable alternative combination rule for local 1d
signals.

Figure 1B shows a range of potential normal component
velocities for a single global velocity. All these velocities lie on a
circle through the origin. The inversion of a point p(r, ϑ) in the
unit circle is the point p′ (r−1,ϑ

)
. The inversion of a circle pass-

ing through the origin is a straight line (Brannan et al., 1999). The
IOC solution derives from the vector, which minimizes, in a least
squares sense, the variation in the projections of a set of sample
vectors onto it. The IOC solution is

IOC =
(

u·u v·u
u·v v·v

)−1 (
u·n
v·n

)
, (1)
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)
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where k is the number of motion samples.

Therefore

IOC =
(

u·u v·u
u·v v·v

)−1 ∣∣∣∣
(∑

u∑
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2

k−1 HVA (3)

See Appendix for more detail.
The vector sum and VA of do not provide a useful combination

rule for the computation of global speed in multiple component
plaids or Gabor arrays. The vector sum increases with the number
of elements and the average velocity tends to a value that is half the
speed of the object motion as the range of orientations increase
(see Figure 1). The HVA of a set of velocity samples on the other
hand lies on the circle through the origin in velocity space that
describes the range of possible normal components. Because of
this property the HVA could be used for iterative spatial averaging
since the intermediate means could be the normal components
of some contour. The HVA aggregated estimates could therefore
be input to a further HVA or IOC computation without loss of
fidelity. Note the HVA, as expressed above requires the number of
samples, since it is an average, however, the 4 IOC algorithm does
not require this information.

The HVA could provide an excellent proxy for an explicit IOC
global motion computation so long as the average orientation of
the normal components of the local motion is unbiased relative to
the global direction of motion. The IOC calculation will give the
correct global velocity for a Gabor array irrespective of whether
the samples straddle the correct global velocity (type I arrays) or
whether they are constrained to lie on one or other side of the
correct global velocity (type II). However, for type II arrays the VA
and the HVA calculation will differ from the IOC velocity. Amano
et al. (2009) found that for short durations a type II Gabor array
with two orientations appeared to move in the VA direction for
short durations and appeared to move in the direction of the IOC
solution at longer durations. They did not consider the HVA but
the directions of the VA and the HVA will be similar. We wanted
to determine whether the IOC or HVA best predicted perceived
speed and direction of global motion and therefore measured per-
ceived velocity for a range of type I and II Gabor arrays. In the
first experiment we measured perceived direction for type I and II
arrays with different distributions of Gabor orientations. We then
measured perceived speed for these arrays to determine the degree
to which perceived global velocity followed the IOC or HVA solu-
tion. We found perceived velocity was close to the IOC prediction
for arrays with a wide range of orientations. The IOC prediction
fails as the mean orientation shifts away from the global motion
direction and the orientation range narrows. In this case perceived
velocity tends to default to the HVA.

MATERIALS AND METHODS
Stimuli were displayed on a 20 inch CRT monitor (Mitsubishi
Diamond Plus 230B), with a 1024 by 864 pixel resolution and
refresh rate of 85 Hz. The monitor was gamma corrected and the
pixels were square. Observers were positioned in a head and chin
rest. The viewing distance to the screen was 80cm and a normal
projected from the midpoint of the monitor screen intersected
the cyclopean eye. At this viewing distance the monitor subtended
approximately 28 by 21 degrees. The stimuli were rendered online
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in Matlab using the Psychophysics Toolbox extensions (Brainard,
1997; Kleiner et al., 2007).

PARTICIPANTS
In total five participants took part in the experiment. Three
were experienced psychophysical observers, including the author
PS. All bar PS were completely naïve as to the purposes of the
experiment.

STIMULI
An example of the annular dynamic Gabor arrays used in the
experiment is shown in Figure 2. The Gabor elements have been
expanded in the figure to increase visibility. The annulus was gen-
erated by first defining a 27 × 27 grid of Gabor elements. The
Gabor elements were constructed as Gaussian windowed sine
gratings. Each Gabor subtended 0.5 degrees of visual angle with a
spacing of 0.1 degree around all sides. Each Gabor had a 50% con-
trast carrier with a spatial frequency of 4 cycles per degree, which
was windowed through multiplication by a Gaussian with a sigma
value of 0.1 degrees. The square grid subtended 16.1 degrees of
visual angle and was centered on the screen. To make the annular
stimulus any Gabor whose center was outside an outer circle of 9
degrees or within an inner circle of 3.3 degrees was removed from
the grid.

RESULTS
EXPERIMENT 1 (DIRECTION)
In Experiment 1, observers judged the direction in which the
Gabor array appeared to move. The drift rate of the individual

FIGURE 2 | (A) The experimental time sequence for measurement of
perceived direction. (B) The experimental time sequence for the
measurement of perceived speed.

Gabors in the array was set relative to a 2d velocity of 0.75
cycles per second in an upward direction (here referenced as
zero degrees). We refer to this as the global motion speed and
direction. The drift speeds of each element was the cosine of the
difference in angle between the normal velocity component of the
Gabor and the global motion direction,

SC = SG cos(ϑ − ϑG)

where ϑG is the global direction, SG is the global motion speed, ϑ
is the orientation of the local normal to the carrier of an indi-
vidual Gabor element and SC is the drift speed it needs to be
consistent with the global motion drift velocity (Adelson and
Movshon, 1982; Amano et al., 2009).

In Experiment 1 we measured the effect of varying the dis-
tribution of Gabor angles in the array on the perceived global
motion direction. We varied the mean angle of the Gabors and
the degree of variation around this value whilst holding the global
motion direction and global motion speed constant. The centers
of the range were 0, 11.25, 22.5, 33.75, and 45 degrees (posi-
tive values being in a clockwise direction), and the extents of the
ranges were 30, 50, 70, and 90 degrees. As an example, for a mean
of 45 degrees and a range of 90 degrees the angles for the Gabors
were randomly chosen from a uniform distribution between 0
and 90 degrees. A new set of Gabor angles was generated from
each distribution on each trial. The phase of each Gabor was also
randomized on each trial.

Overall there were 20 blocks of trials - 5 range centers by 4
ranges. These were completed in a randomized order for each
observer. In order to measure the perceived direction of the
array we adopted a binary choice design. In the first interval
the observers were presented with a clock face with a radius of
9.6 degrees centered on the screen (Figure 2A). The clock face
was marked at 15-degree intervals around its edge with internal
radial line segments abutting the circle, which were 0.74 degrees
in length. An arrow pointing out from the center of the clock indi-
cated a direction against which the observer was asked to compare
the direction of movement of the array in the second interval. The
clock face and arrow were presented for 2 s. In the second inter-
val the drifting Gabor array was presented for 1 s. The screen was
then set to the mean gray value and the observer had to indicate
whether the Gabor array appeared to move clockwise or counter-
clockwise of the direction indicated by the previously seen arrow.
We varied the direction of the arrow on each trial to generate a
psychometric function. There were seven arrow directions and
each was presented in a randomized order 20 times in a block. The
exact values depended on the block type and the observer. We fit-
ted a cumulative Gaussian to the observer’s data and determined
the point of subjective equality (PSE) and 95% confidence inter-
vals around this value in Matlab using a bootstrapping technique
(Wichmann and Hill, 2001a,b). The PSE represents the perceived
angular direction of motion of the Gabor array.

Figure 3A shows perceived direction of motion averaged
across our five observers for each type of array. Error bars show
one standard error of the mean. The diagonal line shows the
prediction for the HVA the prediction for the IOC is 0 degrees,
upwards, in each case. It is clear that, as the direction range
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decreases, the perceived direction shifts from the IOC direction
toward the HVA direction. However, the perceived direction is in
all cases, other than when the average direction is upwards, biased
in the direction of the mean motion direction. Also even for the
narrowest range the perceived direction is slightly biased in the
IOC direction.

We can ask, if the perceived direction is not in the IOC direc-
tion is the perceived speed consistent with the change in perceived
direction of motion?

EXPERIMENT 2 (SPEED)
In Experiment 2 we measured the perceived speed of each of
the global motion Gabor arrays used in Experiment 1 using the
method of constants. In order to measure the speed of global
motion in the perceived direction of motion we set the direction
of the standard array individually to the apparent direction for
each subject and condition measured in Experiment 1. The stan-
dard array was an array of Gabors all orientated orthogonal to the
global motion direction (Figure 2B). We also refer to this as the
parallel-orientated array. This array was presented first for 1 s.

After a half second gray interval with only the fixation
point present, a second comparison array was presented for 1 s.

FIGURE 3 | (A) The apparent direction of a Gabor array with a particular
mean motion direction and range of orientations. (B) The apparent speed of
a Gabor array with a particular mean motion direction and orientation range
measured using an array of parallel Gabor elements moving in the apparent
motion direction (as measured in A). Error bars show ± 1 s.e.

The comparison arrays had the same parameters as those in
Experiment 1 i.e., Gabors for the arrays were selected from uni-
form distributions with ranges of 30, 50, 70, and 90 degrees
centered on either 0, 11.25, 22.5, 33.75 or 45 degrees. The phase of
each Gabor was randomized on each trial. The comparison array
was drifted at one of 7 different speeds and each speed was pre-
sented 20 times, randomly ordered across trials within a block.
Blocks were completed in a randomized order for each observer.
The observers’ task was to report which array drifted faster. We
fitted a cumulative Gaussian to the observers’ data and deter-
mined the PSE and 95% confidence intervals around this value
in Matlab using a bootstrapping technique (Wichmann and Hill,
2001a,b). The PSE provided a measure of the perceived speed of
each Gabor array. Examples of the stimuli presented are available
as supplementary information.

Figure 3B shows perceived speed across our five observers for
each type of array. Error bars show the standard error of the mean.
Perceived speed was close to the IOC speed for the arrays with
a greater range of orientations but as the mean local direction
shifted away from the global motion direction and the orientation
range narrowed the perceived velocity came closer to the HVA.
To determine whether perceived speed and perceived direction
co-varied systematically, as would be expected from a HVA cal-
culation, we plotted perceived speed and direction in a velocity
space plot (Figure 4). It is clear that most of the points lie close
to the IOC prediction. When the orientation range is reduced
the IOC prediction fails and the data fall close to the HVA pre-
diction shown in black. The perceived speed is overestimated
when the directions of motion in the Gabor array are uniformly
distributed around the vertical. Perceived speed appears to be
underestimated, falling below that of the predicted HVA in two
conditions in which the mean orientation is ± 45 degrees from
the global motion direction. The colored lines without symbols
give the predictions for the VA calculation. For a narrow range of
orientations the predictions for the VA and the HVA are similar,

FIGURE 4 | The perceived speed and direction of the global motion

from Figure 3 combined to show perceived velocity. The global motion
has a speed of 0.75 degrees/ sec and a direction of 0 degrees in this
representation. The curved axes shows degrees of visual angle from the
global motion direction. The lines without symbols give the predictions for
the vector average for the different direction ranges and mean directions.
Error bars show ± 1 s.e.
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however, for a broad range of orientations the data favor the HVA
prediction.

We can draw a number of conclusions on the basis of this
data. The shift in apparent direction away from the HVA direc-
tion (Figure 4) toward the global motion direction cannot be
explained on the basis of the HVA calculation alone. This shift
is consistent with the IOC computation but when the IOC com-
putation fails the perceived speed and direction of motion vary
together in a way that is predicted by the HVA not the IOC. The
perceived speed only drops below the HVA prediction for the
largest difference between the true global motion direction and
the mean local motion direction.

DISCUSSION
The global Gabor array simplifies the problem of investigating
motion integration since, unlike plaids or more complex spa-
tial patterns, we do not need to assume Fourier components are
analyzed separately and there are no features arising from their
combination moving in the global motion direction that could be
tracked (Mingolla et al., 1992). However, combination rules such
as the IOC rule and motion vector combination rules, developed
to explain 2d plaid motion might still apply. The IOC solution
and the HVA, introduced here, predict the same global motion for
type I Gabor arrays in which there is an unbiased distribution of
motion directions around the global motion direction. Although
the vector sum and the VA can give a good estimate of the direc-
tion of global motion, they do not provide a correct measure of
the global speed for Gabor arrays containing a range of Gabor
orientations, or generalizing from this, object motion. We can
discount the vector sum as a way of combining multiple velocity
samples, as the value of the sum clearly increases with the number
of samples. The VA provides a measure of global motion, which
is half the speed of the true motion for a uniform distribution of
contour orientations covering the full range of possible contour
orientations, although the VA and HVA predictions converge as
the orientation range narrows.

The HVA is to be preferred to the VA for a number of rea-
sons. Firstly it provides the correct global velocity for an unbiased
distribution of oriented contours relative to the global motion
direction. This, in addition, means the HVA gives the correct
global velocity for a moving simple closed contour. It is clear from
symmetry that the integrated normal components along a hemi-
circular contour joining two points with tangents parallel to the
flow will be in the direction of the global motion vector. Now
consider a uniform flow field and a more general smooth con-
tour joining points with tangents parallel to the flow. The integral
of the projection of the flow on the outer normal to the contour
along a simple closed contour gives the flux of the motion vector
field through the contour. This scalar value can be interpreted as
the amount of material flowing over the contour. This is same as
the line integral of the normal component speeds along the lead-
ing contour for a contour moving at a constant velocity. Since for
a uniform motion field the flux, the amount of material flowing
over the contour, does not depend upon the path of the contour
(as we have described it), the flux will be the same as for the hemi-
circle. Thus, in both cases the normals pointing to either side of
the global flow must be balanced and the average motion vector,

and hence the average inverse motion vector, will be in the direc-
tion of the global motion. The same logic applies to the trailing
contour with forward facing normals. This allows us to conclude
that for a simple closed contour (or such arising from a level set
of the image brightness) there is an unbiased distribution of ori-
ented contours and the HVA over the contour gives the global
object speed and direction.

Secondly, for a limited range of orientations, as might be found
in a local region, the HVA provides the best way of aggregating 1d
information about global velocity for that region, since it takes
into account the aperture problem in combining normal com-
ponents. Even in the case of a biased distribution, the HVA can
serve as a valid intermediate measure, which can subsequently be
combined with other local HVAs in a new HVA or be combined
through an IOC combination to give the correct global velocity.
The VA does not have this property. Once a VA (over different
directions) is formed it cannot be combined with other local vec-
tor averages or with a local normal component to give the correct
global motion. Grouping local motion vectors through the HVA
can therefore improve signal to noise by averaging, without cor-
rupting the signal. An additional advantage of a noise-reducing
high fidelity intermediate local calculation is that it can serve
global motion computations that are more complex than transla-
tion such as rotation and expansion (Lee and Lu, 2010). The HVA
also gives appropriate weight to small speeds in the global com-
putation, such as those arising from contours oriented away from
the global motion direction, which would not contribute much
to a VA.

The principle underlying both the IOC algorithm and the HVA
algorithm is that the local velocities reflect the normal compo-
nents of the motion of an object generated by a single motive
cause, namely translation. If the local motion is unambiguous,
even if the pattern of velocities is the same, there is no reason
to assume a single underlying cause as each local motion vector
may correspond to the movement of a single particle. In this case
the motion will not appear to cohere and alternative strategies
for reporting on the population of local velocities might apply,
including the VA as a summary statistic. Amano et al. (2009)
compared the perceived speed of Gabor arrays with plaid arrays
in which the unambiguous motion and direction of the plaids
matched the normal components of motion of the Gabor ele-
ments in a Gabor array. They reported the perceived motion
of the plaid array was slower than the Gabor array and that it
approached the VA speed. Amano et al. conclude that the motion
system can group flexibly - grouping ambiguous signals by IOC
and averaging unambiguous local signals by VA. Amano et al.
report that this plaid array did not cohere, which highlights the
distinction between grouping to a single solution and a summary
statistic of a space-variant array of velocities. A lack of coher-
ence may also explain why perceived speed did not reach the HVA
speed in some of our conditions (see supplementary material).

The HVA and the IOC approach outlined here might also be
applied to the integration of component velocities in plaid pat-
terns. However, the key issue in extending the current approach
is whether plaid components are separated and analyzed inde-
pendently by the visual system. Recent work showing V5/MT
cells differ in their response to pseudo plaids in which two
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non-overlapping Gabor patches are presented to the visual field
and plaid patches in which the components overlap (Majaj et al.,
2007) suggest that 2d patterns are processed differently to mul-
tiple 1d patterns. In addition the component approach has dif-
ficulty accounting for the Amano et al. (2009) result, that there
is a difference in motion coherence threshold for arrays in which
plaids elements indicating a single global velocity are combined
with plaid noise elements, as compared to when components
from these two types of array elements are mixed to give a vari-
ety of local plaid velocities (Amano et al., 2009). This suggests 2d
motion is computed locally from the 2d image rather through the
combination of 1d components.

There is a greater tendency to see motion in the VA or equiva-
lently the HVA direction when stimulus presentations are short
(Yo and Wilson, 1992). The harmonic vector sum appears in
both the HVA and IOC algorithms. One possibility is that the
harmonic vector sum is computed first, which would give an indi-
cation of the (incorrect) global motion direction, and that the
computation of the correct speed and direction follows after a
process of refinement. This could occur through local HVA com-
putations feeding into a global IOC calculation. Although the
IOC can readily be computed in type II arrays the global motion
direction is almost always biased in the HVA direction.

Weiss et al. (2002) were able to account for a number of
psychophysical results, primarily relating to perceived direction.
They extended the Lucas and Kanade (1981) method for com-
puting velocity by adding a parameter to the leading diagonal
of the matrix of the summed products of derivatives – some-
times referred to as the structure tensor (see their Equation 1).
Without this addition to the leading diagonal, the matrix can-
not be inverted for 1d moving pattern (lines, gratings etc.), since
there is no unique solution – a reflection of the aperture prob-
lem. This method of ensuring a solution is referred to as ridge
regression in the statistics literature (Hoerl and Kennard, 1970).
The addition in Weiss et al. is motivated by a Bayesian argu-
ment. The value of the parameter is the ratio of the variance
in the likely velocity, which is dependent upon image bright-
ness measurement noise, and the variance of a slowness prior
probability. It is assumed that this parameter differs between
observers allowing the fitting of different values of this param-
eter across experiments. The velocity calculation will be most
accurate for a close-to-uniform prior, since this minimizes the
value to be added. As the prior probability distribution places
greater emphasis on slowness, the computed speed will reduce,
since probabilities are positive and the determinant of the struc-
ture tensor will increase. Solving for the velocity involves inverting
the matrix, which entails dividing by the determinant. Weiss et
al also applied their approach to velocity aggregation over space.

They showed for a moving rhombus the perceived direction could
be accounted for by their model, however, they did not investi-
gate perceived speed for this experimental paradigm. In general,
since the perceived velocity depends upon the likelihoods (spa-
tially overlapping the constraint lines) summed across space this
approach predicts perceived speed and direction would be close
to the VA speed and direction, or slower, due to the slowness
prior.

The HVA approach implies that some neurons in the pri-
mate visual system may encode inverse speed or slowness. There
is in fact considerable evidence for MT/V5 neurons that reduce
their firing rate as speed increases (Mikami et al., 1986; Rodman
and Albright, 1987; Lagae et al., 1993; Palanca and Deangelis,
2003; Nover et al., 2005). These neurons have not previously been
attributed a particular functional role, apart from perhaps signal-
ing slowness as part of a population code, however, they could
form part of the substrate of the HVA computation. The benefits
of coding inverse speed in a gradient model of motion compu-
tation and the methods by which is can be computed has been
outlined in some detail elsewhere (Johnston et al., 1999a,b, 2003).

CONCLUSIONS
The HVA has not previously been considered as a way of aggre-
gating visual local motion estimates. However, the HVA appro-
priately combines normal component velocities that are subject
to the aperture problem. This can clearly be seen from a con-
sideration of the underlying inversive geometry within velocity
space. The correct global motion vector for type II arrays can only
be arrived at though an IOC or equivalent calculation. However,
the global motion solution is also arrived at more efficiently in
the inverse space. Perceptually, when the IOC prediction fails, the
global motion percept tends to the HVA. This indicates that shifts
in perceived direction and speed are linked.
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Illustration of the type of stimuli used in the experiments.
1) movieMGA45R15: A movie sequence showing a dynamic

Gabor array with a mean angle of 45 degree and Gabor orienta-
tion draw from a range ±15 degrees.

2) movieMGA45R45: A movie sequence showing a dynamic
Gabor array with a mean angle of 45 degree and Gabor orienta-
tion draw from a range ±45 degrees.
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APPENDIX
Let us describe, in velocity space, a set of k local velocity vectors,
p, arising from the rigid motion of an object, with Cartesian com-
ponents

(
ui

−1, vi
−1

)
, and a global vector, the IOC solution, IOC,

which we want to find (Figure 1B). The vector p′ is the set of
inversions in the unit circle of the vectors in p, with components
(ui, vi). We can write an over determined set of equations each
of which expresses the relation that the inner product of ioc with
each of the local velocity vectors in p′ is equal to one. The inner
product of each p′

i with ioc gives the component of the sample
vector in the ioc direction. The ioc vector has the squared magni-
tude |ioc|2. Therefore, equating the inner products to one, ni =1,
has the effect of inverting the ioc vector (dividing ioc by |ioc|2) to
give the IOC vector which lies on the circle through the origin.

p′
1 · IOC = n1

p′
2 · IOC = n2

...

p′
k · IOC = n1

(1)

solving for IOC we have

IOC =
(

u·u v·u
u·v v·v

)−1 (
u·n
v·n

)
(2)

Although we use matrix inversion here for convenience, the
IOC could be found with other methods, which do not require an
explicit matrix inversion, such as the method based on Cramer’s
rule.

Note that the vector,

(
u·n
v·n

)
, is the sum of inverted vectors

p′
i,

(∑
u∑
v

)
, and the inversion of its mean (hva) is the harmonic

vector average (HVA),

HVA = k∣∣∣∣
(∑

u∑
v

)∣∣∣∣
2

(∑
u∑
v

)
. (3)
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