Johnston, A;
Scarfe, P;
(2013)
The role of the harmonic vector average in motion integration.
Front Comput Neurosci
, 7
, Article 146. 10.3389/fncom.2013.00146.
Preview |
PDF
fncom-07-00146.pdf Download (1MB) |
Abstract
The local speeds of object contours vary systematically with the cosine of the angle between the normal component of the local velocity and the global object motion direction. An array of Gabor elements whose speed changes with local spatial orientation in accordance with this pattern can appear to move as a single surface. The apparent direction of motion of plaids and Gabor arrays has variously been proposed to result from feature tracking, vector addition and vector averaging in addition to the geometrically correct global velocity as indicated by the intersection of constraints (IOC) solution. Here a new combination rule, the harmonic vector average (HVA), is introduced, as well as a new algorithm for computing the IOC solution. The vector sum can be discounted as an integration strategy as it increases with the number of elements. The vector average over local vectors that vary in direction always provides an underestimate of the true global speed. The HVA, however, provides the correct global speed and direction for an unbiased sample of local velocities with respect to the global motion direction, as is the case for a simple closed contour. The HVA over biased samples provides an aggregate velocity estimate that can still be combined through an IOC computation to give an accurate estimate of the global velocity, which is not true of the vector average. Psychophysical results for type II Gabor arrays show perceived direction and speed falls close to the IOC direction for Gabor arrays having a wide range of orientations but the IOC prediction fails as the mean orientation shifts away from the global motion direction and the orientation range narrows. In this case perceived velocity generally defaults to the HVA.
Type: | Article |
---|---|
Title: | The role of the harmonic vector average in motion integration. |
Location: | Switzerland |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.3389/fncom.2013.00146 |
Publisher version: | http://dx.doi.org/10.3389/fncom.2013.00146 |
Language: | English |
Additional information: | © 2013 Johnston and Scarfe. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. PMCID: PMC3800775 |
Keywords: | global motion, motion computation, plaids |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > Div of Psychology and Lang Sciences |
URI: | https://discovery.ucl.ac.uk/id/eprint/1423180 |
Archive Staff Only
View Item |