
C

S
a

b

a

A
R
R
A
A

K
D
P
S

1

t
i
u
w
a
B
2
e

m
o
a
o
m
m

t

C
r

0
h

The Journal of Systems and Software 88 (2014) 1– 24

Contents lists available at ScienceDirect

The Journal of Systems and Software

jo u r n al homepage: www.elsev ier .com/ locate / j ss

oherent clusters in source code�

yed Islama,∗, Jens Krinkea, David Binkleyb, Mark Harmana

University College London, United Kingdom
Loyola University Maryland, United States

 r t i c l e i n f o

rticle history:
eceived 19 November 2012
eceived in revised form 16 July 2013
ccepted 18 July 2013
vailable online 21 August 2013

eywords:
ependence analysis
rogram comprehension
oftware clustering

a b s t r a c t

This paper presents the results of a large scale empirical study of coherent dependence clusters. All state-
ments in a coherent dependence cluster depend upon the same set of statements and affect the same set
of statements; a coherent cluster’s statements have ‘coherent’ shared backward and forward dependence.
We introduce an approximation to efficiently locate coherent clusters and show that it has a minimum
precision of 97.76%. Our empirical study also finds that, despite their tight coherence constraints, coher-
ent dependence clusters are in abundance: 23 of the 30 programs studied have coherent clusters that
contain at least 10% of the whole program. Studying patterns of clustering in these programs reveals
that most programs contain multiple substantial coherent clusters. A series of subsequent case studies
uncover that all clusters of significant size map to a logical functionality and correspond to a program

structure. For example, we show that for the program acct, the top five coherent clusters all map to spe-
cific, yet otherwise non-obvious, functionality. Cluster visualization also brings out subtle deficiencies in
program structure and identifies potential refactoring candidates. A study of inter-cluster dependence is
used to highlight how coherent clusters are connected to each other, revealing higher-level structures,
which can be used in reverse engineering. Finally, studies are presented to illustrate how clusters are not

faults
correlated with program

. Introduction

Program dependence analysis is a foundation for many activi-
ies in software engineering such as testing, comprehension, and
mpact analysis (Binkley, 2007). For example, it is essential to
nderstand the relationships between different parts of a system
hen making changes and the impacts of these changes (Gallagher

nd Lyle, 1991). This has led to both static (Yau and Collofello, 1985;
lack, 2001) and blended (static and dynamic) (Ren et al., 2006,
005) dependence analyses of the relationships between depend-
nce and impact.

One important property of dependence is the way in which it
ay cluster. This occurs when a set of statements all depend upon

ne another, forming a dependence cluster. Within such a cluster,
ny change to an element potentially affects every other element
f the cluster. If such a dependence cluster is very large, then this
utual dependence clearly has implications related to the cost of

aintaining the code.
In previous work (Binkley and Harman, 2005), we introduced

he study of dependence clusters in terms of program slicing and

� This is an open-access article distributed under the terms of the Creative
ommons Attribution License, which permits unrestricted use, distribution, and
eproduction in any medium, provided the original author and source are credited.
∗ Corresponding author.

E-mail address: s.islam@cs.ucl.ac.uk (S. Islam).

164-1212/$ – see front matter © 2013 The Authors. Published by Elsevier Inc. All rights
ttp://dx.doi.org/10.1016/j.jss.2013.07.040
 as they remain stable during most system evolution.
© 2013 The Authors. Published by Elsevier Inc. All rights reserved.

demonstrated that large dependence clusters were (perhaps sur-
prisingly) common, both in production (closed source) code and in
open source code (Harman et al., 2009). Our findings over a large
corpus of C code was that 89% of the programs studied contained at
least one dependence cluster composed of 10% or more of the pro-
gram’s statements. The average size of the programs studied was
20KLoC, so these clusters of more than 10% denoted significant por-
tions of code. We also found evidence of super-large clusters: 40%
of the programs had a dependence cluster that consumed over half
of the program.

More recently, our finding that large clusters are widespread
in C systems has been replicated for other languages and systems
by other authors, both in open source and in proprietary code
(Acharya and Robinson, 2011; Beszédes et al., 2007; Szegedi et al.,
2007). Large dependence clusters were also found in Java systems
(Beszédes et al., 2007; Savernik, 2007; Szegedi et al., 2007) and in
legacy Cobol systems (Hajnal and Forgács, 2011).

There has been interesting work on the relationship between
faults, program size, and dependence clusters (Black et al., 2006),
and between impact analysis and dependence clusters (Acharya
and Robinson, 2011; Harman et al., 2009). Large dependence
clusters can be thought of as dependence ‘anti-patterns’ because
of the high impact that a change anywhere in the cluster has. For

example, it may lead to problems for on-going software mainte-
nance and evolution (Acharya and Robinson, 2011; Binkley et al.,
2008; Savernik, 2007). As a result, refactoring has been proposed

reserved.

dx.doi.org/10.1016/j.jss.2013.07.040
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2013.07.040&domain=pdf
mailto:s.islam@cs.ucl.ac.uk
dx.doi.org/10.1016/j.jss.2013.07.040

2 stems

a
s

i
m
t
t
s

e
i
e
d
e
m
d
a
t
a
s

u
u
c
c
p

t
o
f
c
d

i
t
t
o
i
i
a
r
w
s
i
o
r
t
h

1

2

3

4

S. Islam et al. / The Journal of Sy

s a technique for breaking larger clusters of dependence into
maller clusters (Binkley and Harman, 2005; Black et al., 2009).

Dependence cluster analysis is complicated by the fact that
nter-procedural program dependence is non-transitive, which

eans that the statements in a traditional dependence cluster,
hough they all depend on each other, may not each depend on
he same set of statements, nor need they necessarily affect the
ame set of statements external to the cluster.

This paper introduces and empirically studies1 coherent depend-
nce clusters. In a coherent dependence cluster all statements share
dentical intra-cluster and extra-cluster dependence. A coher-
nt dependence cluster is thus more constrained than a general
ependence cluster. A coherent dependence cluster retains the
ssential property that all statements within the cluster are
utually dependent, but adds the constraint that all incoming

ependence must be identical and all outgoing dependence must
lso be identical. That is, all statements within a coherent clus-
er depend upon the same set of statements outside the cluster
nd all statements within a coherent cluster affect the same set of
tatements outside the cluster.

This means that, when studying a coherent cluster, we need to
nderstand only a single external dependence context in order to
nderstand the behavior of the entire cluster. For a dependence
luster that fails to meet the external constraint, statements of the
luster may have a different external dependence context. This is
ossible because inter-procedural dependence is non-transitive.

It might be thought that very few sets of statements would meet
hese additional coherence constraints, or that, where such sets
f statements do meet the constraints, there would be relatively
ew statements in the coherent cluster so-formed. Our empiri-
al findings provide evidence that this is not the case: coherent
ependence clusters are common and they can be very large.

This paper is part of a series of work that we have conducted
n the area of dependence clusters. The overarching motivation for
his work is to gain a better understanding of the dependence clus-
ers found in programs. Although this paper is a continuation of
ur previous work on dependence clusters, we present the work
n a completely new light. In this paper we show that the special-
zed version of dependence clusters, coherent clusters are found in
bundance in programs and need not be regarded as problems. We
ather show that these clusters map to logical program structures
hich will aid developers in program comprehension and under-

tanding. Furthermore, this paper extends the current knowledge
n the area and motivates future work by presenting initial results
f inter-cluster dependence which can be used as a foundation for
everse engineering. We answer several representative open ques-
ions such as whether clusters are related to program faults and
ow clusters change over time during system evolution.

The primary contributions of the paper are as follows:

 An Empirical analysis of thirty programs assesses the frequency
and size of coherent dependence clusters. The results demon-
strate that large coherent clusters are common, validating their
further study.

 Two further empirical validation studies consider the impact of
data-flow analysis precision and the precision of the approxima-
tion used to efficiently identify coherent clusters.

 A series of four case studies shows how coherent clusters map to
logical program structures.

 A study of inter-cluster dependence highlights how coherent

clusters form the building blocks of larger dependence struc-
tures where identification can support, as an example, reverse
engineering.

1 Preliminary results were presented at PASTE (Islam et al., 2010b).
 and Software 88 (2014) 1– 24

5 A study of bug fixes finds no relationship between program faults
and coherent clusters implying that dependence clusters are not
responsible for program faults.

6 A longitudinal study of system evolution shows that coherent
clusters remain stable during evolution thus depicting the core
architecture of systems.

The remainder of this paper is organized as follows: Section
2 provides background on coherent clusters and their visual-
ization. Section 3 provides details on the subject programs, the
validation of the slice approximation used, and the experimen-
tal setup. This is followed by quantitative and qualitative studies
into the existence and impact of coherent dependence clusters and
the inter-cluster dependence study. It also includes studies on pro-
gram faults and system evolution and their relationship to coherent
clusters. Section 4 considers related work and finally, Section 5
summarizes the work presented.

2. Background

This section provides background on dependence clusters. It
first presents a sequence of definitions that culminate in the defini-
tion for a coherent dependence cluster. Previous work (Binkley and
Harman, 2005; Harman et al., 2009) has used the term dependence
cluster for a particular kind of cluster, termed a mutually-dependent
cluster herein to emphasize that such clusters consider only mutual
dependence internal to the cluster. This distinction allows the def-
inition to be extended to incorporate external dependence. The
section also reviews the current graph-based visualizations for
dependence clusters.

2.1. Dependence clusters

Informally, mutually-dependent clusters are maximal sets of pro-
gram statements that mutually depend upon one another (Harman
et al., 2009). They are formalized in terms of mutually dependent
sets in the following definition.

Definition 2.1 (Mutually-dependent set and cluster (Harman et al.,
2009)). A mutually-dependent set (MDS) is a set of statements, S,
such that

∀x, y ∈ S : x depends on y.
A mutually-dependent cluster is a maximal MDS; thus, it is an

MDS not properly contained within another MDS.

The definition of an MDS is parameterized by an underlying
depends-on relation. Ideally, such a relation would precisely cap-
ture the impact, influence, and dependence between statements.
Unfortunately, such a relation is not computable (Weiser, 1984).
A well known approximation is based on Weiser’s program slice
(Weiser, 1984): a slice is the set of program statements that affect
the values computed at a particular statement of interest (referred
to as a slicing criterion). While its computation is undecidable, a
minimal (or precise) slice includes exactly those program elements
that affect the criterion and thus can be used to define an MDS in
which t depends on s iff s is in the minimal slice taken with respect
to slicing criterion t.

The slice-based definition is useful because algorithms to com-
pute approximations to minimal slices can be used to define
and compute approximations to mutually-dependent clusters. One
such algorithm computes a slice as the solution to a reachability
problem over a program’s System Dependence Graph (SDG) (Horwitz

et al., 1990). An SDG is comprised of vertices, which essentially rep-
resent the statements of the program and two kinds of edges: data
dependence edges and control dependence edges. A data depend-
ence connects a definition of a variable with each use of the variable

stems and Software 88 (2014) 1– 24 3

r
e
c
v
a
e
n
c

t
d
n
E
a
s
o
t
2

s
O
t
a
r
v
p
c

o
(
a
s
t
s
u
a
i
a
s
d
T
P
o
a

2

e
D
d
i
t
w

D
2

w

y
x
g
s
c

S. Islam et al. / The Journal of Sy

eached by the definition (Ferrante et al., 1987). Control depend-
nce connects a predicate p to a vertex v when p has at least two
ontrol-flow-graph successors, one of which can lead to the exit
ertex without encountering v and the other always leads eventu-
lly to v (Ferrante et al., 1987). Thus p controls the possible future
xecution of v. For structured code, control dependence reflects the
esting structure of the program. When slicing an SDG, a slicing
riterion is a vertex from the SDG.

A naïve definition of a dependence cluster would be based on
he transitive closure of the dependence relation and thus would
efine a cluster to be a strongly connected component. Unfortu-
ately, for certain language features, dependence is non-transitive.
xamples of such features include procedures (Horwitz et al., 1990)
nd threads (Krinke, 1998). Thus, in the presence of these features,
trongly connected components overstate the size and number
f dependence clusters. Fortunately, context-sensitive slicing cap-
ures the necessary context information (Binkley and Harman,
005, 2003; Horwitz et al., 1990; Krinke, 2002, 2003).

Two kinds of SDG slices are used in this paper: backward
lices and forward slices (Horwitz et al., 1990; Ottenstein and
ttenstein, 1984). The backward slice taken with respect to ver-

ex v, denoted BSlice(v), is the set of vertices reaching v via
 path of control and data dependence edges where this path
espects context. The forward slice, taken with respect to vertex
, denoted FSlice(v), is the set of vertices reachable from v via a
ath of control and data dependence edges where this path respects
ontext.

The program P shown in Fig. 1 illustrates the non-transitivity
f slice inclusion. The program has six assignment statements
assigning the variables a, b, c, d, e and f) whose dependencies
re shown in columns 1–6 as backward slice inclusion. Backward
lice inclusion contains statements that affect the slicing criterion
hrough data and control dependence. The dependence relation-
hip between these statements is also extracted and shown in Fig. 2
sing a directed graph where the nodes of the graph represent the
ssignment statements and the edges represent the backward slice
nclusion relationship from Fig. 1. The table on the right in Fig. 2
lso gives the forward slice inclusions for the statements. All other
tatements in P, which do not define a variable, are ignored. In the
iagram, x depends on y (y ∈ BSlice(x)) is represented by y → x.
he diagram shows two instances of dependence intransitivity in
. Although b depends on nodes a, c, and d, node f, which depends
n b, does not depend on a, c, or d. Similarly, d depends on e but
, b, and c, which depend on d do not depend on e.

.2. Slice-based clusters

A slice-based cluster is a maximal set of vertices included in
ach other’s slice. The following definition essentially instantiates
efinition 2.1 using BSlice. Because x ∈ BSlice(y) ⇔ y ∈ FSlice(x) the
ual of this definition using FSlice is equivalent. Where such a dual-

ty does not hold, both definitions are given. When it is important
o differentiate between the two, the terms backward and forward
ill be added to the definition’s name as is done in this section.

efinition 2.2 (Backward-slice MDS and cluster (Harman et al.,
009)). A backward-slice MDS is a set of SDG vertices, V, such that

∀x, y ∈ V : x ∈ BSlice(y).
A backward-slice cluster is a backward-slice MDS contained

ithin no other backward-slice MDS.

Note that as x and y are interchangeable, this is equivalent to ∀x,
 ∈ V : x ∈ BSlice(y) ∧ y ∈ BSlice(x). Thus, any unordered pair (x, y) with
 ∈ BSlice(y) ∧ y ∈ BSlice(x) creates an edge (x, y) in an undirected
raph in which a complete subgraph is equivalent to a backward-
lice MDS and a backward-slice cluster is equivalent to a maximal
lique. Therefore, the clustering problem is the NP-Hard maximal
Fig. 1. Dependence intransitivity and clusters.

cliques problem (Bomze et al., 1999) making Definition 2.2 pro-
hibitively expensive to implement.

In the example shown in Fig. 2, the vertices representing the
assignments to a, b, c and d are all in each others backward slices
and hence satisfy the definition of a backward-slice cluster. These
vertices also satisfy the definition of a forward-slice cluster as they
are also in each others forward slices.

As dependence is not transitive, a statement can be in multiple
slice-based clusters. For example, in Fig. 2 the statements d and e are
mutually dependent upon each other and thus satisfy the definition
of a slice-based cluster. Statement d is also mutually dependent on
statements a, b, c, thus the set {a, b, c, d} also satisfies the definition
of a slice-based cluster.

2.3. Same-slice clusters
An alternative definition uses the same-slice relation in place of
slice inclusion (Binkley and Harman, 2005). This relation replaces
the need to check if two vertices are in each others slice with check-
ing if two vertices have the same slice. The result is captured in the

4 S. Islam et al. / The Journal of Systems and Software 88 (2014) 1– 24

clusio

f
s

D
A

c

t

s
w
i
e
t
s
n

b
s
f
v
n
a

b
a
f
(
r
H
t
i
t
r
e

2

e
d
n
a
a
e
d
t
t
t
d
M

Fig. 2. Backward slice in

ollowing definitions for same-slice cluster. The first uses backward
lices and the second forward slices.

efinition 2.3 (Same-slice MDS and cluster (Harman et al., 2009)).
 same-backward-slice MDS is a set of SDG vertices, V, such that

∀x, y ∈ V : BSlice(x) = BSlice(y).
A same-backward-slice cluster is a same-backward-slice MDS

ontained within no other same-backward-slice MDS.
A same-forward-slice MDS is a set of SDG vertices, V, such that
∀x, y ∈ V : FSlice(x) = FSlice(y).
A same-forward-slice cluster is a same-forward-slice MDS con-

ained within no other same-forward-slice MDS.

Because x ∈ BSlice(x) and x ∈ FSlice(x), two vertices that have the
ame slice will always be in each other’s slice. If slice inclusion
ere transitive, a backward-slice MDS (Definition 2.2) would be

dentical to a same-backward-slice MDS (Definition 2.3). How-
ver, as illustrated by the examples in Fig. 1, slice inclusion is not
ransitive; thus, the relation is one of containment where every
ame-backward-slice MDS is also a backward-slice MDS but not
ecessarily a maximal one.

For example, in Fig. 2 the set of vertices {a, b, c} form a same-
ackward-slice cluster because each vertex of the set yields the
ame backward slice. Whereas the set of vertices {a, c} form a same-
orward-slice cluster as they have the same forward slice. Although
ertex d is mutually dependent with all vertices of either set, it does
ot form the same-slice cluster with either set because it has an
dditional dependence relationship with vertex e.

Although the introduction of same-slice clusters was motivated
y the need for efficiency, the definition inadvertently introduced
n external requirement on the cluster. Comparing the definitions
or slice-based clusters (Definition 2.2) and same-slice clusters
Definition 2.3), a slice-based cluster includes only the internal
equirement that the vertices of a cluster depend upon one another.
owever, a same-backward-slice cluster (inadvertently) adds to

his internal requirement the external requirement that all vertices
n the cluster are affected by the same vertices external to the clus-
er. Symmetrically, a same-forward-slice cluster adds the external
equirement that all vertices in the cluster affect the same vertices
xternal to the cluster.

.4. Coherent dependence clusters

This subsection first formalizes the notion of coherent depend-
nce clusters and then presents a slice-based instantiation of the
efinition. Coherent clusters are dependence clusters that include
ot only an internal dependence requirement (each statement of

 cluster depends on all the other statements of the cluster) but
lso an external dependence requirement. The external depend-
nce requirement includes both that each statement of a cluster
epends on the same statements external to the cluster and also
hat it influences the same set of statements external to the clus-

er. In other words, a coherent cluster is a set of statements
hat are mutually dependent and share identical extra-cluster
ependence. Coherent clusters are defined in terms of the coherent
DS:
n relationship for Fig. 1.

Definition 2.4 (Coherent MDS and cluster (Islam et al., 2010b)). A
coherent MDS is a MDS V, such that

∀x, y ∈ V : x depends on a implies y depends on a and a depends
on x implies a depends on y.

A coherent cluster is a coherent MDS contained within no other
coherent MDS.

The slice-based instantiation of coherent cluster employs both
backward and forward slices. The combination has the advantage
that the entire cluster is both affected by the same set of vertices
(as in the case of same-backward-slice clusters) and also affects the
same set of vertices (as in the case of same-forward-slice clusters).
In the slice-based instantiation, a set of vertices V forms a coherent
MDS if

∀x, y ∈ V : x ∈ BSlice(y) the internal requirement of an MDS
∧a ∈ BSlice(x) ⇒ a ∈ BSlice(y) x and y depend on same external a
∧a ∈ FSlice(x) ⇒ a ∈ FSlice(y) x and y impact on same external a

Because x and y are interchangeable

∀x, y ∈ V : x ∈ BSlice(y)

∧ a ∈ BSlice(x) ⇒ a ∈ BSlice(y)

∧ a ∈ FSlice(x) ⇒ a ∈ FSlice(y)

∧ y ∈ BSlice(x)

∧ a ∈ BSlice(y) ⇒ a ∈ BSlice(x)

∧ a ∈ FSlice(y) ⇒ a ∈ FSlice(x)

This is equivalent to

∀x, y ∈ V : x ∈ BSlice(y) ∧ y ∈ BSlice(x)

∧ (a ∈ BSlice(x) ⇔ a ∈ BSlice(y))

∧ (a ∈ FSlice(x) ⇔ a ∈ FSlice(y))

which simplifies to

∀x, y ∈ V : BSlice(x) = BSlice(y) ∧ FSlice(x) = FSlice(y)

and can be used to define coherent-slice MDS and clusters:

Definition 2.5 (Coherent-slice MDS and cluster (Islam et al., 2010b)).
A coherent-slice MDS is a set of SDG vertices, V, such that

∀x, y ∈ V : BSlice(x) = BSlice(y) ∧ FSlice(x) = FSlice(y)
A coherent-slice cluster is a coherent-slice MDS contained within

no other coherent-slice MDS.

At first glance the use of both backward and forward slices might
seem redundant because x ∈ BSlice(y) ⇔ y ∈ FSlice(x). This is true up
to a point: for the internal requirement of a coherent-slice clus-
ter, the use of either BSlice or FSlice would suffice. However, the
two are not redundant when it comes to the external requirements
of a coherent-slice cluster. With a mutually-dependent cluster
(Definition 2.1), it is possible for two vertices within the cluster to
influence or be affected by different vertices external to the cluster.
Neither is allowed with a coherent-slice cluster. To ensure that both

external effects are captured, both backward and forward slices are
required for coherent-slice clusters.

In Fig. 2 the set of vertices {a, c} form a coherent cluster as both
these vertices have exactly the same backward and forward slices.

S. Islam et al. / The Journal of Systems and Software 88 (2014) 1– 24 5

e distr

T
c
c
n
p
v
o
s

c
v

B

T

T
s
o
f
t

2

g
t
b
a
t
t
w
i
H

D
e
v

M

o
c
s
s

2

d
s

Fig. 3. Slice siz

hat is, they share identical intra- and extra-cluster dependen-
ies. Coherent clusters are therefore a stricter from of same-slice
lusters, all coherent clusters are also same-slice MDS but not
ecessarily maximal. It is worth noting that same-slice clusters
artially share extra-cluster dependency. For example, each of the
ertices in the same-backward-slice cluster {a, b, c} is dependent
n the same set of external statements, but do not influence the
ame set of external statements.

Coherent slice-clusters have an important property: If a slice
ontains a vertex of a coherent slice-cluster V, it will contain all
ertices of the cluster:

Slice(x) ∩ V /= ∅ ⇒ BSlice(x) ∩ V = V (1)

his holds because:

∀y, y′ ∈ V : y ∈ BSlice(x) ⇒ x ∈ FSlice(y)

⇒x ∈ FSlice(y′) ⇒ y′ ∈ BSlice(x)

he same argument clearly holds for forward slices. However, the
ame is not true for non-coherent clusters. For example, in the case
f a same-backward-slice cluster, a vertex contained within the
orward slice of any vertex of the cluster is not guaranteed to be in
he forward slice of other vertices of the same cluster.

.5. Hash based coherent slice clusters

The computation of coherent-slice clusters (Definition 2.5)
rows prohibitively expensive even for mid-sized programs where
ens of gigabytes of memory are required to store the set of all possi-
le backward and forward slices. The computation is cubic in time
nd quadratic in space. An approximation is employed to reduce
he computation time and memory requirement. This approxima-
ion replaces comparison of slices with comparison of hash values,
here hash values are used to summarize slice content. The result

s the following approximation to coherent-slice clusters in which
 denotes a hash function.

efinition 2.6 (Hash-based coherent-slice MDS and cluster (Islam
t al., 2010b)). A hash-based coherent-slice MDS is a set of SDG
ertices, V, such that

∀x, y ∈ V : H(BSlice(x)) = H(BSlice(y)) ∧ H(FSlice(x)) = H(FSlice(y))
A hash-based coherent-slice cluster is a hash-based coherent-slice

DS contained within no other hash-based coherent-slice MDS.

A description of the hash function H along with the evaluation
f its precision is presented in Section 3.3. From here on, the paper
onsiders only hash-based coherent-slice clusters unless explicitly
tated otherwise. Thus, for ease of reading, a hash-based coherent-
lice cluster is referred to simply as a coherent cluster.

.6. Graph based cluster visualization
This section describes two graph-based visualizations for
ependence clusters. The first visualization, the Monotone Slice-
ize Graph (MSG) (Binkley and Harman, 2005), plots a landscape of
ibution for bc.

monotonically increasing slice sizes where the y-axis shows the size
of each slice, as a percentage of the entire program, and the x-axis
shows each slice, in monotonically increasing order of slice size.
In an MSG, a dependence cluster appears as a sheer-drop cliff face
followed by a plateau. The visualization assists with the inherently
subjective task of deciding whether a cluster is large (how long is
the plateau at the top of the cliff face relative to the surrounding
landscape?) and whether it denotes a discontinuity in the depend-
ence profile (how steep is the cliff face relative to the surrounding
landscape?). An MSG drawn using backward slice sizes is referred
to as a backward-slice MSG (B-MSG), and an MSG drawn using
forward slice sizes is referred to as a forward-slice MSG (F-MSG).

As an example, the open source calculator bc contains 9438 lines
of code represented by 7538 SDG vertices. The B-MSG for bc, shown
in Fig. 3a, contains a large plateau that spans almost 70% of the
MSG. Under the assumption that same slice size implies the same
slice, this indicates a large same-slice cluster. However, “zooming”
in reveals that the cluster is actually composed of several smaller
clusters made from slices of very similar size. The tolerance implicit
in the visual resolution used to plot the MSG obscures this detail.

The second visualization, the Slice/Cluster Size Graph (SCG) (Islam
et al., 2010b), alleviates this issue by combining both slice and clus-
ter sizes. It plots three landscapes, one of increasing slice sizes,
one of the corresponding same-slice cluster sizes, and the third of
the corresponding coherent cluster sizes. In the SCG, vertices are
ordered along the x-axis using three values, primarily according
to their slice size, secondarily according to their same-slice cluster
size, and finally according to the coherent cluster size. Three values
are plotted on the y-axis: slice sizes form the first landscape, and
cluster sizes form the second and third. Thus, SCGs not only show
the sizes of the slices and the clusters, they also show the relation
between them and thus bring to light interesting links. Two vari-
ants of the SCG are considered: the backward-slice SCG (B-SCG) is
built from the sizes of backward slices, same-backward-slice clus-
ters, and coherent clusters, while the forward-slice SCG (F-SCG) is
built from the sizes of forward slices, same-forward-slice clusters,
and coherent clusters. Note that both backward and forward SCGs
use the same coherent cluster sizes.

The B-SCG and F-SCG for the program bc are shown in Fig. 4. In
both graphs the slice size landscape is plotted using a solid black-
line, the same-slice cluster size landscape using a gray line, and
the coherent cluster size landscape using a (red) broken line. The
B-SCG (Fig. 4a) shows that bc contains two large same-backward-
slice clusters consisting of around 55% and 15% of the program.
Surprisingly, the larger same-backward-slice cluster is composed of
smaller slices than the smaller same-backward-slice cluster; thus,
the smaller cluster has a bigger impact (slice size) than the larger
cluster. In addition, the presence of three coherent clusters span-
ning approximately 15%, 20% and 30% of the program’s statements
can also be seen.
Fig. 3c shows two box plots depicting the distribution of (back-
ward and forward) slice sizes for bc. The average size of the slices
is also displayed in the box plot using a solid square box. Compar-
ing the box plot information to the information provided by the

6 S. Islam et al. / The Journal of Systems and Software 88 (2014) 1– 24

(

r size

M
p
H
o
t
c
t
S
a
a
u
c
i
s

3

a
c
t
t
e
s
d
p
q
(
a
c
s
a

a

f
o
t
I

(a) B-SCG

Fig. 4. Slice/cluste

SGs, we can see that all the information available from the box
lots can be derived from the MSGs itself (except for the average).
owever, MSGs show a landscape (slice profile) which cannot be
btained from the box plots. Similarly, the box plots in Fig. 4c show
he size distributions of the various clusters (i.e. a vertex is in a
luster of size x) in addition to the slice size distributions. Although
he information from these box plots can not be derived from the
CGs shown in Fig. 4a and b directly, the profiles (landscapes) give

 better intuition about the clusters, the number of major clusters
nd their sizes. For our empirical study we use the size of individ-
al clusters and the cluster profile to find mappings between the
lusters and program components. Therefore, we drop box plots
n favor of SCGs to show the cluster profile and provide additional
tatistics in tabular format where required.

. Empirical evaluation

This section presents the empirical evaluation into the existence
nd impact of coherent dependence clusters. The section first dis-
usses the experimental setup and the subject programs included in
he study. It then presents two validation studies, the first considers
he effect of pointer analysis precision and the second consid-
rs the validity of hashing in efficient cluster identification. The
ection then quantitatively considers the existence of coherent
ependence clusters and identifies patterns of clustering within the
rograms. This is followed by a series of four case studies, where
ualitative analysis, aided by the decluvi cluster visualization tool
Islam et al., 2010a), highlight how knowledge of clusters can aid

 software engineer. The section then presents studies on inter-
luster dependence, and the relationship of program faults and
ystem evolution to coherent clusters. Finally, threats to validity
re considered.

To formalize the goals of this section, the empirical evaluation
ddresses the following research questions:

RQ 1 What is the effect of pointer analysis precision on coherent
clusters?

RQ 2 How precise is hashing as a proxy for comparing slices?
RQ 3 How large are the coherent clusters that exist in production

source code and which patterns of clustering can be identi-
fied?

RQ 4 Which structures within a program can coherent cluster anal-
ysis reveal?

RQ 5 What are the implications of inter-cluster dependence
between coherent clusters?

RQ 6 How do program faults relate to coherent clusters?
RQ 7 How stable are coherent clusters during system evolution?

The first two research questions provide empirical verification

or the results subsequently presented. RQ1 establishes the impact
f pointer analysis on the clustering, whereas RQ2 establishes that
he hash function used to approximate a slice is sufficiently precise.
f the static slices produced by the slicer are overly conservative or
b) F-SCG (c) Slice/Cluster Size

distribution for bc.

if the slice approximation is not sufficiently precise, then the results
presented will not be reliable. Fortunately, the results provide con-
fidence that the slice precision and hashing accuracy are sufficient.

Whereas RQ1 and RQ2 focus on the veracity of our approach,
RQ3 investigates the validity of the study; if large coherent clusters
are not prevalent, then they would not be worthy of further study.
We place very specific and demanding constraints on a set of ver-
tices for it to be deemed a coherent cluster. If such clusters are not
common then their study would be merely an academic exercise.
Conversely, if the clustering is similar for every program then it
is unlikely that cluster identification will reveal interesting infor-
mation about programs. Our findings reveal that, despite the tight
constraints inherent in the definition of a coherent dependence
cluster, they are, indeed, very common. Also, the cluster pro-
files for programs are sufficiently different and exhibit interesting
patterns.

These results motivate the remaining research questions. Hav-
ing demonstrated that our technique is suitable for finding coherent
clusters and that such clusters are sufficiently widespread to be
worthy of study, we investigate specific coherent clusters in detail.
RQ4 studies the underlying logical structure of programs revealed
by these clusters. RQ5 looks explicitly at inter-cluster dependency
and considers areas of software engineering where it may be of
interest. RQ6 presents a study of how program faults relate to coher-
ent clusters, and, finally, RQ7 studies the effect of system evolution
on clustering.

3.1. Experimental subjects and setup

The slices along with the mapping between the SDG vertices
and the actual source code are extracted from the mature and
widely used slicing tool CodeSurfer (Anderson and Teitelbaum,
2001) (version 2.1). The cluster visualizations were generated by
decluvi (Islam et al., 2010a) using data extracted from CodeSurfer.
The data is generated from slices taken with respect to source-
code representing SDG vertices. This excludes pseudo vertices
introduced into the SDG, e.g., to represent global variables which
are modeled as additional pseudo parameters by CodeSurfer.
Cluster sizes are also measured in terms of source-code rep-
resenting SDG vertices, which is more consistent than using
lines of code as it is not influenced by blank lines, comments,
statements spanning multiple lines, multiple statements on one
line, or compound statements. The decluvi system along with
scheme scripts for data acquisition and pre-compiled datasets
for several open-source programs can be downloaded from
http://www.cs.ucl.ac.uk/staff/s.islam/decluvi.html.

The study considers the 30 C programs shown in Table 1,
which provides a brief description of each program alongside
seven measures: number of files containing executable C code,
LoC – lines of code (as counted by the Unix utility wc), SLoC – the

non-comment non-blank lines of code (as counted by the utility
sloccount (Wheeler, 2004)), ELoC – the number of source code lines
that CodeSurfer considers to contain executable code, the number
of SDG vertices, the number of SDG edges, the number of slices

http://www.cs.ucl.ac.uk/staff/s.islam/decluvi.html

S. Islam et al. / The Journal of Systems and Software 88 (2014) 1– 24 7

Table 1
Subject programs.

Program C files LoC SLoC ELoC SDG vertex
count

SDG edge
count

Total slices Largest
coherent
cluster size

SDG build
time

Clustering time Description

a2ps 79 46,620 22,117 18,799 224,413 2,025,613 97,170 8% 1m52.048s 583m40.758s ASCII to Postscript
acct 7 2600 1558 642 7618 22,061 2834 11% 0m15.658s 0m12.545s Process monitoring
acm 114 32,231 21,715 15,022 159,830 718,683 63,014 43% 1m57.652s 230m18.418s Flight simulator
anubis 35 18,049 11,994 6947 112,282 561,160 34,618 13% 0m41.253s 70m54.322s SMTP messenger
archimedes 1 787 575 454 20,136 91,728 2176 4% 0m3.658s 0m12.701s Semiconductor device

simulator
barcode 13 3968 2685 2177 16,721 65,367 9602 58% 0m10.234s 2m56.026s Barcode generator
bc 9 9438 5450 4535 36,981 355,942 15,076 32% 0m15.359s 13m14.221s Calculator
byacc 12 6373 5312 4688 45,338 203,675 16,590 7% 0m9.820s 10m15.746s Parser generator
cflow 25 12,542 7121 5762 68,782 304,615 24,638 8% 0m23.312s 31m25.104s Control flow analyzer
combine 14 8202 6624 5279 49,288 247,464 29,118 15% 0m14.577s 26m11.625s File combinator
copia 1 1168 1111 1070 42,435 145,562 6654 48% 0m2.046s 2m35.680s ESA signal processing code
cppi 13 6261 1950 2554 17,771 67,217 10,280 13% 0m10.514s 2m33.213s C preprocessor formatter
ctags 33 14,663 11,345 7383 152,825 630,189 31,860 48% 0m27.094s 96m0.948s C tagging
diction 5 2218 1613 427 5919 17,158 2444 16% 0m5.339s 0m8.189s Grammar checker
diffutils 23 8801 6035 3638 30,023 113,824 16,122 44% 0m23.384s 9m11.509s File differencing
ed 8 2860 2261 1788 35,475 142,192 11,376 55% 0m6.602s 6m38.521s Line text editor
enscript 22 14,182 10,681 9135 67,405 423,349 33,780 19% 0m44.690s 54m0.652s File converter
findutils 59 24,102 13,940 9431 102,910 177,822 41,462 22% 0m36.250s 21m20.795s Line text editor
flex 21 23,173 12,792 13,537 89,806 860,859 37,748 16% 0m31.249s 77m28.885s Lexical Analyzer
garpd 1 669 509 300 5452 14,908 1496 14% 0m1.681s 0m3.670s Address resolved
gcal 30 62,345 46,827 37,497 860,476 4,565,570 286,000 62% 3m3.946s 5d4h18m35s Calendar program
gnuedma 1 643 463 306 5223 14,075 1488 44% 1m12.888s 0m4.365s Development environment
gnushogi 16 16,301 11,664 7175 64,482 277,648 31,298 40% 0m25.907s 47m40.268s Japanese chess
indent 8 6978 5090 4285 24,109 143,821 7543 52% 0m10.000s 10m3.012s Text formatter
less 33 22,661 15,207 9759 451,870 2,156,420 33,558 35% 1m56.968s 339m48.985s Text reader
spell 1 741 539 391 6232 17,574 1740 20% 0m1.663s 0m4.905s Spell checker
time 6 2030 1229 433 4946 12,971 3352 4% 0m3.120s 0m3.683s CPU resource measure
userv 2 1378 1112 1022 15,418 54,258 5362 9% 0m13.787s 0m53.332s Access control
wdiff 4 1652 1108 694 10,077 30,085 2722 6% 0m9.154s 0m39.241s Diff front end
which 6 3003 1996 753 8830 29,377 3804 35% 0m4.528s 0m24.215s Unix utility

864,92
28,83

p
S
a
c
fi

e
t
6
E
t
p
r
t
n
q
s
w
t
d
p
f
b
b
a
c
r
t
p
i
2
t

Sum 602 356,639 232,623 175,883 2,743,073 14,491,187

Average 20 11,888 7754 5863 91,436 483,040

roduced, and finally the size (as a percentage of the program’s
DG vertex count) of the largest coherent cluster. All LoC metrics
re calculated over source files that CodeSurfer considers to
ontain executable code and, for example, do not include header
les.

Columns 10 and 11 provide the runtimes recorded during the
mpirical study. The runtimes reported are wall clock times cap-
ured by the Unix time utility while running the experiments on a
4-bit Linux machine (CentOS 5) with eight Intel(R) Xeon(R) CPU
5450 @ 3.00 GHz processors and 32 GB of RAM. It should be noted
hat this machine acts as a group server and is accessed by multi-
le users. There were other CPU intensive processes intermittently
unning on the machine while these runtimes were collected, and
hus the runtimes are only indicative. Column 10 shows the time
eeded to build the SDG and CodeSurfer project that is subse-
uently used for slicing. The build time for the projects were quite
mall and the longest build time (2m33.456s) was required for gcal
ith 46,827 SLoC. Column 11 shows the time needed for the clus-

ering algorithm to perform the clustering and create all the data
umps for decluvi to create cluster visualizations. The process com-
letes in minutes for small programs and can take hours and longer
or larger programs. It should be noted that the runtime includes
oth the slicing phase which runs in O(ne), where n is the num-
er of SDG vertices and e is the number of edges, and the hashing
nd clustering algorithm which runs in O(n2). Therefore the overall
omplexity is O(ne). The long runtime is mainly due to the current
esearch prototype (which performs slicing, clustering and extrac-
ion of the data) using the Scheme interface of CodeSurfer in a

ipeline architecture. In the future we plan to upgrade the tool-

ng with optimizations for fast and massive slicing (Binkley et al.,
007) and to merge the clustering phase into the slicing to reduce
he runtime significantly.
5 – 16m3.891s –
1 27% 0m32.130s –

Although the clustering and building the visualization data can
take a long time for large projects, it is still useful because the clus-
tering only needs to be done once (for example during a nightly
build) and can then be visualised and reused as many times as
needed. During further study of the visualization and the clus-
tering we have also found that small changes to the system does
not show a change in the clustering, therefore once the cluster-
ing is created it still remains viable through small code changes
as the clustering is found to represent the core program architec-
ture (Section 3.9). Furthermore, the number of SDG vertices and
edges are quite large, in fact even for very small programs the num-
ber of SDG vertices is in the thousands with edge counts in the
tens of thousands. Moreover, the analysis produces an is-in-the-
slice-of relation and graph with even more edges. We have tried
several clustering and visualization tools to cluster the is-in-the-
slice-of graph for comparison, but most of the tools (such as Gephi
Bastian et al., 2009) failed due to the large dataset. Other tools
such as CCVisu (Beyer, 2008) which were able to handle the large
data set simply produced a blob as a visualization which was not
at all useful. The underlying problem is that the is-in-the-slice-of
graph is dense and no traditional clustering can handle such dense
graphs.

3.2. Impact of pointer analysis precision

Recall that the definition of a coherent dependence cluster is
based on an underlying depends-on relation, which is approximated

using program slicing. Pointer analysis plays a key role in the pre-
cision of slicing and the interplay between pointer analysis and
downstream dependence analysis precision is complex (Shapiro
and Horwitz, 1997). To understand how pointer analysis precision

8 S. Islam et al. / The Journal of Systems and Software 88 (2014) 1– 24

Table 2
CodeSurfer pointer analysis settings.

Program Average slice size Maximum slice size Average Cluster Size Maximum Cluster Size

L M H L M H L M H L M H

a2ps 25,223 23,085 20,897 45,231 44,139 43,987 2249 1705 711 10,728 9295 4002
acct 763 700 621 1357 1357 1357 79 66 40 272 236 162
acm 19,083 17,997 16,509 29,403 28,620 28,359 3566 3408 4197 9356 9179 10,809
anubis 11,120 10,806 9085 16,548 16,347 16,034 939 917 650 2708 2612 2278
archimedes 113 113 113 962 962 962 3 3 3 39 39 39
barcode 3523 3052 2820 4621 4621 4621 1316 1870 1605 2463 2970 2793
bc 5278 5245 5238 7059 7059 7059 1185 1188 1223 2381 2384 2432
byacc 3087 2936 2886 9036 9036 9036 110 110 103 583 583 567
cflow 7314 5998 5674 11,856 11,650 11,626 865 565 246 3060 2191 1097
combine 3512 3347 3316 13,448 13,448 13,448 578 572 533 2252 2252 2161
copia 1844 1591 1591 3273 3273 3273 1566 1331 1331 1861 1607 1607
cppi 1509 1352 1337 4158 4158 4158 196 139 139 825 663 663
ctags 12,681 11,663 11,158 15,483 15,475 15,475 7917 41,99 3955 11,080 7905 7642
diction 421 392 387 1194 1194 1194 46 37 37 217 196 196
diffutils 5049 4546 4472 7777 7777 7777 3048 1795 1755 4963 3596 3518
ed 4203 3909 3908 5591 5591 5591 2099 1952 1952 3281 3146 3146
enscript 7023 6729 6654 16,130 16,130 16,130 543 554 539 3140 3242 3243
findutils 7020 6767 5239 11,075 11,050 11,050 1969 1927 1306 4489 4429 2936
flex 9038 8737 8630 17,257 17,257 17,257 622 657 647 3064 3064 3064
garpd 284 242 224 628 628 628 32 31 29 103 103 103
gcal 132,860 123,438 123,427 142,739 142,289 142,289 40,885 40,614 40,614 93,541 88,532 88,532
gnuedma 385 369 368 730 730 368 178 176 174 333 331 330
gnushogi 9569 9248 9141 14,726 14,726 14,726 1577 2857 2820 3787 6225 6179
indent 4104 4058 4045 5704 5704 5704 2036 2032 1985 3402 3399 3365
less 13,592 13,416 13,392 16,063 16,063 16,063 4573 3074 3035 7945 5809 5796
spell 359 293 291 845 845 845 58 31 48 199 128 174
time 201 161 158 730 730 730 4 3 3 35 33 33

662

687

744

i
s

p
o
s
t
r
o

(
t
t
e
(
p
b
s
p
a
fi
b
w
p
m
W
o
a
p

p
p
u
s
c

The Medium setting always yields smaller slices when com-
pared to the Low setting. For eight programs, the medium setting
produces the same average slice size as the High setting. For the
userv 1324 972 964 2721 2662 2
wdiff 687 582 561 2687 2687 2
which 1080 1076 1070 1744 1744 1

mpacts the clustering of the programs we study the effect in this
ection.

Usually, one would choose the pointer analysis with the highest
recision but there may be situations where this is not possible and
ne has to revert to lower precision analysis. This section presents a
tudy on the effect of various levels of pointer analysis precision on
he size of slices and subsequently on coherent clusters. It addresses
esearch question RQ1: What is the effect of pointer analysis precision
n coherent clusters?

CodeSurfer provides three levels of pointer analysis precision
Low, Medium, and High) that provide increasingly precise points-
o information at the expense of additional memory and analysis
ime. The Low setting uses a minimal pointer analysis that assumes
very pointer may point to every object that has its address taken
variable or function). At the Medium and High settings, CodeSurfer
erforms extensive pointer analysis using the algorithm proposed
y Fahndrich et al. (1998), which implements a variant of Ander-
en’s pointer analysis algorithm (Andersen, 1994) (this includes
arameter aliasing). At the medium setting, fields of a structure
re not distinguished while the High level distinguishes structure
elds. The High setting should produce the most precise slices
ut requires more memory and time during SDG construction,
hich puts a functional limit on the size and complexity of the
rograms that can be handled by CodeSurfer. There is no auto-
atic way to determine whether the slices are correct and precise.
eiser (1984) considers smaller slices to be better. Slice size is

ften used to measure the impact of the analysis’ precision (Shapiro
nd Horwitz, 1997), similarly we also use slice size as a measure of
recision.

The study compares slice and cluster size for CodeSurfer’s three
recision options (Low, Medium, High) to study the impact of

ointer analysis precision. The results are shown in Table 2. Col-
mn 1 lists the programs and the other columns present the average
lice size, maximum slice size, average cluster size, and maximum
luster size, respectively, for each of the three precision settings.
69 32 53 268 154 240
33 21 19 184 158 158

413 413 410 798 798 793

The results for average slice size deviation and largest cluster size
deviation are visualized in Figs. 5 and 6. The graphs use the High
setting as the base line and show the percentage deviation when
using the Low and Medium settings.

Fig. 5 shows the average slice size deviation when using the
lower two settings compared to the highest. On average, the Low
setting produces slices that are 14% larger than the High setting.
Program userv has the largest deviation of 37% when using the Low
setting. For example, in userv the minimal pointer analysis fails to
recognize that the function pointer oip can never point to func-
tions sighandler alrm and sighandler child and includes them as called
functions at call sites using *oip, increasing slice size significantly.
In all 30 programs, the Low setting yields larger slices compared to
the High setting.
Fig. 5. Percentage deviation of average slice size for Low and Medium CodeSurfer
pointer analysis settings.

S. Islam et al. / The Journal of Systems

F
p

r
o
f
d
T
s
o
v

w
g
w
a

pointer analysis setting on CodeSurfer. Fig. 7c shows the B-SCGs
ig. 6. Percentage deviation of largest cluster size for Low and Medium CodeSurfer
ointer analysis settings.

emaining programs the Medium setting produces slices that are
n average 4% larger than when using the High setting. The dif-
erence in slice size occurs because the Medium setting does not
ifferentiate between structure fields, which the High setting does.
he largest deviation is seen in findutils at 29%. With the medium
etting, the structure fields (options, regex map, stat buf and state)
f findutils are lumped together as if each structure were a scalar
ariable, resulting in larger, less precise, slices.

Fig. 6 visualizes the deviation of the largest coherent cluster size
hen using the lower two settings compared to the highest. The
raph shows that the size of the largest coherent clusters found
hen using the lower settings is larger in most of the programs. On

verage there is a 22% increase in the size of the largest coherent

Fig. 7. SCGs for Low, Medium and High
 and Software 88 (2014) 1– 24 9

cluster when using the Low setting and a 10% increase when using
the Medium setting. In a2ps and cflow the size of the largest cluster
increases over 100% when using the Medium setting and over 150%
when using the Low setting. The increase in slice size is expected
to result in larger clusters due to the loss of precision.

The B-SCGs for a2ps for the three settings is shown in Fig. 7a.
In the graphs it is seen that the slice sizes get smaller and have
increased steps in the (black) landscape indicating that the slices
become more precise. The red landscape shows that there is a large
coherent cluster detected when using the Low setting running from
approx. 60–80% on the x-axis. This cluster drops in size when using
the Medium setting. At the High setting this coherent cluster breaks
up into multiple smaller clusters. In this case, a drop in the clus-
ter size also leads to breaking of the cluster in to multiple smaller
clusters.

In the SCGs for cflow (Fig. 7b) a similar drop in the slice size and
cluster size is observed. However, unlike a2ps the large coherent
cluster does not break into smaller clusters but only drops in size.
The largest cluster when using the Low setting runs from 60% to
85% on the x-axis. This cluster reduces in size and shifts position
running 30% to 45% x-axis when using the Medium setting. The
cluster further drops in size down to 5% running 25–30% on the x-
axis when using the High setting. In this case the largest cluster has
a significant drop in size but does not break into multiple smaller
clusters.

Surprisingly, Fig. 6 also shows seven programs where the largest
coherent cluster size actually increases when using the highest
for acm which falls in this category. This counter-intuitive result
is seen only when the more precise analysis determines that cer-
tain functions cannot be called and thus excludes them from the

 pointer settings of CodeSurfer.

10 S. Islam et al. / The Journal of Systems

s
m
c

c
r
e
a
h
w
i
p
w
p
o
o

o
i
b
p
l
t
t
r
r

M
c
i
r
m
B
t
a

3

h
b
o
c

o
o
2
S
s
d
d

r
v

H

h

Fig. 8. Replacement coherent cluster example.

lice. Although in all such instances slices get smaller, the clusters
ay grow if the smaller slices match other slices already forming a

luster.
For example, consider replacing function f6 in Fig. 1 with the

ode shown in Fig. 8, where f depends on a function call to a function
eferenced through the function pointer p. Assume that the high-
st precision pointer analysis determines that p does not point to f2
nd therefore there is no call to f2 or any other function from f6. The
igher precision analysis would therefore determine that the for-
ard slices and backward slices of a, b and c are equal, hence group-

ng these three vertices in a coherent cluster. Whereas the lower
recision is unable to determine that p cannot point to f2, the back-
ard slice on f will conservatively include b. This will lead the higher
recision analysis to determine that the set of vertices {a, b, c} is
ne coherent cluster whereas the lower precision analysis include
nly the set of vertices {a, c} in the same coherent cluster.

Although we do not explicitly report the project build times
n CodeSurfer and the clustering runtimes for the lower settings,
t has been our experience that in the majority of the cases the
uild times for the lower settings were smaller. However, as lower
ointer analysis settings yield large points-to sets and subsequently

arger slices, the clustering runtimes were higher than when using
he highest setting. Moreover, in some cases with the lower settings
here was an explosive growth in summary edge generation which
esulted in exceptionally high project build times and clustering
untimes.

As an answer to RQ1, we find that in the majority of the cases the
edium and Low settings result in larger coherent clusters when

ompared to the High setting. For the remaining cases we have
dentified valid scenarios where more precise pointer analysis can
esult in larger coherent clusters. The results also confirm that a
ore precise pointer analysis leads to more precise (smaller) slices.

ecause it gives the most precise slices and most accurate clusters,
he remainder of the paper uses the highest CodeSurfer pointer
nalysis setting.

.3. Validity of the hash function

This section addresses research question RQ2: How precise is
ashing as a proxy for comparing slices? The section first gives a
rief description of the hash function and then validates the use
f comparing slice hash values in lieu of comparing actual slice
ontent.

The use of hash values to represent slices reduces both the mem-
ry requirement and runtime, as it is no longer necessary to store
r compare entire slices. The hash function, denoted H in Definition
.6, uses XOR operations iteratively on the unique vertex IDs (of the
DG) which are included in a slice to generate a hash for the entire
lice. We chose XOR as the hash operator because we do not have
uplicate vertices in a slice and the order of the vertices in the slice
oes not matter.

A slice S is a set of SDG vertices {v1, . . ., vn} (n ≥ 1) and id(vi)
epresents the unique vertex ID assigned by CodeSurfer to vertex
i, where 1 ≤ i ≤ n. The hash function H for S is defined as HS, where
S = ⊕n
i=1id(vi) (2)

The remainder of this section presents a validation study of the
ash function. The validation is needed to confirm that the hash
 and Software 88 (2014) 1– 24

values provide a sufficiently accurate summary of slices to support
the correct partitioning of SDG vertices into coherent clusters.
Ideally, the hash function would produce a unique hash value for
each distinct slice. The validation study aims to find the number
of unique slices for which the hash function successfully produces
an unique hash value.

For the validation study we chose 16 programs from the set
of 30 subject programs. The largest programs were not included
in the validation study to make the study time-manageable.
Results are based on both the backward and forward slices
for every vertex of these 16 programs. To present the notion
of precision we introduce the following formalization. Let V
be the set of all source-code representing SDG vertices for a
given program P and US denote the number of unique slices:
US = |{BSlice(x) : x ∈ V}| + |{FSlice(x) : x ∈ V}|. Note that if all vertices
have the same backward slice then {BSlice(x) : x ∈ V} is a single-
ton set. Finally, let UH be the number of unique hash-values,
UH = |{H(BSlice(x)) : x ∈ V}| + |{H(FSlice(x)) : x ∈ V}|.

The accuracy of hash function H is given as Hashed Slice Pre-
cision, HSP = UH/US . A precision of 1.00 (US = UH) means the hash
function is 100% accurate (i.e., it produces a unique hash value for
every distinct slice) whereas a precision of 1/US means that the
hash function produces the same hash value for every slice leaving
UH = 1.

Table 3 summarizes the results. The first column lists the pro-
grams. The second and the third columns report the values of US
and UH respectively. The fourth column reports HSP, the precision
attained using hash values to compare slices. Considering all 78,587
unique slices the hash function produced unique hash values for
74,575 of them, resulting in an average precision of 94.97%. In other
words, the hash function fails to produce unique hash values for just
over 5% of the slices. Considering the precision of individual pro-
grams, five of the programs have a precision greater than 97%, while
the lowest precision, for findutils, is 92.37%. This is, however, a signif-
icant improvement over previous use of slice size as the hash value,
which is only 78.3% accurate in the strict case of zero tolerance for
variation in slice contents (Binkley and Harman, 2005).

Coherent cluster identification uses two hash values for each
vertex (one for the backward slice and other for the forward slice)
and the slice sizes. Slice size matching filters out some instances
where the hash values happen to be the same by coincidence but
the slices are different. The likelihood of both hash values match-
ing those from another vertex with different slices is less than
that of a single hash matching. Extending US and UH to clusters,
columns 5 and 6 (Table 3) report CC, the number of coherent clus-
ters in a program and HCC, the number of coherent clusters found
using hashing. The final column shows the precision attained using
hashing to identify clusters, HCP = HCC/CC. The results show that of
the 40,169 coherent clusters, 40,083 are uniquely identified using
hashing, which yields a precision of 99.72%. Five of the programs
show total agreement, furthermore for every program HCP is over
99%, except for userv, which has the lowest precision of 97.76%. This
can be attributed to the large percentage (96%) of single vertex clus-
ters in userv. The hash values for slices taken with respect to these
single-vertex clusters have a higher potential for collision leading
to a reduction in overall precision. In summary, as an answer to
RQ2, the hash-based approximation is found to be sufficiently accu-
rate at 94.97% for slices and at 99.72% for clusters (for the studied
programs). Thus, comparing hash values can replace the need to
compare actual slices.

3.4. Do large coherent clusters occur in practice?
Having demonstrated that hash function H can be used to effec-
tively approximate slice contents, this section and the following
section consider the validation research question, RQ3: How large

S. Islam et al. / The Journal of Systems and Software 88 (2014) 1– 24 11

Table 3
Hash function validation.

Program Unique slices (US) Unique hash values (UH) Hashed slice
precision (HSP)

Cluster count (CC) Hash cluster count (HCC) Hash Precision
Clusters (HCP)

acct 1558 1521 97.63% 811 811 100.00%
barcode 2966 2792 94.13% 1504 1504 100.00%
bc 3787 3671 96.94% 1955 1942 99.34%
byacc 10,659 10,111 94.86% 5377 5377 100.00%
cflow 16,584 15,749 94.97% 8457 8452 99.94%
copia 3496 3398 97.20% 1785 1784 99.94%
ctags 8739 8573 98.10% 4471 4470 99.98%
diffutils 5811 5415 93.19% 2980 2978 99.93%
ed 2719 2581 94.92% 1392 1390 99.86%
findutils 9455 8734 92.37% 4816 4802 99.71%
garpd 808 769 95.17% 413 411 99.52%
indent 3639 3491 95.93% 1871 1868 99.84%
time 1453 1363 93.81% 760 758 99.74%
userv 3510 3275 93.30% 1827 1786 97.76%
wdiff 2190 2148 98.08% 1131 1131 100.00%
which 1213 1184 97.61% 619 619 100.00%

a
p
q
p

r
t
2
i
e
b

o
b

S

L

Sum 78,587 74,575 –

Average 4912 4661 94.97%

re coherent clusters that exist in production source code and which
atterns of clustering can be identified? The question is first answered
uantitatively using the size of the largest coherent cluster in each
rogram and then through visual analysis of the SCGs.

To assess if a program includes a large coherent cluster,
equires making a judgement concerning what threshold consti-
utes large. Following prior empirical work (Binkley and Harman,
005; Harman et al., 2009; Islam et al., 2010a,b), a threshold of 10%

s used. In other words, a program is said to contain a large coher-
nt cluster if 10% of the program’s SDG vertices produce the same
ackward slice as well as the same forward slice.

Fig. 9 shows the size of the largest coherent cluster found in each
f the 30 subject programs. The programs are divided into 3 groups
ased on the size of the largest cluster present in the program.

mall: Small consists of seven programs none of which
have a coherent cluster constituting over 10%
of the program vertices. These programs are
archimedes, time, wdiff, byacc, a2ps, cflow and userv. Although
it may be interesting to study why large clusters are not
present in these programs, this paper focuses on studying

the existence and implications of large coherent clusters.

arge: This group consists of programs that have at least one cluster
with size 10% or larger. As there are programs containing
much larger coherent clusters, a program is placed in this

Fig. 9. Size of largest c
40,169 40,083 –
2511 2505 99.72%

group if it has a large cluster between the size 10% and 50%.
Over two-thirds of the programs studied fall in this category.

The program at the bottom of this group (acct) has a coher-
ent cluster of size 11% and the largest program in this group
(copia) has a coherent cluster of size 48%. We present both
these programs as case studies and discuss their clustering
in detail in Sections 3.6.1 and 3.6.4, respectively. The pro-
gram bc which has multiple large clusters with the largest of
size 32% falls in the middle of this group and is also presented
as a case study in Section 3.6.3.

Huge: The final group consists of programs that have a large coher-
ent cluster whose size is over 50%. Out of the 30 programs 4
fall in this group. These programs are indent, ed, barcode and
gcal. From this group, we present indent as a case study in
Section 3.6.2.

In summary all but 7 of the 30 subject programs contain a large
coherent cluster. Therefore, over 75% of the subject programs con-
tain a coherent cluster of size 10% or more. Furthermore, half the
programs contain a coherent cluster of at least 20% in size. It is
interesting to note that although this grouping is based only on the
largest cluster, many of the programs contain multiple large coher-

ent clusters. For example, ed, ctags, nano, less, bc, findutils, flex and
garpd all have multiple large coherent clusters. It is also interest-
ing to note that there is no correlation between a program’s size
(measured in SLoC) and the size of its largest coherent cluster. For

oherent cluster.

12 S. Islam et al. / The Journal of Systems and Software 88 (2014) 1– 24

th sm

e
u
W
l

2
p
v
i
r
t

3

g
s
l
p
F

I
o
r
m
r
l

l
l
t
l
d
f
s
c
l
f
a
c
4
T
i
i
d

c
s

Fig. 10. Programs wi

xample, in Table 1 two programs of very different sizes, cflow and
serv, have similar largest-cluster sizes of 8% and 9%, respectively.
hereas programs acct and ed, of similar size, have very different

argest coherent clusters of sizes 11% and 55%.
Therefore as an answer to first part of RQ3, the study finds that

3 of the 30 programs studied have a large coherent cluster. Some
rograms also have a huge cluster covering over 50% of the program
ertices. Furthermore, the choice of 10% as a threshold for classify-
ng a cluster as large is a relatively conservative choice. Thus, the
esults presented in this section can be thought of as a lower bound
o the existence question.

.5. Patterns of clustering

This section presents a visual study of SCGs for the three pro-
ram groups and addresses the second part of RQ3. Figs. 10–12
how graphs for the three categories. The graphs in the figures are
aid out in ascending order based on the largest coherent cluster
resent in the program and thus follow the same order as seen in
ig. 9.

Fig. 10 shows SCGs for the seven programs of the small group.
n the SCGs of the first three programs (archimedes, time and wdiff)
nly a small coherent cluster is visible in the red landscape. In the
emaining four programs, the red landscape shows the presence of
ultiple small coherent clusters. It is very likely that, similar to the

esults of the case studies presented later, these clusters also depict
ogical constructs within each program.

Fig. 11 shows SCGs of the 19 programs that have at least one
arge, but not huge, coherent cluster. That is, each program has at
east one coherent cluster covering 10–50% of the program. Most of
he programs have multiple coherent clusters as is visible on the red
andscape. Some of these have only one large cluster satisfying the
efinition of large, such as acct. The clustering of acct is discussed in
urther detail in Section 3.6.1. Most of the remaining programs are
een to have multiple large clusters such as bc, which is also dis-
ussed in further detail in Section 3.6.3. The presence of multiple
arge coherent cluster hints that the program consists of multiple
unctional components. In three of the programs (which, gnuedma
nd copia) the landscape is completely dominated by a single large
oherent cluster. In which and gnuedma this cluster covers around
0% of the program vertices whereas in copia the cluster covers 50%.
he presence of a single large dominating cluster points to a central-
zed functionality or structure being present in the program. Copia
s presented as a case study in Section 3.6.4 where its clustering is

iscussed in further detail.

Finally, SCGs for the four programs that contain huge coherent
lusters (covering over 50%) are found in Fig. 12. In all four land-
capes there is a very large dominating cluster with other smaller
all coherent clusters.

clusters also being visible. This pattern supports the conjecture that
the program has one central structure or functionality which con-
sists of most of the program elements, but also has additional logical
constructs that work in support of the central idea. Indent is one pro-
gram that falls in this category and is discussed in further detail in
Section 3.6.2.

As an answer to second part of RQ3, the study finds that most
programs contain multiple coherent clusters. Furthermore, the
visual study reveals that a third of the programs have multiple large
coherent clusters. Only three programs copia, gnuedma, and which
show the presence of only a single (overwhelming) cluster cov-
ering most of the program. Having shown that coherent clusters
are prevalent in programs and that most programs have multiple
significant clusters, the next section presents a series of four case
studies that looks at how program structures are represented by
these clusters.

3.6. Coherent cluster and program decomposition

This section presents four case studies using acct, indent, bc and
copia. The case studies form a major contribution of the paper and
collectively address research question RQ4: Which structures within
a program can coherent cluster analysis reveal? As coherent clus-
ters consist of program vertices that are mutually inter-dependent
and share extra-cluster properties we consider such vertices of the
cluster to be tightly coupled. It is our conjecture that these clusters
likely represent logical structures representing a high-level func-
tional decomposition of systems. This study will therefore look at
how coherent clusters map to logical structures of the program.

The case studies have been chosen to represent the large and
huge groups identified in the previous section. Three programs
are taken from the large group as it consists of the majority of the
programs and one from the huge group. Each of the three programs
from the large group were chosen because it exhibits specific
patterns. acct has multiple coherent clusters visible in its profile
and has the smallest large cluster in the group, bc has multiple
large coherent clusters, and copia has only a single large coherent
cluster dominating the entire landscape.

3.6.1. Case study: acct
The first of the series of case studies is acct, an open-source

program used for monitoring and printing statistics about users
and processes. The program acct is one of the smaller programs
with 2600 LoC and 1558 SLoC from which CodeSurfer produced

2834 slices. The program has seven C files, two of which, getopt.c
and getopt1.c, contain only conditionally included functions. These
functions provide support for command-line argument processing
and are included if needed library code is missing.

S. Islam et al. / The Journal of Systems and Software 88 (2014) 1– 24 13

th lar

C
i
C
p
C
c
fi
(
t

Fig. 11. Programs wi

Table 4 shows the statistics for the five largest clusters of acct.
olumn 1 gives the cluster number, where 1 is the largest and 5

s the 5th largest cluster measured using the number of vertices.
olumns 2 and 3 show the size of the cluster as a percentage of the
rogram’s vertices and actual vertex count, as well as the line count.
olumns 4 and 5 show the number of files and functions where the

luster is found. The cluster sizes range from 11.4% to 2.4%. These
ve clusters can be readily identified in the Heat-Map visualization
not shown) of decluvi. The rest of the clusters are very small (less
han 2% or 30 vertices) in size and are thus of little interest.

Fig. 12. Programs with hug
ge coherent clusters.

The B-SCG for acct (row one of Fig. 11) shows the existence of
these five coherent clusters along with other same-slice clusters.
Splitting of the same-slice cluster is evident in the SCG. Splitting
occurs when the vertices of a same-slice cluster become part of dif-
ferent coherent clusters. This happens when vertices have either
the same backward slice or the same forward slice but not both.

This is because either same-backward-slice or same-forward-slice
clusters only capture one of the two external properties captured
by coherent clusters (Eq. (1)). In acct’s B-SCG the vertices of the
largest same-backward-slice cluster spanning the x-axis from 60%

e coherent clusters.

14 S. Islam et al. / The Journal of Systems and Software 88 (2014) 1– 24

Table 4
acct’s top five clusters.

Cluster Cluster size Files Functions

% Vertices/lines Spanned Spanned

1 11.4% 162/88 4 6
2 7.2% 102/56 1 2
3 4.9% 69/30 3 4
4 2.8% 40/23 2 3

t
v
m
p
s
c

c
2
c
c
c

l
u
i
u
p
e

h
f
t
t
m

h
h
u
t
o

d
r
a
t

t
b
o
c

o
t
n
t
p
e
f
a
a
a
c
f

Table 5
indent’s top five clusters

Cluster Cluster size Files Functions

% Vertices/lines Spanned Spanned

1 52.1% 3930/2546 7 54
2 3.0% 223/136 3 7
3 1.9% 144/72 1 6
4 1.3% 101/54 1 5
5 2.4% 34/25 1 1

o 75% are not part of the same coherent cluster. This is because the
ertices do not share the same forward slice which is also a require-
ent for coherent clusters. This phenomenon is common in the

rograms studied and is found in both same-backward-slice and
ame-forward-slice clusters. This is another reason why coherent
lusters are often smaller in size then same-slice clusters.

Decluvi visualization (not shown) of acct reveals that the largest
luster spans four files (file rd.c, common.c, ac.c, and utmp rd.c), the
nd largest cluster spans only a single file (hashtab.c), the 3rd largest
luster spans three files (file rd.c, ac.c, and hashtab.c), the 4th largest
luster spans two files (ac.c and hashtab.c), while the 5th largest
luster includes parts of ac.c only.

The largest cluster of acct is spread over six functions,
og in, log out, file open, file reader get entry, bad utmp record and
tmp get entry. These functions are responsible for putting account-
ng records into the hash table used by the program, accessing
ser-defined files, and reading entries from the file. Thus, the pur-
ose of the code in this cluster is to track user login and logout
vents.

The second largest cluster is spread over two functions
ashtab create and hashtab resize. These functions are responsible
or creating fresh hash tables and resizing existing hash tables when
he number of entries becomes too large. The purpose of the code in
his cluster is the memory management in support of the program’s

ain data structure.
The third largest cluster is spread over four functions:

ashtab set value, log everyone out, update user time, and
ashtab create. These functions are responsible for setting val-
es of an entry, updating all the statistics for users, and resetting the
ables. The purpose of the code from this cluster is the modification
f the user accounting data.

The fourth cluster is spread over three functions: hashtab delete,
o statistics, and hashtab find. These functions are responsible for
emoving entries from the hash table, printing out statistics for users
nd finding entries in the hash table. The purpose of the code from
his cluster is maintaining user accounting data and printing results.

The fifth cluster is contained within the function main. This clus-
er is formed due to the use of a while loop containing various cases
ased on input to the program. Because of the conservative nature
f static analysis, all the code within the loop is part of the same
luster.

Finally, it is interesting to note that functions from the same file
r with similar names do not necessarily belong to the same clus-
er. Intuitively, it can be presumed that functions that have similar
ames or prefixes work together to provide some common func-
ionality. In this case, six functions that have the same common
refix “hashtab” all perform operations on the hash table. How-
ver, these six functions are not part of the same cluster. Instead the
unctions that work together to provide a particular functionality
re found in the same cluster. The clusters help identify function-
lity which is not obvious from the name of program artefacts such

s functions and files. As an answer to RQ4, we find that in this
ase study each of the top five clusters maps to specific logical
unctionality.
5 1.1% 83/58 1 1

3.6.2. Case study: indent
The next case study uses indent to further support the answer

found for RQ4 in the acct case study. The characteristics of indent
are very different from those of acct as indent has a very large dom-
inant coherent cluster (52%) whereas acct has multiple smaller
clusters with the largest being 11%. We include indent as a case
study to ensure that the answer for RQ4 is derived from programs
with different cluster profiles and sizes giving confidence as to the
generality of the answer.

Indent is a Unix utility used to format C source code. It consists
of 6978 LoC with 7543 vertices in the SDG produced by CodeSurfer.
Table 5 shows statistics of the five largest clusters found in the
program.

Indent has one extremely large coherent cluster that spans 52.1%
of the program’s vertices. The cluster is formed of vertices from
54 functions spread over 7 source files. This cluster captures most
of the logical functionalities of the program. Out of the 54 func-
tions, 26 begin with the common prefix of “handle token”. These 26
functions are individually responsible for handling a specific token
during the formatting process. For example, handle token colon,
handle token comma, handle token comment, and handle token lbrace
are responsible for handling the colon, comma, comment, and left
brace tokens, respectively.

This cluster also includes multiple handler functions
that check the size of the code and labels being handled,
such as check code size and check lab size. Others, such as
search brace, sw buffer, print comment, and reduce, help with
tracking braces and comments in code. The cluster also spans the
main loop of indent (indent main loop) that repeatedly calls the
parser function parse.

Finally, the cluster consists of code for outputting formatted
lines such as the functions better break, computer code target, dump
line, dump line code, dump line label, inhibit indenting, is comment
start, output line length and slip horiz space, and ones that
perform flag and memory management (clear buf break
list, fill buffer and set priority).

Cluster 1 therefore consists of the main functionality of this
program and provides support for parsing, handling tokens, asso-
ciated memory management, and output. The parsing, handling of
individual tokens and associated memory management are highly
inter-twined. For example, the handling of each individual token is
dictated by operations of indent and closely depends on the pars-
ing. This code cannot easily be decoupled and, for example, reused.
Similarly the memory management code is specific to the data
structures used by indent resulting in these many logical constructs
to become part of the same cluster.

The second largest coherent cluster consists of 7 functions from
3 source files. These functions handle the arguments and parame-
ters passed to indent. For example, set option and option prefix along
with the helper function eqin to check and verify that the options or
parameters passed to indent are valid. When options are specified

without the required arguments, the function arg missing produces
an error message by invoking usage followed by a call to DieError
to terminate the program.

S. Islam et al. / The Journal of Systems and Software 88 (2014) 1– 24 15

Table 6
bc’s top five clusters.

Cluster Cluster size Files Functions

% Vertices/lines Spanned Spanned

1 32.3% 2432/1411 7 54
2 22.0% 1655/999 5 23
3 13.3% 1003/447 1 15

t
g
4
s
d

c
q
f
t

3

l
n
w

c
t
l
s
s
i
s

t
C
V

a
p
o
r
a
t
t
t
c
a
i
i
o
c

f
m
c
f
a

b
s
i

Fig. 13. Decluvi’s system view for the program bc showing each file using one column
and each line of pixels summarizing eight source lines. Blue color (medium gray in
black and white) represent lines whose vertices are part of smaller size clusters
than those in red color (dark gray), while lines not containing any executable lines
are always shown in light gray. (For interpretation of the references to color in this
4 1.6% 117/49 1 2
5 1.4% 102/44 1 1

Clusters 3–5 are less than 3% of the program and are too small
o warrant a detailed discussion. Cluster 3 includes 6 functions that
enerate numbered/un-numbered backup for subject files. Cluster

 has functions for reading and ignoring comments. Cluster 5 con-
ists of a single function that reinitializes the parser and associated
ata structures.

The case study of indent further illustrates that coherent clusters
an capture the program’s logical structure as an answer to research
uestion RQ4. However, in cases such as this where the internal
unctionality is tightly knit, a single large coherent cluster maps to
he program’s core functionality.

.6.3. Case study: bc
The third case study in this series is bc, an open-source calcu-

ator, which consists of 9438 LoC and 5450 SLoC. The program has
ine C files from which CodeSurfer produced 15,076 slices (back-
ard and forward).

Analyzing bc’s SCG (row 3, Fig. 11), two interesting observations
an be made. First, bc contains two large same-backward-slice clus-
ers visible in the light gray landscapes as opposed to the three
arge coherent clusters. Second, looking at the B-SCG, it can be
een that the x-axis range spanned by the largest same-backward-
lice cluster is occupied by the top two coherent clusters shown
n the dashed red (dark gray) landscape. This indicates that the
ame-backward-slice cluster splits into the two coherent clusters.

The statistics for bc’s top five clusters are given in Table 6. Sizes of
hese five clusters range from 32.3% through to 1.4% of the program.
lusters six onwards are less than 1% of the program. The Project
iew (Fig. 13) shows their distribution over the source files.

In more detail, Cluster 1 spans all of bc’s files except for scan.c
nd bc.c. This cluster encompasses the core functionality of the
rogram – loading and handling of equations, converting to bc’s
wn number format, performing calculations, and accumulating
esults. Cluster 2 spans five files, util.c, execute.c, main.c, scan.c,
nd bc.c. The majority of the cluster is distributed over the lat-
er two files. Even more interestingly, the source code of these
wo files (scan.c and bc.c) map only to Cluster 2 and none of
he other top five clusters. This indicates a clear purpose to the
ode in these files. These two files are solely used for lexical
nalysis and parsing of equations. To aid in this task, some util-
ty functions from util.c are employed. Only five lines of code
n execute.c are also part of Cluster 2 and are used for flushing
utput and clearing interrupt signals. The third cluster is completely
ontained within the file number.c. It encompasses functions such as
bc do sub, bc init num, bc do compare, bc do add, bc simp mul,
bc shift addsub, and bc rm leading zeros, which are responsible
or initializing bc’s number formatter, performing comparisons,
odulo and other arithmetic operations. Clusters 4 and 5 are also

ompletely contained within number.c. These clusters encompass
unctions to perform bcd operations for base ten numbers and
rithmetic division, respectively.
As an answer to RQ4, the results of the cluster visualizations for
c reveal its high-level structure. This aids an engineer in under-
tanding how the artifacts (e.g., functions and files) of the program
nteract, thus aiding in program comprehension. The remainder of
figure legend, the reader is referred to the web version of the article.)

this subsection illustrates a side-effect of decluvi’s multi-level visu-
alization, how it can help find potential problems with the structure
of a program.

Util.c consists of small utility functions called from various parts
of the program. This file contains code from Clusters 1 and 2
(Fig. 13). Five of the utility functions belong with Cluster 1, while
six belong with Cluster 2. Furthermore, Fig. 14 shows that the dis-
tribution of the two clusters in red (dark gray) and blue (medium
gray) within the file are well separated. Both clusters do not occur
together inside any function with the exception of init gen (high-
lighted by the rectangle in first column of Fig. 14). The other
functions of util.c thus belong to either Cluster 1 or Cluster 2. Sep-
arating these utility functions into two separate source files where
each file is dedicated to functions belonging to a single cluster
would improve the code’s logical separation and file-level cohe-
sion. This would make the code easier to understand and maintain
at the expense of a very simple refactoring. In general, this exam-
ple illustrates how decluvi visualization can provide an indicator of
potential points of code degradation during evolution.

Finally, the Code View for function init gen shown in Fig. 15
includes Lines 244, 251, 254, and 255 in red (dark gray) from Clus-
ter 1 and Lines 247, 248, 249, and 256 in blue (medium gray) from
Cluster 2. Other lines, shown in light gray, belong to smaller clusters
and lines containing no executable code. Ideally, clusters should
capture a particular functionality; thus, functions should generally
not contain code from multiple clusters (unless perhaps the clusters
are completely contained within the function). Functions with code

from multiple clusters reduce code separation (hindering compre-
hension) and increase the likelihood of ripple-effects (Black, 2001).

16 S. Islam et al. / The Journal of Systems and Software 88 (2014) 1– 24

Fig. 14. Decluvi’s file view for the file util.c of program bc. Each line of pixels corre-
spond to one source code line. Blue (medium gray in black and white) represents
lines with vertices belonging to the 2nd largest cluster and red (dark gray) rep-
resents lines with vertices belonging to the largest cluster. The rectangle marks
function init gen, part of both clusters. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of the article.)

Fig. 15. Decluvi’s source view showing function init gen in file util.c of Program bc.
The decluvi options are set to filter out all but the two largest clusters thus blue
(medium gray in black and white) represents lines from the 2nd largest cluster and
red (dark gray) lines from the largest cluster. All other lines including those with
no executable code are shown in light gray. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of the article.)

Table 7
copia’s top five clusters.

Cluster Cluster size Files Functions

Number % Vertices/lines Spanned Spanned

1 48% 1609/882 1 239
2 0.1% 4/2 1 1
3 0.1% 4/2 1 1

(a) Original

Fig. 16. SCGs for the
4 0.1% 4/2 1 1
5 0.1% 2/1 1 1

Like other initialization functions, bc’s init gen is an exception to this
guideline.

This case study not only provides support for the answer to
research question RQ4 found in previous case studies, but also illus-
trates that the visualization is able to reveal structural defects in
programs.

3.6.4. Case study: copia
The final case study in this series is copia, an industrial program

used by the ESA to perform signal processing. Copia is the smallest
program considered in this series of case studies with 1168 LoC and
1111 SLoC all in a single C file. Its largest coherent cluster covers
48% of the program. The program is at the top of the group with
large coherent clusters. CodeSurfer extracts 6654 slices (backward
and forward).

The B-SCG for copia is shown in Fig. 16a. The single large coherent
cluster spanning 48% of the program is shown by the dashed red
(dark gray) line (running approx. from 2% to 50% on the x-axis). The
plots for same-backward-slice cluster sizes (light gray line) and the
coherent cluster sizes (dashed line) are identical. This is because
the size of the coherent clusters are restricted by the size of the
same-backward-slice clusters. Although the plot for the size of the
backward slices (black line) seems to be the same from the 10%
mark to 95% mark on the x-axis, the slices are not exactly the same.
Only vertices plotted from 2% through to 50% have exactly same
backward and forward slice resulting in the large coherent cluster.

Table 7 shows statistics for the top five coherent clusters found
in copia. Other than the largest cluster which covers 48% of the
program, the rest of the clusters are extremely small. Clusters 2–5
include no more than 0.1% of the program (four vertices) rendering
them too small to be of interest. This suggests a program with a
single functionality or structure.

During analysis of copia using decluvi, the File View (Fig. 17)
reveals an intriguing structure. There is a large block of code with
the same spatial arrangement (bounded by the dotted black rect-
angle in Fig. 17) that belongs to the largest cluster of the program.
It is unusual for so many consecutive source code lines to have

nearly identical length and indentation. Inspection of the source
code reveals that this block of code is a switch statement handling
234 cases. Further investigation shows that copia has 234 small
functions that eventually call one large function, seleziona, which

(b) Modified

program copia.

S. Islam et al. / The Journal of Systems

Fig. 17. Decluvi’s file view for the file copia.c of program copia. Each line of pixels
represent the cluster data for one source code line. The lines in red (dark gray in
black and white) are part of the largest cluster. The lines in blue (medium gray) are
p
l
l

i
s
t
t
h
s
T
s
t
s
a
b
s
p

p
t
2
f
d
o
d
c

art of smaller clusters. A rectangle highlights the switch statement that holds the
argest cluster together. (For interpretation of the references to color in this figure
egend, the reader is referred to the web version of the article.)

n turn calls the smaller functions effectively implementing a finite
tate machine. Each of the smaller functions returns a value that is
he next state for the machine and is used by the switch statement
o call the appropriate next function. The primary reason for the
igh level of dependence in the program lies with the statement
witch(next state), which controls the calls to the smaller functions.
his causes what might be termed ‘conservative dependence analy-
is collateral damage’ because the static analysis cannot determine
hat when function f() returns the constant value 5 this leads the
witch statement to eventually invoke function g(). Instead, the
nalysis makes the conservative assumption that a call to f() might
e followed by a call to any of the functions called in the switch
tatement, resulting in a mutual recursion involving most of the
rogram.

Although the coherent cluster still shows the structure of the
rogram and includes all these stub functions that work together,
his is a clear case of dependence pollution (Binkley and Harman,
005), which is avoidable. To illustrate this, the code was re-
actored to simulate the replacement of the integer next state with

irect recursive function calls. The SCG for the modified version
f copia is shown in Fig. 16b where the large cluster has clearly
isappeared. As a result of this reduction, the potential impact of
hanges to the program will be greatly reduced, making it easier to

Fig. 18. Cluster depe
 and Software 88 (2014) 1– 24 17

understand and maintain. This is even further amplified for auto-
matic static analysis tools such as CodeSurfer. Of course, in order
to do a proper re-factoring, the programmer will have to consider
ways in which the program can be re-written to change the flow
of control. Whether such a re-factoring is deemed cost-effective is
a decision that can only be taken by the engineers and managers
responsible for maintaining the program in question.

This case study reiterates the answer for RQ4 by showing the
structure and dependency within the program. It also identifies
potential refactoring points which can improve the performance
of static analysis tools and make the program easier to understand.

3.7. Inter-cluster dependence

This section addresses research question RQ5: What are the
implications of inter-cluster dependence between coherent clusters?
The question attempts to reveal whether there is dependence (slice
inclusion) relationship between the vertices of different coherent
clusters. A slice inclusion relationship between two clusters X and
Y exist, if ∃x∈ X : BSlice(x) ∩ Y /= ∅. If such containment occurs, it
must be a strict containment relationship (BSlice(x) ∩ Y = Y, see Eq.
1). Defining this relation using forward slices produces the inverse
relation. In the series of case studies presented earlier we have seen
that coherent clusters map to logical components of a system and
can be used to gain an understanding of the architecture of the
program. If such dependencies exist that allows entire clusters to
depend on other clusters, then this dependence relationship can be
used to group clusters to form a hierarchical decomposition of the
system where coherent clusters are regarded as sub-systems, open-
ing up the potential use of coherent clusters in reverse engineering.
Secondly, if there are mutual dependency relations between clus-
ters then such mutual dependency relationships can be used to
provide a better estimate of slice-based clusters.

All vertices of a coherent cluster share the same external and
internal dependence, that is, all vertices have the same backward
slice and also the same forward slice. Because of this, any back-
ward/forward slice that includes a vertex from a cluster will also
include all other vertices of the same cluster (Eq. 1). The study
exploits this unique property of coherent clusters to investigate
whether or not a backward slice taken with respect to a vertex of
a coherent cluster includes vertices of another cluster. Note that if
vertices of coherent cluster X are contained in the slice taken with
respect to a vertex of coherent cluster Y, then all vertices of X are
contained in the slice taken with respect to each vertex of Y (follows
from Eq. 1).

Fig. 18 shows Cluster Dependence Graphs (CDG) for each of
the four case study subjects. Only the five largest clusters of
the case study subjects are considered during this study. The

graphs depict slice containment relationships between the top
five clusters of each program. In these graphs, the top five clusters
are represented by nodes (1 depicts the largest coherent cluster,
while 5 is the 5th largest cluster) and the directional edges denote

ndence graphs.

18 S. Islam et al. / The Journal of Systems and Software 88 (2014) 1– 24

Table 8
Various cluster statistics of bc.

Cluster number Same backward-slice cluster size Same forward-slice cluster size Coherent cluster size

Vertices % Vertices % Vertices %

1 4135 54.86 2452 32.52 2432 32.26
2 1111 14.74 1716 22.76 1655 21.96
3 131 1.74 1007 13.36 1003 13.31
4 32 0.42 157 2.08 117 1.55
5 25 0.33 109 1.45 102 1.35

Group size: 70.43

Table 9
Fault fixes for barcode.

Version Release date C files LoC SLoC ELoC SDG vertices SDG edges Total slices Faults fixed

0.90 29-06-1999 6 1352 891 716 7184 23,072 3148 –
0.91 08-07-1999 6 1766 1186 949 8703 30,377 5328 5
0.92 03-09-1999 8 2225 1513 1221 10,481 37,373 5368 9
0.93 26-10-1999 8 2318 1593 1284 11,415 42,199 5722 5
0.94 26-10-1999 8 2318 1593 1284 11,414 41,995 5722 1
0.95 03-02-2000 8 2585 1785 1450 12,202 45,830 6514 3

1799

2162

2177

b
o
s
(
d
d
h
e
l
c
i

fi
1
b
l
i
w
c
a
fi

t
s
u
i

c
o
H
s
b

o
o
w
t

e

dependence cluster might be thought of as a bad code smell
(Elssamadisy and Schalliol, 2002) or a anti-pattern (Binkley et al.,
2008). Black et al. (2006) suggested that dependence clusters are
0.96 09-11-2000 11 3249 2226

0.97 17-10-2001 13 3911 2670

0.98 03-03-2002 13 3968 2685

ackward slice2 inclusion relationships: A → B depicts that vertices
f cluster B depend on vertices of cluster A, that is, a backward
lice of any vertex of cluster B will include all vertices of cluster A
∀x ∈ B : BSlice(x) ∩ A = A). Bi-directional edges show mutual depen-
encies, whereas uni-directional edges show dependency in one
irection only. In the graph for copia (Fig. 18a), the top five clusters
ave no slice inclusion relationships between them (absence of
dges between the nodes of the CDG). Looking at Table 7, only the
argest cluster of copia is truly large at 48%, while the other four
lusters are extremely small making them unlikely candidates for
nter-cluster dependence.

For acct (Fig. 18b) there is a dependence between all of the top
ve clusters. In fact, there is mutual dependence between clusters
, 2, 3 and 4, while cluster 5 depends on all the other four clusters
ut not mutually. Clusters 1 through 4 contain logic for manipu-

ating, accessing, and maintaining the hash tables, making them
nterdependent. Cluster 5 on the other hand is a loop structure

ithin the main function for executing different cases based on
ommand line inputs. Similarly for indent (Fig. 18c), clusters 1, 2, 4,
nd 5 are mutually dependent and 3 depends on all the other top
ve clusters but not mutually.

Finally, in the case of bc (Fig. 18d), all the vertices from the
op five clusters are mutually inter-dependent. The rest of this
ection uses bc as an example where this mutual dependence is
sed to identify larger dependence structures by grouping of the

nter-dependent coherent clusters.
At first glance it may seem that the grouping of the coherent

lusters is simply reversing the splitting of same-backward-slice
r same-forward-slice clusters observed earlier in Section 3.6.3.
owever, examining the sizes of the top five same-backward-

lice clusters, same-forward-slice clusters and coherent clusters for
c illustrates that it is not the case.

Table 8 shows the size of these clusters both in terms of number
f vertices and as a percentage of the program. The combined size

f the group of top five inter-dependent coherent clusters is 70.43%,
hich is 15.67% larger than the largest same-backward-slice clus-

er (54.86%) and 37.91% larger than the same-forward-slice cluster

2 A definition based on forward slices will have the same results with reversed
dges.
14,733 56,802 8106 9
16,602 64,867 9530 2
16,721 65,395 9602 5

(32.35%). Therefore, the set of all (mutually dependent) vertices
from the top five coherent clusters when taken together form a
larger dependence structure, an estimate of a slice-based cluster.

As an answer to RQ5, this section shows that there are depend-
ence relationships between coherent clusters and in some cases
there are mutual dependences between large coherent clusters. It
also shows that it may be possible to leverage this inter-cluster
relationship to build a hierarchical system decomposition. Fur-
thermore, groups of inter-dependent coherent clusters form larger
dependence structures than same-slice clusters and provides a bet-
ter approximation for slice-based clusters. This indicates that the
sizes of dependence clusters reported by previous studies (Binkley
et al., 2008; Binkley and Harman, 2005, 2009; Harman et al., 2009;
Islam et al., 2010b) maybe conservative and mutual dependence
clusters are larger and more prevalent than previously reported.

3.8. Dependence clusters and bug fixes

Initial work on dependence clusters advised that they might
cause problems in software maintenance, and thus even be con-
sidered harmful, because they represent an intricate interweaving
of mutual dependencies between program elements. Thus a large
Fig. 19. Backward slice sizes for barcode releases.

S. Islam et al. / The Journal of Systems and Software 88 (2014) 1– 24 19

barcode-0.90 barcode-0.91 barcode-0.92 barcode-0.93

barcode-0.94 barcode-0.95 barcode-0.96 barcode-0.97

barcode-0.98

ariou

p
b
f
t
s
t

p
t
a
T
v
o
7
o
n
s
c
n

a
n
E
2
e
i
t
r
b
T
e

b
s

Fig. 20. BSCGs for v

otentially where bugs may be located and suggested the possi-
ility of a link between clusters and program faults. This section
urther investigates this issue using a study that explores the rela-
ionship between program faults and dependence clusters. In doing
o, it addresses research question RQ6: How do program faults relate
o coherent clusters?

Barcode, an open source utility tool for converting text strings to
rinted bars (barcodes) is used in this study. A series of versions of
he system are available for download from GNU repository.3 There
re nine public releases for barcode, details of which are shown in
able 9. Column 1 shows the release version, columns 3–6 show
arious metrics about the size of the system in terms of number
f source files and various source code size measures. Columns
–9 report the number of SDG vertices, SDG edges and the number
f slices produced for each release. Finally, Column 10 reports the
umber of faults that were fixed since the previous release of the
ystem. In Table 9 the size of barcode increases from 1352 lines of
ode in version 0.90 to 3968 lines of code in version 0.98. The total
umber of faults that were fixed during this time was 39.

Fault data, gathered by manually analyzing the publicly avail-
ble version control repository4 for the system, showed that total
umber of commits for barcode during these releases were 137.
ach update was manually checked using CVSAnaly (Robles et al.,
004) to determine whether the update was a bug fix or simply an
nhancement or upgrade to the system. Those commits that were
dentified as bug fixes were isolated and mapped to the release
hat contained the update. All the bug fixes made during a certain
elease cycle were then accumulated to give the total number of
ugs fixed during a particular release cycle (Column 10 of Table 9).
he reported number only includes bug fixes and does not include
nhancement or addition of new functionality.
Fig. 19 shows the backward slice size plots for all versions of
arcode in a single graph. The values of the axises in Fig. 19 are
hown as vertex counts rather than relative values (percentages).

3 http://gnu.mirror.iweb.com/gnu/barcode/.
4 cvs.savannah.gnu.org:/sources/barcode.
s barcode versions.

This allows the growth of barcode to be easily visualized. From
the plots it is seen that the size of the program increases progres-
sively with each new release. The graphs also show that a significant
number of vertices in each revision of the program yields identical
backward slices and the proportion of vertices in the program that
have identical backward slices stays roughly the same. Overall, the
profile of the clusters and slices remains consistent. The graph also
shows that the plots do not show any significant change in their
overall shape or structure. Interestingly, the plot for version 0.92
with 9 fault fixes is not different in shape from revision 0.94 where
only a single fault was fixed.

As coherent clusters are composed of both backward and for-
ward slices, the stability of the backward slice profile itself does
not guarantee the stability of coherent cluster profile. The remain-
der of this section looks at how the clustering profile is affected
by bug fixes. Fig. 20 shows individual SCGs for each version of
barcode. As coherent clusters are dependent on both backward
and forward slices, such clusters will be more sensitive to changes
in dependences within the program. The SCGs show that from
the initial version barcode-0.90 there were two coherent clus-
ters in the system. The smaller one is around 10% of the code
while the larger is around 40% of the code. As the system evolved
and went through various modifications and enhancements, the
number of clusters and the profile of the clusters remained con-
sistent other than its scaled growth with the increase in program
size. It is also evident that during evolution of the system, the
enhancement code or newly added code formed part of the larger
cluster. This is why in the later stages of the evolution we see
an increase in the size of the largest cluster, but not the smaller
one.

However, we do not see any significant changes in the slice and
cluster profile of the program that can be attributed to bug fixes.
For example, the single bug fixed between revisions 0.93 and 0.94
was on a single line of code from the file code128.c. The changes

to the line is shown in Fig. 21 (in version 0.93 there is an error
in calculating the checksum value, which was corrected in version
0.94). As illustrated by this example, the data and control flow of
the program and thus the dependencies between program points

http://gnu.mirror.iweb.com/gnu/barcode/

20 S. Islam et al. / The Journal of Systems

a
b

c
t
t
(
p
d
a
t
fi
t
e
M
f
t
p
a

3

t
e
y
d
c
c
a
r
w
t

Fig. 21. Bug fix example.

re not affected by the bug fix and hence no change is observed
etween the SCGs of the two releases (Fig. 20).

If dependence clusters correlated to faults, or, if dependence
lusters were directly related to the number of faults in a program,
hen a significant difference would be expected in the shape of
he SCG when faults were rectified. The SCGs for program barcode
Fig. 20) show no change in their profile when faults within the
rogram are fixed. This provides evidence that faults may not be
ictated by the presence or absence of dependence clusters. As an
nswer to RQ6, the study of barcode finds no correlation between
he existence of dependence clusters and program faults and their
x. We have to be careful in generalising the answer to this ques-
ion because of the small dataset considered in this study, further
xtended research is needed to derive a more generalised answer.
oreover, this does not exclude the possibility that most program

aults occur in code that are part of large clusters. In future we plan
o extend this experiment in a qualitative form to study whether
rogram faults lie within large or small clusters, or outside them
ltogether.

.9. Clusters and system evolution

The previous section showed that for barcode the slice and clus-
er profiles remain quite stable through bug fixes during system
volution and its growth of almost 2.5 times over a period of 3
ears. This section extends that study by looking for cluster changes
uring system evolution. It addresses RQ7: How stable are coherent
lusters during system evolution? using longitudinal analysis of the
ase studies presented earlier. From the GNU repository we were

ble to retrieve four releases for bc, four releases for acct and 14
eleases for indent. As copia is an industrial closed-source program,
e were unable to obtain any previous versions of the program and

hus the program is excluded from this study.

(a) bc (b) acct

Fig. 22. Backward slice size plo

bc-1.03 bc-1.04

Fig. 23. BSCGs for vari
 and Software 88 (2014) 1– 24

The graphs in Fig. 22 show backward slice size overlays for every
version of each program. Fig. 22a and c for bc and indent show
that these systems grow in size during its evolution. The growth is
more prominent in indent (Fig. 22c) where the program grows from
around 4800 vertices in its initial version to around 7000 vertices in
the final version. The growth for bc is smaller, it grows from around
6000 vertices to 7000 vertices. This is partly because the versions
considered for bc are all minor revisions. For both bc and indent the
slice-size graphs show very little change in their profile. The graphs
mainly show a scale up that parallels the growth of the system.

For acct (Fig. 22b) the plots do not simply show a scale up
but show a significant difference. In the 4 plots, the revisions that
belong to the same major release are seen to be similar and show
a scaling, whereas those from different major releases show very
different landscapes. The remainder of this section gives detail of
these clustering profile changes.

Fig. 23 shows the BSCGs for the four versions of bc. Initially,
the backward slice size plots (solid black lines) show very little
difference. However, upon closer inspection of the last three ver-
sions we see that the backward slice size plot changes slightly at
around the 80% mark on the x-axis. This is highlighted by the fact
that the later three versions show an additional coherent cluster
spanning from 85% to 100% on the x-axis which is absent from the
initial release. Upon inspection of the source code changes between
versions bc-1.03 and bc-1.04 the following types of updates were
found:

1 bug fixes,
2 addition of command line options,
3 reorganization of the source tree, and
4 addition of new commands for dc.

The reorganization of the program involved significant architec-
tural changes that separated out the code supporting bc’s related
dc functionality into a separate hierarchy and moved files common
to both bc and dc to a library. This refactoring of the code broke up
the largest cluster into two clusters, where a new third cluster is
formed as seen in the SCG. Thus, the major restructuring of the code

between revisions 1.03 and 1.04 causes a significant change in the
cluster profile. Almost no other change is seen in the cluster pro-
file between the remaining three bc revisions 1.04, 1.05, and 1.06,
where no significant restructuring took place.

(c) indent

ts for multiple releases.

bc-1.05 bc-1.06

ous bc versions.

S. Islam et al. / The Journal of Systems and Software 88 (2014) 1– 24 21

r vario

t
c
i
t
6
r
s
a
h

T
S
c
t
s
I
l
T

acct-6.3 acct-6.3.2

Fig. 24. BSCGs fo

Fig. 24 shows the SCGs for the four versions of acct considered in
his study. The slice profile and the cluster profile show very little
hange between acct-6.3 and acct-6.3.2. Similarly, not much change
s seen between acct-6.5 and acct-6.5.5. However, the slice and
he cluster profiles change significantly between major revisions,
.3.X and 6.5.X. The change log of release 6.5 notes “Huge code-
efactoring.” The refactoring of the code is primarily in the way
ystem log files are handled using utmp rd.c, file rd.c, dump-utmp.c
nd stored using hash tables whose operations are defined in
ashtab.c and uid hash.c.

Finally, Fig. 25 shows the SCGs for the 14 versions of indent.
hese revisions include two major releases. It is evident from the
CGs that the slice profile during the evolution hardly changes. The
luster profile also remains similar through the evolution. The sys-
em grows from 4466 to 6521 SLoC during its evolution which is

upported by Fig. 22c showing the growth of the system SDG size.
ndent is a program for formatting C programs. A study of the change
ogs for indent did not reveal any major refactoring or restructuring.
he changes to the system were mostly bug fixes and upgrades to

indent-1.9.1 indent-1.10.0

indent-2.2.1 indent-2.2.2

indent-2.2.5 indent-2.2.6

indent-2.2.9

Fig. 25. BSCGs for variou
acct-6.5 acct-6.5.5

us acct versions.

support new command line options. This results in almost negli-
gible changes in the slice and cluster profiles despite the system
evolution and growth.

As an answer to RQ7, this study finds that unless there is sig-
nificant refactoring of the system, coherent cluster profiles remain
stable during system evolution and thus captures the core archi-
tecture of the program in all three case studies. Future work will
replicate this longitudinal study on a large code corpus to ascertain
whether this stability holds for other programs.

3.10. Threats to validity

This section presents threats to the validity of the results pre-
sented. Threats to three types of validity (external, internal and
construct) are considered. The primary external threat arises from

the possibility that the programs selected are not representative
of programs in general (i.e., the findings of the experiments do
not apply to ‘typical’ programs). This is a reasonable concern that
applies to any study of program properties. To address this issue,

indent-2.1.1 indent-2.2.0

indent-2.2.3 indent-2.2.4

indent-2.2.7 indent-2.2.8

indent-2.2.10

s indent versions.

2 stems

a
i
o
f
g
t
p
t
a

d
d
c
a
H
c
c
3
w
d
t
l
u
F
t

m
b
a
u
A
a
a
t
t
t
t
C
s

4

t
t
n
a
c
p
o
e
p
r
t
l
c
T
t
c
i

f
t
T
t

2 S. Islam et al. / The Journal of Sy

 set of thirty open-source and industrial programs were analyzed
n the quantitative study. The programs were not selected based
n any criteria or property and thus represent a random selection
rom various domains. However, these were from the set of pro-
rams that were studied in previous work on dependence clusters
o facilitate comparison with previous results. In addition, all of the
rograms studied were C programs, so there is greater uncertainty
hat the results will hold for other programming paradigms such
s object-oriented or aspect-oriented programming.

Internal validity is the degree to which conclusions can be
rawn about the causal effect of the independent variables on the
ependent variable. The use of hash values to approximate slice
ontent during clustering is a source of potential internal threat. The
pproach assumes that hash values uniquely identify slice contents.
ash functions are prone to hash collision which in our approach
an cause clustering errors. The hash function used is carefully
rafted to minimize collision and its use is validated in Section
.3. Furthermore, the identification of logical structure in programs
ere done by the authors of the paper who are not involved in the
evelopment of any of the case study subjects. This brings about
he possibility that the identified structures do not represent actual
ogical constructs of the programs. As the case studies are Unix
tilities, their design specification are not available for evaluation.
uture work will entail consultation with the development team of
he systems to further validate the results.

Construct validity refers to the validity that observations or
easurement tools actually represent or measure the construct

eing investigated. In this paper, one possible threat to construct
rises from the potential for faults in the slicer. A mature and widely
sed slicing tool (CodeSurfer) is used to mitigate this concern.
nother possible concern surrounds the precision of the pointer
nalysis used. An overly conservative, and therefore imprecise,
nalysis would tend to increase the levels of dependence and poten-
ially also increase the size of clusters. There is no automatic way to
ell whether a cluster arises because of imprecision in the compu-
ation of dependence or whether it is ‘real’. Section 3.2 discusses
he various pointer analysis settings and validates its precision.
odeSurfer’s most precise pointer analysis option was used for the
tudy.

. Related work

In testing, dependence analysis has been shown to be effec-
ive at reducing the computational effort required to automate the
est-data generation process (Ali et al., 2010). In software mainte-
ance, dependence analysis is used to protect a software maintainer
gainst the potentially unforeseen side effects of a maintenance
hange. This can be achieved by measuring the impact of the pro-
osed change (Black, 2001) or by attempting to identify portions
f code for which a change can be safely performed free from side
ffects (Gallagher and Lyle, 1991; Tonella, 2003). A recently pro-
osed impact analysis framework (Acharya and Robinson, 2011)
eports that impact sets are often part of large dependence clus-
ers when using time consuming but high precision slicing. When
ow precision slicing is used, the study reports smaller dependence
lusters. This paper uses the most precise static slicing available.
here has also been recent work on finding dependence communi-
ies in software (Hamilton and Danicic, 2012) where social network
ommunity structure detection algorithms are applied to slice-
nclusion graphs to identify communities.

Dependence clusters have previously been linked to software

aults (Black et al., 2006) and have been identified as a poten-
ially harmful ‘dependence anti-pattern’ (Binkley et al., 2008).
he presence of large dependence cluster was thought to reduce
he effectiveness of testing and maintenance support techniques.
 and Software 88 (2014) 1– 24

Having considered dependence clusters harmful, previous work
on dependence clusters focuses on locating dependence clusters,
understanding their cause, and removing them.

The first of these studies (Binkley and Harman, 2005; Harman
et al., 2009) were based on efficient technique for locating depend-
ence clusters and identifying dependence pollution (avoidable
dependence clusters). One common cause of large dependence
clusters is the use of global variables. A study of 21 programs found
that 50% of the programs had a global variable that was responsi-
ble for holding together large dependence clusters (Binkley et al.,
2009). Other work on dependence clusters in software engineer-
ing has considered clusters at both low-level (Binkley and Harman,
2005; Harman et al., 2009) (SDG based) and high-level (Eisenbarth
et al., 2003; Mitchell and Mancoridis, 2006) (models and functions)
abstractions.

This paper extends our previous work which introduced coher-
ent dependence clusters (Islam et al., 2010b) and decluvi (Islam
et al., 2010a). Previous work established the existence of coherent
dependence clusters and detailed the functionalities of the visual-
ization tool. This paper extends previous work in many ways, firstly
by introducing an efficient hashing algorithm for slice approxima-
tion. This improves on the precision of previous slice approximation
from 78% to 95%, resulting in precise and accurate clustering. The
coherent cluster existence study is extended to empirically vali-
date the results by considering 30 production programs. Additional
case studies show that coherent clusters can help reveal the struc-
ture of a program and identify structural defects. We also introduce
the notion of inter-cluster dependence which will form the base of
reverse engineering efforts in future. Finally, we also present stud-
ies which show the lack of correlation between coherent clusters
and bug fixes and show that coherent clusters remain surprisingly
stable during system evolution.

In some ways our work follows the evolutionary development
of the study of software clones (Bellon et al., 2007), which were
thought to be harmful and problematic when first observed. Further
reflection and analysis revealed that these code clone structures
were a widespread phenomena that deserved study and consider-
ation. While engineers needed to be aware of them, it remains a
subject of much debate as to whether or not they should be refac-
tored, tolerated or even nurtured (Bouktif et al., 2006; Kapser and
Godfrey, 2008).

We believe the same kind of discussion may apply to depend-
ence clusters. While dependence clusters may have significant
impact on comprehension and maintenance and though there is
evidence that these clusters are a widespread phenomena, it is not
always obvious whether they can be or should be removed or refac-
tored. There may be a (good) reason for the presence of a cluster
and/or it may not be obvious how it can be removed (though its
presence should surely be brought to the attention of the software
maintainer). These observations motivate further study to investi-
gate and understand dependence clusters, and to provide tools to
support software engineers in their analysis.

In support of future research, we make available all data
from our study at the website http://www.cs.ucl.ac.uk/staff/s.
islam/decluvi.html. The reader can obtain the slices for each pro-
gram studied and the clusters they form, facilitating replication
of our results and other studies of dependence and dependence
clusters.

The visualizations used in this paper are similar to those used
for program comprehension. Seesoft (Eick et al., 1992) is a semi-
nal tool for line oriented visualization of software statistics. The
system pioneered four key ideas: reduced representation, color-

ing by statistic, direct manipulation, and capability to read actual
code. The reduced representation was achieved by displaying files
in columns with lines of code as lines of pixels. This approach allows
50,000 lines of code to be shown on a single screen.

http://www.cs.ucl.ac.uk/staff/s.islam/decluvi.html
http://www.cs.ucl.ac.uk/staff/s.islam/decluvi.html

stems

t
c
w
i
i
b
a
l

p
b
o
(
m
i

5

a
p
c
c
d
s
c
e
a
o
n
f
d

c
e
o
t
a
c
r
o
c
o

m
l
i
fi
t
F
c

s
l
c
w
s
s
f
o
h
m
c
a

S. Islam et al. / The Journal of Sy

The SeeSys System (Baker and Eick, 1995) introduced tree maps
o show hierarchical data. It displays code organized hierarchi-
ally into subsystems, directories, and files by representing the
hole system as a rectangle and recursively representing the var-

ous sub-units with interior rectangles. The area of each rectangle
s used to reflect statistic associated with the sub-unit. Decluvi
uilds on the SeeSoft concepts through different abstractions
nd dynamic mapping of line statistics removing the 50,000 line
imitation.

An alternative software visualization approach often used in
rogram comprehension does not use the “line of pixels” approach,
ut instead uses nested graphs for hierarchical fish-eye views. Most
f these tools focus on visualizing high-level system abstractions
often referred to as ‘clustering’ or ‘aggregation’) such as classes,

odules, and packages. A popular example is the reverse engineer-
ng tool Rigi (Storey et al., 1997).

. Summary and future work

Previous work has deemed dependence clusters to be problem-
tic as they inhibit program understanding and maintenance. This
aper views them in a new light, it introduces and evaluates a spe-
ialized form of dependence cluster: the coherent cluster. Such
lusters have vertices that share the same internal and external
ependencies. The paper shows that such clusters are not neces-
arily problems but rather can aid an engineer understand program
omponents and their interactions. Developers can exploit knowl-
dge of coherent clusters as they aid in program comprehension
s the clusters bring out interactions between logical constructs
f the system. We also lay a foundation for research into this
ew application area and encourage further research. Moreover,

uture research could compare the aspects of various definitions of
ependence clusters and the properties they capture.

This paper presents new approximations that support the effi-
ient and accurate identification of coherent clusters. Empirical
valuation finds that 23 of the 30 subject programs have at least
ne large coherent cluster. A series of four case studies illustrate
hat coherent clusters map to a logical functional decomposition
nd can be used to depict the structure of a program. In all four
ase studies, coherent clusters map to subsystems, each of which is
esponsible for implementing concise functionality. As side-effects
f the study, we find that the visualization of coherent clusters
an identify potential structural problems as well as refactoring
pportunities.

The paper also discusses inter-cluster dependence and how
utual dependencies between clusters may be exploited to reveal

arge dependence structure that form the basis of reverse engineer-
ng efforts. Furthermore, the paper presents a study on how bug
xes relate to the presence of coherent clusters, and finds no rela-
ionship between program faults and coherent clusters in barcode.
inally, a longitudinal study of three subjects shows that coherent
lusters remain surprisingly stable through system evolution.

The paper is one of the first in the area of dependence clusters to
uggest that dependence clusters (coherent clusters) are not prob-
ematic but represent program structure and give evidence to that
ause. Future work in this area is rife with opportunities beginning
ith enabling the use of coherent clusters in a program comprehen-

ion and reverse engineering tools. The inter-cluster dependence
tudy lays out the ground work in this context. There is also room for
urther research aimed at understanding the formation and impact
f coherent clusters on software quality. For example, by studying

ow well dependence clusters can capture functionality. Further-
ore, application of dynamic slicing in formation of dependence

lusters might by considered as static analysis can suffer from over
pproximation caused by its conservative nature.
 and Software 88 (2014) 1– 24 23

Acknowledgements

This work is supported by EPSRC (EP/G060525/2,
EP/F059442/2), EU (ICT-2009.1.2 no 257574), and NSF (CCF
0916081). Data from the EPSRC-funded portions of this work may
be available by contacting Dr. Krinke. Please note that intellectual
property or other restrictions may prevent the full disclosure of
this data.

References

Acharya, M., Robinson, B., 2011. Practical change impact analysis based on static
program slicing for industrial software systems. In: Proceedings of the 33rd
International Conference on Software Engineering, ACM Press, pp. 746–755.

Ali, S., Briand, L., Hemmati, H., Panesar-Walawege, R., 2010. A systematic review of
the application and empirical investigation of search-based test case generation.
IEEE Transactions on Software Engineering 36 (6), 742–762.

Andersen, L.O., 1994. Program analysis and specialization for the C programming
language, Ph.D. thesis, DIKU, University of Copenhagen, (DIKU report 94/19).

Anderson, P., Teitelbaum, T., 2001. Software inspection using CodeSurfer. In: First
Workshop on Inspection in Software Engineering, pp. 1–9.

Baker, M.J., Eick, S.G., 1995. Space-filling software visualization. Journal of Visual
Languages & Computing 6 (2), 119–133.

Bastian, M., Heymann, S., Jacomy, M., 2009. Gephi: An open source software for
exploring and manipulating networks. In: International AAAI Conference on
Weblogs and Social Media. AAAI Press.

Bellon, S., Koschke, R., Antoniol, G., Krinke, J., Merlo, E., 2007. Comparison and eval-
uation of clone detection tools. IEEE Transactions on Software Engineering 33
(9), 577–591.

Beszédes, Á., Gergely, T., Jász, J., Toth, G., Gyimóthy, T., Rajlich, V., 2007. Computa-
tion of static execute after relation with applications to software maintenance.
In: 23rd IEEE International Conference on Software Maintenance, October. IEEE
Computer Society Press, pp. 295–304.

Beyer, D., 2008. CCVisu: automatic visual software decomposition. In: Companion
of the 30th International Conference on Software Engineering. ACM Press, pp.
967–968.

Binkley, D., 2007. Source code analysis: A road map. In: FOSE ‘07: 2007 Future of
Software Engineering. IEEE Computer Society Press, pp. 104–119.

Binkley, D., Gold, N., Harman, M., Li, Z., Mahdavi, K., Wegener, J., 2008. Dependence
anti patterns. In: 4th International ERCIM Workshop on Software Evolution and
Evolvability (Evol’08)., pp. 25–34.

Binkley, D., Harman, M., 2003. A large-scale empirical study of forward and backward
static slice size and context sensitivity. In: IEEE International Conference on
Software Maintenance. IEEE Computer Society Press, pp. 44–53.

Binkley, D., Harman, M., 2005. Locating dependence clusters and dependence pol-
lution. In: 21st IEEE International Conference on Software Maintenance. IEEE
Computer Society Press, pp. 177–186.

Binkley, D., Harman, M., 2009. Identifying ‘linchpin vertices’ that cause large depend-
ence clusters. In: Ninth IEEE International Working Conference on Source Code
Analysis and Manipulation, pp. 89–98.

Binkley, D., Harman, M., Hassoun, Y., Islam, S., Li, Z., 2009. Assessing the impact of
global variables on program dependence and dependence clusters. Journal of
Systems and Software 83 (1), 96–107.

Binkley, D.W., Harman, M., Krinke, J., 2007. Empirical study of optimization tech-
niques for massive slicing. ACM Transactions on Programming Languages and
Systems 30, 3:1–3:33.

Black, S., Counsell, S., Hall, T., Bowes, D., 2009. Fault analysis in OSS based on pro-
gram slicing metrics. In: EUROMICRO Conference on Software Engineering and
Advanced Applications. IEEE Computer Society Press, pp. 3–10.

Black, S., Counsell, S., Hall, T., Wernick, P., 2006. Using program slicing to identify
faults in software. In: Beyond Program Slicing. No. 05451 in Dagstuhl Seminar
Proceedings. Internationales Begegnungs- und Forschungszentrum für Infor-
matik (IBFI), Schloss Dagstuhl, Germany.

Black, S.E., 2001. Computing ripple effect for software maintenance. Journal of Soft-
ware Maintenance and Evolution: Research and Practice 13 (4), 263–279.

Bomze, I.M., Budinich, M., Pardalos, P.M., Pelillo, M., 1999. The maximum clique
problem. In: Handbook of Combinatorial Optimization. Springer, US, pp. 1–74.

Bouktif, S., Antoniol, G., Merlo, E., Neteler, M., 2006. A novel approach to opti-
mize clone refactoring activity. GECCO 2006: Proceedings of the 8th annual
conference on Genetic and evolutionary computation, vol. 2. ACM Press, pp.
1885–1892.

Eick, S., Steffen, J., Sumner, E., 1992. Seesoft – A tool for visualizing line oriented
software statistics. IEEE Transactions on Software Engineering 18 (11), 957–968.

Eisenbarth, T., Koschke, R., Simon, D., 2003. Locating features in source code. IEEE
Transactions on Software Engineering 29 (3), 210–224.

Elssamadisy, A., Schalliol, G., 2002. Recognizing and responding to “bad smells” in

extreme programming. In: International Conference on Software Engineering.
ACM Press, pp. 617–622.

Fahndrich, M., Foster, J.S., Su, Z., Aiken, A., 1998. Partial online cycle elimination in
inclusion constraint graphs. In: Proceedings of the ACM SIGPLAN ‘98 Conference
on Programming Language Design and Implementation. ACM Press, pp. 85–96.

http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0005
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0005
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0005
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0005
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0005
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0005
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0005
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0005
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0005
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0005
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0005
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0005
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0005
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0005
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0005
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0005
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0005
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0005
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0005
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0005
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0005
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0005
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0005
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0005
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0005
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0005
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0005
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0005
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0005
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0010
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0010
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0010
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0010
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0010
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0010
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0010
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0010
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0010
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0010
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0010
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0010
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0010
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0010
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0010
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0010
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0010
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0010
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0010
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0010
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0010
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0010
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0010
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0010
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0020
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0020
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0020
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0020
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0020
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0020
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0020
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0020
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0020
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0020
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0020
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0020
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0020
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0020
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0020
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0020
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0025
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0025
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0025
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0025
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0025
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0025
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0025
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0025
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0025
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0025
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0025
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0025
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0025
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0025
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0030
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0030
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0030
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0030
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0030
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0030
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0030
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0030
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0030
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0030
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0030
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0030
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0030
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0030
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0030
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0030
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0030
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0030
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0030
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0030
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0030
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0035
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0035
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0035
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0035
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0035
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0035
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0035
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0035
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0035
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0035
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0035
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0035
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0035
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0035
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0035
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0035
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0035
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0035
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0040
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0040
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0040
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0040
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0040
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0040
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0040
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0040
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0040
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0040
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0040
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0040
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0040
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0040
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0040
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0040
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0040
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0040
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0040
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0040
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0040
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0040
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0040
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0040
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0040
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0040
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0040
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0040
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0040
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0045
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0045
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0045
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0045
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0045
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0045
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0045
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0045
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0045
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0045
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0045
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0045
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0045
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0045
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0045
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0045
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0045
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0045
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0045
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0045
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0045
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0050
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0050
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0050
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0050
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0050
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0050
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0050
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0050
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0050
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0050
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0050
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0050
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0050
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0050
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0050
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0050
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0050
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0050
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0050
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0050
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0050
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0050
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0055
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0055
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0055
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0055
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0055
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0055
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0055
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0055
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0055
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0055
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0055
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0055
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0055
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0055
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0055
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0055
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0055
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0055
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0060
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0060
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0060
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0060
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0060
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0060
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0060
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0060
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0060
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0060
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0060
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0060
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0060
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0060
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0060
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0060
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0060
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0060
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0060
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0060
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0060
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0060
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0060
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0060
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0060
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0060
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0060
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0060
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0060
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0065
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0065
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0065
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0065
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0065
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0065
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0065
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0065
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0065
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0065
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0065
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0065
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0065
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0065
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0065
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0065
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0065
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0065
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0065
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0065
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0065
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0065
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0065
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0070
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0070
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0070
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0070
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0070
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0070
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0070
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0070
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0070
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0070
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0070
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0070
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0070
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0070
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0070
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0070
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0070
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0070
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0070
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0070
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0070
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0070
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0070
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0070
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0070
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0075
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0075
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0075
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0075
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0075
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0075
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0075
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0075
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0075
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0075
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0075
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0075
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0075
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0075
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0075
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0075
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0075
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0075
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0075
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0075
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0075
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0075
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0080
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0080
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0080
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0080
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0080
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0080
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0080
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0080
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0080
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0080
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0080
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0080
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0080
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0080
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0080
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0080
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0080
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0080
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0080
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0080
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0085
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0085
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0085
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0085
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0085
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0085
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0085
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0085
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0085
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0085
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0085
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0085
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0085
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0085
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0085
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0085
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0085
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0085
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0085
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0085
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0085
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0085
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0085
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0085
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0085
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0085
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0085
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0090
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0090
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0090
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0090
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0090
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0090
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0090
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0090
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0090
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0090
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0090
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0090
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0090
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0090
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0090
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0090
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0090
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0090
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0090
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0090
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0090
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0090
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0090
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0090
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0090
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0090
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0090
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0090
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0090
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0095
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0095
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0095
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0095
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0095
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0095
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0095
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0095
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0095
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0095
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0095
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0095
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0095
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0095
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0095
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0095
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0095
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0095
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0095
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0095
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0095
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0100
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0100
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0100
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0100
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0100
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0100
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0100
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0100
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0100
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0100
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0100
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0100
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0100
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0100
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0100
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0105
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0105
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0105
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0105
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0105
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0105
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0105
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0105
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0105
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0105
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0105
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0105
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0105
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0105
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0105
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0105
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0105
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0105
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0105
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0105
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0105
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0105
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0105
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0105
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0105
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0105
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0105
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0105
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0105
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0105
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0110
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0110
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0110
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0110
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0110
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0110
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0110
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0110
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0110
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0110
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0110
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0110
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0110
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0110
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0110
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0110
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0110
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0110
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0110
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0110
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0115
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0115
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0115
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0115
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0115
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0115
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0115
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0115
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0115
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0115
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0115
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0115
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0115
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0115
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0115
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0120
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0120
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0120
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0120
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0120
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0120
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0120
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0120
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0120
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0120
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0120
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0120
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0120
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0120
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0120
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0120
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0120
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0120
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0120
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0120
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0120
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0125
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0125
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0125
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0125
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0125
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0125
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0125
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0125
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0125
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0125
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0125
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0125
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0125
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0125
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0125
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0125
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0125
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0125
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0125
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0125
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0125
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0125
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0125
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0125
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0125
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0125
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0125
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0125

2 stems

F

G

H

H

H

H

I

I

K

K

K

K

M

O

R

R

R

S

S

S

S

T

W

Engineering (SBSE). SBSE research has rapidly grown over
the past five years and now includes over 1000 authors,
4 S. Islam et al. / The Journal of Sy

errante, J., Ottenstein, K.J., Warren, J.D., 1987. The program dependence graph and
its use in optimization. ACM Transactions on Programming Languages and Sys-
tems 9 (3), 319–349.

allagher, K.B., Lyle, J.R., 1991. Using program slicing in software maintenance. IEEE
Transactions on Software Engineering 17 (8), 751–761.

ajnal, Á., Forgács, I., 2011. A demand-driven approach to slicing legacy COBOL
systems. Journal of Software: Evolution and Process 24 (1), 67–82.

amilton, J., Danicic, S., 2012. Dependence communities in source code. In: 28th
IEEE International Conference on Software Maintenance, pp. 579–582.

arman, M., Binkley, D., Gallagher, K., Gold, N., Krinke, J., 2009. Dependence clusters
in source code. ACM Transactions on Programming Languages and Systems 32
(1), 1:1–1:33.

orwitz, S., Reps, T., Binkley, D., 1990. Interprocedural slicing using dependence
graphs. ACM Transactions on Programming Languages and Systems 12 (1),
26–60.

slam, S., Krinke, J., Binkley, D., 2010a. Dependence cluster visualization. In: Soft-
Vis’10: 5th ACM/IEEE Symposium on Software Visualization. ACM Press, pp.
93–102.

slam, S., Krinke, J., Binkley, D., Harman, M., 2010b. Coherent dependence clusters. In:
PASTE ‘10: Proceedings of the 9th ACM SIGPLAN-SIGSOFT Workshop on Program
Analysis for Software Tools and Engineering. ACM Press, pp. 53–60.

apser, C., Godfrey, M.W., 2008. “Cloning considered harmful” considered harmful:
patterns of cloning in software. Empirical Software Engineering 13 (6), 645–692.

rinke, J., 1998. Static slicing of threaded programs. In: ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis for Software Tools and Engineering, pp. 35–42.

rinke, J., 2002. Evaluating context-sensitive slicing and chopping. In: IEEE Interna-
tional Conference on Software Maintenance. IEEE Computer Society Press, pp.
22–31.

rinke, J., 2003. Context-sensitive slicing of concurrent programs. In: Proceedings
of the 9th European Software Engineering Conference, ACM Press, pp. 178–187.

itchell, B.S., Mancoridis, S., 2006. On the automatic modularization of software
systems using the bunch tool. IEEE Transactions on Software Engineering 32
(3), 193–208.

ttenstein, K.J., Ottenstein, L.M., 1984. The program dependence graph in software
development environments. Proceedings of the ACM SIGSOFT/SIGPLAN Soft-
ware Engineering Symposium on Practical Software Development Environmt,
SIGPLAN Notices 19 (5), 177–184.

en, X., Chesley, O., Ryder, B.G., 2006. Identifying failure causes in Java programs: an
application of change impact analysis. IEEE Transactions on Software Engineer-
ing 32 (9), 718–732.

en, X., Ryder, B.G., Störzer, M., Tip, F., 2005. Chianti: a change impact analysis tool
for Java programs. In: 27th International Conference on Software Engineering.
ACM Press, pp. 664–665.

obles, G., Koch, S., Gonzalez-Barahona, J., 2004. Remote analysis and measurement
of libre software systems by means of the CVSAnalY tool. In: Proceedings of Sec-
ond International Workshop on Remote Analysis and Measurement of Software
Systems, IEE, pp. 51–55.

avernik, L., 2007. Entwicklung eines automatischen Verfahrens zur Auflösung
statischer zyklischer Abhängigkeiten in Softwaresystemen (in German). In: Soft-
ware Engineering 2007 – Beiträge zu den Workshops. Vol. 106 of LNI. GI, pp.
357–360.

hapiro, M., Horwitz, S., 1997. The effects of the precision of pointer analysis. In:
Static Analysis Symposium. Vol. 1302 of Lecture Notes in Computer Science.
Springer Berlin, Heidelberg, pp. 16–34.

torey, M.-A.D., Wong, K., Muller, H.A., 1997. Rigi: a visualization environment for
reverse engineering. In: Proceedings of the 19th International Conference on
Software Engineering. ACM Press, pp. 606–607.

zegedi, A., Gergely, T., Beszédes, Á., Gyimóthy, T., Tóth, G., 2007. Verifying the con-
cept of union slices on Java programs. In: 11th European Conference on Software
Maintenance and Reengineering, pp. 233–242.
onella, P., 2003. Using a concept lattice of decomposition slices for program under-
standing and impact analysis. IEEE Transactions on Software Engineering 29
(June (6)), 495–509.

eiser, M., 1984. Program slicing. IEEE Transactions on Software Engineering 10 (4),
352–357.
 and Software 88 (2014) 1– 24

Wheeler, D.A., 2004. SLOC Count User’s Guide. http://www.dwheeler.com/
sloccount/sloccount.html

Yau, S.S., Collofello, J.S., 1985. Design stability measures for software maintenance.
IEEE Transactions on Software Engineering 11 (September (9)), 849–856.

Syed Islam is a Research Associate in the Software Sys-
tems Engineering Group at University College London,
he is also a part of the CREST centre. His interests are
in static program analysis, particularly in program slic-
ing and software clustering. His other research interests
include Search Based Software Engineering (SBSE) and
Automatic Bug Assignment.

Jens Krinke is Senior Lecturer in the Software Systems
Engineering Group at the University College London,
where he is Deputy Director of the CREST centre. He is well
known for his work on program slicing; current research
topics include program analysis for software engineering
purposes, in particular dependence analysis for software
security, and clone detection and its use in code proven-
ance. Before joining the University College London, he
was at King’s College London and the FernUniversität in
Hagen, Germany, where he worked on aspect mining and
e-learning applications for distant teaching of software
engineering.

Dr. David Binkley is a Professor of Computer Science at
Loyola University Maryland where he has worked since
earning his doctorate from the University of Wisconsin in
1991. From 1993 to 2000, Dr. Binkley was a visiting fac-
ulty researcher at the National Institute of Standards and
Technology (NIST), where his work included participating
in the Unravel program slicer project. While on leave from
Loyola in 2000, he worked with Grammatech Inc. on the
System Dependence Graph (SDG) based slicer CodeSurfer
and in 2008 he joined the researchers at the Crest Centre
of Kings’ College London to work on dependence cluster
analysis. Dr. Binkley’s current NSF funded research focuses
on semantics-based software engineering tools, the appli-

cation of information retrieval techniques in software engineering, and improved
techniques for software testing. In 2014 he will co-chair the program for Soft-
ware Evolution Week which joins The Working Conference on Reverse Engineering
(WCRE) and The European Conference on Software Maintenance and Reengineering
(CSMR).

Mark Harman is professor of Software Engineering in the
Department of Computer Science at University College
London, where he directs the CREST centre and is Head
of Software Systems Engineering. He is widely known for
work on source code analysis and testing and was instru-
mental in founding the field of Search Based Software
from nearly 300 institutions spread over more than 40
countries. A recent tutorial paper on SBSE can be found
here: http://www.cs.ucl.ac.uk/staff/mharman/laser.pdf.

http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0130
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0130
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0130
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0130
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0130
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0130
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0130
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0130
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0130
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0130
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0130
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0130
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0130
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0130
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0130
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0130
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0130
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0130
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0130
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0130
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0130
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0130
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0135
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0135
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0135
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0135
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0135
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0135
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0135
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0135
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0135
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0135
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0135
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0135
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0135
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0135
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0135
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0135
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0140
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0140
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0140
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0140
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0140
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0140
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0140
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0140
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0140
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0140
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0140
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0140
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0140
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0140
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0140
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0140
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0140
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0140
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0140
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0145
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0145
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0145
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0145
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0145
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0145
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0145
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0145
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0145
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0145
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0145
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0145
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0145
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0145
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0145
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0145
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0145
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0150
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0150
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0150
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0150
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0150
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0150
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0150
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0150
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0150
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0150
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0150
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0150
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0150
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0150
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0150
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0150
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0150
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0155
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0155
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0155
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0155
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0155
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0155
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0155
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0155
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0155
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0155
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0155
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0155
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0155
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0155
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0155
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0155
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0155
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0160
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0160
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0160
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0160
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0160
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0160
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0160
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0160
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0160
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0160
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0160
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0160
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0160
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0160
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0160
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0160
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0160
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0160
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0165
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0165
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0165
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0165
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0165
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0165
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0165
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0165
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0165
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0165
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0165
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0165
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0165
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0165
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0165
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0165
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0165
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0165
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0165
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0165
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0165
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0165
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0165
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0165
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0165
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0165
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0165
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0170
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0170
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0170
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0170
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0170
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0170
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0170
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0170
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0170
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0170
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0170
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0170
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0170
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0170
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0170
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0170
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0170
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0170
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0175
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0175
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0175
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0175
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0175
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0175
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0175
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0175
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0175
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0175
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0175
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0175
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0175
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0175
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0175
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0175
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0175
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0175
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0175
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0175
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0175
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0180
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0180
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0180
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0180
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0180
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0180
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0180
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0180
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0180
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0180
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0180
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0180
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0180
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0180
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0180
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0180
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0180
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0180
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0180
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0180
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0180
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0185
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0185
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0185
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0185
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0185
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0185
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0185
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0185
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0185
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0185
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0185
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0185
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0185
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0185
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0185
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0185
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0185
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0185
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0185
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0185
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0190
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0190
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0190
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0190
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0190
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0190
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0190
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0190
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0190
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0190
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0190
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0190
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0190
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0190
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0190
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0190
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0190
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0190
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0190
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0190
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0190
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0195
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0195
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0195
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0195
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0195
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0195
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0195
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0195
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0195
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0195
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0195
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0195
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0195
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0195
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0195
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0195
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0195
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0195
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0195
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0195
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0195
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0195
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0195
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0195
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0195
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0195
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0195
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0195
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0195
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0200
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0200
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0200
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0200
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0200
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0200
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0200
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0200
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0200
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0200
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0200
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0200
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0200
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0200
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0200
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0200
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0200
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0200
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0200
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0200
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0200
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0200
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0200
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0205
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0205
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0205
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0205
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0205
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0205
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0205
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0205
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0205
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0205
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0205
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0205
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0205
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0205
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0205
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0205
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0205
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0205
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0205
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0205
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0205
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0205
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0210
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0210
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0210
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0210
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0210
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0210
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0210
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0210
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0210
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0210
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0210
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0210
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0210
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0210
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0210
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0210
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0210
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0210
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0210
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0210
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0210
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0210
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0210
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0210
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0210
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0210
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0210
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0210
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0210
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0210
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0210
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0210
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0210
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0210
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0215
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0215
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0215
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0215
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0215
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0215
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0215
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0215
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0215
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0215
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0215
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0215
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0215
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0215
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0215
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0215
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0215
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0215
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0215
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0215
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0215
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0215
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0215
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0215
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0215
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0215
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0215
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0215
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0215
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0215
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0215
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0215
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0220
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0220
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0220
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0220
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0220
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0220
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0220
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0220
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0220
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0220
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0220
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0220
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0220
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0220
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0220
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0220
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0220
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0220
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0220
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0220
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0220
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0220
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0220
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0220
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0220
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0220
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0220
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0225
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0225
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0225
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0225
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0225
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0225
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0225
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0225
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0225
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0225
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0225
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0225
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0225
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0225
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0225
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0225
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0225
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0225
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0225
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0225
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0225
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0225
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0225
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0230
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0230
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0230
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0230
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0230
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0230
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0230
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0230
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0230
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0230
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0230
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0230
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0230
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0230
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0230
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0230
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0230
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0230
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0230
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0230
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0230
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0230
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0230
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0235
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0235
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0235
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0235
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0235
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0235
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0235
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0235
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0235
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0235
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0235
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0235
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0235
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0235
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0235
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0235
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0235
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0235
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0235
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0235
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0235
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0235
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0235
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0235
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0235
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0240
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0240
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0240
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0240
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0240
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0240
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0240
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0240
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0240
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0240
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0240
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0240
http://www.dwheeler.com/sloccount/sloccount.html
http://www.dwheeler.com/sloccount/sloccount.html
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0250
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0250
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0250
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0250
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0250
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0250
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0250
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0250
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0250
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0250
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0250
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0250
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0250
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0250
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0250
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0250
http://refhub.elsevier.com/S0164-1212(13)00188-X/sbref0250
http://www.cs.ucl.ac.uk/staff/mharman/laser.pdf

	Coherent clusters in source code
	1 Introduction
	2 Background
	2.1 Dependence clusters
	2.2 Slice-based clusters
	2.3 Same-slice clusters
	2.4 Coherent dependence clusters
	2.5 Hash based coherent slice clusters
	2.6 Graph based cluster visualization

	3 Empirical evaluation
	3.1 Experimental subjects and setup
	3.2 Impact of pointer analysis precision
	3.3 Validity of the hash function
	3.4 Do large coherent clusters occur in practice?
	3.5 Patterns of clustering
	3.6 Coherent cluster and program decomposition
	3.6.1 Case study: acct
	3.6.2 Case study: indent
	3.6.3 Case study: bc
	3.6.4 Case study: copia

	3.7 Inter-cluster dependence
	3.8 Dependence clusters and bug fixes
	3.9 Clusters and system evolution
	3.10 Threats to validity

	4 Related work
	5 Summary and future work
	Acknowledgements
	References

