Cox, SJ;
Towler, MD;
Alfè, D;
Michaelides, A;
(2014)
Benchmarking the performance of density functional theory and point charge force fields in their description of sI methane hydrate against diffusion Monte Carlo.
J Chem Phys
, 140
(17)
, Article 174703. 10.1063/1.4871873.
Preview |
PDF
1.4871873.pdf Download (871kB) |
Abstract
High quality reference data from diffusion Monte Carlo calculations are presented for bulk sI methane hydrate, a complex crystal exhibiting both hydrogen-bond and dispersion dominated interactions. The performance of some commonly used exchange-correlation functionals and all-atom point charge force fields is evaluated. Our results show that none of the exchange-correlation functionals tested are sufficient to describe both the energetics and the structure of methane hydrate accurately, while the point charge force fields perform badly in their description of the cohesive energy but fair well for the dissociation energetics. By comparing to ice [Formula: see text], we show that a good prediction of the volume and cohesive energies for the hydrate relies primarily on an accurate description of the hydrogen bonded water framework, but that to correctly predict stability of the hydrate with respect to dissociation to ice [Formula: see text] and methane gas, accuracy in the water-methane interaction is also required. Our results highlight the difficulty that density functional theory faces in describing both the hydrogen bonded water framework and the dispersion bound methane.
Type: | Article |
---|---|
Title: | Benchmarking the performance of density functional theory and point charge force fields in their description of sI methane hydrate against diffusion Monte Carlo. |
Location: | United States |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1063/1.4871873 |
Publisher version: | http://dx.doi.org/10.1063/1.4871873 |
Language: | English |
Additional information: | © 2014 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License. |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > UCL BEAMS UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Earth Sciences UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Physics and Astronomy |
URI: | https://discovery.ucl.ac.uk/id/eprint/1421832 |
Archive Staff Only
View Item |