Pluchon, PF;
Fouqueau, T;
Crezé, C;
Laurent, S;
Briffotaux, J;
Hogrel, G;
Palud, A;
... Flament, D; + view all
(2013)
An Extended Network of Genomic Maintenance in the Archaeon Pyrococcus abyssi Highlights Unexpected Associations between Eucaryotic Homologs.
PLoS One
, 8
(11)
, Article e79707. 10.1371/journal.pone.0079707.
Preview |
PDF
journal.pone.0079707.pdf Download (1MB) |
Abstract
In Archaea, the proteins involved in the genetic information processing pathways, including DNA replication, transcription, and translation, share strong similarities with those of eukaryotes. Characterizations of components of the eukaryotic-type replication machinery complex provided many interesting insights into DNA replication in both domains. In contrast, DNA repair processes of hyperthermophilic archaea are less well understood and very little is known about the intertwining between DNA synthesis, repair and recombination pathways. The development of genetic system in hyperthermophilic archaea is still at a modest stage hampering the use of complementary approaches of reverse genetics and biochemistry to elucidate the function of new candidate DNA repair gene. To gain insights into genomic maintenance processes in hyperthermophilic archaea, a protein-interaction network centred on informational processes of Pyrococcus abyssi was generated by affinity purification coupled with mass spectrometry. The network consists of 132 interactions linking 87 proteins. These interactions give insights into the connections of DNA replication with recombination and repair, leading to the discovery of new archaeal components and of associations between eucaryotic homologs. Although this approach did not allow us to clearly delineate new DNA pathways, it provided numerous clues towards the function of new molecular complexes with the potential to better understand genomic maintenance processes in hyperthermophilic archaea. Among others, we found new potential partners of the replication clamp and demonstrated that the single strand DNA binding protein, Replication Protein A, enhances the transcription rate, in vitro, of RNA polymerase. This interaction map provides a valuable tool to explore new aspects of genome integrity in Archaea and also potentially in Eucaryotes.
Type: | Article |
---|---|
Title: | An Extended Network of Genomic Maintenance in the Archaeon Pyrococcus abyssi Highlights Unexpected Associations between Eucaryotic Homologs. |
Location: | United States |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1371/journal.pone.0079707 |
Publisher version: | http://dx.doi.org/10.1371/journal.pone.0079707 |
Language: | English |
Additional information: | © 2013 Pluchon et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Div of Biosciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Div of Biosciences > Structural and Molecular Biology |
URI: | https://discovery.ucl.ac.uk/id/eprint/1421545 |
Archive Staff Only
View Item |