
Towards Fault-Tolerant Quantum Computation
with Higher-Dimensional Systems

By

Hussain Anwar

A thesis submitted to

University College London

for the degree of

Doctor of Philosophy

Department of Physics and Astronomy

University College London

February 23, 2014

I, Hussain Anwar confirm that the work presented in this thesis is my own. Where infor-

mation has been derived from other sources, I confirm that this has been indicated in the

thesis.

1

List of Publications and Preprints

The majority of the work presented in this thesis contains materials from the following publications:

H. Anwar, E.T. Campbell, and D.E. Browne, Qutrit Magic State Distillation, New J. Phys. 14, 063006

(2012).

E.T. Campbell, H. Anwar, and D.E. Browne, Magic-State Distillation in All Prime Dimensions Using

Quantum Reed-Muller Codes, Phys. Rev. X 2, 4, 041021 (2012).

H. Anwar, B. Brown, E.T. Campbell, and D.E. Browne, Efficient Decoders for the Qudit Toric Code,

Preprint arXiv:1311.4895.

Other publications:

M.J. Hoban, J.J. Wallman, H. Anwar, N. Usher, R. Raussendorf, and D.E. Browne, On the hardness

of sampling and measurement-based classical computation, Preprint arXiv:1304.2667 (To appear in

Physical Review Letters).

2

To my parents

3

Acknowledgements

First and foremost, I need to thank my supervisor Dan Browne for his guidance, patience and continuous

support throughout my PhD. For the past four years, listening to his eloquent explanations and ideas was

a truly enlightening experience.

I would like to thank my examiners Dr. Simon Benjamin and Dr. Jiannis Pachos for all their helpful

comments and suggestions, and without whom this document could not have been in its current form.

I wish to thank all the staff members of the quantum information group at UCL for creating such a

friendly and stimulating research environment. In particular, I must thank Sugato Bose (my secondary

supervisor) and Alessio Serafani (Doctoral Training Program organiser) for their useful comments and

help with my early research. I especially thank Earl Campbell, who is a collaborator on the work

presented in this thesis, for all his help with my early research and for all the time he patiently spent

to teach me the basics of quantum information theory. I also wish to thank Janet Anders for all the

friendly conversations and for organising various events (such as the regular group meetings and the 3-

day quantum technologies workshop) which has greatly contributed to having a very joyful experience

in this group.

It is a great pleasure to thank my fellow PhD students for all the interesting chats and for creating

such lively environment. I thank Matty Hoban for all his help during my first two years at UCL. I wish

to thank Ben Brown (an Imperial based student, and a collaborator on some of the work presented in

this thesis) for all the stimulating discussions we had on topological error correction. I thank Naı̈ri

Usher for the countless physics-related discussions (and arguments)—they were truly fun! I thank

Tanapat Deesuwan (Ω) for all the board discussions and for allowing me to use his books and computer

4

whenever I needed. I thank Fern Watson for exchanging interesting research ideas and for keeping up

with my incoherent explanations. I also wish to thank many other PhD students and Post-Docs that I

frequently had the pleasure to interact with; Chris Perry, Mercedes Gimeno-Segovia, Seto Balian, James

Millen, Bobby Antonio, Hamed Mohammady, Lia Han, Ilhan Candan, Sai-Yun Ye, Edward O’Reilly,

Shirwan Abdullah, George Pender, and Hoda Nejad.

Away from UCL, there are many friends that I wish to thank for being just wonderful and for making

my life less stressful. I especially would like to thank my best friends; Asad Sarfarazi, Dip Patel and

Rajeev Ananth.

Last but not least, my deepest thanks goes to my entire family. My parents, Ahmad and Sawsan,

have struggled in their life and have travelled to many places to ensure that I get the best education

possible. I especially thank my father for his everlasting encouragement and for supporting my decision

of studying physics, and my mother for her unbounded kindness, support and prayers. I thank my four

sisters and my extended family members for all their love and encouragement through out my life.

5

Towards Fault-Tolerant Quantum Computation with Higher-Dimensional Systems

By

Hussain Anwar

Doctor of Philosophy of Physics

University College London

Dr. Dan E. Browne, Supervisor

Abstract

The main focus of this thesis is to explore the advantages of using higher-dimensional quantum

systems (qudits) as building blocks for fault-tolerant quantum computation. In particular, we investigate

the two main essential ingredients of many state-of-the-art fault-tolerant schemes [133], which are magic

state distillation and topological error correction. The theory for both of these components is well

established for the qubit case, but little has been known for the generalised qudit case.

For magic state distillation, we first present a general numerical approach that can be used to in-

vestigate the distillation properties of any stabilizer code. We use this approach to study small three-

dimensional (qutrit) codes and classify, for the first time, new types of qutrit magic states. We then

provide an analytic study of a family of distillation protocols based on the quantum Reed-Muller codes.

We discover a particular five-dimensional code that, by many measures, outperforms all known qubit

codes.

For the topological error correction, we study the qudit toric code serving as a quantum memory.

For this purpose we examine an efficient renormalization group decoder to estimate the error correction

threshold. We find that when the qudit toric code is subject to a generalised bit-flip noise, and for a

sufficiently high dimension, a threshold of 30% can be obtained under perfect decoding.

6

Contents

1 Basic Elements of Quantum Fault-Tolerance Theory 13

1.1 Quantum Computation with Qudits . 13

1.1.1 Quantum States . 14

1.1.2 Quantum Operations . 16

1.1.3 Universal Gate Sets . 19

1.2 The Stabilizer Formalism . 21

1.2.1 Stabilizer Codes . 21

1.2.2 CSS Codes . 23

1.3 Fault-Tolerant Schemes . 24

2 Magic State Distillation: Introduction and Numerical Investigation 28

2.1 Magic States as a Quantum Resource . 29

2.2 Computational Power of Magic States . 35

2.3 General Distillation Map . 36

2.3.1 Useful Basis Set . 37

2.3.2 Protocol Structure . 42

2.4 Qutrit Distillation . 43

2.4.1 J5,1,3K3 Distillation . 43

2.4.2 Hadamard-like Distillation . 48

2.4.3 Hadamard-Squared Subspace . 53

7

2.5 Promoting the Clifford group . 56

2.5.1 The parity-checker protocol . 56

2.5.2 Equatorialization . 59

2.5.3 Non-Clifford Gate . 60

2.6 Summary and Open Problems . 60

3 Distillation with Quantum Reed-Muller Codes 62

3.1 Exploiting Transversality . 63

3.1.1 Qudit Magic Gates . 64

3.1.2 Existence of a MSD Protocol . 67

3.2 Distillation using CSS Codes . 68

3.2.1 The Distillation Protocol . 69

3.2.2 Analyzing the Iterative Formulae . 73

3.2.3 Clifford Correction . 74

3.3 Reed-Muller Codes . 75

3.3.1 Classical Reed-Muller Codes . 75

3.3.2 Shortened Classical Reed-Muller Codes . 77

3.3.3 Quantum Reed-Muller codes . 79

3.3.4 Weight Enumerators and MacWilliams Identity 80

3.4 Distillation Performance . 83

3.4.1 Distillation Yields . 83

3.4.2 Depolarising Noise Thresholds . 85

3.4.3 Examples: Qutrit QRM3(2) and Ququint QRM5(1) Codes 87

3.5 State-Injection and Quantum Universality . 92

3.6 Summary and Open Problems . 95

4 Qudit Topological Quantum Memory 97

4.1 Motivation . 98

8

4.2 The Qudit Toric Code . 101

4.2.1 Properties . 101

4.2.2 Noise Model and Monte Carlo Simulation . 105

4.3 HDRG Decoder . 107

4.3.1 Decoder Description . 107

4.3.2 Numerical Estimates of the Threshold . 111

4.4 Beating the Percolation Upper bound . 116

4.4.1 Syndrome Percolation . 116

4.4.2 Enhanced HDRG Decoder . 119

4.5 Summary and Open Problems . 122

5 Summary and Outlook 124

9

List of Tables

1.1 Transversal gates for various stabilizer codes . 26

2.1 The qutrit orbital Bloch phases . 41

2.2 The stabilizer generators of the the five-qudit code . 44

2.3 The stabilizer generators of the five-qudit code and the qutrit logical operators expressed

in the σj,k notation . 45

2.4 The stabilizer generators of the seven-qudit code . 53

3.1 The scaling parameter, γ∗, for the QRMd(m) distillation 85

3.2 The depolarising noise threshold ε∗dep for the QRMd(m) distillation 87

10

List of Figures

1.1 The state-injection circuit of the qubit equatorial state ∣π/8⟩ 27

2.1 The Bloch sphere with the qubit stabilizer octahedron and the magic states 33

2.2 The general structure of a state-injection circuit . 36

2.3 An overview of how the different qutrit protocols are related 44

2.4 A representation of the Hadamard plane . 52

2.5 The scaling of the εout with very small depolarizing noise, and the success probability

for the J5,1,3K distillation code . 54

2.6 An illustrative picture of the cycling behaviour of ∣ϕ⟩ . 57

3.1 The canonical CM–plane for the 8-qutrit Reed-Muller code QRM3(2) 90

3.2 The output error, εout against input error, ε for (a) QRM3(2) and (b) QRM5(1) 91

3.3 The yield on a log-scale of our protocols,QRM3(2) andQRM5(1), (blue) compared

with the Bravyi-Kitaev QRM2(4) (red) protocol . 93

4.1 A representation of the toric code where qudits are placed on a torus 99

4.2 The toric code square lattice . 102

4.3 The stabilizer measurement circuits for the plaquette and vertex operators 103

4.4 An example showing that in higher dimensions the syndrome measurements reveal more

information about the path of the errors on the lattice of the toric code 105

4.5 The refined regionsRr,s on a taxi-cab geometry . 108

11

4.6 The success probability of the HDRG decoder for the qubit case 112

4.7 Differences betweenRr,s and D∞ . 114

4.8 The threshold values of the HDRG decoder for prime dimensions 115

4.9 Syndrome percolation threshold for prime dimensions . 118

4.10 The first four levels of Qr,s . 119

4.11 The thresholds for the enhanced-HDRG decoder with the first four initialization steps

I(r, s) . 121

12

Chapter 1

Basic Elements of Quantum

Fault-Tolerance Theory

The aim of this chapter is to give a brief review of the theory of quantum fault-tolerance. We will

restrict the discussions to the relevant concepts that are needed for later chapters. Throughout this

chapter we will assume that the reader is familiar with the postulates of quantum mechanics and has a

good understanding of quantum computation. For more information regarding the theory of quantum

computation and fault-tolerance, the following resources are recommended [120, 139, 166, 60].

1.1 Quantum Computation with Qudits

Any quantum computational model consists of three main elements. First, the quantum states where

the information is stored or transmitted. Second, some form of physical operations that manipulate and

process the information (such as unitary gates). Third, a measurement set that determines the output

of the computations. In this section, we review these elements for finite-dimensional quantum systems

(qudits), and we then describe how a discrete set of operations (gates) can perform universal quantum

computation.

13

1.1.1 Quantum States

The most elementary unit of quantum information is the quantum-bit, or a qubit [141], which is a two-

level quantum mechanical system. In this thesis we are interested in studying the higher dimensional

generalisation of a qubit, where we have a d−level quantum system called a quantum dit, or a qudit,

such that d is prime number. Associated with each quantum state is a complex vector space, the Hilbert

space Hd. The Hilbert space is a complex vector space with an inner product ⟨⋅∣⋅⟩ and a norm ∣∣ ⋅ ∣∣. The

Hilbert space is spanned by the computational basis states ∣0⟩ , ∣1⟩ , . . . , ∣d − 1⟩. In this basis, a single

pure quantum state ∣ψ⟩ is represented as

∣ψ⟩ =
d−1

∑
j=0

αj ∣j⟩ , (1.1)

satisfying ∣∣ψ∣∣ = 1 (or ∑j ∣αj ∣2 = 1). Since we are only considering prime dimensions, the above sum is

taken over all the elements of a finite field1 Fd (or Zd). We will often make use of the cyclic property

of Zd in modulo d arithmetic2, which will allow us to express many equations in a succinct form. The

coefficients αj ∈ C are called the probability amplitudes, and they represent the information stored by

the quantum state. The square of the amplitudes ∣αj ∣
2 gives the probability that a measurement (in

the basis ∣j⟩) would result in the output state ∣j⟩. A pure state contains the maximal information of a

quantum system—meaning that it is an eigenstate of a well defined observable.

A composite system of n qudits is constructed by taking the tensor product of the individual Hilbert

spacesH1 ⊗ ⋅ ⋅ ⋅ ⊗Hn. In the computational basis, the resultant pure quantum state is represented as

∣ψ1ψ2 . . . ψn⟩ = ∑
j∈Zn

d

αj1j2...jn ∣j1j2 . . . jn⟩ ,

where j is a vector of n dits. As we can see, to represent such pure state completely would require

specifying all the dn coefficients, which is exponential in the number of qudits. In contrast, the state of

a classical system can only be a single n dit string at a time.
1For our discussion, a field Fd is the set Zd = {0,1, . . . , d−1} such that all the arithmetic operations are carried out modulo

d (see [103] for further details).
2Cyclic means that the element (d − a) ∈ Zd is equivalent to the element −a ∈ Zd.

14

A quantum system whose state is not known completely is described by the language of density

operators. In this situation, the information of a quantum system is only known partially, such that it

is described by an ensemble of pure states {pj , ∣ψj⟩}, where ∣ψj⟩ is a possible state of the system with

respective probability pj . The density operator ρ is given by

ρ = ∑
j∈Zd

pj ∣ψj⟩ ⟨ψj ∣ . (1.2)

A density operator is a d×dmatrix that satisfies three main requirements. First, it must be Hermitian, or

self-adjoint, such that ρ = ρ†. Secondly, it must be a semi-definite matrix (i.e. a positive operator with

non-negative eigenvalues λj ≥ 0). Thirdly, it must have a unit trace tr(ρ) = 1, which is the condition

required to preserve the probabilities. A density operator represents a pure state only if tr(ρ2) = 1, and

a mixed state if tr(ρ2) < 1.

In the language of linear algebra, the density operator can be decomposed as a linear sum of a matrix

basis set. For our purpose, we adopt the higher dimensional generalisation of the Pauli operators as basis

to the density operators3. The d−dimensional single-qudit Pauli operators are defined as

Xd =
d−1

∑
j=0

∣j ⊕ 1⟩ ⟨j∣ , Zd =
d−1

∑
j=0

ωj ∣j⟩ ⟨j∣ , (1.3)

where ‘⊕’ is taken to be addition modulo d throughout, and

ω = e2πi/d, (1.4)

is the dth root of unity [65]. From this definition we see that Xd and Zd are traceless non-Hermitian

unitaries (except for the qubit case, where the conventional Pauli operators are Hermitian). For clarity,

we will drop the subscript d when the dimension is apparent from the discussion. These operators

generate the Pauli group (see Sec. 1.1.2). We define a general Pauli operator P(j,k) as follows:

P(j,k) = XjZk (d > 2), (1.5)

P(j,k) = ijkXjZk (d = 2). (1.6)

3This basis is also known in the literature as the Heisenberg-Weyl basis.

15

In this basis a density operators is expressed as

ρ = ∑
(j,k)∈Z2

d

αj,kP(j,k). (1.7)

In analogy to the qubit case, we will refer to the coefficients αj,k as the Bloch components, which can

be evaluated as αj,k = tr(ρP †
(j,k)). We know that in the qubit case, a general density operator can be

completely specified by three real parameters (x, y, z) ∈ R3 defining the Bloch sphere. However, there

is no such geometric picture beyond the qubit case. We will discuss geometric properties of the state

space in higher dimensions in Sec. 2.3.1.

1.1.2 Quantum Operations

To perform a computation on the quantum states, we need to be able to process the information stored.

This is accomplished by applying a quantum operation that can either dynamically manipulate the states

(via unitary gates) or destructively read out the stored information to determine the output of the com-

putation (via a measurement). More formally, a quantum operation is a physical process, denoted by E ,

that transforms a quantum state ρ to another quantum state ρ′, such that ρ′ ∝ E(ρ). In our work here

we are interested only in simple quantum operations such as unitary dynamics where E(ρ) = UρU† and

measurements operators where Em(ρ) ∝MmρM
†
m (with outcome m).

Unitary Dynamics

The evolution of a closed quantum system is described by a unitary operator U , satisfying the relation

UU† = U†U = 1. Unitary operators are a type of trace preserving operations, which is a property that is

easily verified as tr(ρ′) = tr(UρU†) = tr(ρU†U) = tr(ρ). This means that unitary dynamics never leak

any information to the environment. In the Bloch representation, a unitary operator does not change the

length of the Bloch vector. Here, we are interested in two sets of unitary operators, which are the Pauli

group Pd operators and the Clifford group Cd operators.

The Pauli group is generated by the Pauli unitaries Xd and Zd defined in Eq. 1.3. These operators

obey the commutation relationXZ = ω−1ZX . In the general case when the Pauli operators are raised to

16

arbitrary integer powers the commutation relation becomes XaZb = ω−abZbXa, where a, b ∈ Zd. In the

case of a composite system of n qudits, the Pauli group Pnd is generated by the n−fold tensor product

of the single-qudit Pauli operators. To describe such n−particle Pauli operators we use the so-called

symplectic notation, where

P(j,k) = (Xj1 ⊗Xj2 ⊗ ⋅ ⋅ ⋅ ⊗Xjn)(Zk1 ⊗Zk2 ⊗ ⋅ ⋅ ⋅ ⊗Zkn). (1.8)

Two such Pauli operators commute if and only if the symplectic inner product is zero. In other words

P(j,k)P(j′,k′) = P(j′,k′)P(j,k) ⇐⇒ j.k′ − j′.k = 0 mod d. (1.9)

Using the above notation, we define the n−particle Pauli group Pnd as the following set of unitaries

P
n
d = {ωlP(j,k) ∣ j,k ∈ Znd , l ∈ Zd}. (1.10)

As we will see below, the Pauli group is used in the construction of stabilizer codes and fault-tolerant

schemes. Another set of gates that play an important role in quantum fault-tolerance theory are the so-

called Clifford operators. The Clifford group Cnd is the normalizer of the Pauli group—consisting of

unitary operators that leave the Pauli group invariant under conjugations. More formally

Cnd = {U ∣ ∀P ∈ P
n
d , UPU

†
∈ P

n
d }. (1.11)

The Clifford group is generated by three gates4 only:

Cnd = ⟨Hd, Pd,Λ(X)⟩, (1.12)

where the gate Hd is the d−dimensional single-qudit Hadamard gate

Hd =
1

√
d
∑

(j,k)∈Z2
d

ωjk ∣j⟩ ⟨k∣ , (1.13)

and Pd is the d−dimensional (diagonal) single-qudit phase gate

Pd = ∑
j∈Zd

ω
j
2
(j−1)

∣j⟩ ⟨j∣ , (1.14)

4The proof can be found in [65, 43, 75].

17

and the last gate Λ(X) is the two-qudit controlled-Xd gate (often called the SUM gate), defined as

Λ(X) = ∑
(j,k)∈Z2

d

∣j⟩ ∣j ⊕ k⟩ ⟨j∣ ⟨k∣ . (1.15)

In Ref. [66], Gottesman and Chuang generalised the construction of the Clifford group operations

by introducing an infinite hierarchy of qubit gates, where each level of the Clifford hierarchy maps the

Pauli operators, under conjugation, to the level that precedes it. The hierarchy generalise naturally to

qudits. We denote the gates sets at level k of the Clifford hierarchy by Cnd (k), and define the hierarchy

recursively as follows.

Definition 1. The kth level of the Clifford hierarchy for n qudits is the set

C
n
d (k) = {U ∈ U(dn)∣∀P ∈ P

n
d , UPU

†
∈ C

n
d (k − 1)}, (1.16)

where the first level is obviously the Pauli group, i.e. Cnd (1) ≡ Pnd . Similarly, the second level is the

Clifford group Cnd (2) ≡ C
n
d . Higher levels consists of sets of gates without a group structure. The set

of gates of the lower levels are subsets of the higher levels of the hierarchy, such that Cnd (1) ⊂ C
n
d (2) ⊂

⋅ ⋅ ⋅ ⊂ Cnd (k) ⊂ C
n
d (k + 1) ⊂

An important example of a qubit gate—from which other gates in higher levels of the hierarchy can

be derived—is the single-qubit Pauli Z gate. It is not hard to see that by taking the roots of this gate,

one can derive a gate in any level of the hierarchy:

⎛
⎜
⎝

1 0

0 e2πi/2k

⎞
⎟
⎠
∈ C

1
2(k)/C

1
2(k − 1). (1.17)

As expected, for the first level we have Z2 ∈ C
1
2(1) = P

1
2 , and for the second level we have the Clifford

gate P2 ∈ C1
2(2) = C1

2 . Interestingly, for the third level we get the qubit T–gate (or π/8–phase gate),

where we have T ∈ C1
2(3). This gate plays a crucial role for many fault-tolerant schemes. In particular,

as we will see, it is an important element of magic state distillation protocols, and it is sufficient to

promote the Clifford group to universality. One of our main contributions in this thesis is providing a

generalisation of the T–gate to higher dimensions (see Chap. 3).

18

Measurements

In general, observing a quantum system by making measurement would collapse the quantum state

of the system and destroy the superposition. The most general description of a quantum measure-

ment is given by the positive-operator valued measure (POVM) formalism. A POVM is defined as any

set of Hermitian semi-definite operators {Em} (with measurement outcomes m) satisfying the com-

pleteness relation ∑mEm = 1. The completeness relation manifest the fact that probabilities of the

measurement outcomes add up to unity. In this formalism, any quantum measurement process con-

sisting of measurement operators {Mm} can be expressed in term of POVM elements by defining

Mm ≡
√
Em. This definition guarantees that the completeness relation is satisfied by observing that

∑mM
†
mMm = ∑mEm = 1. If the state of the quantum system before the measurement is ρ, the

probability that outcome m occurs is given by

Prob(m) = tr(M†
mMmρ), (1.18)

and the outcome state of the system ρout immediately after the measurement is

ρout
=

MmρM
†
m

tr(M†
mMmρ)

. (1.19)

For our purposes we are only interested in the measurement of the Pauli operators P(j,k) ∈ Pnd .

Notice, however, that beyond the qubit case, these are non-Hermitian unitary operators, and hence

cannot be measured directly because they are not valid physical observables. Nevertheless, a general

Pauli unitary P(j,k) can always be expressed as U = ∑am∈Zd ω
amMm where {Mm} are projectors onto

eigenspaces that can be taken as elements of a POVM.

1.1.3 Universal Gate Sets

A universal set of gates can approximate any unitary gate to an arbitrary accuracy. Such a set provides a

practical means to perform a computation, where only a finite number of gates have to be experimentally

realised. The existence of such a gate set is not related to how efficiently the approximation is achieved

in terms of the cost of gates required. In fact, there exist unitaries that require an exponential number

19

of universal gates to approximate [120] (and it is the job of the quantum algorithm to ensure that an

efficient description for its unitaries exists).

The earliest account of a universal gate set is due to Shor [144], where he showed that the gate set

{H2, P2,Λ2(X)} is universal5. In addition, Shor showed how this gate set can perform fault-tolerant

quantum computation. Subsequent work followed that established various other universal gate sets that

don’t necessarily have a fault-tolerant implementation [14, 15, 2, 142], and other sets which can be

implemented fault-tolerantly [114, 89, 24].

Of more relevance to our work are fault-tolerant schemes that are based primarily on the Clifford

group operations. Unfortunately, the Clifford unitaries do not form a universal set of gates. To achieve

universality, the Clifford group must be augmented with any single non-Clifford gate [63]. In the qubit

case, this additional gate performs a non-trivial rotation by an irrational multiple of π, which allows the

Clifford group to forms a dense set in SU(2) [120, 24]. This fact also applies to the qudit case, which is

the subject of the following theorem.

Theorem 1. The set of gates {Cnd ,K}, where K is a single-qudit non-Clifford gate, is a universal set.

Proof. Our proof make use of two known theorems due to Nebe, Rains and Sloane in order to show that

the set of unitaries {Cnd ,K} is dense in SU(dn).

In Ref. [118], theorem 7.3 implies that any finite group that contains the Clifford group must be

generated by the Clifford group and a gate proportional to the identity. Thus a group J generated by the

Clifford group Cnd and a non-Clifford unitary K that is not proportional to the identity cannot be finite,

and must therefore be of infinite order.

In corollary 6.8.2 of Ref. [119], it is shown that any closed sub-group, J , satisfying Cnd ⊂ J ⊂ U(dn),

must either have finite order (ignoring global phase factors) or be SU(dn). Combining this corollary

with the previous theorem we conclude that the closure of the group generated by the Clifford group

and any non-Clifford unitary is SU(dn).

5The gate Λ2(X), is the qubit Toffoli gate, i.e. controlled-controlled-X gate. In fact, Shor never presented the proof in his

work.

20

In later chapters we will make use of this theorem to prove that the qudit generalisation of the

T–gate, which is non-Clifford, is sufficient to promote the Clifford group to quantum universality.

1.2 The Stabilizer Formalism

The stabilizer formalism presents a concise description of additive quantum error correction codes in

terms of the set of Pauli operators [63, 120, 60]. In Sec. 1.2.1 we outline the general structure of a qudit

stabilizer code, and define the stabilizer operations which can be used to construct any stabilizer code.

Then, in Sec. 1.2.2, we explain the properties of a special class of stabilizer codes, the so-called CSS

codes. These codes will be used for magic state distillation in Chap. 3.

1.2.1 Stabilizer Codes

A quantum error correction code protects k logical qudits by encoding them in n physical qudits such

that n > k. Consider an Abelian subgroup S of the Pauli group Pnd such that it is generated by (n − k)

independent and mutually commuting generators S = ⟨g1, g2, . . . , gn−k⟩, and it contains the identity

operator 1 but not any other phase multiples of the identity, i.e. ωj1 ∉ S for all nonzero j. Then, the

common “ + 1” eigenspace, denoted as Π, of S forms a protected subspace of Hnd called the stabilizer

code, and the elements of S are called the stabilizers of the code.

For any stabilizer code-space of dimension k, there exist k pairs of logical Pauli operators X̄j and

Z̄j , where j = 1, . . . , k. These logical operators conjugate as X̄jZ̄j = ω
−1Z̄jX̄j , but commute with the

whole stabilizer group S. Furthermore, each pair generates a group of logical operators Aj = ⟨X̄j , Z̄j⟩,

and each element of this group has the form ωaX̄b
j Z̄

c
j for a, b, c ∈ Zd. There are many suitable choices

of logical operators, since for any Pauli P and any element of the stabilizer S ∈ S, we find that PS has

the same effect as P on the code-space Finally, the distance of the code quantifies the number of errors

that can be detected and corrected. A stabilizer code of distance δ can detect up to (δ − 1) errors and

correct up to ⌊(δ − 1)/2⌋ errors. The distance is equal to the minimum weight (number of non-trivial

Pauli operators) of all operators that commute with the stabilizer but have a non-trivial logical effect,

21

that is all P = AS such that S ∈ S, A ∈ A but A ≠ 1. We denote such a code as Jn, k, δKd.

Most of the early qubit quantum codes are types of stabilizer codes. Examples include, the famous

9-qubit code due to Shor J9,1,3K2 [143], Steane’s 7-qubit code J7,1,3K2 [150] and the 5-qubit code

J5,1,3K2 [100]. All of these codes were unified by the above stabilizer code construction [62, 32].

Error correction is performed by first measuring the stabilizer generators non-destructively to extract

the syndromes. Such measurements may consist of applying unitary operators to entangle an ancilla

qudit with the relevant physical qudits of the code, followed by measuring the ancilla destructively. Any

errors that have occurred on the physical qudits will propagate to the ancilla, and hence measuring the

ancilla will only reveal the information about the errors and will not alter the logical states of the code.

The syndromes are then used to identify and locate the errors that have occurred in the code-space via a

classical decoding algorithm.

All the encoding and decoding circuits of a stabilizer code can be implemented by using what we

call the stabilizer operations [64]. These operation contain the Clifford unitaries along with other simple

operations.

Definition 2. The stabilizer operations are composed from the following:

1. Clifford unitaries;

2. Measurements and projections on stabilizer subspaces;

3. Preparation of stabilizer states;

4. Adaptive decision making based on measurement outcomes.

For most stabilizer-based fault-tolerant schemes these operations are readily available (they have a

fault-tolerant implementation). Although these operation are capable of generating long-range entan-

glement, they are not sufficient to perform universal quantum computation. In fact, there exists a famous

theorem, called the Gottesman-Knill theorem, which asserts that a computation consisting of only the

stabilizer operations can be efficiently classically simulated [63]. Further work by Aaronson and Gottes-

man [1] showed that the class of computations that can be performed by the stabilizer operations lie in

the complexity class ⊕L, a class that is believed to be weaker than P.

22

1.2.2 CSS Codes

Calderbank, Shor and Steane identified a special class of quantum codes, which in their honour are now

known as CSS codes [33, 149]. These codes have stabilizers generated by two subgroups, SZ and SX ,

which contain only Z and X terms, respectively. All CSS codes, can also be described by a pair of

classical vector spaces, which correspond to SZ and SX . If we have a vector u ∈ Fnd and a single-qudit

operator, U , then we define the n-qudit operator

U[u] =
n

⊗
k=1

Uuk . (1.20)

The kth element of the vector, u, tells us what multiple of U acts on the kth qudit. It follows that

for every s ∈ SZ we can find a u such that s = Z[u]. In fact, SZ = {Z[u];u ∈ LZ} where LZ is a

linear vector space. The closure of the stabilizer group under multiplication is easily seen to directly

correspond to closure of LZ under addition modulo d. Similarly we can find a linear code, LX , for SX .

The whole stabilizer must be Abelian and so for all u ∈ LX and v ∈ LZ we require ⟨u,v⟩ = ⊕jujvj = 0.

Furthermore, for any code, L, we define the dual code L⊥ = {u; ⟨u,v⟩ = 0,∀v ∈ L}. In terms of duality,

commutation inside the stabilizer equates to LX ⊂ L⊥Z and LZ ⊂ L⊥X . The dimensionalities of the duals

are related by Dim(L⊥) = n−Dim(L), where n is the dimension of the vector field they inhabit, namely

Fnd . For a CSS code k = n−Dim(LZ) −Dim(LX) gives the number of logical qudits supported by the

code.

Our main interest here is in stabilizer codes of only d dimensions, i.e. encoding a single logical

qudit. In this case, the basis spanning the code are the single logical Pauli operators Z̄ and X̄ . It follows

that there exists a corresponding orthonormal logical basis, {∣j⟩L}, of stabilizer states that obey Z̄ ∣j⟩L =

ωj ∣j⟩L, X̄ ∣j⟩L = ∣j ⊕ 1⟩L. In this basis, the code projector can be expressed as Π = ∑j ∣j⟩L ⟨j∣L. We

also make use of the X-basis that we denote ∣+j⟩ for single qudits stabilized by ω−jX and ∣+j⟩L for

logical encoded states stabilized by ω−jX̄ . Typically, such logical operators can also be expressed in

terms of vectors, such as X̄ =X[u] where commutation of X̄ with SZ entails u ⊂ L⊥Z and LZ ⊂ u⊥.

Given this vector description, a useful fact is that LZ = (span(LX ,u))⊥ where the span(..., ...) is

the vector space generated by its arguments. Let us prove this by first observing that since LZ ⊂ u⊥ and

23

LZ ⊂ L⊥X we have that LZ ⊂ (span(LX ,u))⊥. That LZ can be no smaller than this set follows from

dimension counting, that is

Dim[(span(LX ,u))
⊥
] = n −Dim[span(LX ,u)], (1.21)

= n −Dim(LX) − 1.

Since we have a single logical qudit, we know also that Dim(LZ) = n − Dim(LX) − 1. Since the

dimensionality match, the assertion is proven. Taking also Z̄ = Z[v] and noting (L⊥)⊥ = L, many such

results for single qudit codes can be deduced by similar reasoning,

LZ = [span(LX ,u)]
⊥, (1.22)

L
⊥
Z = span(LX ,u), (1.23)

LX = [span(LZ ,v)]
⊥, (1.24)

L
⊥
X = span(LZ ,v). (1.25)

For CSS codes it suffices to consider phase- and bit-flip noise separately. For an operator U[u]

its “size” is measured by the Hamming weight, ∣u∣H = {#xj ;xj ≠ 0}, so the number qudits upon

which the operator acts non-trivially. The robustness to phase noise is measured by the distance, δZ =

min{∣v∣H ;Z[v]Π = Z̄Π}, and for bit-flip noise δX = min{∣v∣H ;X[v]Π = X̄Π}. The overall distance

of the code is δ = min{δX , δZ}. Finally we remark that for any stabilizer code there always exists a

Clifford unitary that decodes the encoded qudits back to the physical qudits, such that UZ̄U† = Z and

UX̄U† =X .

1.3 Fault-Tolerant Schemes

We have shown how error correction codes can be used to protect information in principle. Such codes

could be useful for transmitting data over a noisy channel or storing quantum systems with active error

correction. However, the existence of an error correction code is not sufficient to ensure that the infor-

mation remains protected. The reason being that the operations involved in the encoding and decoding

24

steps are themselves subject to errors, and hence errors can easily spread and multiply throughout each

code block beyond the capability of the code to correct them. This suggests that each operation of an

error correction code has to be designed such that the errors are carefully controlled. Loosely speak-

ing, if such a design exists for an operation within the code block, then that operation is said to be

fault-tolerant.

For the purpose of fault-tolerant computation, Shor [144] proposed that the computation is to be

carried at the logical level without any decoding required. This avoids the decoding step which would

expose the stored information to the environment. To accomplish such a computation, we need to

introduce the notion of an encoded operation Ū which act on the logical encoded states just like a single

operation U acts on the single physical state. We have already come across such an operation in our

discussion of the logical gates. A fault-tolerant scheme consists of a quantum error correction code to

protect the information and a set of universal encoded operations.

For a single-qudit encoded operation to be fault-tolerant we require that it does not entangle multiple

qudits within a single code block. In other words, the encoded operation has to be an n−fold product

operator of the form Ū = U⊗n. This requirement ensures that the errors do not spread within the code

block by an error-prone physical operator U . Such an operation is called transversal. Similarly, for a

multi-qudit encoded operation to be fault-tolerant we require that it does not entangle a qudit in one code

block with multiple qudits in a second code block. It is natural then to ask: does there exist a quantum

error correction code that permits the existence of a universal transversal set of gates?

Unfortunately, for the qubit stabilizer codes this was proven in the negative by [170], which was

later generalised to the qudit case [42]. Moreover, it turns out that such a set cannot exist for much

larger class of codes, as was shown by a powerful no-go theorem proven by Eastin and Knill6 [52]. For

completeness we restate their theorem here:
6It is worth pointing out that there exist schemes that cleverly circumvent this theorem. For example, very recently in

[122] a scheme was proposed that exploits transversality properties of the tri-orthogonal codes, that were introduced by Bravyi

and Haah [26]. It was shown that these codes have a transversal controlled-controlled-Z gate (CCZ). In addition, a simple

application of the product of Hadamard gates H̄2 acts non-trivially (not fault-tolerantly) on only some of the encoded qubits

(gauge qubits) which can be discarded (or corrected fault-tolerantly). The set ⟨CCZ,H2⟩ is known to be a universal set.

25

Theorem 2. For any non-trivial local-error-detecting quantum code, the set of logical unitary product

operators is not universal.

In Tab. (1.1) we have listed few examples of well known stabilizer codes and the set of gates that

have a transversal implementation.

Code Jn, k, δKd Transversal Gates Non-transversal Gates

J5,1,3K2 PH H, P, CNOT, T

J7,1,3K2 H, P, CNOT T

J9,1,3K2 CNOT H, P, T

J15,1,3K2 CNOT, T H

Jdm − 1,1,2Kd CNOT,Md(m) Hd

Table 1.1: The set of transversal gates for various well known codes. The last row is our qudit generali-

sation of the quantum Reed-Muller codes (see Chap. 3). The structure of the table is motivated by that

in [170].

An encoded operation that cannot be implemented transversally would require other techniques.

Notably, such operations are often implemented via a teleportation circuit that consumes some uniquely

prepared ancillary system. Such circuit are called state-injection circuits7. For example the state-

injection circuit that implements the non-Clifford T–gate is given in Fig. (1.1), which is sufficient

to promote the Clifford group to universality. There exist stabilizer codes, such as Steane’s 7-qubit code

that admit a transversal implementation for the entire group of Clifford unitaries. Hence, to perform

a fault-tolerant universal computation all we need to ensure is a fault-tolerant implementation of the

state-injection circuit. It is straightforward to see that all the Clifford operations of the state-injection

circuit in Fig. (1.1) can be implemented by replacing them with their transversal version at the logical
7Note that there is no classical analogue for the state-injection circuit. In fact, in the classical case, there exists a set

of transversal universal gates. For example, the Toffoli gate—a universal gate for classical computation—has a transversal

implementation in the simple repetition code!

26

|ψ〉

|π/8〉 Z

S T |ψ〉

Figure 1.1: The state-injection circuit of the equatorial state ∣π/8⟩ = (∣0⟩ + eiπ/4)/
√

2.

level. What remains is to come up with a fault-tolerant preparation procedure for the ancilla state ∣π/8⟩,

and for this purpose various techniques have been developed (see p. 304 of [139]).

Finally, given the existence of a set of universal fault-tolerant operations, the accuracy threshold

theorem of quantum fault-tolerance theory [144, 125] asserts that arbitrary accurate and long compu-

tations can be performed efficiently provided that all the physical operations have a failure probability

below a certain constant threshold [94, 169, 89, 3, 95]. The exact numerical value of the threshold is

very sensitive to the computational model and the assumptions concerning the noise in the fault-tolerant

scheme, with thresholds ranging between 10−5 − 10−2.

The scheme of most interest to us is the one proposed by Raussendorf et al. in a series of papers [132,

133, 131]. This scheme shows how to perform fault-tolerant quantum computation for the measurement-

based cluster state model [129, 128] by employing techniques from topological error correcting codes

for robust error tolerance combined with magic state distillation [27] for universality. A detailed review

of this scheme can be found in [56, 57]. This scheme require only local interactions and achieves

the highest fault-tolerant threshold known to date of about 1%. In particular, the original scheme in

[132, 131] achieves a threshold of 0.75%. This threshold was improved further to about 0.9% [58].

Achieving thresholds close to 1% represents one of the milestones for the theory of fault-tolerance.

Our aim in this thesis is to generalise all the necessary components of this scheme to qudit case. It is

known that the formalism of measurement-based quantum computing generalises to higher dimensions

naturally [172]. In the remaining of this thesis we provide the first qudit generalisation of magic state

distillation and construct an efficient qudit decoder for qudit topological codes, hence providing all

ingredients for a fault-tolerant qudit computation.

27

Chapter 2

Magic State Distillation: Introduction and

Numerical Investigation

In this chapter we will describe the motivation behind Magic State Distillation (MSD), and why it is a

crucial element to all stabilizer-based fault-tolerant schemes. We will often restrict the discussions and

examples in the first few sections to the well-established qubit case as it is easier to grasp. However, all

the points raised can also be applied to higher dimensions too, and we reserve the explicit generalisation

to the sections that follow. We begin in Sec. 2.1 by introducing the magic state model which describes

the different set of operations allowed to perform the distillation. This is followed in Sec. 2.2 by some

comments on the computational power of magic states and what elements of the state-injection circuits

makes the magic state model inefficient to simulate classically. In Sec. 2.3 we give a general description

of the distillation map for any qudit stabilizer code. We use this map in Sec. 2.4 to explicitly study the

distillation properties of the five-qutrit code, and we identify all the magic states that are distillable by

this code and how they can be used to promote the Clifford group to quantum universality.

28

2.1 Magic States as a Quantum Resource

In the previous chapter we have seen that the operations that have a readily fault-tolerant implementation

are often the stabilizer operations. We saw that there exist stabilizer codes, such as Steane’s 7−qubit

code J7,1,3K2, where the entire group of Clifford operators C2(2) can be performed transversally, and

hence can be implemented fault-tolerantly. Unfortunately, however, the Clifford gates alone do not form

a quantum universal set of gates, and to achieve universality the stabilizer operations must be augmented

with certain non-stabilizer states (such as the ∣π/8⟩ state). These additional states are consumed by the

state-injection circuits to implement the non-Clifford gates needed in the computation (such as the T–

gate, see Fig. (1.1)).

Since these states have to be prepared separately without being protected by an error correction

code, they are thus expected to be highly mixed. Any direct injection of such noisy states will jeopardise

the accuracy of the whole computation. Despite this fact, Bravyi and Kitaev [27] showed how mixed

non-stabilizer states can allow universal quantum computation. They proposed a distillation process

that distils pure non-stabilizer states, the so-called magic states, from a set of more mixed states using

stabilizer operations alone. This process is called magic state distillation (MSD) and it is essentially a

preparation procedure for the magic states. The term “magic” was used by Bravyi and Kitaev to reflect

the powerful role of the magic states with respect to the stabilizer operations. In particular, the magic

states are distilled by using only stabilizer operations and yet they are then used to promote the stabilizer

operations to universality. As stated previously, the state ∣π/8⟩ is in fact an example of a qubit magic

state. Based on this basic motivation, we define a magic state, denoted by ∣M⟩, in the broadest sense as

follows:

Definition 3. A magic state ∣M⟩ is any non-stabilizer pure state that can be distilled from multiple

copies of mixed states by stabilizer operations alone.

Associated with every MSD protocol is a stabilizer code Jn, k, δKd which is used to perform the

distillation. Recall that every stabilizer code can be constructed by using Clifford gates alone, hence

only stabilizer operations will be involved in the distillation. We refer to the non-stabilizer mixed states

29

from which the magic states are distilled as the resource states for MSD, denoted by ρres, defined as

follows:

Definition 4. The resource states ρres are the set of mixed states from which a magic state can be distilled

with arbitrarily high purity by a magic state distillation protocol. The resource states are determined by

the choice of the distillation protocol.

The resource states form a convex region in the state space around the magic states, and one of the

important problems in the theory of MSD is to identify the plausible region of resource states. We will

expand on this point in more depth shortly.

In MSD the stabilizer operations are assumed to be perfect, and the resource states are the only noisy

elements in the distillation protocol. The justification behind these assumptions is that the stabilizer

operations have a direct fault-tolerant implementation in many computational models. For instance, in

topological quantum computation, the stabilizer operations have an intrinsic protection due to the nature

of the physical systems, which further justify these assumptions1. Computational models that share such

a property and allow for imperfect state preparation became known as the magic state computational

models:

Definition 5. A magic state model consists of perfect (noise-free) stabilizer operations and the ability

to prepare any number of resource states ρres.

All known MSD protocols have an iterative structure [27, 36], with each iteration having three steps:

1. Initialization: Prepare n copies of the qudit resource state ρres.

The resource states are supposed to be noisy in nature due to the experimental imperfection in the

preparation device. Also, the resource states are assumed to be generated independently, resulting in a

product state ρ⊗nres after each initialization step.

1There are studies of magic state distillation where the these assumptions have been relaxed by allowing noisy stabilizer

operations [81].

30

2. Projection: Measure the Pauli generators of a stabilizer code Jn, k, δKd and post-select on the ‘+1’

outcome2.

This step will project the resource states onto the code-space. The measurement outcomes of

the generators {gj} of a stabilizer code forms the syndrome vector λ = {λ1, . . . , λn−k}, where λj ∈

{1, ω, . . . , ωd−1}. Post-selecting on the trivial +1 syndromes corresponds to the resource states being

acted upon by the following projector:

Π =
1

dn−k

n−k
∏
j=1

(I + gj). (2.1)

Note that each stabilizer measurement is probabilistic, and therefore there is an associated success prob-

ability psucc for measuring the trivial ‘+1’ syndrome.

3. Decoding: Perform a Clifford unitary that maps the d−dimensional code-space onto a single

physical output qudit ρout.

When successful, the output state ρout is used as one of the input copies on the next level of iteration.

After every successful iteration the fidelity with respect to the pure magic states, given by ⟨M ∣ρout ∣M⟩,

is increased. Magic states are distilled until a high enough fidelity is achieved as required for the target

accuracy of the fault-tolerant computation.

Interestingly, there is a strong analogy between MSD and entanglement distillation [17, 40, 39, 74].

In entanglement distillation, n copies of arbitrary entangled states are transformed into fewer copies

of higher-fidelity Bell states using only local operations and classical communication (LOCC). Under

the restricted set of LOCC, entanglement is considered as a resource for quantum communication (e.g.

quantum teleporation [18]) [124, 74]. Similarly, in the case of MSD, under the restricted set of stabi-

lizer operations, the magic states can be considered as the resource for universal quantum computation.

This analogy was formulated (rigorously) only very recently in [160], where various monotones for

magicness where introduced.
2It is worth noting that post-selection is not always necessary. As we will see in the next chapter, the general outcome

of some types of stabilizer measurements can always be corrected to the ‘+1’ eigenspace by the application of an adaptive

Clifford operator.

31

For every MSD protocol there are various questions that need to be addressed. First, what are the

types of magic states that can be distilled? For example, the qubit ∣π/8⟩ state is an equatorial state in the

Bloch sphere; is there a family of such equatorial magic states? Second, what are the regions of resource

states in the state space? Can all the non-stabilizer mixed states be distilled by a certain MSD protocol?

Finally, what is the yield of the distillation protocol? The yield captures the overall performance of the

MSD protocol—for a give target error probability in the distilled magic state, the yield quantifies the

fraction of the initial copies of resource states that will be distilled.

Although the rigorous structure of MSD was not introduced until [27], there exist earlier accounts

of distillation protocols that serve the same purpose as MSD. The earliest work that we are aware of is

due to Dennis [46], where he showed how, for a non-generic noise model, a certain three-qubit ancilla

state can be distilled to implement the Toffoli gate required in Shor’s fault-tolerant scheme [144]. In

addition, and in parallel work to [27], Knill has introduced state preparations protocols for his fault-

tolerant scheme of post-selected quantum computer [92, 91, 93], which although seems distinct from

MSD, they were later shown to be equivalent to MSD by Reichardt [136].

In the qubit case, MSD has an elegant geometrical visualization in terms of the Bloch sphere picture.

In this representation, the stabilizer states form an octahedron, whose vertices are the Pauli eigenstates.

Moreover, the single Clifford group unitaries coincide with the rotational symmetries of this octahedron.

There are two types of magic state distilled by the distillation protocols in [27], which correspond to

pure states invariant under two types of rotational symmetries. The first type is the set of magic states

that are invariant under 180○ rotations around the centres of the edges of the octahedron, which contains

the Hadamard gates, and we refer to these state as Hadamard-type or H–type magic states. The second

type is the set of states invariant under 120○ rotations around the centres of the faces of the octahedron,

known as T–type magic states. Fig. (2.1) shows all these magic states on the Bloch sphere. The H–

and T–type magic states were distilled in [27] using the 5−qubit code J5,1,3K2 and the 15−qubit Reed-

Muller code J15,1,3K2, respectively.

Identifying the set of mixed states that provide suitable resource states ρres for MSD has interesting

consequences for the theory of quantum information. If we treat the magic state model as a resource

32

Figure 2.1: The Bloch sphere with the qubit stabilizer octahedron and the magic states. There are 8 (red)

T–type magic states and 12 (blue) H–type magic states. These states were characterised and shown to

be distillable by Bravyi and Kitaev [27] using the 5−qubit code J5,1,3K2 and the 15−qubit Reed-Muller

code J15,1,3K2.

theory for universal quantum computation, then the resource states are essentially what promote the

stabilizer operations to universality. We can identify straight away the states within the stabilizer octa-

hedron as not useful as resource states for MSD, due to the Gottesman-Knill theorem (see Sec. 1.2.1).

In other words, there cannot exist a MSD protocol that distils non-stabilizer magic states from the set

of states within the stabilizer octahedron because that would promote the stabilizer operations to uni-

versality, which would contradict the Gottesman-Knill theorem. It is natural then to ask whether all the

non-stabilizer mixed states are useful resources for MSD. A positive indication comes from Reichardt

[136] who showes explicitly how all the states above the edges of the octahedron can be distilled by

Steane’s code J7,1,3K2.

However, we now know that there are limits on the suitable resource states ρres. First, Campbell and

Browne [37, 36] showed that for any iterative protocol there will always exist undistillable qubit states

(bound states) above the faces of the stabilizer octahedron. This result applies to the iterative structure of

MSD protocols, and non-iterative qubit protocols could be an interesting possibility to circumvent this

result; for example, compare with the hashing protocol [39, 47] and quantum polar codes [138] used in

33

an analogous context of entanglement distillation. In addition, Campbell [34] introduced an activation

protocol that can activate qubit states from above the octahedron face to the known regions of resource

states. Second, Veitch et al. [159] showed that for odd-dimensional systems there exist other types of

bound states—states with positive Wigner distribution—that cannot contribute any enhancement to the

computation power of the stabilizer operations [159, 108]. We will show explicit examples of how these

states are derived below. Finally, as we will see later, there could be other family of mixed states that

are ruled out as a resource for MSD by some other no-go theorems that are yet to be discovered.

Another very interesting investigation is due to van Dam and Howard [157, 158] who studied noise

thresholds using qudit systems. They identified a set of robust qudit states that are the most resilient to

depolarizing noise and found that the degree of noise needed to map such states to the set of stabilizer

states increases with the dimension of the qudits—scaling with d/(d+1). Thus, the higher-dimensional

states have the potential to offer higher MSD threshold due to the potentially larger region of non-

stabilizer resource states.

In addition to the above work, there has been a considerable number of investigations to improve

the original qubit schemes in [27]. For example, modifications to the magic state model with noisy

stabilizer operations were studied in [81]. Also, distillation protocols for other “equatorial” type magic

states were proposed in [59, 101] that could directly implement a family of non-Clifford diagonal phase

gates—this could in turn improve the overhead in the gate synthesis of some quantum algorithms.

All the above protocols involve a quantum code that encodes one qubit, i.e. Jn,1, δK2. However,

recently Meier et al. [110] proposed a distillation protocol that can distil multi-qubit magic states and

achieve significant reduction in the overhead of the resource states needed for the distillation. This has

led to more investigations building on the idea of multi-level MSD for various codes [26, 85, 84, 83,

82, 55]. Finally, MSD protocols are used to refine the upper-bound error tolerance threshold for many

stabilizer-based fault-tolerant schemes [123, 127].

34

2.2 Computational Power of Magic States

In the last section, we stated that the magic states are used to promote the stabilizer operations to

quantum universality. Since the stabilizer operations are classically efficiently simulated, this suggests

that the magic states are what give quantum computers their computational speed-up in comparison to

classical computers. In this section we are interested in identify the aspects of the state-injection circuit

that give magic states their non-classical power. For this purpose we analyse a generic structure of the

known state-injection circuits, given in Fig. (2.2i). Note that this circuit is the generalisation of the

injection-circuit for the equatorial ∣π/8⟩ (H–type) magic state given in Fig. (1.1).

The Clifford gates in Cd(2) and the Pauli measurement Cd(1) are stabilizer operations, and hence

can be efficiently classically simulated. Also, the magic state ∣M⟩ is by definition a non-stabilizer state,

therefore has to be an element that cannot be efficiently classically simulated. This indeed was shown

to be the case in the early work of Aaronson and Gottesman [1], who considered (under assumptions

of quantum speed-up) the classical simulation of stabilizer circuits with arbitrary non-stabilizer initial

states, and showed that such a simulation would have an exponential time complexity in the number of

non-stabilizer initial states involved.

The last remaining element to check is the classically-controlled unitary gate Cd(2)/Cd(1), denoted

here as CC-U . There is a general misconception that this is a Clifford gate because Cd(2)/Cd(1) is a

non-Pauli Clifford gate. However, it turns out that the gate CC-U is in fact a non-Clifford gate. The

easiest way to see the validity of this statement is by considering the circuit identity in Fig. (2.2ii)

[173], which allows us to get rid of the classical adaptivity of the Pauli measurement. It is not hard to

be convinced with a simple calculation that all the non-Pauli controlled-Clifford gates would map, for

example, the operators X ⊗ X to a non-Pauli operator under conjugation, implying that, indeed, the

CC-U gate is a non-Clifford gate.

Whether magic state-injection without such a classically controlled gate is possible is still unknown.

If such a circuit exists, it would help us to pin down the resource that is responsible for the quantum

speed-up to be exactly the magic states. In essence, loosely speaking, the magic states will be what

35

|M〉

|ψ〉 M |ψ〉 U U

≡
Cd(1)

i) ii)

Cd(2)
Cd(2)/Cd(1)

Figure 2.2: i) The general structure of a state-injection circuit. The elements in the red dashed boxes are

non-stabilizer operations. ii) A circuit identity that shows how an adaptive classical-controlled unitary

gate can be replaced by a quantum-controlled gate followed by the measurement.

would give the apparent distinction between the computational complexity classes BQP and BPP3.

Another related question is whether the magic states can be reused using only Clifford gates in the

injection-circuit. In other words, does there exist a state-injection circuit such that the magic state is not

consumed? Such a circuit would allows us to inject a single magic state as many times as non-Clifford

gates are required without any dependence on the input size of the quantum computation. As a result,the

overhead for MSD will be reduced to a constant O(1). This would have drastic consequences, as was

shown by Anderson [4], it will imply that the class BQP is equivalent to class of the stabilizer circuits

⊕L. Such a collapse of the class BQP is extremely unlikely, and in turn indicates that such a circuit for

reusable magic states should not exist. Nevertheless, this suggests that the magic state model could be a

suitable model to probe open questions on computational complexity questions.

2.3 General Distillation Map

In this section, we will analyse the three steps of MSD in more detail for qudit systems (and not qubits).

In particular, we derive a general formula for the distillation map which relates the Bloch components

of the distilled state ρout after one round of MSD, to terms of the Bloch components of the initial input
3These computational classes contain the decision problems solvable by a quantum and classical computers, respectively,

in polynomial time [120].

36

state ρres.

2.3.1 Useful Basis Set

We start by defining a new basis set that will prove to be very convenient for studying the distillation

map. For completeness, we will state again the d−dimensional single-qudit X and Z Pauli operators

defined previously:

X =
d−1

∑
j=0

∣(j + 1) mod d⟩ ⟨j∣ , Z =
d−1

∑
j=0

ωj ∣j⟩ ⟨j∣ , (2.2)

where ω = e2πi/d is the dth root of unity. We define a slightly different form of the single-qudit Pauli

operators as follows:

{σj,k = ω
cjkXjZk; (j, k) ∈ Z2

d}, (2.3)

where c = (1 − d)/2. The main reason for choosing this definition and the significance of the extra

phase ωcjk will become apparent shortly. But we shall first outline some of the properties of the Pauli

operators based on this definition. For a single qudit, the composition of two Pauli operators can easily

be verified to be

σj,kσj′,k′ = ω
j′k−c(jk′+j′k)σ(j+j′),(k+k′). (2.4)

For the case of a composite system of n qudits we use the symplectic notation to represent the n−fold

tensor products of Pauli operators

σj1,k1 ⊗ σj2,k2 ⊗ ⋅ ⋅ ⋅ ⊗ σjn,kn ≡ σj1j2...jn,k1k2...kn

≡ σj,k, (2.5)

where j and k are vectors in Znd . The Pauli operators satisfy a generalised commutation relation

σj,kσj′,k′ = ω
k.j′−j.k′σj′,k′σj,k, (2.6)

where k.j′ − j.k′ is the symplectic inner product.

We will use σj,k as the basis set to represent a qudit state ρ. However, notice that σj,k is a non-

Hermitian unitary operator. To guarantee the Hermiticity of ρwe must impose the Hermiticity condition

37

ρ = ρ†. We begin by expressing ρ as

ρ(α) =
1

d
∑
(j,k)

αj,kσj,k, (2.7)

where the summation is over all pair elements of Z2
d (and we assume that the identity Bloch component

α0,0 = 1). We will use σ0,0 and the conventional 1 interchangeably. We refer to αj,k as the Bloch com-

ponents, generalising the qubit convention, and α as the Bloch vector, which has the Bloch components

as its elements. Observe that for d = 2, the set of σj,k is Hermitian and the Bloch components will be

real, but in the general qudit case the Bloch components are complex and need to be constrained by a

Hermiticity relation in order for ρ = ρ† to hold. To work out the Bloch components’ relation we start by

explicitly writing ρ = ρ†:

∑
(j,k)

αj,kσj,k = ∑
(j,k)

α∗j,kσ
†
j,k. (2.8)

The importance of the extra phase factor of ωcjk in our definition in Eq. (2.3) is to ensure that σ†
j,k =

σ−j,−k, as shown by the following simple calculation:

σ†
j,k = ω

−cjk
(XjZk)†

= ω−cjkZ−kX−j , (2.9)

= ω−cjkωjkX−jZ−k
= ω−cjkωjkω−cjkσ−j,−k, (2.10)

= ω(1−2c)jkσ−j,−k = σ−j,−k, (2.11)

where in the last line the aforementioned constant c = (1−d)/2 was substituted. Using this relation, and

after relabelling, Eq. (2.8) reduces to

α∗j,k = α−j,−k. (2.12)

Without including the extra phase factor, the above relationship will have some phase dependence, which

could complicate many of the expressions that will be calculated in the next section. So in effect, these

phases have been absorbed in the definition of the Pauli operators σj,k. In addition, a direct implication

of Eq. (2.12) is that only half the Bloch components, or (d2 − 1)/2, are independent, as the other half

are simply the complex conjugates. Hence, only half the Bloch components are needed to define the

density operator. Of course, the independent Bloch components are complex numbers and we still have

38

(d2 − 1) real parameters defining the density operator. A Bloch component αj,k can be evaluated using

the following relation:

αj,k = tr(ρσ†
j,k) = tr(ρσ−j,−k). (2.13)

Beyond the qubit case, it is not possible to visualise the entire state space with a geometrical picture

similar to the Bloch sphere. However, there have been some attempts to study the geometry of the state

space in higher dimensions [23, 16], and to define a Bloch-type representation for qutrits [99, 67]. It

is interesting to have a general intuition of the geometric features of qudit state space (and the qutrit

space in particular). Having fixed normalization and Hermiticity, a mixed qutrit state is described by a

complex vectorα ∈ C(d
2−1)/2. Associated with this complex vector space are few geometrical measures,

which are the inner product ⟨α,β⟩ = ∑j α∗jβj , and a norm ∣∣α∣∣ =
√

⟨α,α⟩. The relation between these

concepts and the density matrix representation is

tr(ρ†
(α)ρ(β)) = (1 + 2⟨α,β⟩)/d. (2.14)

Recall that all states must obey tr(ρ2) ≤ 1, and using the above equation, this implies that

∣α∣
2
≤
d − 1

2
. (2.15)

This entails that all physical states are within a Bloch-like ball of radius
√

(d − 1)/2 about the origin,

with the origin being the maximally-mixed state and the pure states on the surface of the Bloch ball.

However, the above condition does not guarantee that all the states on the surface of the Bloch ball are

positive physical states. The qubit state space is of course a special case in which all the points on the

surface of the Bloch sphere correspond to positive physical states. The additional condition required to

ensure the positivity of all states, as shown in [86], is tr(ρ2) = tr(ρ3) = 1.

In general, identifying the vectors α corresponding to physical states (including mixed states)

ρ(α) is not a trivial task. Nevertheless, within certain higher-dimensional planes, called hyperplanes,

the structure of the state space is very simple. Consider hyperplanes defined by a set of d posi-

tive orthonormal density operators, {ρ(αj)}. Such states must satisfy the orthogonality condition

tr(ρ(αj)ρ(αk)) = δj,k. Geometrically, this is equivalent to

⟨αj ,αk⟩ =
1

2
(dδj,k − 1). (2.16)

39

We now consider the hyperplane spanned by the orthogonal vectors {αj}, such that γ = ∑j ajαj .

It follows that an operator ρ(γ) is positive if and only if ∑j aj ≤ 1 and bj = ∣bj ∣ for all j. Hence, the

physical Bloch components α lie within the convex polytope with γj as vertices. We have d vertices all

equally separated from each other and residing within a real d − 1 dimensional hyperplane. For d = 3,

and a corresponding 2-dimensional plane, the physical states reside within an equilateral triangle. We

will see explicit examples below of how qutrit orthogonal states form equilateral triangles.

Finally, it proves useful to discuss the orbits of the single qudit Pauli group Pd when acting on a

general qudit state ρ(α) with conjugation being the group action. The singular orbit of a general state

ρ(α), denoted by Orb(ρ(α)), is defined as

Orb(ρ(α)) = {ρ(α′
) = σj′,k′ ρ(α) σ†

j′,k′
∀σj′,k′ ∈ Pn}. (2.17)

In our Bloch representation we are using Pauli group elements as a basis set for the states, thus conju-

gation by Pauli operators will not transform the basis elements themselves, but will add a phase of the

form ωj for some j ∈ Zd. The overall effect of this conjugation is to add certain phases to the Bloch

components. The exact form of the phases is exactly given by:

ρ(α′
) = ∑

(j,k)
αj,kσj′,k′σj,kσ−j′,−k′ , (2.18)

= ∑
(j,k)

ωjk′−j′kαj,kσj,k. (2.19)

where the σ†
j′,k′

= σ
−j′,−k′ , the commutation Eq. (2.6) and composition Eq. (2.4) relations were used in

the last step.

Qutrits

So far the discussion has been for all prime dimensions, but in the remainder of this chapter we will

often discuss the qutrit case only. Therefore, we shall outline some of above results explicitly for the

d = 3 case. Our definition of the qutrit Pauli basis set in Eq. (2.3) is σj,k = ω−jkXjZk, where ω = e2πi/3

40

σj′,k′ σj′,k′ρ(α1,0, α0,1, α1,1, α1,2)σ
†
j′,k′

σ0,0 ρ(α1,0, α0,1, α1,1, α1,2)

σ±1,0 ρ(α1,0, ω
∓1α0,1, ω

∓1α1,1, ω
±1α1,2)

σ0,±1 ρ(ω±1α1,0, α0,1, ω
±1α1,1, ω

±1α1,2)

σ±1,±1 ρ(ω±1α1,0, ω
∓1α0,1, α1,1, ω

∓1α1,2)

σ±1,∓1 ρ(ω∓1α1,0, ω
∓1α0,1, α1,1ω

±1, α1,2)

Table 2.1: The qutrit orbital Bloch phases.

and c = −1. The explicit qutrit ρ(α) state is:

ρ(α) ≡ ρ(α1,0, α0,1, α1,1, α1,2),

=
1

3
(1 + α1,0σ1,0 + α

∗
1,0σ2,0 + α0,1σ0,1 + α

∗
0,1σ0,2+

α1,1σ1,1 + α
∗
1,1σ2,2 + α1,2σ1,2 + α

∗
1,2σ2,1). (2.20)

As we can see, completely specifying a qutrit state would only require 4 complex independent param-

eters (α1,0, α0,1, α1,1, α1,2). In terms of the Bloch components, the purity condition tr(ρ2) = 1 for a

general qutrit state can be shown to be ∣∣α∣∣ ≤ 1.

The Pauli group orbits for a single qutrit state can be evaluated using Eq. (2.19). We are interested in

knowing how the phases of the four independent Bloch components change when an element from the

nine qutrit σj,k operators is conjugated with the general qutrit state. The result is summarised in Table

2.1. We refer to these phases as the orbital Bloch phases. These represent the phases which generate

the set of states Pauli-equivalent to any state. The magic states that we will find are unique up to a

Bloch orbital phase. In other words, inserting one of the phases from the set in Table 2.1 into the Bloch

components of the magic states would also give a valid magic state with the same distillation properties.

41

2.3.2 Protocol Structure

Using the definitions and notations we have developed in the previous section, we will show how the

three steps of a MSD protocol described in Sec. 2.1 can be formulated to study the distillation properties

of any stabilizer code of any prime dimension.

Resource state preparation: Recall that the computational model considered when studying MSD

consists of perfect stabilizer operations and the ability to prepare n identical copies of a noisy resource

state ρres. By repeating the preparation procedure n times, the state ρ⊗nres will be prepared. As an input

to the MSD protocol we consider a general state

ρ(α)
⊗n

=
1

dn
∑

(j,k)∈Zn
d

αj1...jn,k1...knσj1...jn,k1...kn . (2.21)

By performing the remaining steps of the iteration on the above general form, we will determine the

map on the Bloch components of the initial general state ρ(α). Then, by searching the state space for

different initial states (different α vectors), we can identify the resource states as those that when used

as an input to the protocol the output state has a higher fidelity with respect to a pure non-stabilizer

state (the magic state), and ultimately distilling this non-stabilizer pure state. If the search is done

systematically, one can in principle identify the entire region of resource states ρres.

Stabilizer measurement and Decoding: The (n − k) stabilizer generators of a stabilizer code

Jn, k, δKd are measured successively post-selecting on the +1 outcome of each measurement. That is, if

one of the outcomes is ωk (for some non-zero k ∈ Zd) then the protocol is aborted4, and the procedure

is repeated with a fresh state ρ⊗n. Also, it is important to notice that the error correction code is not

being used for the usual purpose of correcting errors since the syndrome measurements are performed

on the product state ρ⊗n. If successful, the measurement of the stabilizers simply project the state to the

code-space. The projector operator describing this measurement procedure can be put into the following

convenient form:

Π =
1

dn−k

n−k
∏
j=1

(I + gj) =
1

dn−k
∑

j∈Zn−k
d

gj11 g
j2
2 . . . gjn−kn−k . (2.22)

4As pointed out earlier, post-selection can sometime be avoided if there exists a correction Clifford that maps the state to

the ‘+1’ eigenspace. We will not come across such an example until the next chapter.

42

After the successful measurements, the following map will be performed:

ρ⊗n ↦
Πρ⊗nΠ†

tr (ρ⊗nΠ)
. (2.23)

The resultant state is decoded via a Clifford operator [36]. In a Heisenberg picture, the decoding op-

eration maps logical operators σ̄j,k on the code-space to unencoded operators acting on a single qudit.

Hence, the output Bloch-components after decoding, denoted by αout
j,k , correspond to the components of

the logical operators prior to decoding σ̄j,k. After one round of the distillation, these can be evaluated

as follows:

αout
j,k =

tr(Πρ⊗nΠ†σ̄†
j,k)

tr(ρ⊗nΠ)
. (2.24)

The resultant expressions for the output Bloch components will be multi-variable complex polynomials

of order n. For the qutrit codes we consider next, we have not found analytic solutions for the fixed

points of the map. However, the problem is tractable by using numerical methods to study the distillation

behaviours and find the fixed-points to a high accuracy.

2.4 Qutrit Distillation

Using the generalised formulation of MSD in the previous section, we study in this section the distilla-

tion properties of the five-qutrit code (with the stabilizer generators shown in Tab. (2.2)). This code was

chosen because of its small size and also for being the simplest generalisation of the five-qubit code.

2.4.1 J5,1,3K3 Distillation

The stabilizer generators of the general five-qudit code J5,1,3Kd takes the same form in all dimensions

[100, 41]. It is usually presented in terms of the conventional generalised Pauli operators of Eq. (2.2), as

shown in Tab. (2.2). It is easy to see that these generators commute and X̄ and Z̄ form logical operators.

Based on these stabilizers we will study the distillation map of Eq. (2.24) for the four Bloch compo-

nents of a general input qutrit state. Notice that the decoding of a stabilizer code is not unique, but one

of an equivalence class of unitaries—a coset of the Clifford group—which are all equally valid choices.

43

Distillation[[5, 1, 3]]3

Two types of Magic states
H − states |H±〉
H2 − states |Φ0,π〉

Parity-Checker
Converts magic into
‘plus’ states |ψ+〉

Equatorialization
Converts plus states into
‘phase’ states

Non-Clifford Gate
Teleportation

|Φ0,π〉

Figure 2.3: An outline of the different qutrit protocols in Secs. 2.4 and 2.5 and how they are related.

In Sec. 2.4 we discover two types of magic states distillable by the J5,1,3K3, the so-called H−states

∣H±⟩ and H2−states ∣φ⟩. We then consider two sub-protocols in Sec. 2.5, the Parity-Checker and

Equatorialization, that produce a suitable magic states (the phase states ∣Φ0,π⟩) which are then used to

implement a qutrit non-Clifford gate.

g1 = X Z Z−1 X−1 I

g2 = I X Z Z−1 X−1

g3 = X−1 I X Z Z−1

g4 = Z−1 X−1 I X Z

X̄ = Z Z Z Z Z

Z̄ = X X X X X

Table 2.2: The stabilizer generators of the five-qudit code J5,1,3Kd.

The choice of decoding will affect the iterative distillation behaviour. The decoding specified by the

logical operators in Tab. (2.2) is the canonical one, though we found the behaviour was simplified by

following each iterate with the following additional correction Clifford unitary Uc:

Uc =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1 ω ω

ω2 ω ω2

ω2 ω2 ω

⎞
⎟
⎟
⎟
⎟
⎟
⎠

, (2.25)

where this maps the qutrit density operator ρ(α) ≡ ρ(α1,0, α0,1, α1,1, α1,2) such that:

{α1,0, α0,1, α1,1, α1,2}Uc ↦ {α∗1,2, α1,1, α
∗
0,1, α1,0}. (2.26)

44

g1 = σ1,0 σ0,1 σ0,−1 σ−1,0 σ0,0

g2 = σ0,0 σ1,0 σ0,1 σ0,−1 σ−1,0

g3 = σ−1,0 σ0,0 σ1,0 σ0,1 σ0,−1

g4 = σ0,−1 σ−1,0 σ0,0 σ1,0 σ0,1

σL1,0 = σ0,1 σ0,1 σ0,1 σ0,1 σ0,1

σL0,1 = σ1,0 σ1,0 σ1,0 σ1,0 σ1,0

Table 2.3: The stabilizer generators of the five-qudit code and the qutrit logical operators expressed in

the σj,k notation.

Without this corrective Clifford one observes a cycling behaviour throughout the distillation process, we

will discuss this behaviour at the end of Sec. (2.4.3).

We will now compute the exact distillation map on the Bloch components after a single round of

distillation. We start by expressing the stabilizer generators and the logical operators of the J5,1,3K3 in

terms of the σj,k operators as shown in Tab. (2.3). The input to the distillation protocol is five identical

copies of a qutrit state ρ(α). Using Eq. (2.21), the input state is expressed as:

ρ(α)
⊗5

=
1

35 ∑
(j,k)∈Z5

3

αj1...j5,k1...k5σj1...j5,k1...k5 , (2.27)

Using Eq. (2.22), a successful measurement of the four stabilizer generators with outcome ‘+1’ corre-

sponds to the following projector:

Π =
1

34 ∑
q∈Z4

3

gq11 g
q2
2 g

q3
3 g

q4
4 . (2.28)

Substituting the stabilizer generators in Tab. (2.3) into the above expression and using the composition

law in Eq. (2.4), the projector becomes

Π =
1

81
∑
q∈Z4

3

(σ(q1−q3),(−q4) ⊗ σ(q2−q4),(q1) ⊗ σ(q3),(−q1+q2)

⊗ σ(−q1+q4),(−q2+q3) ⊗ σ(−q2),(−q3+q4)). (2.29)

45

We can simplify the notation of the above expression by using Eq. (2.5), which removes the tensor

product sign:

Π =
1

81
∑
q∈Z4

3

σ(q1−q3)1(q2−q4)2(q3)3(−q1+q4)4(−q2)5,(−q4)1(q1)2(−q1+q2)3(−q2+q3)4(−q3+q4)5 . (2.30)

The distillation map in Eq. (2.24) can be put into a simpler form:

αout
j,k =

tr(Πρ⊗nΠ†σ̄†
j,k)

tr(ρ⊗nΠ)
=

tr(ρ⊗nΠσ̄−j,−k)

tr(ρ⊗nΠ)
. (2.31)

where in the last step Eq. (2.13), Π = Π†, [σ̄j,k,Π] = 0 and the cyclic property of the trace were used.

The remaining task is to substitute Eqs. (2.27) and (2.30) into Eq. (2.31) to calculate the distillation

map on the Bloch components.

Let us start by evaluating tr(ρ⊗5Π). Recall that all the σj,k operators are traceless except for the

identity operator σ0,0. Therefore, the only terms that will survive in tr(ρ⊗5Π) are the coefficients of the

identity operator. We get the identity operator in ρ⊗5Π when the σj,k operators in ρ⊗5 and the σj′,k′ in

Π have the opposite subscripts (i.e. σj,kσj′,k′ = σ0,0 if and only if j = −j′ and k = −k′). As a result,

tr(ρ⊗5Π) will be the sum of all the Bloch components that are the coefficient of the σj,k operators such

that the subscripts (j, k) are the negative of the subscripts in Eq. (2.29). In fact, since the summation is

over all the elements of the ring Z4
3 it is possible to multiply all the subscripts by (−1) without changing

the actual value of the summation. Hence, tr(ρ⊗5Π) can be compactly expressed as follows

tr(ρ⊗5Π) =
1

81
∑
q∈Z4

3

α(q1−q3)1(q2−q4)2(q3)3(−q1+q4)4(−q2)5,(−q4)1(q1)2(−q1+q2)3(−q2+q3)4(−q3+q4)5 . (2.32)

In a similar way, we can express tr(ρΠσ̄−j,−k) for all four logical operators. For example, in the case of

evaluating the output Bloch component αout
1,0 , Eq. (2.31) becomes

αout
1,0 =

tr(ρ⊗5Πσ̄−1,0)

tr(ρ⊗5Π)
, (2.33)

with tr(ρ⊗5Πσ̄−1,0) given by

tr(ρ⊗5Πσ̄−1,0) =
1

81
∑
q∈Z4

3

α(q1−q3)1(q2−q4)2(q3)3(−q1+q4)4(−q2)5,(−q4+1)1(q1+1)2(−q1+q2+1)3(−q2+q3+1)4(−q3+q4+1)5 .

(2.34)

46

We have evaluated the expressions for the four output Bloch components. However, writing them

out in terms of αj,k notation is cumbersome. Therefore, for clarity, we will relabel the four qutrit Bloch

components as follows (α1,0, α0,1, α1,1, α1,2) ≡ (A,B,C,D). For example, tr(ρ⊗5Π) is given in Eq.

(2.35), where the subscript r represent the number of the distillation rounds with r = 0 corresponding to

the initial input state.

tr (ρ⊗5Π) =
1

81
(1 + 10 (∣Ar ∣

2
+ ∣Dr ∣

2) (∣Br ∣
2
+ ∣Cr ∣

2) + 5(B2
rA

∗
rC

∗2
r +D2

rA
∗2
r B

∗
r+

Dr (A
2
rDrC

∗
r +B

2
rC

2
r) +B

∗2
r (ArC

2
r +C

∗2
r D

∗
r) +D

∗2
r (A2

rBr +CrA
∗2
r))). (2.35)

Furthermore, it can be shown that the resultant expressions for the four output Bloch components can

compactly be expressed in terms of the following single function:

F(A,B,C,D) =
1

81
(B5

r + 10Br (DrA
∗
r +B

∗
r) (ArC

∗
r +CrD

∗
r) + 5(ArC

2
r ∣Ar ∣

2
+D2

r (ArB
∗2
r +Cr)+

A∗2
r (B∗2

r D
∗
r +C

∗
r) +D

∗2
r (A2

r +DrC
∗2
r) + ∣Cr ∣

4B∗
r))/tr (ρ

⊗5Π) . (2.36)

Based on this function the distillation map can be expressed as

Ar+1 =F(A,B,C,D), (2.37)

Br+1 =F(B∗,A,D,C∗
), (2.38)

Cr+1 =F(A∗,C,B,D), (2.39)

Dr+1 =F(B∗,D∗,A∗,C). (2.40)

These four expressions represents the complete distillation map, as the remaining four components

are simply the complex conjugates of these expressions. However, the above expressions do not incor-

porate the additional corrective Clifford Uc. We need to ensure that the map in Eq. (2.26) is applied after

every iteration. This can easily be achieved in our formalism by the appropriate relabelling as follows:

Ar+1 =F(D∗,C,B∗,A), (2.41)

Br+1 =F(C∗,D∗,A,B), (2.42)

Cr+1 =F(D,B∗,C,A), (2.43)

Dr+1 =F(C∗,A∗,D,B∗
), (2.44)

47

which is the corrected distillation map.

In order to calculate the fixed points of this map analytically, one would have to solve the above

simultaneous complex multi-variable polynomials of order 5. It is known from the famous Abel-Ruffini

theorem that there is no algebraic solution for a general polynomial of order five or above. Therefore,

the best way to discover the fixed points of the distillation is through numerical means. We started

with initial states ρ(A,B,C,D) for certain Bloch components and computed the above expressions for

a number of iterations, and observed whether there is a convergence toward a fixed point. If a fixed

point corresponds to a non-stabilizer pure state, then it is a magic state. We identify two qualitatively

different families of magic states. Firstly, those that are in the Hadamard plane, which satisfyHρH† = ρ.

Secondly, we investigate the distillation of an interesting set of states outside the Hadamard plane. Each

of these studies has its own merits. All quantum states can be mapped onto the Hadamard plane and so

this is the study of most generic value.

2.4.2 Hadamard-like Distillation

In the qubit case, the eigenstates of the Hadamard gate are known to be magic states, distillable by

the five-qubit code J5,1,3K2. This result was, however, not presented in the literature, so we include

it in a footnote5. Since the exact generalised form of the Hadamard gate is defined in Eq. (1.13), a

good starting point would be to investigate whether the qutrit Hadamard eigenstates can be distilled by

J5,1,3K3. We begin by outlining some of the structural properties of the qutrit Hadamard eigenspace.

5We have repeated the calculations in Ref. [27] of the 5-qubit code distillation but for distilling the qubit Hadamard states

instead of the T states. The output error probability εout as a function of the initial error probability ε can be shown to be:

εout(ε) = ε(5 + 4ε(5 − 4ε(5 + (ε − 5)ε)))
9 + 40ε(ε − 1)(2ε(ε − 1) + 1)

.

Solving the above equation for εout(ε) = ε gives an error threshold value of 1
6
(3 −

√
6). Also, for sufficiently small ε,

εout(ε) ≈ 5ε/9. This suggests that there is a slow linear error suppression in contrast to the quadratic error suppression for the

T–state distillation.

48

In the matrix representation the qutrit Hadamard is given by

H =
1

√
3

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1 1 1

1 ω ω2

1 ω2 ω

⎞
⎟
⎟
⎟
⎟
⎟
⎠

, (2.45)

where ω = e2πi/3 and H has the eigenvalues (+1,−1, i). We label the corresponding three eigenstates

as (∣H+⟩ , ∣H−⟩ , ∣Hi⟩). The density operators of the eigenstates have the form:

∣H+1⟩ ⟨H+1∣ ≡ ρ (a, a, b, b) , (2.46)

∣H−1⟩ ⟨H−1∣ ≡ ρ (b, b, a, a) , (2.47)

∣Hi⟩ ⟨Hi∣ ≡ ρ (c, c, c, c) , (2.48)

where a = 1
4
(1 +

√
3), b = 1

4
(1 −

√
3) and c = −1

2 , are real parameters. This basis of pure states all lie

on the hyperplane of operators of the form ρ(x,x, y, y). Probabilistic mixtures of these states form an

equilateral triangle, and as reviewed earlier, all points outside this triangle correspond to non-physical

operators (with negative eigenvalues). Furthermore, any qutrit state can be projected onto the Hadamard

plane by applying the following twirling operation to each copy of the input state ρ:

ρ↦
4

∑
j=1

1

4
HjρHj†

. (2.49)

This twirling operation maps the general Bloch components as follows:

α1,0 and α0,1 ↦
Re(α1,0 + α0,1)

2
, (2.50)

α1,1 and α1,2 ↦
Re(α1,1 + α1,2)

2
. (2.51)

As such, we are interested in studying the distillable regions within the Hadamard plane, i.e. the states

corresponding to the points inside the triangle.

In studying the distillable resource region in the Hadamard plane, it is also informative to rule out

regions for which distillation is impossible by any protocol. We have already identified two such regions

in Sec. 2.1. First, clearly, all stabilizer states are undistillable, and this is shown by the red region in

49

Fig. (2.4i). Second, results of Veitch et al. [159] prove undistillability of all qutrit states with a positive

Wigner function. The numerically calculated positive-region is shown in Fig. (2.4i) as the yellow area6.

Running the J5,1,3K3 distillation for all the remaining points as inputs states we have discovered

that both the ∣H+⟩ and ∣H−⟩ states are distillable7, but that ∣Hi⟩ is not an attractor. The distillable regions

are enclosed by the blue dashed triangles. The states ∣H+⟩ and ∣H−⟩ are equally valuable as magic states

because Uc ∣H±⟩ ∝ ∣H∓⟩, which perhaps also explains the symmetry in their distillation regions.

The path of the distillation takes the form shown in Fig. (2.4ii) where we have chosen the ∣H+⟩ blue

triangle as an example. The small black points are few examples of input states to the distillation, and

the black lines represent the distillation paths toward the ∣H+⟩ state. Notice how the distillation does

not follow a straight line, but rather a curved path. In analogy to the “magic axes” in the qubit case, we

call this plane the Hadamard magic plane. The curved distillation path can be understood by studying

how the noise of a resource state in the Hadamard plane is suppressed in different directions by the

distillation. We start by considering a general state ρ△ inside the triangle of the form

ρ△ = (1 − ε1 − ε2) ∣H+⟩ ⟨H+∣ + ε1 ∣H−⟩ ⟨H−∣ + ε2 ∣Hi⟩ ⟨Hi∣ , (2.52)

with ε1+ε2 ≤ 1. For clarity, we write the Bloch components of the above state as ρ△(A△,B△,C△,D△).

They can be calculated explicitly using Eq. (2.13) as

A△ = B△ =
1

4
(1 +

√
3 − 2

√
3ε1 − (3 +

√
3) ε2) ,

C△ =D△ =
1

4
(1 −

√
3 + 2

√
3ε1 − (3 −

√
3) ε2) . (2.53)

6We have calculated these states by using the formalism in [159]. Here, the generalised Pauli operators are define as

Tu ≡ T(j,k) = ω−jk/2ZjXk, where u = (j, k) ∈ Z2

d . Associated with each state ρ, when expressed in the Tu basis, is

a discrete representation—called the Wigner representation, denoted by Wρ(u)—which is uniquely specified by the phase

space point operators Au. The phase point operators are defined as A0 = ∑
u

Tu and Au = TuA0T
†
u. The results of [159]

show that, for all odd prime dimensions, if a state ρ has a positive Wigner representation, such that Wρ(u) ≥ 0∀u ∈ Z2
d, then

it is a bound state for MSD.
7The ∣H±⟩ states are unique up to a Bloch orbital phase. In other words, inserting one of the phases from the set in Table

2.1 would also give a H–type magic state with the same distillation properties. In general, this is not sufficient to specify the

complete set of the H–type magic states.

50

Since we know the general distillation map for any set of Bloch components, we can simply substi-

tute the above expressions into Eqs. (2.41-2.44) to evaluate the output Bloch components αout =

(Aout
△ ,Bout

△ ,Cout
△ ,Dout

△). The output state is then ρout
△ = ρ(αout). We have numerically calculated

the output εout
1 and εout

2 to the first-order terms and obtained

εout
1 (ε1, ε2) = ⟨H−∣ρ

outt
△ ∣H−⟩ ≈ (0.38 + 0.09ε2) ε1, (2.54)

εout
2 (ε1, ε2) = ⟨Hi∣ρ

out
△ ∣Hi⟩ ≈ (0.77 + 3.55ε1) ε2. (2.55)

The above expressions show an asymmetric error suppression in the ε1 (along the ∣H+⟩—∣H−⟩ line)

and ε2 (along the ∣H+⟩—∣Hi⟩ line) directions. The particular distillation paths of Fig. (2.4ii) can be

explained by observing the difference in the coefficients of εout(ε1,0) and εout(0, ε2), where we see that

in the distillation region of the ∣H+⟩ state there is a stronger attraction toward the ∣Hi⟩ state compared

to the ∣H−⟩ state.

The above analysis shows that the performance of the J5,1,3K3 code in distilling the qutrit Hadamard

states is not as good as the qubit case where the 15 qubit code by [27] has an output error probability of

εout ≈ 35ε3. This is to be expected given the similar performance of the five-qubit code in distilling the

H–type qubit magic state5.

The state ∣Hi⟩ is not distillable by J5,1,3K3. In fact, this state belongs to the family of states with

maximally non-positive Wigner function [158]. As we can see this state is the furthest away from

the stabilizer region in the Hadamard plane and to bring it to the stabilizer region would require a

depolarizing noise with an error threshold of 75% (i.e. d/(d + 1) for d = 3). Whether such a state is

distillable by some stabilizer code is still an open question.

To improve the size of the distillation region we have investigated a qutrit version of the seven-qubit

code J7,1,3K2 proposed in Ref. [136]. We started with the stabilizer generators of J7,1,3K2 code and by

adding the (−1) power to the appropriate X and Z Pauli operators, we constructed a set of generalised

7−qudit commuting stabilizer generators as shown in Tab. (2.4). We repeated the distillation procedure

for this set of generators for the case d = 3 (exact calculations are omitted here) and we investigated its

distillation capability in the Hadamard plane. We found that this code attracts towards the non-stabilizer

segments of the line joining the ∣H+⟩ and ∣H−⟩ states with the distillation region enclosed by the green

51

i� ii�

iii��Hi�

�H��

�H��

x

y

Figure 2.4: A representation of the Hadamard plane. The Hadamard eigenstates are the vertices of

the equilateral triangle which lies on a circle of radius 1/
√

2. i) The red region contains the stabilizer

states. The yellow and red regions combined form the states with positive Wigner function. The dashed

blue and the green triangles contain the states that are distillable by the J5,1,3K3 and J7,1,3K3 codes,

respectively. ii) and iii) shows the distillation paths for the ∣H+⟩ state and the mixed states for the

J5,1,3K3 and J7,1,3K3 codes, respectively.

52

g1 = I I I X−1 X X X−1

g2 = X I X−1 I X−1 I X

g3 = I X X−1 I I X−1 X

g4 = I I I Z Z Z Z

g5 = Z I Z I Z I Z

g6 = I Z Z I I Z Z

X̄ = X X−1 X X X−1 X X−1

Z̄ = Z Z Z Z Z Z Z

Table 2.4: The stabilizer generators of the seven-qudit code.

triangle in Fig. (2.4). In other words, the 7−qutrit code distils not pure, but mixed states. Regardless, the

protocol may be useful for bringing states into the region distillable by the 5-qutrit code. The distillation

path for the ∣H+⟩ state is shown in Fig. (2.4iii). This code increase the distillation region as shown by

the solid blue curve in Fig. (2.4). For example, a state between the solid blue line and the dashed blue

triangle is first distilled by the seven-qutrit code to a state within the dashed blue triangle, after which

the J5,1,3K3 code is used to distil the ∣H±⟩ states.

2.4.3 Hadamard-Squared Subspace

In this section, we introduce a second class of magic states distilled by the J5,1,3K3 code. This magic

state is an eigenstate of the H2 operator, but lies within a degenerate eigenspace for this operator, and

so is not uniquely defined by it. The magic state considered here has the form:

∣ϕ⟩ = a ∣0⟩ + b ∣1⟩ + b ∣2⟩ , (2.56)

53

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.01

0.02

0.03

0.04

0.05

ε

�11 �10 �9 �8 �7

�13

�12

�11

�10

�9

log (ε)

p
s

lo
g
(ε

o
u
t
)

i) ii)

|ϕ〉

|H±〉

Figure 2.5: i) The log-log plot of the output error probability εout for the input state ρdep and very small

depolarizing noise ε. ii) The success probability for the trivial syndrome measurements for the case

where the magic states ∣ϕ⟩ and ∣H±⟩ are undergoing depolarizing noise.

where up to 4 decimal places

a = −0.1203 − 0.0272i, (2.57)

b = 0.7017. (2.58)

The equality of the ∣1⟩ and ∣2⟩ components follows from the H2 symmetry. In the Bloch representation,

the α vector is,

α = {0.3236,−0.4772,0.5438,0.6098}, (2.59)

with all components are real and being related again by the H2 symmetry. There are four such distill-

able magic states which are related by Clifford unitaries (see aside note below). Our numerical analysis

shows that these states are clearly attractor fixed points of the distillation protocol, but we do not have

closed form analytic expressions for them. As a consequence, we will not be able to determine ana-

lytically how the error is suppressed as we did in the previous section for the Hadamard magic states.

Nevertheless, we can still gain a numerical indication of how the error of ∣ϕ⟩ states is suppressed. Lets

us start with a ∣ϕ⟩ state undergoing depolarizing noise:

ρdep = (1 − ε) ∣ϕ⟩ ⟨ϕ∣ + εI/3. (2.60)

54

For a sufficiently small ε the distilled state ρout
dep will also be of the above form (i.e on the depolarizing

axis). We can then calculate the output error probability as follows:

εout
= 1 − ⟨ϕ∣ρout

dep ∣ϕ⟩ . (2.61)

In general, we expect that εout ≈ εk for very small ε. Therefore, the power k can be evaluated as the

gradient of a log− log plot of εout versus ε. From Fig. (2.5i), we see that k ≈ 1. This indicates that the

error suppression is linear, which is worse than what is observed in [27].

For completeness, we include the success probability psucc of the syndrome measurements. Suc-

cessful syndrome measurements, where all outputs of the stabilizer measurements are +1, are described

by the projector Π given in Eq. (2.30). Hence, the probability of this measurement is simply:

psucc = tr(Πρ⊗5Π) = tr(ρ⊗5Π), (2.62)

which is given in Eq. (2.32) for all sets of Bloch components. We have computed psucc for both ∣ϕ⟩ and

∣H±⟩ undergoing depolarizing noise as an input states to the distillation. A plot of psucc is given in Fig.

(2.5ii).

Aside: Clifford equivalences and cycling behaviour

We have chosen a particular decoding to avoid a certain cycling behaviour. If instead, the canonical

decoding was used, without the addition of correction Uc permutation, then purification would still

occur, but between each iterate the output would cycle between different states. In the Hadamard plane,

we would observe an oscillation between ∣H±⟩, which is trivial to see since Uc ∣H±⟩ = ∣H∓⟩. Whereas,

for the ∣ϕ⟩ state there is a more complex 4-cycle behaviour, illustrated in Fig. (2.6), such that for the

distillation map for one iterate, denoted by D, performs D(∣ϕj⟩) = ∣ϕj+1⟩ and ∣ϕ⟩ = ∣ϕ1⟩ = ∣ϕ5⟩. The

four cycling states are related to ∣φ1⟩ by

∣ϕ2⟩ = U†
c ∣ϕ1⟩ ,

∣ϕ3⟩ = H ∣ϕ1⟩ , (2.63)

∣ϕ4⟩ = U†
cU

†
c ∣ϕ1⟩ .

55

However, by considering D′(ρ) = UcD(ρ)U†
c after each iterate, this cycling behaviour vanishes. Note

also, that this cycling behaviour is not only seen for the pure states but for depolarized states, and so all

of these states are distilled by the 5-qutrit code.

2.5 Promoting the Clifford group

In this section, we show how to use the two families of magic states ∣H+⟩ and ∣ϕ⟩ to simulate a non-

Clifford gate, thus achieving a universal set of gates. In the current form, these states cannot be injected

directly, so we introduce additional sub-protocols that convert these magic states into another form of

magic state we call phase states, that are useful for state-injection. The phase states hold only phase

information with respect to the computational basis, having the form

∣Φθ,φ⟩ =
1

√
3
(∣0⟩ + eiθ ∣1⟩ + eiφ ∣2⟩) . (2.64)

In the next chapter, we will derive a more general form of these states and show how they can be distilled

directly by the quantum Reed-Muller codes.

We describe, in Sec 2.5.1, the parity-checker protocol, which is used to convert both ∣H+⟩ and ∣ϕ⟩

into the plus-state ∣Ψ+⟩ ∝ ∣0⟩+ ∣1⟩. These plus states are then input into the equatorialization procedure,

in Sec. 2.5.2, to output the desired phase state. Finally, in Sec. 2.5.3, we show how the phase states are

used to implement a non-Clifford gate.

2.5.1 The parity-checker protocol

The parity-checker protocol is a simple distillation protocol (see [137]) which is very efficient against a

specific type of noise, but vulnerable against another type of noise. However, both ∣H+⟩ and ∣ϕ⟩ have

zero overlap with the “bad” noise term and so the protocol can be efficiently used to convert these states

into a plus state. Before beginning the iterative protocol some manipulation of the input states ∣H+⟩ and

∣ϕ⟩ is required:

1. Preparation 1, uniformly randomly choose from the set of unitaries {1,H2} and apply;

56

Stabilizer States Distillable States

ε > 58% ε < 34.5%

/3

|ϕ〉

|ϕ1〉|ϕ2〉

|ϕ3〉 |ϕ4〉

i�

ii�
/3

(1− ε) |φ〉 〈φ|+ ε 11/3

Figure 2.6: An illustrative picture of the cycling behaviour of ∣ϕ⟩. i) Starting with a mixed state (light

blue point) the protocol will increase the purity of the states while cycling between them and ultimately

reaching the fix pure points (dark blue points). ii) The convex line between one of the cycling states ∣ϕ⟩

and the completely mixed state 1/3 with an accurate ratio of the noise threshold.

57

2. Preparation 2, apply X†;

3. Preparation 3, uniformly randomly choose from the set of unitaries {1, S, S2}and apply, where

S = ∣0⟩ ⟨0∣ + ∣1⟩ ⟨1∣ + ω ∣2⟩ ⟨2∣.

This preparation procedure maps all quantum states to

ρ(δ0, η) = (1 − η0 − δ0) ∣Ψ
+
⟩ ⟨Ψ+

∣ + δ0 ∣Ψ
−
⟩ ⟨Ψ−

∣ + η0 ∣2⟩ ⟨2∣ , (2.65)

where ∣Ψ±⟩ = (∣0⟩ ± ∣1⟩)/
√

2. Note that ∣Ψ−⟩ is Clifford equivalent to the Hadamard eigenstate ∣Hi⟩.

For imperfect ∣H+⟩ and ∣ϕ⟩ states, with depolarizing noise ε, we have

η0 = c(∣ψ⟩) + δ0, (2.66)

δ0 = ε/3, (2.67)

where for the two magic states of interest c(∣H+⟩) = 0.2113 and c(∣ϕ⟩) = 0.0152. The parity-checker

protocol will exponentially suppress the value of η0, whereas δ0 will linearly increase. However, this is

not problematic as δ0 can be made arbitrarily small via distillation by the 5-qutrit protocol.

The iterative parity-checker is now fairly simple. On the (n + 1)th round we have

1. Take two copies of ρ(δn, ηn);

2. Measure the observable Z1Z
†
2 and post-select on +1;

3. Decode the state such that ∣j, j⟩ → ∣j⟩;

4. Use the output state ρ(δn+1, ηn+1) as an input in the next iterate.

It is straightforward to verify the iterative relations are

ηn+1 = η2
n/pn, (2.68)

δn+1 = δn(1 − ηn − δn)/pn, (2.69)

where pn is the success probability

pn = (1 + ηn(3ηn − 2))/2. (2.70)

58

When the small noise component is zero, so δ0 = 0, and the large noise is not too large, η0 < 1/3, then

ηn vanishes exponentially quickly such that ηn ∼ (2η0)
n. Allowing for non-zero δ0, the protocol can be

iterated for approximately n ∼ log(δ0) rounds before the δ noise becomes problematic.

Let us consider a concrete example. If we have a ∣ϕ⟩ magic state with depolarization noise ε = 10−8,

this is first prepared into a noisy plus state with η0 ∼ 0.0152 and δ0 = 10−8/3. The total noise, ηn + δn,

will decease for the first 3 rounds of parity checking. After the fourth round we have a plus state with a

total error of only 2.707 × 10−8. This illustrates that high-fidelity plus states can be prepared from high

fidelity ∣ϕ⟩ states in a small number of rounds.

2.5.2 Equatorialization

In this section, we describe a magic state protocol that converts the plus states to the desired phase states.

The phase states lie on a generalisation of the qubit Bloch sphere equator, hence the term Equatorializa-

tion. This protocol is probabilistic but not iterative. We take two highly purified copies of a plus state,

∣Ψ+⟩. We measure a 2-qutrit stabilizer operator and post-select such that we project onto the subspace

spanned by:

∣0L⟩ ∝ ∣0,0⟩ + ω ∣1,2⟩ + ω2
∣2,1⟩ ,

∣1L⟩ =X1X2 ∣0L⟩ ∝ ∣1,1⟩ + ω ∣2,0⟩ + ω2
∣0,2⟩ ,

∣2L⟩ =X
2
1X

2
2 ∣0L⟩ ∝ ∣2,2⟩ + ω ∣0,1⟩ + ω2

∣1,0⟩ ,

and then decode onto a single qutrit. When successful this produces the following transformation:

∣Ψ+
⟩
⊗2
→ (∣0⟩ + ∣1⟩ + (ω + ω2

) ∣2⟩)/
√

3. (2.71)

Noticing that ω + ω2 = −1, we find that the output is a phase state required

∣Φ0,π⟩ = (∣0⟩ + ∣1⟩ − ∣2⟩)/
√

3. (2.72)

59

2.5.3 Non-Clifford Gate

Let us begin by considering a general phase state ∣Φθ,φ⟩. Given such a magic state, and a second qutrit

state in any state ∣ψ⟩ we can perform a gate teleportation by measuring Z1Z
†
2 . Given measurement

outcome ωk, we perform the decoding ∣x, y⟩ → ∣y + k⟩. The ωk outcome applies a unitary Uk,θ,φ to ∣ψ⟩,

which is diagonal in the computational basis with eigenvalues

U0,θ,φ = (1, eiθ, eiφ), (2.73)

U1,θ,φ = (eiθ,1, eiθ),

U2,θ,φ = (eiφ, eiθ,1).

Each unitary occurs with equal probability because the phase state contains no variation in amplitudes.

For our ∣Φ0,π⟩ state, the corresponding unitaries are non-Clifford and take a simple form Uk,0,π, for

k ∈ {0,1,2}. Any such non-Clifford unitary augmented with the Clifford operations forms a universal

set of gates as shown in Thm. (1).

2.6 Summary and Open Problems

In this chapter we have presented an overview of MSD in the qubit case, and we described a numerical

approach that can be used to study the distillation properties of any stabilizer code by deriving the

general distillation map. Our approach, however, is not efficient in the size n of the code. The reason

being that in deriving the distillation map we sum over over all the stabilizer elements of the code, which

is an exponential number of elements dn−k. For this reason, we have only studied the small 5-qutrit code

J5,1,3K3 as a first attempt to explore magic states distillation beyond the qubit case.

The most interesting open question in this work is whether the state ∣Hi⟩ is distillable. This state, as

we saw, is member of the family of most robust states and can tolerate the highest depolarising noise.

Distilling this state can give a clear indication that qudit systems do definitely tolerate higher noise

levels. But, the fact that the bound states (positive Wigner states) and the stabilizer states coincide in the

direction of the ∣Hi⟩ could perhaps suggest that there are other (unknown) no-go theorems that could

60

imply that this mixed-state region is not distillable.

61

Chapter 3

Distillation with Quantum Reed-Muller

Codes

In this chapter we investigate the distillation properties of the qudit quantum Reed-Muller codes. More

specifically, we provide a generalisation of the J15,1,3K2 distillation protocol by Bravyi and Kitaev

[27]. This code has the interesting property of having a transversal non-Clifford gate, namely the

π/8−phase gate. We start in Sec. 3.1 by exploiting this remarkable property in relation to magic state

distillation. We introduce a generalisation of the phase gates, referred to as the magic gates M ∈ Mm
d ,

and define their properties. We then state our main theorem of this chapter for the existence of a MSD

protocol based on the Reed-Muller codes, which will be proven in the subsequent sections. In Sec. 3.2

we describe our generalised distillation protocol for the family of CSS codes. Then in Sec. 3.3, using

the tools developed earlier, we study the distillation properties of quantum Reed-Muller codes (which

are a sub-class of the CSS codes) in all prime dimensions. In Sec. 3.4 we develop different measures

to study the performance of the distillation protocols and we provide concrete examples of distillation

using the two small 3- and 5-dimensional Reed-Muller codes. Finally, in 3.5 we show how the magic

states distilled by the Reed-Muller codes can be injected to implement a magic gate.

62

3.1 Exploiting Transversality

The Reed-Muller codes are classical linear error correction codes [134, 117] that contain many families

of known important codes1 with diverse properties [103, 10, 88, 165, 45, 72]. To our knowledge, these

codes were first generalised to the quantum case by Knill et al. [94], and was further developed by

Steane [151]. Furthermore, the qudit (non-binary) generalisation was later investigated by Sarvepalli

and Klappenecker in [140]. Our aim in this chapter is to generalise the MSD protocol by Bravyi and

Kitaev [27] for distilling the H−type qubit magic states which uses the 15−qubit Reed-Muller code

J15,1,3K2. But before we introduce our generalisation, we start by exploring a very special property of

this code.

As we will see below, the code J15,1,3K2 is a CSS stabilizer code. It has a remarkable property

of having a transversal non-Clifford operator, which is the T–gate (or π/8−phase gate). Following

the definition of a transversal operations introduced in Sec. 1.3, this means that the product operator

T⊗15 = T̄ acts on the logical basis of this code as a non-Clifford operator2. This property plays a

central role in MSD for several reasons. Most importantly, there is a direct relationship between the

T–gate and the H−type magic state ∣π/8⟩, where ∣π/8⟩ = T ∣+⟩. This property will be exploited by the

distillation protocol (see Eq. (3.19)), and it will ultimately allow us to employ powerful techniques of

classical coding theory to obtain the distillation properties of the quantum Reed-Muller codes for all

prime dimensions. Moreover, recall that the T–gate is a non-Clifford unitary that belongs to the third

level of the Clifford hierarchyC1
d(3), and hence it is sufficient to promote the Clifford group to quantum

universality.

For our qudit generalisation we start first by generalising the T–gate to higher dimensions, and we

call such gates the M–gates (a shorthand for a magic gate). We then show that our M–gates are indeed

transversal for qudit Reed-Muller codes.
1Interestingly, the Reed-Muller codes contain the special family of Reed-Solomon codes [135], which has been used in the

Voyager space program to transmit images and in other commercial products such as compact disks.
2We will prove this fact explicitly for the qudit Reed-Muller codes in Sec. 3.3.3.

63

3.1.1 Qudit Magic Gates

Using the above properties of the T–gate as a guideline, we demand that those properties hold for the

qudit generalisation. For this purpose we define a family of qudit magic gates M ∈ Mm
d and state the

general conditions that such gates must satisfy. Note that the parameter m is directly related to formal

definition of quantum Reed-Muller codes, which will be explained thoroughly in due time.

Definition 6. The set of gatesMm
d contains all M such that:

1. M is diagonal in the computational basis {∣0⟩ , . . . , ∣d − 1⟩};

2. M ∈ SU(d);

3. Mdm = 1;

4. M ∈ C1
d(3)/C

1
d(2);

Conditions 1 − 2 require that the qudit M–gate to be a diagonal phase-type unitary gate similar to

the qubit T–gate. In addition, condition 3 is directly related to the transversality of the M–gate for our

quantum Reed-Muller codes. Furthermore, if we express the eigenvalues of M as exp(i2λjπ/d
m) then

condition 3 entails that λj are integers and condition 2 is satisfied when ∑j λj = 0. Finally, condition 4

requires that while M is a member of the third level of the Clifford hierarchy, it is not a member of the

Clifford group itself. From this we conclude that the operator

CM =MXdM
†, (3.1)

must be a non-Pauli Clifford operator. The eigenstates of CM will be the attractor of our distillation

protocols3, which is why it is essential that CM is a non-Pauli operator.

For every set Mm
d we will design protocols that distil eigenstates of CM . However, we need to

know that such gates exist. In the qubit setting, the T–gate provides such a unitary for m = 4. However,

for m < 4 it is easy to check that all qubit gates with the form required by conditions (1-3) of the above

3This is in direct analogy to the qubit case where the equatorial H−type magic state ∣π/8⟩ = (∣0⟩ + eπi/4 ∣1⟩ /
√

2 is an

eigenstate of TXT †.

64

definition are Clifford unitaries and so fail condition 4. Remarkably, for all odd prime dimensions d ≥ 3

we can find such gates for m = 2, and when d ≥ 5 these gates exist for m = 1. Using tall brackets to

denote binomial coefficients we have the following theorem.

Theorem 3. For all odd primes d, there exists a gate M such that

1. for d = 3 we have M ∈ Mm
d for all m ≥ 2;

2. for d ≥ 5 we have M ∈ Mm
d for all m ≥ 1.

One such gate is the following

M = ∑
j

exp(i2λjπ/d
m
) ∣j⟩ ⟨j∣ , (3.2)

with

λj = d
m−2

[d(
j

3
) − j(

d

3
) + (

d + 1

4
)] . (3.3)

We refer to this M as the canonicalMd gate.

In particular, the canonicalMd gate is associated with the non-Pauli Clifford unitary

CM =MXM†
∝XP, (3.4)

where P is the Clifford gate introduced earlier in Eq. (1.14). Clearly, a different M exists for every

dimension d. Solving for M requires only basic algebra, as shown next.

Proof. Here we verify the assertions of Thm. 3 and show that the canonical M is a member ofMm
d for

the asserted values of d and m. We begin by showing that

CM =MXM†
∝XP. (3.5)

Left multiplying by X† gives X†MXM† ∝ P . The left hand side is then

X†MXM†
= ∑

j

exp(i2π(λj⊕1 − λj)/d
m
) ∣j⟩ ⟨j∣ . (3.6)

This equals P , up to a global phase, if for all 0 ≤ j ≤ d − 1,

λj⊕1 − λj = d
m−1

(
j

2
) + c, (3.7)

65

for some c. We first solve for the cases where j ⊕ 1 = j + 1, that is j ≠ d − 1. For this set of equations,

we may use standard arithmetic and recurrence equation methods, and the general solution is

λj = d
m−1

(
j

3
) + jc + λ0, (3.8)

for all j, where c and λ0 are integers to be determined. These integer variables will be fixed by demand-

ing that Eq. (3.7) with j = d − 1 holds, and also that ∑j λj = 0. First, let us impose the former condition

and substitute Eq. (3.8) into Eq. (3.7) for j = d − 1, to yield

λ0 − λd−1 = λ0 − [dm−1
(
d − 1

3
) + j(d − 1)c + λ0] ,

= dm−1
(
j − 1

2
) + c.

Solving this equation for c yields

c = −dm−2
(
d

3
). (3.9)

For m ≥ 2, inspection reveals that c is integer-valued for all d. For m = 1, c is integer-valued for all

prime d ≥ 5. This follows from the fact that when m = 1, c = −(d − 1)(d − 2)/6. We use the fact that

6 = 3 × 2. Since d ≥ 5 is a prime number not equal to three, then either (d − 1) or (d − 2) must be

divisible by three. Since d ≥ 5 is a prime number not equal to two then (d − 1) must be divisible by 2.

Hence the product (d− 1)(d− 2) is divisible by 6 for all primes d ≥ 5, and c is an integer for m = 1 and

d ≥ 5.

It remains to fix λ0 by imposing that∑j λj = 0. Performing the summation and simplifying, we find

that

λ0 = d
m−2

(
d + 1

4
). (3.10)

Again, for m ≥ 2 this is (by inspection) integer-valued for all d. For m = 1, this is integer-valued for all

prime d ≥ 5, and the proof for this latter case is similar to above. When m = 1, λ0 = (d + 1)(d − 1)(d −

2)/24. We observe that 24 = 3 × 2 × 4. Since d ≥ 5 is a prime number not equal to three, then either

(d − 1) or (d − 2) must be divisible by three. Since d is an odd prime number both (d + 1) and (d − 1)

must be divisible by two, and one of this pair must be divisible by 4. Hence (d + 1)(d − 1)(d − 2) must

be divisible by 24 and consequently λ0 is an integer for m = 1 and d ≥ 5.

66

Thus, the gate M as defined in theorem 1, satisfies all the requirements to be a member ofMm
d . For

m = 1 and d = 3, λj , is not integer-valued for all values of j and so the above argument does not provide

a member ofM1
3. Indeed, for d = 3 it is easy to numerically search the sets of gates with integer λj and

verify that none are non-Clifford and soM1
3 is empty.

Finally, in parallel work to us, a comprehensive classification of families of gates that generalise the

T–gates to higher dimension has been derived by Howard and Vala [76], using tools from symplectic

geometry. We also remark that these gates, for d = 3,5, are Clifford equivalent to those found in Ref.

[158] to be the most robust to depolarizing noise before becoming stabilizer operations.

3.1.2 Existence of a MSD Protocol

The eigenstates of CM are non-stabilizer states, which we label ∣Mk⟩. In direct analogy to the qubit

case, we note that ∣Mk⟩ =M ∣+k⟩, where ∣+k⟩ is an eigenstate ofX with eigenvalue ωk. Here, we aim to

use magic state distillation to purify ∣M0⟩ states from n copies of input noisy states4 ρres. For generality,

we will drop the label ‘res’, and consider the input state to the protocol in the most general form denoted

as ρ. To quantify the general noise (as opposed to fidelity) of the state ρ with respect to the magic state

∣M0⟩, we will use the following form of the error probability

ε = 1 − ⟨M0∣ρ ∣M0⟩ . (3.11)

After distilling a magic state with a sufficient output probability εout, they will be used to for fault-

tolerant state-injection of the magic unitary M . Our aim here will be to show that the magic states ∣M0⟩

can be distilled by using a higher-dimensional quantum Reed-Muller code, which will brings us the

main theorem of this chapter:

Theorem 4. Consider anyM ∈ Mm
d for any odd prime d and any integerm ≥ 2, or any odd prime d ≥ 5

and m ≥ 1. There exists a quantum Reed-Muller code QRMd(m), such that Jn = dm − 1,1,2Kd that

4Recall from the last chapter that the resource state ρres cannot be from the region of mixed states with positive Wigner

representation (which also includes the stabilizer region) due to a theorem in [159].

67

iteratively distils the magic state ∣M0⟩. The code takes n copies of a qudit state ρ with error probability

ε = 1 − ⟨M0∣ρ ∣M0⟩ . (3.12)

and with non-zero probability the protocol outputs a state ρout such that

εout
= 1 − ⟨M†

0 ∣ρ
out

∣M†
0 ⟩ . (3.13)

Moreover, there exists a constant K > 0 such that for all ε we have εout ≤ Kε2. Consequently, there

exists a threshold ε∗ > 0 such that if 0 < ε < ε∗ then εout < ε.

All the assertions of the above theorem will be proved in the sections that follows. However, there

are two important observations to make. First, notice that after a single iteration, using as input noisy

∣M0⟩ states, the protocol will output a noisy ∣M†
0 ⟩ state. This is due to the cycling phenomenon that we

saw in the last chapter, which as we will see, it can be prevented by some Clifford unitary correction.

Second, the rate of error suppression is always quadratic, and so these results give the first better than

linear error reductions in higher-dimensional systems that we saw in the last chapter.

Moreover, it is important to point out that the Clifford unitary CM plays two central roles in our

distillation protocol. First, it is used as part of the Clifford correction, which significantly increases the

success probability of the protocol. Secondly, it is used for twirling the general input state canonical

form into the ∣Mk⟩ basis. This is similar to the twirling process in the H−plane we saw in the chapter.

Here, we will refer to the twirling process as CM−twirling. It consists of choosing a random integer

k ∈ 1, . . . , d and applying the gate CkM to the input states ρ, which will convert it into the canonical form

that depends only on d − 1 independent parameters, such that

1

d
∑
k∈Zd

CkMρ(C
k
M)

†
= ∑

k

fk ∣Mk⟩ ⟨Mk∣ . (3.14)

For the distillation of the ∣M0⟩ state the protocol will have to increase the value of f0.

3.2 Distillation using CSS Codes

As has been stated previously, the quantum Reed-Muller codesQRMd(m) that we will construct are a

subclass of the CSS codes. Here, we will use the definitions and notations developed in Sec. (1.2.2) to

68

define our distillation protocol for the general CSS construction. Recall that a CSS code is a stabilizer

code such that Π = ΠSXΠSZ . Our only main demand so far is the existence of an M ∈ Mm
d gate that

has to obey the transversality property. For this purpose, we define anMm
d −distillation code as follows.

Definition 7. An n-qudit stabilizer code, Π, is anMm
d –distillation code if all of the following hold

1. all M ∈ Mm
d are transversal such that M⊗nΠ(M⊗n)† = M̄†ΠM̄ ;

2. it has distance, D ≥ 2;

3. it has logical Pauli operators X̄ =X[1] and Z̄ = Z[−1].

We have introduced the vector shorthand 1 = (1,1, . . . ,1). Notice that we require a special kind

of transversality, such that the logical operator, M̄†, is implemented by applying M⊗n. The need for

complex transposition will be explained later, and will be seen to result in a cycling phenomenon in the

distillation protocol.

Here we show that allMm
d –distillation codes can be used to perform distillation for magic states of

the form ∣M0⟩ = M ∣+0⟩ for all M ∈ Mm
d . Due to cycling, after a single iteration using as input noisy

∣M0⟩ states, the protocol will output a noisy ∣M†
0 ⟩ state. Later we show the existence of the required

codes with D = 2, which will then entail Thm. 4. For now we show how to proceed given such a code.

3.2.1 The Distillation Protocol

Now we state our distillation protocol given that an n-quditMm
d –distillation code exits. For any M ∈

Mm
d , we have the following iterative protocol:

1. Take n copies of the state ρ and CM–twirl;

2. Measure generators of the phase stabilizer SZ ;

3. Accept all outcomes, but perform a Clifford correction operator CM [w] for every syndrome

vector w.;

4. Measure generators of the bit-flip stabilizer SX ;

69

5. Post-select on all ‘+1’ measurement outcomes;

6. Decode the encoded qudit to a single qudit output state ρout;

7. Use ρout as input in the next iteration.

Step 1 is simply the initialization step of the distillation protocol which prepares the product state ρ⊗n

in the canonical form. Steps 2 − 5 correspond to the stabilizer measurement of the stabilizer generators

of the code. We have not yet defined the Clifford correction CM [w], this step simply increases the

success probability of the SZ measurement, as will be shown in Sec. 3.2.3. For now, we will assume

that step 2 generates all ‘+1’ measurement outcomes, for which CM [w] = 1, i.e. the ΠSZ projection is

deterministic. The remaining step 6 is a simple decoding map that returns a single purified qudit. Next,

we describe all these steps in more detail.

After CM–twirling the n copies have the form

ρ⊗n = ∑
v∈Zn

d

αv ∣Mv⟩ ⟨Mv∣ , (3.15)

where

∣Mv⟩ = ∣Mv1⟩ ∣Mv2⟩ . . . ∣Mvn⟩ , (3.16)

and

αv = ∏
k∈Zd

f
wtk(v)
k , (3.17)

where wtk(v) is the k-weight, the number of elements in v equal to k, and fk = ⟨Mk∣ρ∣Mk⟩. We now

exploit the transversality property, note that

ρ⊗n = M̄† ⎛

⎝
∑

v∈Zn
d

αv ∣+v⟩ ⟨+v∣
⎞

⎠
M̄, (3.18)

where M̄† =M⊗n. Upon a successful projection onto the code subspace, we have

Πρ⊗nΠ = M̄† ⎛

⎝
∑

v∈Zn
d

αvΠ ∣+v⟩ ⟨+v∣Π
⎞

⎠
M̄, (3.19)

70

as the projector commutes with M̄ . All is left to do is to determine the effect of each term Π ∣+v⟩, which

we will find to be

Π ∣+v⟩ = 0;∀v ∉ L
⊥
X ; (3.20)

Π ∣+v⟩ =
√
c ∣+j⟩L ;∀v ⊕ j1 = w, s.t.w ∈ LZ . (3.21)

It is not hard to see that the first equation covers all v ∉ L⊥X and the second equation covers all v ∈

span(LZ ,1). Using the known relation that L⊥X = span(LZ ,1), we conclude that these equations

account for all possible v. Note that the constant c gives the probability of this projection when the

initial state is pure, i.e.

c = tr(Π ∣+0⟩ ⟨+0∣
⊗n

). (3.22)

Furthermore, ∣+⟩⊗n is an eigenstate of ΠSX and so this randomness can be completely attributed to the

Z stabilizer measurements, which can be made deterministic by Clifford correction. Now we present

the reasoning that leads to these two equations, namely Eqs. (3.20,3.21). We divide the action of the

projector into three distinct cases of errors: a detected error, no error and an undetected error.

When v ∉ L⊥X , an error is present that is detected by the code and so the state vanishes, Π ∣+v⟩ = 0.

To see this we recall that X ∣+k⟩ = ω
k ∣+k⟩ and so more generally X[u] ∣+v⟩ = ω

⟨v,u⟩ ∣+v⟩. Projecting

onto the ‘+1’ eigenspace of all X[u] ∈ SX entails that the state will vanish unless ⟨v,u⟩ = 0 for all

u ∈ LX . This is simply the requirement that v is in the dual of LX , which proves Eq. (3.20).

For the “no error” instances, v ∈ LZ , the state does not vanish under projection. Furthermore,

since ∣+v⟩ = Z[v] ∣+⟩
⊗n and ΠZ[v] = Π we have Π ∣+v⟩ = Π ∣+⟩

⊗n and so all such states must be

projected onto the same logical state. Finally, we observe that ∣+⟩⊗n is stabilized by XL = X⊗n and so

Π ∣+⟩
⊗n

=
√
c ∣+0⟩L.

All other possibilities correspond to undetected errors, resulting in a projection onto other logical

states. In such cases, v ∈ L⊥X and so there must exist a j ∈ Zd such that w = v ⊕ j1 ∈ LZ . In

terms of Pauli operators, we have Z[w] = Z[v]Z[j1] and so Z[v] = Z[w]Z[−1]. Since the logical

operator is ZL = Z[−1] it follows that Z[v] = Z[w]ZjL. In terms of the quantum state, we have

∣+v⟩ = Z[w]ZjL ∣+⟩
⊗n and so after projection Π ∣+v⟩ =

√
cZjL ∣+0⟩L =

√
c ∣+j⟩L.

71

Summary and Distillation Map

In summary, the transversality of M in Eq. (3.19) allowed us to consider the distillation of magic states

∣M0⟩ as equivalent to the simpler problem of distillation in the X basis. Substituting Eqs. (3.20,3.21),

we get

Πρ⊗nΠ = cM̄† ⎛

⎝
∑
j∈Zd

∑
v⊕j1∈LZ

αv ∣+j⟩L ⟨+j ∣L

⎞

⎠
M̄. (3.23)

Again, due to the cycling behaviour, that output state is diagonal in the basis M̄† ∣+j⟩L rather than the

desired M̄ ∣+j⟩L. Decoding onto a single qudit we have

ρout
∝ c ∑

j∈Zd
∑

v⊕j1∈LZ
αv ∣M†

j ⟩ ⟨M
†
j ∣ . (3.24)

By expanding out αv, we get an iterative formula for fout
k = ⟨Mk∣ρ

out ∣Mk⟩, such that

fout
j =

∑v⊕j1∈LZ ∏k∈Zd f
wtk(v)
k

Psucc
, (3.25)

which has been renormalized by dividing through by the success probability Psucc. This probability

equals the sum of the numerators, which is

Psucc = ∑
j∈Zd

∑
v⊕j1∈LZ

∏
k∈Zd

f
wtk(v)
k . (3.26)

The summation over all j, such that v ⊕ j1 ∈ LZ , is equivalent to a sum over all v ∈ span(LZ ,−1).

Using the properties of the CSS codes we know span(LZ ,−1) = L⊥X and so

Psucc = ∑
v∈L⊥X

∏
k∈Zd

f
wtk(v)
k . (3.27)

Notice that we have dropped a factor of c from the success probability, which will be justified later

by Clifford correction. Finally, both numerator and denominator of fout
j can be calculated from the

classical codes LX and LZ only, and will result in polynomials of degree n.

72

3.2.2 Analyzing the Iterative Formulae

Here we will study the behaviour of the above iterative formulae under a simple depolarizing noise

model and give a Taylor series approximation. This will prove to be useful when we later study the

performance of the distillation protocols. When the noise is depolarizing, it means that fj≠0 = ε/(d− 1)

and f0 = 1 − ε. The formula for the fidelity simplifies to

fout
0 =

∑v∈LZ f
n−∣v∣H
0 f

∣v∣H
j≠0

∑v∈L⊥X f
n−∣v∣H
0 f

∣v∣H
j≠0

, (3.28)

where ∣ . . . ∣H is the Hamming weight. The factors fn0 appear on both numerator and denominator and

so cancel. Making use of the shorthand

µ =
fj≠0

f0
=

ε

(d − 1)(1 − ε)
, (3.29)

we can further simplify the fidelity formula to

fout
0 =

∑v∈LZ µ
∣v∣H

∑v∈L⊥X µ
∣v∣H

. (3.30)

The above equation depends on only a single parameter and the simple Hamming weights. We will

show later, in Sec. 3.3.4, that this simple form can be further simplified by employing some powerful

techniques from classical coding theory.

Now, we make the following observation in regard to the quadratic error suppression asserted by

Thm. 4. Taylor-expanding the numerator and denominator to second order we have

fout
0 ∼

1 + aµD +O(µD+1)

1 + bµD +O(µD+1)
, (3.31)

where a (b) is the number of weight d elements of LZ (L⊥X). Notice that both LZ and L⊥X must contain

a single weight zero element, v = 0 = (0,0, . . . ,0). Also, by definition, both classical codes contain

no other elements with weights smaller than D. By further approximating the denominator and using

fout
0 = 1 − εout gives

εout
∼ (b − a)µD +O(µD+1

). (3.32)

73

So the suppression of errors is degree D as µ ∼ ε. In particular, since we know that D ≥ 2 (if fact, D = 2

for our protocols) this implies that the error suppression is at least quadratic, as claimed.

Finally, we remark that the above approximation can be generalised further (omitted here) to demon-

strate error suppression and existence of a threshold for all possible noise models.

3.2.3 Clifford Correction

So far we have assumed that the Z stabilizer measurements all yield the desired ‘+1’ outcome. Next we

consider the process of Clifford correction, as outlined by step 3 of our protocol. This additional strategy

significantly increases the success probability of each round, so much so that success is guaranteed in the

limit of pure initial states. The general idea is that for any measurement outcomes, with resulting projec-

tor Π′
SZ , there exists a Clifford CM [w] such that CM [w]Π′

SZ = ΠSZCM [w]. The key fact exploited is

that for a single qudit CMZ = ω−1ZCM , and so for many qudits CM [w]Z[v] = ω−⟨w,v⟩Z[v]CM [w].

To proceed we must specify the projector Π′
SZ . We begin by expressing the linear code as LZ = {Gu ∶

u ∈ Zmd } where m = Dim(LZ) and G is an m by n matrix called the generator matrix of LZ . Each

column of G gives an individual generator of LZ and hence SZ . When the measurement corresponding

to the jth generator gives outcome ωkj , the resulting projection is

Π′
SZ =

1

2m
∑

u∈Zm
d

ω⟨k,u⟩Z[Gu]. (3.33)

Conjugating with a Clifford correction CM [w] yields

CM [w]Π′
SZ =

1

2m
∑

u∈Zm
d

ω⟨k,u⟩−⟨w,Gu⟩Z[Gu]C[w], (3.34)

and so the correction works when for all u we have ⟨k,u⟩ = ⟨w,Gu⟩ mod d. We can always choose a

canonical form for the generator matrix, such that G = (1m∣G′), where the identity acts on the first m

rows of G and G′ labels the remainder of the matrix. For such a canonical generator matrix we choose

w to equal w = (k1, k2, . . . , km,0,0, . . . ,0) so it matches the measurement outcomes on the first m

entries. This yields ⟨w,Gu⟩ = ⟨k,u⟩ and so Clifford correction achieves its goal.

74

3.3 Reed-Muller Codes

Discussing quantum Reed-Muller codes is a challenging task since there many different definitions of

these codes in the literature [94, 151, 171, 101]. One reason for this is because the classical Reed-Muller

codes—from which the quantum Reed-Muller codes are constructed—contain a lot of symmetry, and

different investigations tend to exploit such symmetries in different ways, which results in different

definitions. In our work here we start by introducing the classical Reed-Muller codes in their general

form, and then following Knill et. al. [94] we modify these codes to obtain the shortened classical

Reed-Muller codes. Next, we show how these modified codes can be used to construct the quantum

Reed-Muller codesQRMd(m) with the promised properties suitable for the above distillation protocol.

3.3.1 Classical Reed-Muller Codes

We start by reviewing the non-binary, or d-ary, generalisations of Reed-Muller codes and define the nec-

essary properties needed for later sections. A d-ary classical Reed-Muller code, denoted byRMd(u,m),

is conventionally defined by two parameters u and m [88, 165, 45, 72]. As before, the dimension d tells

us the relevant field Zd the code is defined over. The parameter u determines the order of the code, and

m determines the size of the code (i.e. number of codewords). Associated with all Reed-Muller codes

are polynomials with degree of order u, which uniquely define the code5. In this work, we are interested

in degree 1 polynomials, i.e. linear functions, and hence u = 1 is assumed throughout. The dual of a

Reed-Muller is another Reed-Muller code, though it may have a different order. Although this means

that Reed-Muller codes of higher order will be involved in our work, we will only need to define them

in terms of duality. For our quantum Reed-Muller code construction we will not use the codes we define

in this section but a shortened version we introduce in the next section. Nevertheless, it proves useful to

start our construction by reviewing classical Reed-Muller codes in their more general form.

Reed-Muller codes are defined in terms of linear maps between finite fields. For every field Zmd ,

there are dm linear maps g from Zmd onto Zd. All such maps can be labelled by vectors u themselves,

5For readers that wish to understand the relationship between the polynomial’s order and the structure of a finite field, we

recommend [103].

75

such that gu ∶ Zmd → Zd where u ∈ Zmd , and then the function will evaluate to gu(a) = ⟨u,a⟩ = ⊕jujaj .

Next, we consider another mapping, Umd ∶ Zmd → Znd , where n = dm, such that

Umd (u) = (⟨u,a0⟩, ⟨u,a1⟩, . . . , ⟨u,an−1⟩), (3.35)

where aj is the base-d representation of the natural number j. For example, with d = 3 and m = 2 we

would have the ordered set

{aj} = {(0,0), (0,1), (0,2), (1,0), (1,1), (1,2), (2,0), (2,1), (2,2)}. (3.36)

Hence for u = (0,1) we have

U2
3 (u) = U2

3 (0,1) = (0,1,2,0,1,2,0,1,2). (3.37)

For any positive integers d and m, the set L = {ū = Umd (u);u ∈ Zmd } is a linear vector space6.

The codes of interest are constructed by considering all affine functions, which are linear maps plus an

additional constant c such that they map u to Umd (u) ⊕ c1, this brings us to our formal definition of the

classicalRMd(1,m) before being shortened:

Definition 8. Unshortened Reed-Muller codes, RMd(1,m), are classical linear codes on Znd , where

n = dm, of dimension m + 1. They are the set of codewords RMd(1,m) = {Umd (u) ⊕ c1 ∶ u ∈ Zmd , c ∈

Zd} defined in terms of affine functions.

Before we explore the properties of these codes further we need to introduce one more definition:

Definition 9. We say a function Λ ∶ Znd → Z is a λ-function if there exists a set of d integers {λ0, . . . , λd−1}

such that ∑j∈Zd λj = 0 and

Λ(v) =
n

∑
j=1

λvj . (3.38)

This definition is closely related to the non-Clifford gates introduced in Def. (6), and the relationship

between these two definitions will become clear soon. Our main observation here is the following.
6Recall that a vector space has to satisfy the closure property of under addition. In our definition, this follows directly from

the closure under addition of homogeneous (same order) linear maps.

76

Lemma 1. Given a λ-function Λ and an unshortened code RMd(1,m) all v ∈ RMd(1,m) satisfy

Λ(v) = 0 mod dm.

Proof. To prove the lemma we first consider codewords where ū = 0, and so v = (c, c, c, . . . , c), then

Λ(v) = dmλc, (3.39)

which vanishes modulo dm. Let us now consider the codeword for the unit vector, ū = (1,0,0, . . . ,0),

and c = 0. The corresponding codeword has a repetitive structure as in Eq. (3.37), where each element

of Zd appears dm−1 times. Hence,

Λ(v) = dm−1
d−1

∑
j=0

λj = 0, (3.40)

since we required in our definition of a λ-function that ∑d−1
j=0 λj = 0. The above argument looks tailored

to codewords for a unit vector ū, but a similar argument holds for all codewords with non-trivial ū. That

is, for any non-trivial vector ū, there are dm−1 different linear maps that evaluate to each possible output.

To see this, consider that the family of linear maps is invariant under change of variables that preserve

linearity. Hence, the family of functions can always be expressed in a basis such that ū is a unit vector.

Furthermore, these codewords have uniform multiplicity of every value Zd, and so adding c1 will only

reorder the elements and not the multiplicity with which they appear. This proves our lemma.

In summary, unshortened Reed-Muller codes have a huge amount of symmetry that they inherit

from the families of affine and linear maps. However, they actually have too much symmetry for our

purposes. We break just enough of that symmetry by shortening the code.

3.3.2 Shortened Classical Reed-Muller Codes

Given a code L over Znd , the corresponding shortened code, denoted L∗, is over Zn−1
d . In terms of the

codewords, a L∗ code differs from L in two aspects. First, it contains only the codewords of L that has

0 in the first position. This will remove, for example, the 1 codeword. Secondly, it deletes the first 0

77

position from all the codewords. On its own, the second property is known as puncturing, where the first

position is removed but all codewords are kept. We shall give a self-contained definition of a shortened

Reed-Muller code as follows.

Definition 10. Shortened Reed-Muller codes, RM∗
d(1,m), are classical linear codes on Znd , where

n = dm − 1, of dimension m. They are the set of codewords RM∗
d(1,m) = {Pmd (u) ∶ u ∈ Zd} defined

in terms of linear maps.

Here Pmd is the same map as Umd , but omitting the first element. For example, the shortened version

of Eq. (3.37) is

P 2
3 (u) = P 2

3 (0,1) = (1,2,0,1,2,0,1,2), (3.41)

Notice that the above definition makes use of only linear maps and not affine maps as in theRMd(1,m).

This is because, in the unshortened code we had a generator 1 that corresponded to the constant term

in affine functions, but the 1 generator is dropped in the definition of the shortened Reed-Muller code.

Consequently, the dimension of the code drops by one; Dim(RM∗
d(1,m)) = Dim(RMd(1,m)) − 1.

For completeness, lets now consider the shortened analogue of Lem. 1.

Lemma 2. Given a λ-function Λ and a shortened codeRM∗
d(1,m) all v ∈ RM∗

d(1,m) satisfy Λ(v⊕

c1) = −λc mod dm.

Proof. This follows quickly from Lem. 1. Given a v ∈ RM∗
d(1,m), let us define

w = (0, v1, v2, . . . , vn) ⊕ c1 = (c, v1 ⊕ c, v2 ⊕ c, . . . , vn ⊕ n), (3.42)

where clearly w is a codeword of the unshortened codeRMd(1,m). Furthermore, Λ(w) = Λ(v) + λc

as it has an extra term appended. However, Lem. 1 tells us that Λ(w) = 0, and so Λ(v) = −λc.

In the next section, we see that Lem. 2 is related to transversality of quantum gates for an associated

quantum code.

78

3.3.3 Quantum Reed-Muller codes

Here we demonstrate how quantum Reed-Muller codes can be constructed from two classicalRM∗
d(1,m)

for general m and d.

Definition 11. QRMd(m) with m ≥ 1 is a quantum CSS code over n = dm − 1 qudits of prime

dimension d. The code-space is defined by

1. LX = RM∗
d(1,m);

2. LZ = [span(LX ,1)]
⊥;

3. X̄ =X[1];

4. Z̄ = Z[−1].

We could have equivalently specified LZ as a higher order Reed-Muller code [27], though the above

is simpler and more succinct. We now verify that QRMd(m) codes are indeed quantum codes. By

construction, the stabilizer is Abelian asLZ ⊂ L⊥X . It is straightforward to check the logical operators are

well defined: that Z̄ commutes with the stabilizer; X̄ commutes with the stabilizer; and X̄Z̄ = ω−1Z̄X̄ .

Now our next main result can be concisely stated.

Theorem 5. QRMd(m) quantum codes areMm
d –distillation codes of distance 2.

The main property we need to prove is transversality for all M ∈ Mm
d . As with all CSS codes [120],

we have that

∣j⟩L =
1

√
∣LX ∣

∑
v∈LX

∣v ⊕ j1⟩ . (3.43)

Acting on this logical state with M⊗n gives

M⊗n
∣jL⟩ =

1
√

∣LX ∣
∑

v∈LX
exp(i

2π

dm
Λ(v ⊕ j1)) ∣v ⊕ j1⟩ , (3.44)

79

where Λ is a λ-function (Recall Def. 9) using the integers {λj} associated with the eigenvalues of the

unitary M . Now we use our key lemma 2 to conclude

M⊗n
∣j⟩L =

1
√

∣LX ∣
∑

v∈LX
exp(−2iπλj/d

m
) ∣v ⊕ j1⟩ , (3.45)

= exp(−2iπλj/d
m
) ∣j⟩L = M̄†

∣j⟩L ,

and so we can identify M⊗n with M̄†.

The second property we need to prove is that the distance of such quantum code is 2. This is a rather

straightforward task as distance 2 is the smallest non-trivial distance. The relevant distance is Dz , the

smallest ∣v∣H such that it produces a logical error Z[v]Π = ZjLΠ. For such an operator v ∈ L⊥X but

v ≠ 0, so the phase error commutes with the X stabilizer but is non-trivial. If such an operator existed

with Hamming weight 1, it would entail that there existed a qudit upon which LX acted trivially, which

there is not. The fact that the distance is not greater than 2 is shown in the following section.

3.3.4 Weight Enumerators and MacWilliams Identity

In the last section, we introduced our version of higher-dimensional Reed-Muller codes (based on the

classical shortened Reed-Muller codes), and showed that they have the required non-Clifford transver-

sality. In this section we wish to evaluate the exact iterative formula, Eq. (3.25), of these codes. How-

ever, for a general noise model, this task is not tractable because the size and complexity of the sets LZ

and L⊥X grow exponentially7 with d and m. However, by considering depolarizing noise, the problem

becomes much simpler as shown by Eq. (3.30), which we restate here

fout
0 =

∑v∈LZ µ
∣v∣H

∑v∈L⊥X µ
∣v∣H

. (3.46)

To evaluate the above equation we use very useful tools from classical coding theory, namely weight
7Notice for small codes (e.g. QRM3(2) and QRM5(1)) it is computationally feasible to sum over all the elements of

LZ and L⊥X . In fact, in the last chapter we were also able to calculate the entire distillation map because the five qutrit code

J5,1,3K3 is small enough.

80

enumerators and the MacWilliams identities [103]. The above equation can be expressed as

fout
0 =

WLZ(µ)

WL⊥X (µ)
, (3.47)

where WL(µ) is the weight enumerator

WL(µ) = ∑
v∈L

µ∣v∣H . (3.48)

As can be seen form the above equation, a weight enumerator is simply a polynomial—the coefficient

being the number of codewords with Hamming weight equal to the power of each term in the polyno-

mial. More importantly, a weight enumerator for a code L can be related to the weight enumerator for

the dual code L⊥ by the MacWilliams identity

WL⊥(µ) =
1

dDim(L)
[1 + (d − 1)µ]nWL (

1 − µ

1 + (d − 1)µ
) . (3.49)

For clarity we will use the shorthand

µ̃ =
1 − µ

1 + (d − 1)µ
. (3.50)

Using LZ = [span(LX ,1)]
⊥ = (L′X)⊥ (see Eq. 1.22) and the MacWilliams identity we have

fout
0 =

WL′X (µ̃)

dWLX (µ̃)
. (3.51)

The above form is more convenient for us because, as we will see, the codes L′X and LX are simpler

than their duals, and so the MacWilliams identity has proven extremely helpful. We now derive a closed

form for the weight enumerators WL′X (µ̃) and WLX (µ̃), which is the subject of the next lemma.

Lemma 3. For any quantum Reed-Muller code with LX = RMd(1,m) we have

WLX (µ̃) = 1 + (dm − 1)µ̃(d
m−dm−1), (3.52)

and

WL′X (µ̃) =WLX (µ̃) + (d − 1)[µ̃(d
m−1)

+ (dm − 1)µ̃(d
m−1−dm−1)

]. (3.53)

81

Proof. We need to find the weight enumerators for LX = RM∗
d(1,m) and L′X = span(LX ,1). Notice

that LX ⊂ L′X , therefore it is natural to start our evaluation with LX and then add the remaining terms

needed for L′X .

First, LX contains a zero vector (0,0, . . . ,0) with zero Hamming weight. Second, all the remaining

codewords, there are dm−1 such codewords, have (d−1) zeros, i.e have Hamming weight n−(d−1) =

dm − d. Thus we have the weight enumerator

WLX (µ̃) = 1 + (dm − 1)x(d
m−d). (3.54)

The enumerator for L′X can be broken up into d separate sums, since L′X = {LX ,LX ⊕ 1, . . . ,LX ⊕

(d − 1)1}, and so

WL′X (µ̃) =
d−1

∑
j=0

WLX⊕j1(µ̃), (3.55)

= WLX (µ̃) +
d−1

∑
j=1

WLX⊕j1(µ̃). (3.56)

For the rest of this argument we focus on the j ≠ 0 terms. First, each j1 when added to the (0,0, . . . ,0)

vector will generate a codeword of full Hamming weight (n = dm − 1). Second, each j1 when added to

any other codeword of LX (other than the (0,0, . . . ,0) vector) results in a codeword with dm−1 zero’s

and so Hamming weight n−dm−1 = dm −1−dm−1. For each LX ⊕ j1, there are dm −1 such codewords

and so

WLX⊕j1(µ̃) = x
(dm−1)

+ (dm − 1)x(d
m−1−dm−1). (3.57)

For every j ≠ 0 we get the same result and we have d − 1 such sums, and so

WL′X (µ̃) = WLX (x) + (d − 1)WLX⊕1(µ̃), (3.58)

which is the required expression.

Using the result of the above lemma, we then obtain the exact analytic form of the iterative formula

after one round of distillation and under depolarising noise as

fout
0 =

1 + (dm − 1)µ̃(d
m−dm−1)

d + d(dm − 1)µ̃(dm−dm−1) + d(d − 1) (µ̃(dm−1) + (dm − 1)µ̃(dm−1−dm−1))
, (3.59)

82

Now we substitute back the original variable ε, such that

µ̃ = 1 +
d

(d − 1)
ε, (3.60)

which would give us a closed analytic form. The exact expression is a bit long to reproduce here. Rather

we present the Taylor expansion to second order in ε,

εout
=

(dm − 1)(d − 2)

2(d − 1)
ε2 +O[ε3]. (3.61)

The above formula holds many interesting facts. Notice that for all codes with odd prime d and all

m, we see a quadratic error suppression. In contrast, the qubit Reed-Muller code used by Bravyi and

Kitaev, namely J15,1,3K2 ≡ QRM2(4), obtained a cubic reduction εout ∼ 35ε3. Our analysis also

describes the Bravyi-Kitaev protocol, the only difference being that in the qubit case we need m ≥ 4,

and so the above formula also holds for qubits. It is intriguing to observe that the factor (d− 2) appears

above and so the quadratic term would vanish only in the qubit case, and so in higher dimensions these

Reed-Muller codes are only distance 2.

3.4 Distillation Performance

In this section we will outline two measures that can quantify the performance of our QRMd(m)

distillation protocols, namely the distillation yield and the distillation thresholds under the depolarizing

noise model. Next, we will consider the performance of the smallest possible codes, which are the

8−qutrit code QRM3(2) and 5−ququint code QRM5(1), in more detail.

3.4.1 Distillation Yields

The yield captures the performance of the distillation protocol in terms of the cost of mixed states needed

to distil a magic state. More precisely, given some target error probability εtar, the yield quantifies the

expected fraction of the initial copies needed to achieve the desired final error probability. We will show

that our protocols yield magic states at a rate that scales only polynomially with εtar.

83

For any protocol and any resource state ρ with error probability εin, there exists a number of distilla-

tion rounds N(ρ, εtar) required to achieve εtar. Recall that the success probability Psucc for measuring

the trivial syndromes depends on the error probability of the resource states. For the kth round of

distillation we denote the success probability by P (k). Then the yield is simply

Y (ρ, εtar) = ∏
k=1,...,N

P (k)

n
, (3.62)

where n is the number of copies used per iteration (n = dm − 1 in our case). Our main interest here is

to see how this expression scales as the target probability εtar → 0. In this limit, the success probability

approaches 1, which means that P (k) approaches 1 as k increases. Therefore, for all p < 1 these exists

a c (number of iterations) such that for all k > c we have P (k) > P (c) = p. This allows us to lower

bound the yield such that

Y (ρ, εtar) ≥ C (
P (c)

n
)

N−c

, (3.63)

where C is a constant overhead, independent of εtar, which represents the yield for c iterations. Fur-

thermore, after c iterations the error probability is now εc, and observe that for a single round we know

that (for our protocols) εout ≤ Kε2 for some K—equivalently Kεout ≤ (Kε)2. Therefore, the error

probability after N iterations, εN , satisfies KεN ≤ (Kεc)
2N−c

. Taking Kεc < 1 allows us to bound the

number of iterations needed such that

N − c < log2 (
log(ε−1

tar/K)

log(ε−1
c /K)

) . (3.64)

Now we make use of the following identity, for any positive a and b we have alog2(b) = blog2(a).

Using this relation and the above equation, we can express the yield as

Y (ρ, εtar) ≥ C (
log(ε−1

tar/K)

log(ε−1
c /K)

)

log2(P (c)/n)

. (3.65)

With the shorthand γ = − log2(Pc/n), which is positive, we finally have

Y (ρ, εtar) ≥ C
log(ε−1

c /K)γ

log(ε−1
tar/K)γ

. (3.66)

This decreases by a factor polynomial in ε−1
tar.

84

The expected resource cost of distillation is the inverse of the yield, and this increases only polyno-

mially in ε−1
tar. As we can see the scaling is governed by the factor γ = − log2(P (c)/n). For practical

purposes we can assume that P (c) is arbitrarily close to 1, i.e. we are working in the regime that the

error probability is very small. Hence, the relevant scaling parameter is γ∗ = log2(n) = log2(d
m − 1),

which we give in table 3.1. Therefore, the yield becomes

Y (ρ, εtar) ∼ O (log(ε−1
tar/K)

−γ∗
) . (3.67)

d m = 1 m = 2 m = 3 m = 4

2 N/A N/A N/A 2.46497

3 N/A 3 4.70044 6.32193

5 2 4.58496 6.9542 9.2854

7 2.58496 5.58496 8.41785 11.2288

11 3.32193 6.90689 10.3772 13.8376

13 3.58496 7.39232 11.1007 14.8017

17 4 8.16993 12.2621 16.3498

19 4.16993 8.49185 12.7436 16.9917

Table 3.1: The scaling parameter, γ∗, for the QRMd(m) distillation as governed by Eq. 3.67. The

smaller the value of γ∗, the more resource efficient the protocol in the limit of many iterations. N/A

indicates not applicable, as for those parameters no non-Clifford gates exist.

Notice that the code QRM5(1) achieves the best yield scaling of all quantum Reed-Muller codes.

3.4.2 Depolarising Noise Thresholds

The second measure of performance of a distillation protocol is its capability in distilling the largest

mixed state resource region. While some codes can distil large regions of non-stabilizer mixed states

(i.e. have high distillation thresholds), others can have achieve better yields. For this purpose we have

used the exact expression for εout to find the depolarizing noise threshold, denoted by ε∗dep, below which

85

the distillation occurs8. We have numerically evaluated ε∗dep for small values of d and m as shown in

Tab. (3.2). Under a more general noise model, we denote the absolute threshold, which could be smaller,

by ε∗. This threshold corresponds to the noise resulting in mixed states off the depolarizing ‘axis’, and

we will provide a examples of how it is calculated in the next section.

As shown by Tab. (3.2), the threshold gets weaker for both increasing d and m. This is in corre-

spondence with the approximate formula for εout in Eq. (3.61). As m increases, the number of copies

required per iteration increases and the depolarizing noise threshold decreases. This suggests to us that

it is advantageous to use the smallest possible m. The only benefit of using codes with larger m is to

distil a larger set of states by the protocol.

If we also compare our protocols with the threshold of the BK protocol for d = 2, the pattern of

better threshold for smaller dimensions no longer holds. We see that the best threshold we observe

is for QRM5(1) with a fairly high threshold also observed for QRM3(2). There are many subtle

differences in the Clifford group between odd and even dimension, and here those differences work in

our favour. In odd prime dimension we can construct smaller codes with transversal non-Clifford gates.

Our codeQRM5(1) uses 4 ququints covering a Hilbert space of dimension 54, which to our knowledge

is the smallest non-trivial stabilizer code with a transversal non-Clifford gate. Furthermore, research to

date indicates that smaller codes lend themselves to better thresholds. A plausible explanation is that

larger codes allow more undetected errors. Most of these undetected errors will have a large Hamming

weight, and so while negligible for small ε, they will be damaging for the modest size ε relevant for

threshold calculations.
8Note that we have used ε = 1 − ⟨M0∣ρ ∣M0⟩ to quantify the depolarizing noise. However, when a state is undergoing

depolarising noise, it has the form

ρ = εdep ∣M0⟩ ⟨M0∣ + (1 − εdep)1/d, (3.68)

as we have done in the previous chapter. Observe the dependence on the dimension appearing in the above equation. The two

distinct noise measures are related by

ε∗dep = (d − 1)εdep/d. (3.69)

This suggests that the above depolarising noise relation will give larger threshold values. For example the codes QRM3(2)

andQRM5(1) having thresholds at εdep = 0.317 and εdep = 0.453, respectively.

86

d m=1 m = 2 m = 3 m = 4

2 N/A N/A N/A 0.14148

3 N/A 0.211001 0.0657764 0.0214564

5 0.3631226 0.0614718 0.0119213 0.00236986

7 0.2322599 0.0291865 0.00409851 0.000584079

11 0.1341066 0.0111835 0.00100907 0.0000916717

13 0.1106148 0.00790156 0.000604487 0.0000464795

17 0.0818753 0.00454655 0.000266565 0.0000156773

19 0.072453 0.00362063 0.000190054 0.0000100014

Table 3.2: The distillation threshold ε∗dep for depolarizing noise when distilled by QRMd(m). Notice

the threshold for the Bravyi-Kitaev J15,1,3K2 ≡ QRM2(4) protocol. N/A indicates that Reed-Muller

codes with those do not have a non-Clifford gate.

3.4.3 Examples: Qutrit QRM3(2) and Ququint QRM5(1) Codes

In this section we will outline the properties of the smallest two Reed-Muller codes, which are the three

dimensional 8−qutrit QRM3(2) code and the five dimensional 5−ququint QRM5(1) code. Due to

their small sizes, the iterative formula for these codes can be evaluated exactly for general noise models.

Performance of QRM3(2)

We begin by stating the definition of QRM3(2) in terms of its stabilizer generators.

Definition 12. QRM3(2) is a CSS code over n = 8 qudits of dimension 3. The LX code is generated

by

u1 = (1,2,0,1,2,0,1,2), (3.70)

u2 = (0,0,1,1,1,2,2,2).

87

Similarly, LZ is the code generated by

v1 = (1,2,0,1,2,0,1,2), (3.71)

v2 = (0,0,1,1,1,2,2,2),

v3 = (0,0,1,2,0,2,1,0),

v4 = (1,1,0,1,1,0,1,1),

v5 = (0,0,1,1,1,1,1,1).

The logical operators are Z̄ = Z[−1] ≡ Z[21] and X̄ =X[1].

This code is transversal with respect to the canonicalM3 non-Clifford gate:

M =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

τ 0 0

0 1 0

0 0 τ−1

⎞
⎟
⎟
⎟
⎟
⎟
⎠

, (3.72)

where τ = exp(i2π/9). In the distillation protocol, recall that we first apply the CM–twirling on all

the input qudits, which project them onto the plane spanned by the ∣Mk⟩ orthogonal basis, such that

ρ = ∑k fk ∣Mk⟩ ⟨Mk∣. Recall from the last chapter that for qutrit systems such a plane can be represented

by two real parameters such that the eigenstates of the M3 operator form an equilateral triangle, we

show such a representation in Fig. (3.1). Also, when we wish to distil ∣M0⟩, we can think of the weights

f1 and f2 as representing different types of noise. For our purposes, a more convenient parameterization

is f1 = ε cos2(θ) and f2 = ε sin2(θ) as we are mainly interested in how the total noise reduces. Our

techniques allow us to find an analytic solution for ε′ after a single iteration of magic state distillation

with QRM3(2). However, the expression is lengthy so here we truncate to 3rd order

εout
= ε2[3 + cos(4θ)] + ε3[9 − cos(4θ)] +O[ε4], (3.73)

which is quadratically reduced. In Fig (3.2a), we show the exact output error probability for the whole

range of different noise models (different θ) and depolarizing noise (θ = π/2). We find that a threshold

of ε∗ = 0.20015 for general noise and ε∗dep = 0.211001 for depolarizing noise. As such, for all θ, if

0 < ε < ε∗ it follows that εout < ε.

88

The region of distillable states is actually slightly larger than the ε < ε∗ region, with a greater noise

tolerance for some values of θ. To find the whole distillable region we resort to numerics and present

the results as part of the plane in Fig. 3.1. We also identify the other regions, the stabilizer states and

positive Wigner distributions (or bound magic states), which cannot be distilled by any MSD protocol.

Notice the clear region in which neither our protocol works upon nor is ruled out from distillability by

any known theorem. This is as a comparison to what we have observed in the last chapter.

Also important is the success probability of distillation withQRM3(2), which for all states satisfy

Psucc ≥ 1/9 and for small ε is approximately

Psucc = 1 − 8ε + [31 + cos(4θ)]ε2 +O(ε3). (3.74)

Given these fairly high success probabilities and that we use only 8 copies per iteration, this protocol is

competitive in comparison to the QRM2(4) by Bravyi-Kitaev [27]. Their protocol has Psucc ≥ 1/16

and for small ε it achieves P = 1 − 15ε + O(ε2). Our QRM3(2) code requires fewer copies per

iteration, but it would require more iterations to achieve the same error suppression as QRM2(4),

since QRM2(4) has a cubic error suppression rather than just quadratic.

In Fig. (3.3.1a) we consider the exact yield of our protocol for depolarizing noise (i.e. θ = π/4).

For small error probability εin < 0.05, the yield of our protocol QRM3(2) is similar to QRM2(4).

Both protocols give yields of the same order of magnitude and which protocol is superior fluctuates

depending on the required iterations. However, as the initial error probability εin increases, the yield of

QRM3(2) exceeds that of BK by many orders of magnitude.

Performance of QRM5(1)

The smallest QRMd(1) with anMd non-Clifford gate is a five dimensional 4−ququint code, defined

explicitly as follows.

Definition 13. QRM5(1) is a CSS code over n = 4 ququints of dimension 5. The LX code is generated

by

u1 = (1,2,3,4). (3.75)

89

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0 Distillable

Physical

Bound

Stabilizer

R
e(

z)

Im(z)

Figure 3.1: The canonical CM–plane for a qutrit, d = 3, which any state can be projected onto by CM–

twirling. Every quantum state is a point in the complex plane for the complex number zρ = tr(CMρ).

The three pure magic states, ∣Mk⟩, take values z = 1, ω, ω2, which have ∣z∣2 = 1 and so lie on a circle in

the plane. All physical states have, z = (1 − f1 − f2) + ωf1 + ω
2f2, and so lie in the convex hull of the

pure magic states, forming a triangle of physical states. The distillable region of states can, by use of the

QRM3(2) protocol, be brought arbitrarily close to the nearest pure magic state. The stabilizer states

are the convex hull over the set of points, z, taken for each of the pure stabilizer states. It is impossible

to distil the stabilizer states and the states with positive Wigner distribution (the bound states). Note that

the rotational symmetry is to be expected as the Pauli Z rotation performs a rotation in the CM–plane.

90

0.1

0.2

0.3

0.4

0.5

0.6

0 0.1 0.2 0.3 0.4
0

�∗ = 0.311

�∗dep = 0.363

Initial error probability �

O
ut

pu
t e

rr
or

 p
ro

ba
bi

lit
y

�

QRM5(1)
�

(b) protocol:

0 0.1 0.2 0.3

0.1

0.2

0.3

0.4

0.5
O

ut
pu

t e
rr

or
 p

ro
ba

bi
lit

y
�

0

QRM3(2)
�

(a) protocol:

Initial error probability �

�∗dep = 0.211

�∗ = 0.200



Figure 3.2: The output error, εout against input error, ε for (a) QRM3(2) and (b) QRM5(1). For a

fixed ε there are many different compatible states, and so there are many different possible output εout

and these are shown as a region rather than single curve. For the worst case noise we mark the threshold

ε∗. The dashed line shows the specific instance of depolarizing noise, and the associated depolarizing

threshold ε∗dep is also shown. The straight line is simply the “break even” line.

Similarly, LZ is the code generated by

v1 = (1,2,3,4), (3.76)

v2 = (1,4,4,1).

The logical operators are Z̄ = Z[−1] ≡ Z[4] and X̄ =X[1].

For the above code is transversal with respect to the canonicalM5 non-Clifford gate,

M =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ω3 0 0 0 0

0 ω 0 0 0

0 0 ω−1 0 0

0 0 0 ω−2 0

0 0 0 0 ω−1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (3.77)

where here ω = exp(i2π/5). The distillation protocol associated with this code have many distin-

guishing features already mentioned: it is the smallest known non-trivial code to have a transversal

91

non-Clifford; it has the largest noise threshold against depolarizing noise (ε∗dep = 0.363); and it has the

best known scaling in terms of expected yield (with γ = 2). All these features can be attributed to the fact

that d = 5 is the smallest dimension where a diagonal non-Clifford gate exists with period d, allowing

us to work with m = 1.

Again, the CM–twirled states are parameterised by a fidelity, f0 = 1 − ε, and 4 independent noise

parameters fj for j = 1,2,3,4. Unfortunately, this means that we cannot visualise theCM–plane since it

depends on 4 real parameters. Nevertheless, we can still obtain a numerical estimate for the distillation

noise thresholds. In Fig. (3.2b) we show the range of different output error rates for general noise and

for depolarising noise, which have thresholds of ε∗ = 0.31195 and ε∗dep = 0.363122.

For completeness we include the output error probability for the depolarizing noise case with f0 =

1 − ε and fj≠0 = ε/4. After a successful implementation of one round, a depolarized state is output with

εout
=

ε2(96 − 160ε + 75ε2)

64 − 256ε + 480ε2 − 400ε3 + 125ε4
∼

3ε2

2
+

7ε3

2
+O[ε4], (3.78)

and this occurs with probability

Psucc =
(1 − 2ε)4(64 − 256ε + 480ε2 − 400ε3 + 125ε4)

64(−1 + ε)4
∼ 1 − 8ε +

51ε2

2
+O[ε3]. (3.79)

Finally, based on the above results we expect this protocol to have an excellent yield. We numerically

studied the yield and again compared it against the qubit protocol QRM2(4), see Fig (3.3.2b). The

numerics confirm that across all parameter regimes QRM5(1) offers a significant resource savings of

potentially many orders of magnitude.

3.5 State-Injection and Quantum Universality

In the previous chapter, we showed how the qutrit magic states can be converted to a qutrit analogue

of the Bloch sphere equator states, which were then used for state-injection of non-Clifford phase gate.

Here we generalise these concepts further and define a qudit equatorial state as follows.

Definition 14. A qudit quantum state ∣Θ⟩ is said to be equatorial, or a phase state, if Θ ∈ Rd and

∣Θ⟩ =
1

√
d

d−1

∑
j=0

eiΘj ∣j⟩ . (3.80)

92

-510

Yield, Y

-1010

1
-1510


-1010

-510 target

0
0.1

0.2
in

Yi
el

d,
 Y

-210
1

-610

-410

-810

0.20.05
in

0.15

(1a)

-510

Yield, Y

-1010

Yi
el

d,
 Y

-210
1

-610

-410

-810

0.3

(2b) cross-section

(2a) target
-1010

-15101

-510

0.3
0.2

0.1
in

  =10target

-8

in

0.20.100.1

QRM3(2) QRM5(1)

QRM5(1)
(1b) cross-section

  =10target

-8
QRM3(2)

Figure 3.3: The yield on a log-scale of of our protocols, QRM3(2) and QRM5(1), (blue) compared

with the Bravyi-KitaevQRM2(4) (red) protocol. Plots (1a) and (2a) are a function of initial error prob-

abilities εin and target error probabilities εtar. For the qutrit and ququint states we consider depolarizing

noise. Both (1a) and (2a) are further illustrated with cross-sections (1b) and (2b), respectively, with the

target error probability held constant. The sudden changes in yield occurs because of discrete changes

in the number of iterations required.

93

From the above definition we see immediately that the magic state ∣M0⟩ is in fact an equatorial

state with Θj = 2λjπ/d
m. Just like with the qutrit magic phase state, the above equatorial states have

the important property of being unbiased with respect to the computational bases. In other words, the

outcomes of a Z measurement are completely random.

We can now use these equatorial states to simulate a non-Clifford unitary via a state-injection circuit.

Let’s consider the input to the circuit to be ∣Φ⟩ ∣ψ⟩, where the state ∣ψ⟩ = ∑j cj ∣j⟩ is the general state of

interest that we wish to act the non-Clifford gate on. We proceed by performing the measurement of the

operator ZZ†. Each possible outcome k corresponds to the projector Πk onto a subspace stabilized by

ω−kZZ†. The outcome state is then

Πk ∣ψ⟩ ∣Θ⟩ ∝∑
j

cje
iΘj⊕k ∣j ⊕ k⟩ ∣j⟩ . (3.81)

We then decode by performing a Clifford unitary that maps ∣j ⊕ k⟩ ∣j⟩ → ∣k⟩ ∣j⟩, and tracing out the

first system. This results, as expected, into a unitary transformation on the general states of the form

∣ψ⟩ → Uk(Θ) ∣ψ⟩, where

Uk(Θ) = ∑
j

eiΘj⊕k ∣j⟩ ⟨j∣ . (3.82)

This unitary can also be expressed as

Uk(Θ) = (Xk
)

†U0(Θ)Xk, (3.83)

such that

U0(Θ) ∣+0⟩ = ∣Θ⟩ . (3.84)

This unitary transformation is randomly selected from d different possibilities (corresponding to the

k different possible outcomes). The question is then, how can we apply (or teleport) a deterministic

unitary?

For our purposes we are interested in the unitary gates produced by injecting the magic state ∣M0⟩,

and wish to teleport the non-Clifford gate M deterministically. For this magic state the above calcula-

tions imply that unitary transformation is

Uk = (Xk
)

†MXk, (3.85)

94

where we only have the desired unitary when the outcome is k = 0. Now, to perform this unitary

deterministically when k ≠ 0 we make use of the relationCM =MXM†. Observe thatCkM =MXkM†,

hence the unitary can be expressed as

Uk = (Xk
)

†MXkM†M, (3.86)

= (Xk
)

†CkMM. (3.87)

This suggests that we can always recover the non-Clifford unitary M (for all outcomes k) by applying

a correction Clifford unitary, which is the inverse of (Xk)†CkM . Therefore, we have shown how our

magic states ∣M0⟩ can always teleport a non-Clifford gate M via a state-injection circuit. Using the

Thm. (1) we conclude that the gate set ⟨C,M⟩ is universal.

Finally, in the above discussion we have only considered the perfect magic state ∣M0⟩ in the injection

circuit. However, we can consider a more realistic scenario where we have a slightly noisy distilled

magic state σ, such that ε = 1 − ⟨M0∣σ ∣M0⟩, in the injection circuit. We report that such modification

(omitted here) would only lead to similar error (linear in ε) in the output state M ∣ψ⟩.

3.6 Summary and Open Problems

We have presented a complete framework for MSD based on the qudit Reed-Muller codes. Along the

way, we have provided a generalisation of the qubit T–gate (the family of Md(m) magic gates) and

have characterised the “equatorial” magic states ∣M⟩ for prime dimensions. We have observed how the

qudit systems can allow for much smaller distillation protocols (such as the 5-ququint codeQRM5(1),

which is the smallest known MSD protocol) that outperform many qubit protocols in terms of the yield

and noise threshold that can be tolerated.

In our investigation of MSD we have only considered quantum codes that encode a single qudit, i.e.

Jn,1, δKd. However, in recent developments there have been qubit MSD protocols proposed that distil

multiple magic states per iteration. Notably, in Ref. [110], a novel protocol takes ten noisy magic states

per iteration and outputs two magic states. They call this protocol the 10-to-2 distillation protocol, and

95

it has the benefit of increasing the yield. Similar techniques could potentially also be used to design

higher-dimensional protocols, improving the performance of our protocols even further.

96

Chapter 4

Qudit Topological Quantum Memory

In this chapter we investigate the properties of qudit topological codes serving as a quantum memory.

In particular, we describe an efficient decoder for the qudit toric code based on a Renormalization

Group (RG) algorithm. We start in Sec. 4.1 by introducing the general properties of topological error

correction codes and state the results of this chapter. In Sec. 4.2, we describe the properties of the qudit

toric code. This is followed by a discussion of the noise model used here and the numerical method we

adopt to estimate the thresholds. In Sec. 4.3 we provide a formal description of our RG decoder and we

present the thresholds we obtain. In the limit of high qudit dimension d, the thresholds achieved by the

decoder reach the saturating value of about ∼ 18%. We explain, in Sec. 4.4, this behaviour to be due

to a percolation phenomenon and we provide numerical evidence to support our claim. More precisely,

the saturating threshold we observe is tightly upper-bounded by what we call the syndrome percolation

threshold. To beat this upper-bound, we introduce an enhanced version of this decoder and show that it

can boost the threshold, in the limit of high d, to about ∼ 30%. Finally, in Sec. 4.5, we briefly compare

our decoder to other known RG decoders and discuss the generalisation of our work for a complete

fault-tolerant simulation.

97

4.1 Motivation

Any fault-tolerant scheme is associated with a form of error correction code that protects the information

when stored or during transmission. We have already seen that the theory of fault-tolerant quantum

computation defines a probability threshold, for each operation in the scheme, below which accurate

and long computation can be performed. A great amount of research has been devoted in exploring

various quantum systems with potential fault-tolerant schemes that achieve high threshold values and

have experimentally favourable features. Arguably, the most important feature required for many current

technologies is to have the quantum systems on a 2D geometry where only the nearest neighbours can

interact.

Conventional schemes that are based on concatenation of stabilizer quantum error correcting codes

(QECC) suffer from involving long-range interactions by construction. Such schemes have non-local

stabilizer generators1. Embedding these schemes on a 2D geometry requires the introduction of many

additional error-prone swapping operations, which will reduce the threshold substantially [152]. For

example, modelling Steane’s 7−qubit code on a 2D architecture with nearest-neighbour interactions, a

fault-tolerant threshold of 1.85 × 10−5 was obtained in [154]. Under this setting, currently, the highest

threshold achieved is 2.02 × 10−5 [147] using the Bacon-Shor code [11]. On the other hand, schemes

that allow for long-range interactions and post-selection can achieve a threshold as high as 3% [93].

A more practical approach is to include the locality constraint of the interactions within the design

of the QECC. The first example of such construction was introduced by Kitaev [90] in his discovery of

topological error correction codes or surface codes. The surface codes are a class of stabilizer codes

where the qubits are placed on a 2D lattice and the stabilizer generators are local Pauli operators. While

the locality of the stabilizer depends on the geometry of the lattice, the error correction properties and the

encoded space depend on the topology of the surface [28, 112]. Moreover, Kitaev demonstrated how to

perform universal quantum computation that is fault-tolerant by its physical nature using topologically
1By non-local stabilizers we mean stabilizers such that the non-trivial Pauli operators acts on geometrically distant qudits.

In other words, we cannot structure the qudits on a 2D geometrical lattice such that the stabilizer generators involve measuring

nearest-neighbours qudits.

98

Figure 4.1: An example of the toric code where the qubits (black dots) are attached to the edges of a

square lattice on the surface of a torus.

ordered many-body quantum systems supporting anyonic excitations. In our study here, we are not so

much interested in the ‘topological’ features of the surface codes. We will simply consider these codes

as stabilizer codes and study their capability in storing qudits.

More specifically, in this work we will study the toric code, which is a simplified version of the

surface codes. Kitaev introduced the toric code as a toy model for topological error correction. The toric

code captures all the essential features needed to store quantum information robustly in 2D topologically

ordered systems. In the toric code the quantum systems are attached to the edges of a square lattice on a

torus (see Fig. 4.1). The torus can be thought of as a 2D plane with two periodic boundaries. Converting

the toric code to a surface code with open boundaries requires little effort and causes a negligible effect

on the threshold. For this reason, we will only limit our study to the toric code.

For the toric code to serve as a quantum memory, the physical errors must be corrected at a sufficient

rate to prevent the errors from accumulating and causing a logical error. This is achieved by performing

active error correction and decoding the toric code periodically. Each decoding step consist of measuring

all the stabilizer generators to obtain the syndromes. The syndrome values are then processed by a

classical algorithm to guess the errors that could given rise to observed syndromes, which can then be

corrected. In our study here we will assume that the stabilizer measurements to be noise-free, i.e. we

are only considering perfect decoding.

99

Currently there are a variety of classical algorithms that efficiently decode the qubit toric code. The

early extensive study by Dennis et al. [46] demonstrated how the toric code model can be mapped to

a statistical mechanical model, the random-bond Ising model (RBIM), and showed how the optimal

error threshold popt
th of the toric code corresponds to a phase transition point in the RBIM known as

the Nishimori point. In the case of independent, identically distributed (IID) bit-flip noise model and

perfect decoding, the optimal threshold2 is estimated (when mapped to the Nishimori point) to be popt
th ≈

10.9% [73, 111, 121, 44]. The decoding algorithm that achieves the closest threshold to popt
th is the

minimum-weight perfect matching algorithm (MWPMA) which has an efficient implementation based

on Edmonds’ blossom algorithm [53]. This algorithm has been extensively studied and the highest

threshold it can achieve has been estimated to be about 10.3% [162, 163, 58].

Of more relevance to our work is the so-called Renormalization Group (RG) decoder proposed

recently by Bravyi and Haah [25]. This decoder was introduced as an efficient decoder for general

topological codes and its correction capabilities were studied for the 3D cubic code [70] and the qubit

toric code. With perfect measurements, this decoder was shown to achieve a threshold of 6.7% for

the qubit toric code. As we will see, one of the remarkable features of this decoder is that it has the

construction independent of the qudit dimensions, which makes it very suitable for our investigation,

and it will allow us to obtain a numerical estimate of the threshold for any qudit dimension.

This is not the only RG decoder that exists. An earlier RG-type decoder that was used for decoding

the toric code is due to Duclos-Cianci and Poulin [48, 49]. This decoder achieves a threshold of 8.2%

for the qubit toric code. Very recently, Duclos-Cianci and Poulin [51] have generalised their decoder to

the qudit toric code. However, due to the fact that their decoder has a run-time complexity that depends

on the dimension as O(d7), they were not able to obtain thresholds values beyond dimension 6.

Although these can both be considered as a type of RG-decoder, their constructions differ greatly. To

distinguish between these decoders, we will follow the distinction given in [50] and we will refer to the

first decoder from [25] as the hard-decisions RG decoder (HDRG), for reasons that will become clear
2Under similar statistical mechanical arguments, the optimal threshold for other noise models, such as the depolarizing

noise, has been estimated to be around 10.9% [20].

100

in due time. Our main interest in this chapter is to investigate the performance of the HDRG decoder in

decoding the qudit toric code [31]. A detailed comparison between these decoders can be found in [6].

One of the motivations behind exploring qudit systems is that the outcomes of the stabilizer measure-

ments have the potential to give more information on where the errors have occurred (we will discuss a

specific example in due time). If this extra information is exploited correctly, higher thresholds might

be obtained than is possible in the qubit case. To our knowledge, such an improvement in the threshold

was first observed in [5]. Other studies of the thermal stability of the toric code also indicate some

advantages in using qudit systems [161].

Finally, it is also worth pointing out why we did not choose to generalise the MWPMA. In the

qubit case, the MWPMA typically consists of constructing a complete weighted graph where the nodes

are the non-trivial syndromes and the weight of the edges is the shortest Manhattan distance between

the nodes. Then using Edmonds’ algorithm [53, 96] the perfect matching of minimum weight can be

efficiently determined. The algorithm then finds the maximum-likelihood error for the code. We can

think of each node in the qubit code as having charge 1, and hence when two nodes are matched, they

are annihilated (since 1 + 1 = 0 mod 2). However, in higher dimensions, the charge of the nodes are

from the set {1, . . . , d − 1}. Hence we must consider all the possibilities of matching all neutral sets of

multiple nodes in order to annihilate them. Thus to find the lowest weight error correction chains for

the qudit code requires an algorithm, which must minimize weights on a hypergraph whose hyperedges

consist of all charge neutral subsets of nodes. Minimum weight hypergraph matching is an NP-Hard

problem in computational complexity theory [87]. We therefore do not expect good speed performance

for such a decoder, and have not pursued it here.

4.2 The Qudit Toric Code

4.2.1 Properties

In the toric code, the physical qudits are attached to the edges of a square lattice embedded on the surface

of a torus, as shown by the lattice in Fig. (4.2a). The toric code is a quantum stabilizer code with two

101

ωk XkX−k

Xk

X−k

p

v

Xk

ωk

ω−k

Xkω−k ωk Zk

Zk

Zk

Zk

Zk

a) Physical Qudits b)

c)

X

X−1

XX−1 v

p

Z

Z Z−1

Z−1

Z̄k

Figure 4.2: a) The toric code lattice with the periodic boundaries indicated by the dashed line. b) The

qudit vertex and plaquette operators. c) Transporting a plaquette in the four directions requires applying

the indicated X operators.

types of weight-four commuting stabilizer generators, the so-called vertex and plaquette stabilizers, see

Fig. (4.2b). It is easy to see that all these stabilizer generators commute. This code is also known in the

literature as the Zd–Kitaev’s code. It is a member of the family of Abelian quantum double models [90].

Notice that a square lattice is self-dual—meaning that when taking the lattice dual the vertices and

plaquettes are switched. We will often refer to the vertex and plaquette operators collectively as the

check operators. For an L × L lattice there are n = 2L2 physical qudits and m = L2 possible plaquette

or vertex operators. Due to the periodic boundary condition, however, each plaquette (vertex) can be

expressed as the product of the remaining L2 − 1 plaquette (vertex) operators; implying that there are

only n− k = 2(2m− 1) check operators that are independent, where k is the number of encoded qudits.

Hence, k = 2 meaning that a toric code encodes only two qudits.

As can be seen from the definition of the plaquette and vertex operators, the toric code is a CSS

code [33, 149] where the stabilizer generators consist either of Xj or Zj operators. Hence, the vertex

operators detect only Zj errors, and similarly the plaquette operators detect Xj errors. Recall that the

possible outcomes of measuring a stabilizer generator are phases from the set {1, ω, . . . , ωd−1}. We

102

|0〉

|n〉
|w〉
|s〉
|e〉

X−1 X−1 Z

|n〉
|w〉
|s〉
|e〉

X−1

X−1

X|+〉

Figure 4.3: The stabilizer measurement circuits for the plaquette (left) and vertex (right) operators. The

labels (n,w,s,e), refer to the (north, west, south, east) physical qudits.

will refer to any non-trivial syndrome as charged, with the charge being an element from the set of the

non-trivial phases {ω,ω2, . . . , ωd−1}. For simplicity, we can equivalently work with integer powers of

the non-trivial phases {1, . . . , d − 1}.

The stabilizer measurement of the plaquette and vertex operators is performed using the circuit in

Fig. (4.3), where an ancillary qudit is measured destructively in the process. Geometrically, we can think

of these ancillary qudits to be placed at the centre of the plaquettes and the vertices, with the generalised

SUM gate Λ(Xk) entangling the nearest-neighbouring qudits. This gate is defined as

Λ(Xk
) ∶ ∣i⟩ ∣j⟩ ↦ ∣i⟩ ∣ki⊕ j⟩ , (4.1)

and in the Heisenberg picture, it maps the Pauli operators as

X ⊗ 1 ↦ X ⊗Xk, (4.2)

1⊗X ↦ 1⊗X, (4.3)

Z ⊗ 1 ↦ Z ⊗ 1, (4.4)

1⊗Z ↦ Z−k
⊗Z. (4.5)

All the error detecting and correcting elements of these circuits are assumed to be perfect with the only

source of errors being the noise channel on the physical qudits. By considering single physical errors

Xj (or Zj), one can use the above map to track how the errors propagate through these circuits and

determine the corresponding measurement outcome.

103

The topological nature of the code is evident within the structure of the stabilizer group. Every ele-

ment in the stabilizer corresponds to a product of closed loops of Xj and Zj operators. It is convenient

to adopt some terminology from topology to characterise these operators. Closed loops which enclose

a surface are called homologically trivial. The logical operators X̄j and Z̄j correspond to non-trivial

homological loops of errors. An example of a Z̄j is shown in Fig. 4.2(a). Given any chain on the lattice,

deformation to any homologically equivalent chain can be achieved by a multiplication by an element

of the stabilizer. Hence all homologically equivalent operators correspond to the same logical operator

on the encoded qudits. Recall that the distance of a code is equal to the minimum weight of all possible

logical operators, and this is easily seen as the error chain of the lattice length L. In the notation of the

stabilizer codes, the toric code can then be denoted by J2L2,2, LKd.

It proves useful to introduce some terminology to describe the relationship between the qudit errors

and the detected syndromes. For example, we say that a single Xj error creates a pair of plaquettes.

Similarly, we say a chain ofXj errors consisting of different weights (i.e. different j values) will creates

a trail of plaquettes. Notice that, in the qubit case a chain ofX errors will still create a pair of plaquettes

at the endpoints of the error chain—without providing any information about the actual path of the error

chain. But as the qudit dimension increases, the trail reveals more information on where exactly the

actual error chain has occurred, see the example provided in Fig. (4.4). It is this additional information

that allows us to make better judgement when performing error correction and ultimately leads to higher

thresholds than the qubit case.

To correct the errors, we apply correction chains, as instructed by the decoder, such that charged

plaquettes (vertices) are annihilated. The annihilation can be thought of as a physical process that

transports and fuses the syndromes until the charges cancel. As an example, the transportation rule in

Fig. (4.2c) shows which operators need to be applied to transport a plaquette in a certain direction.

There are an exponential (in L) number of different error configurations E(E), with a total of dn =

d2L2
possible errors of each type. Note that the code is degenerate, meaning that many different error

configurations correspond to each syndrome. In fact, given the symmetry of square lattice, one would

expect that there are dm = dL
2

possible plaquettes (or vertex) outcomes. But because we are only

104

a) b)

X X X X

d = 2

(ω = e2πi/2 = −1)

ω ω X

d = 5

X3 X3X4

(ω = e2πi/5)

ω4 ω4 ω2 ω2ω3

Figure 4.4: An example showing that in higher dimensions the syndrome measurements reveal more

information about the path of the errors on the lattice of the toric code. We have chosen two error

chain with two different dimension (d = 2 and d = 5) as a demonstration. Fig. a) shows a qubit error

chain creating two non-trivial syndromes at its endpoints. Fig. b) shows a random error chains of local

dimension five being detected by the syndromes measurement along the path of the chain, thus revealing

more information about the actual path of the error in comparison to Fig. a).

considering perfect syndrome measurements, each error configuration must have a total charge zero.

Hence the number of possible configurations is divided by the number of different charges, which is d.

This leads to dL
2−1 possible syndrome configurations.

Based on the above simple counting argument, each syndrome can be caused by dn/dm−1 = dL
2+1

possible error configurations, which is exponential in the size of the lattice. An optimal decoder will

have then to search through an exponential number of errors to find the most probably homological

class. For the majority of stabilizer codes, the problem of optimal decoding is known to be an NP-hard

problem [77, 98].

4.2.2 Noise Model and Monte Carlo Simulation

In this section we discuss the noise model the lattice is subjected to, and explain how we estimate the

thresholds of the HDRG decoder.

As stated previously, we will assume that the measurement of the check operators is perfect, and

the only source of errors is the noise acting on the physical qudits. Furthermore, the noise model we

consider is the independent error model (also called the uncorrelated noise model) where Xj and Zj

physical errors occur independently with equal probability. Therefore, under such a symmetric noise

105

model it suffices to study the error-correction properties for one type of errors3. For this reason, in the

discussions that follow we will often only discuss Xj error chains and the plaquette operators. It should

always be assumed that the same discussion can be applied to the case of Zj errors chains and vertex

operators by working on the dual lattice. More formally, under this noise model, each qudit e suffers an

Xj error with the following probabilities:

Prob(X0
) ≡ Prob(1) = 1 − p, Prob(Xj

) = p/(d − 1), (4.6)

for all nonzero j ∈ Zd.

We estimate the error correction threshold numerically via a Monte Carlo simulation. For a single

Monte Carlo sample, we initiate a lattice in a pure state of the code-space, and generate random error

configuration E of the edges of the lattice using the above noise model for physical error rate p. The

syndromes of the error configuration are then measured and fed to the decoder. The decoding algorithm

will return a correction configuration E′ that will annihilate all the observed syndromes. After the

correction step is completed, we compute E′′ = E ⊕E′, and if E′′ contains no logical chain we regard

the decoder as successful, otherwise the decoder has failed. In the simulation we repeat this procedure

N times for a given p, and we evaluate the success probability psucc as the fraction of times the decoder

succeeds. The standard deviation in the estimated success probability is σ =
√
psucc(1 − psucc)/N .

To determine the threshold, we plot p versus psucc for different lattice sizes as shown, for example,

in Fig. (4.6). The threshold pth is defined to be the point at which the success probability curves intersect

in the limit L→∞. In other words, the threshold represents the point below which arbitrarily high psucc

can be achieved provided that the lattice is large enough. However, in the actual simulations, the data

points can only be obtained for a relatively small lattice sizes L, and such lattices are subject to small

system size effects, which can affect the evaluation of pth. This is easily seen in the L = 16 curve of

Fig. (4.6).

To account for the small system size effects, we estimate pth by using the fitting proposed by Har-

3Keeping in mind that a qudit suffering a combination of Xj and Zk errors simultaneously such as XjZk (i.e. a Y -type

error) will be detected by both the adjacent plaquettes and vertices, and hence the decoder will return a independent correction

of Xj′ and Zk
′

, which when combined becomes Xj′Zk
′

—thus such combinations of errors are also correctable.

106

rington et al. [162, 71]. In this fitting, all the data points (for all that lattice sizes L) are fitted to the

curve

A +Bx +Cx2
+DL−1/µ, (4.7)

where x = (p − pth)L
1/ν , as shown, for example, in the boxed plot in Fig. (4.6). In particular, the

last term in the fitting, DL−1/µ, accounts for the small size effects. We can see that, in the limit of

L → ∞, this term tends to 0 (where µ is positive). We have used the NonlinearModelFit function in

Mathematica to estimate the fitting parameters4 {A,B,C,D, pth, ν, µ}.

4.3 HDRG Decoder

The HDRG decoder was introduced in [25]. In this section we will present a refined version of this

decoder and show how it can achieve higher thresholds for the toric code.

4.3.1 Decoder Description

The HDRG decoder has a simple and elegant intuition behind its construction, and before we introduce

it formally we shall give a heuristic description of how it works. The HDRG consists of multiple levels

of decoding that will eventually annihilate all the syndromes completely. Each level of decoding is

associated with a geometric measure of distance on the square lattice, such that the distance gets bigger

as the levels increase. At each level, the syndromes are divided into disjoint clusters such that the

syndromes in each cluster are separated by (at most) the distance determined by the decoding level. If

the charge of a cluster is zero (modulo d), then the syndromes of the clusters are annihilated locally.

Otherwise, charged clusters are passed to the next higher level until ultimately they become part of a

neutral cluster and gets annihilated. Next, we will define and explain all the aspects of this decoder more

rigorously.

Let us just work with plaquettes with the analogous vertex formalism being obvious. We will need
4In particular we have used the options “BestFitParameters” to extract the parameter estimates, and “ParameterErrors” to

estimate the standard deviation error in each parameter.

107

R1,0 R1,1

R2,0 R2,1

Rr,s

r
s

Figure 4.5: The refined regions Rr,s on a taxi-cab geometry (left hand side) with examples of the first

four levels (right hand side).

a notion of distance between the plaquettes, and for this purpose start by associating a coordinate vector

x = (x1, x2) for each plaquette on the 2D lattice. For any two plaquettes with coordinates x and x′, we

will use two distance measures. First, the taxi-cab distance is D(1)(x,x′) = ∣x1 − x
′
1∣ + ∣x2 − x

′
2∣. Our

second distance is the Max distance, and it is defined as D(∞)(x,x′) = max{∣x1 − x
′
1∣, ∣x2 − x

′
2∣}. Both

can be used to define balls like regions B of a certain radius r, centred on a plaquettes q(x), such that

B(1)r (x) = {x′∣D1
(x,x) ≤ r}, (4.8)

B(∞)r (x) = {x′∣D∞
(x,x) ≤ r}, (4.9)

Although we call these balls, the Max distance generates squares and the taxi-cab distance picks out

diamonds. Here, however, we will be interested in regions that combine these notions of distance. For

any integer r and s, we define regionRr,s that when centred on a point x are

Rr,s(x) = B
(1)
r+s(x) ∩B

(∞)
r (x), (4.10)

and so is simply the intersection of two balls with different metrics. The first few instances are shown in

Fig. (4.5). Clearly we only need to consider s ≤ r. Note that the regions are symmetric, so if x ∈ Rr,s(y)

then y ∈ Rr,s(x). When this happens we say x and y are (r, s)-connected.

Furthermore, we need a notion of connection for a cluster C—or set of syndromes. Firstly, we define

connected paths in C. A path γ in C is an ordered subset of C, such that γ = {x(1),x(2), ...x(n+1)},

108

and we define it to be (r, s)-path-connected if for all j, x(j) and x(j+1) are (r, s)-connected. Now, we

say the cluster is (r, s)-cluster-connected if for all x,y ∈ C there exists an (r, s)-connected-path in C

starting at x and ending at y. The intuition behind defining regions is this way is to take into account

some of the degeneracy in the errors creating the syndromes. We will discuss this point in more detail

shortly.

These geometric concepts can be used to explain the decoding scheme. Given measurement data for

all the plaquettes, recall that we say a plaquette is charged if it has a non-trivial outcome. If plaquette

at x has measurement outcome mx, then information is conveyed by the ordered pair (x,mx), and the

full list of charged plaquettes is W = {(x,mx)∣mx ≠ 1)}. Similarly a charged cluster is a subset of

the full charge distribution, C ⊂ W , where we use a different script to indicate the presence of charge

information. A charged cluster is said to be neutral if the total charge is zero, so that∑Cmx = 0 modulo

d. Neutral clusters can always be annihilated by transporting and fusing the syndromes within the cluster

until the total charge disappears. When doing so, we update the plaquette information fromW toW ′,

such that the annihilated neutral cluster C is no longer contained inW ′. In fact, if the size of a cluster

is very small in comparison to the lattice size, then it is very likely that the cluster has been generated

by local errors within the cluster. The intuition behind the HDRG decoder is that if such small clusters

are annihilated locally, then the resultant correction chains, combined with the actual error chain, will

form a trivial loop of errors. By trivial loop, we mean a loop which does not wrap around the torus, such

operators are stabilizer elements and so equivalent to the identity on the code-space. Topologically, such

chains are homologically trivial loops.

The complete setW can always be partitioned into a set of disjoint clusters W̃ = {C1,C2, ...Cm}, for

some m, and whereW = C1 ∪ C2 ∪ ⋅ ⋅ ⋅ ∪ Cm. We say a particular partition W̃ is a (r, s)-partition if both

the following conditions are met:

i. connectivity: every charged cluster in the partition is (r, s)-cluster-connected;

i. maximality: for any distinct pair of charged clusters in the partition, Cj and Ck≠j , we find that

Cj ∪ Ck is not (r, s)-cluster-connected.

Maximality ensures that there is no suitable path between the disjoint clusters, and so they could not be

109

merged into a single cluster. Furthermore, whenever the connectivity condition is met, but maximality

fails, there exists another partition that does fulfil both conditions using fewer charged clusters.

As stated previously, the HDRG decoder involves multiple levels of decoding. Each decoding level

l is associated with a choice of regions Rr,s, At the first level we begin with (r, s) = (1,0). The

parameters increase iteratively, such that for l + 1, first we try to increase s by 1, but if s = r we instead

increase r by one and reset s to zero. The relation between the level number and the distance parameters

can be determined with simple calculation to be l = (s(r+1)/2+r). The decoder performs the following,

beginning with the first level l = 1:

1. Clustering: Find a (r, s)-partition ofWl into disjoint charged clusters;

2. Neutral Annihilation: For every neutrally charged cluster in the partition, Cj , find an Pauli correc-

tion ej that annihilates all the syndromes by fusing them arbitrarily with their nearest neighbours

in Cj ;

3. Refresh: Record the collective Pauli correction E′
l = ∏j ej and update the syndrome information

toWl+1. IfWl+1 is non-empty, then repeat at next level l = l + 1.

It is helpful to refer to individual levels of the decoder as sub-protocols that we label Dl. Any charged

cluster that cannot be annihilated completely by Dl, is therefore left for the next higher level of decoding.

The higher levels will have larger regions and therefore any charged clusters will eventually be combined

inside bigger neutral clusters which can then be annihilated. Also, notice that in the HDRG construction

the correction chains are determined during the annihilation step at every level of decoding. In classical

coding theory, this is a typical feature of what is known as a hard-decisions decoder [115, 126].

There are few crucial differences between our version of the HDRG decoder described above and the

original decoder by Bravyi and Haah [25]. First, the distance measure in [25] is the Max distanceD(∞).

Recall that a ball of radius r in this the Max distance is denoted B∞
r , and Bravyi and Haah use such a

region at level-r of the decoder. We also use such regions, since Rr,0 = B∞
r , but our protocol is more

refined and uses additional levels of decoding. Finally, their decoder declares failure and aborts if the

area of a cluster is larger than half the lattice size. The idea behind this requirement is that annihilating

110

such large clusters would very likely lead to a logical error. However, in our decoder we did not enforce

this requirement because, as we will see, in higher dimensions the syndrome tend to percolate if the

physical error probability is high, and we would like to investigate how this decoder behaves in such

regimes. Finally, in their decoder, the Max distance scales exponentially with the decoding levels,

whereas in our case the scaling is linear.

In the qubit case, for all practical purposes (best case instances) the run-time complexity of the

decoder by Bravyi and Haah is O(L2 logL), where L is the lattice size [25]. In higher dimensions

the number of syndromes increases with the qudit dimension. To understand this behaviour consider

the following example. In the qubit case if two neighbouring errors occur then the shared syndrome

will not be detected. But in the qudit case, the probability that two neighbouring errors will have equal

and opposite weights will diminish quickly as the dimension increases. Hence, the shared syndrome

will almost always be detected. The consequence of this observation is that for a given error rate the

density of the syndromes will approach the density of the errors as the dimension increases. Therefore

the exact run-time complexity needs to capture the relation between the number of syndromes and the

qudit dimension, which is not a trivial task. But our numerical analysis (omitted here) shows that the

speed of HDRG has a very small dependence on the dimension physical qudits, and for most practical

purposes it can be safely neglected. Moreover, our refined distance measureRr,s has linear scaling with

the decoding levels. As a consequence the run-time complexity is O(L3) in the best case, which is

slower than that of Bravyi and Haah [25].

4.3.2 Numerical Estimates of the Threshold

In this section we present the results of the Monte Carlo simulation for the HDRG decoder. We begin

with the qubit case before moving to higher dimensions. We plot the success probability curves for the

qubit case in Fig. 4.6. Using the fitting given in Eq. (4.7) we estimate the threshold to be 8.4% ± 0.01.

This value is slightly higher than that of SDRG decoder in [48] of 8.2%.

Recall that the threshold achieved by the original HDRG decoder in [25] was 6.7%. The improve-

ment in the threshold achieved by our HDRG decoder is mainly due the refined set of regions Rr,s we

111

�0.05 0.05

0.1

0.2

0.3

0.4

70.0

75.5

80.0

85.5

90.0

95.5

8.20 8.30 8.40 8.50 8.60

L=16
L=32
L=64
L=128
L=256
L=512

A+Bx+ Cx2 +DL−1/µ

Error Rate p (%)

S
u
cc
es
s
P
ro
b
ab

il
it
y
(%

)

Figure 4.6: The success probability of the HDRG decoder for the qubit case. The data points are

generated with 105 samples for L ∈ {16,32,64,128} and 104 samples for L ∈ {256,512}. The error

bars are taken to be 2σ. The boxed plot shows the data fitting, where x = (p− pth)L
1/ν , ν = 1.85± 0.04

and µ = 0.46 ± 0.06.

112

have adopted in comparison to Ref. [25], where regions based on solely the Max distance were consid-

ered. To demonstrate this point consider the simple examples depicted in Fig (4.7). First, Fig (4.7a)

shows two plaquettes created by one and two errors. Clearly the single error is more likely to occur in

comparison to two neighbouring errors. However, with the D∞-metric the plaquettes in both cases will

be connected at the first level. In contrast, the regions Rr,s distinguish between the two cases, and they

will be connected at two separate decoding levels, namely D1 and D2. Also, Fig. (4.7b) shows two

cases of two plaquettes created by two errors. For the first case, there are two errors for which the set of

successful recovery operations are identical. Hence, the first case is more probable since it has double

the degeneracy. The regions Rr,s better account for this degeneracy by again treating these cases into

two separate levels, namely D2 and D3. The overall effect of such refinement is to create finer clusters

which would lead to better error correction during the annihilation step.

The above observations suggest that to improve our decoder further one can consider a different

sequence of regions. An optimal ordering of regions would always first connect syndromes that can be

created by fewer errors and higher degeneracy. It is not hard to see that such improvement would switch,

for example, level D5 with level D6, because the latter will connect syndromes created by fewer errors

as shown in Fig. (4.7c). Our approach, however, was easier to implement, and we leave such further

improvement for a future investigation.

The thresholds of the remaining prime dimensions are plotted in Fig. (4.8). To demonstrate that a

numerical estimate of the threshold can be obtained for any dimension we have chosen the 1000th prime

number d = 7919 to represent the limit of high d. As can be seen from Fig. (4.8), the threshold increases

monotonically with qudit dimension and reach a saturating value of about 18.0%. We have discovered

that the reason for this behaviour is due to what we call the “syndrome” percolation effect, which we

will discuss next.

It was pointed out in the last section that for a given error rate the density of syndromes increases as

the dimension of the qudits increases. In fact, as we will show in the next section, for any given prime

dimension d ≥ 3, there exists a unique threshold error rate at which the syndromes percolate the lattice.

In other words, above this threshold the syndromes will span the lattice in a single connected cluster. We

113

a) b)

c) D5, R2,2 D6, R3,0

Figure 4.7: The distance Rr,s distinguishes between a) and b), whereas the D∞ distance does not. c)

The optimal distance measure will switch levels D5 and D6.

refer to this threshold as the syndrome percolation threshold denoted by pth
syn. We will provide numerical

estimates of this threshold in the next section. We will find that it decreases as the dimension increases

until it reaches a constant value of about 18.0% in the limit of high d, see Fig. (4.9).

Syndrome percolation has severe consequences for the HDRG decoder. For any error rate p > pth
synd

there will be one percolating neutral cluster at the first level D1 of decoding. The HDRG will try

to annihilate the syndromes arbitrarily and will most likely fail. This suggests that we cannot expect

the HDRG decoder to achieve a threshold higher than the percolation threshold, because the success

probability curves must diminish above the percolation threshold. Indeed this is what we observe in the

limit of high d, as illustrated by the boxed plot in Fig. (4.8). The point of intersection of the curves

(which defines the threshold) intersects x-axis at the value of the percolation threshold. The actual

curves (omitted here) are too noisy around the percolation threshold, for this reason we have indicated

by the red error bar the range at which the actual curves intersects. Our numerical analysis shows that

if we ignore the small lattice sizes, then the curves of the large lattice sizes clearly cross at single point

around 18.0% ± 0.1.

The conclusion of the above discussion is that in the limit of high d the syndrome percolation

threshold is a tight upper-bound on the threshold achieved by the HDRG decoder.

114

08.0

09.0

10.0

11.0

12.0

13.0

14.0

15.0

16.0

17.0

18.0

2 3 5 7 11 13 17 19 23 29 31

~18%

1.0

7919

S
u
cc
es
s
P
ro
b
.

p

L, d >> 1

T
h
re
sh
o
ld

(%
)

Dimension d

Figure 4.8: The threshold values of the HDRG decoder for prime dimensions with 2σ error bars. The

boxed plot is illustrative figure of the behaviour the success probability in the limit of high d.

115

4.4 Beating the Percolation Upper bound

4.4.1 Syndrome Percolation

Percolation theory is the study of connectivity and transport on random graphs [30, 69, 148]. A standard

percolation model consists of a random graph whose nodes (vertices) are distributed in space and the

links (edges) connect neighbouring nodes only. We are mainly interested in the percolation behaviour on

a 2D regular lattice, and in particular the square lattice. There are typically two stochastic mechanisms

associated with each lattice structure: either the vertices of the lattice are fixed in space and edges are

created randomly between them, or vertices are random in space and the edges connect neighbouring

vertices.

For instance, in the random site (or vertex) model, each site is “empty” with IID probability p and

otherwise it is “occupied”. For each instance, we say percolation occurs if there is a nearest neighbour

path that spans the lattice using only occupied vertices. The key result of percolation theory is that

there exists a threshold, pth
site = 59.27%, above which the probability of percolation approaches unity

with increasing lattice size, and below threshold the percolation probability vanishes in the large lattice

limit. A similar phenomenon occurs when lattice edges (or bonds) are randomly removed, which has a

threshold of pth
bond = 50%.

On the square lattice of the toric code, the bonds correspond to the qudits and the sites correspond to

the vertex/plaquette operators. The bond percolation threshold tells us that above a 50% error rate there

will exist (in the thermodynamics limit, L→∞) a percolating chain of bonds (or edges). With periodic

lattice boundaries, such a chain does not necessary correspond to a non-trivial closed loop, and there

must exist another slightly higher threshold for the existence of a ‘percolating’ non-trivial loop, which

we denote by pth
loop, such that pth

loop ≳ p
th
bond. We identify straight away the threshold pth

loop to be the error

rate above which a logical error is bound to exist, and hence no stabilizer measurement can detect it,

and in turn no decoder can correct it. Hence, the threshold pth
loop represents a hard upper-bound to the

optimal threshold for the qudit toric code, and we expect it to be very close to pth
bond.

In our discussion that follows, we will be interested in the syndrome percolation threshold of the

116

toric code. This is not equivalent to the site percolation threshold because the syndromes are created

in pairs by qudit errors (on the bonds). Given a syndrome W we say that it percolates the lattice, if

there is a nearest neighbour path in W that spans the lattice. In more general terminology, a nearest

neighbour path is a (1,0)-connected-path inW . There have been studies of site percolation with distant

neighbouring interactions [105, 104], but to our knowledge there have not been investigations where the

bonds interact with the sites in the manner defined by the toric code. Also, there does not appear to be

an analytic method that can determine the syndrome percolation threshold for any dimension d from

the known theory on the bond and site percolation. In the limit of high d → ∞, we can make a crude

assumptions to derive an upper bound for the syndrome percolation threshold.

When d is very high, we can safely assume that the only possible situation in which the charge of a

plaquette (or a vertex) is zero if all its qudits are error-free. This occurs with a probability of (1 − p)4,

and hence the probability of a plaquette with a non-trivial charge is 1 − (1 − p)4. If we make the crude

assumption that such plaquettes are distributed equally, then we can equate this probability to the site

percolation threshold, pth
site = 0.5927 = 1 − (1 − p)4. Solving for p, gives a hard upper-bound for the

syndrome threshold of p = 20.11%. We expect the actual threshold to be slightly smaller than this value.

To estimate the syndrome percolation threshold for qudit dimension d, we resort to numerical eval-

uation via a Monte Carlo simulation. The simulation is straightforward and it is very similar to that

described in Sec. 4.2.2 in estimating the error correction threshold. For a given dimension d, error rate

p, and lattice size L, we generate a qudit lattice such that each qudit suffers an error with probability

p. The syndromes are then calculated. If the syndromes percolate (span the lattice) then the simulation

will be declared successful, otherwise it is a failure. This procedure is then repeated N times, and the

success probability is evaluated as the fraction of times the simulation has succeeded. The simulation is

then repeated for a fixed range of p and different lattice sizes. The threshold is determined as the point

of intersection of the different success probability curves (omitted here).

The syndrome percolation thresholds obtained are presented in Fig. (4.9). As can be seen from this

figure, there does not exist a syndrome percolation threshold for the qubit case. This can be explained to

be due to the fact that the number of non-trivial syndromes is completely symmetric about the 50% error

117

18.0

19.0

20.0

21.0

22.0

23.0

24.0

25.0

26.0

27.0

28.0

3 5 7 11 13 17 19 23
17.0

7919
Dimension d

P
er
co
la
ti
o
n
T
h
re
sh
o
ld

(%
)

Figure 4.9: Syndrome percolation threshold for prime dimensions with 2σ error bars.

rate. For example, in the limit of large lattice size, the average number of non-trivial syndromes is the

same if p = 0.5−α or p = 0.5+α, where 0 ≤ α ≤ 0.5 5. This implies that there does not exist a threshold

above which the syndromes always percolates. However, for the remaining prime dimensions, such

symmetry does not exists and we always observe a threshold. We see that the syndrome percolation

threshold decreases monotonically with the qudit dimension, and in the limit of high d it reaches a

constant value of about 18%. confirms the suggestion of the last section that the syndrome percolation

threshold is an upper-bound for the HDRG decoder. In the next section we will show how the HDRG

decoder can be enhanced to beat this upper-bound.
5This fact can be understood by considering the probability that a plaquette (or a vertex) is non-trivial. In the qubit case,

this occurs with probability 4p(1 − p)3 + 4p3(1 − p), which is symmetric about p = 0.5 ± α, hence indicating that the profile

of the curve of the success probability of syndrome percolation versus the probability p has a bell shape about p = 0.5, which

prohibits the existence of a unique threshold point.

118

Q1,0 Q1,1

Q2,0 Q2,1

Figure 4.10: The first four levels of Qr,s. The red square is the syndrome s and the blue squares are the

syndromes at the outer layer ofR(r, s).

4.4.2 Enhanced HDRG Decoder

To beat the percolation threshold we consider an initialization step I that enhances the performance of

the HDRG decoder. This step is not efficient, but we will show that it can boost the threshold to about

30% at a computationally feasible cost. The initialization step is designed to dissect a percolating cluster

into a more sparse set of clusters before running the HDRG decoder (i.e. before running the first level of

decoding D1). It achieves this by using a brute force method to find any neutral sub-clusters within the

percolating cluster. The sub-clusters are then annihilated before running the HDRG decoder. We have

constructed this initialization step to search for the sub-clusters systematically utilizing similar concepts

as those used in the HDRG decoder.

More formally, the initialization step consists of multiple levels N of searches for neutral sub-

clusters. Let Qr,s be the set of syndromes at the outer layer ofRr,s, such that

Qr,s(x) = {
for s = 0,Rr,s ∖Rr−1,r−1,

for s > 0,Rr,s ∖Rr,s−1,
(4.11)

where ”A ∖B” just means in A but not in B. This is more easily shown by the examples in Fig. (4.10).

Then each initialization levelNr,s is associated with sets of syndromes of the formQr,s. We denote the

elements of the set Qr,s by qj , and by definition, each set has either 4 or 8 syndromes, see Fig. (4.10).

For any plaquette u and qj ∈ Qr,s, we construct a search rectangle T as the minimum rectangle

that encloses syndromes u and qj . In other words, the plaquette u and qj form the opposite corners of

the search rectangle. Inside T , we define a search-path τ as any minimum size (1,0)-path-connected

119

in T that starts at u and ends at qj . There are many such paths, and by construction, they will contain

∣τ ∣ = (r+s+1) total syndromes. We denote the set of all possible search-paths in T by T = {τ1, . . . , τ∣T ∣},

where ∣T ∣ is the total number of possible sub-clusters. Geometrically, in general, if the size of T is an

A×B rectangle, then ∣T ∣ = (A+B)!/A!B!. This expression was calculated by considering the equivalent

problem of finding all the minimum paths between two points on a Manhattan (or taxi-cab) geometry

(see [61], page 162).

The aim here is to treat each search-path as a sub-cluster. We then annihilate any neutral sub-clusters

at each level of initialization, and the search for the sub-clusters is performed for each syndrome u from

the set of all L2 syndromes of the lattice regardless of whether it is trivial or charged. Based on the

above definitions, we now summarise the search routine of an initialization level Lr,s as follows. For

each plaquette uj ∈ U (starting with u1):

1. Choose an element qj ∈ Qr,s, and construct a search rectangle T ;

2. Search for all possible sub-clusters τj ∈ T within T systematically. If any sub-cluster τj is found

to be neutral, then annihilate τj and stop the search. Then start step 1 with the next plaquette

uj+1 ∈ U ; Else

3. If no neutral sub-cluster were found, choose the next element qj+1 ∈ Qr,s and repeat steps 1 and

2; Else

4. If there are no remaining syndromes qj ∈ Qr,s, then the search has ended without finding a neutral

sub-clusters for plaquette uj . Start step 1 with the next plaquette uj+1 ∈ U .

The above procedure is repeated until all the plaquettes uj ∈ U have been searched. The overhead

of this search procedure is proportional to the size of the search rectangle ∣T ∣, which is factorial in r and

s. More precisely, for each initialization level Lr,s, in the worst case scenario (where no neutral sub-

clusters are found), the search takes αL2 steps, with the constant overhead α = (r + s)!/r!s!. Although

that seems to be inefficient (in the depth of search), the parameters r and s increase polynomially with

the number of initialization levels, and hence for the first few levels the overhead α is small enough. As a

120

0.0

05.0

10.0

15.0

20.0

25.0

30.0

Initialization Steps I(r1, r2)

T
h
re
sh
ol
d
(%

)

Dimensions

2

3
5
7
11
17
23
47

7919

I(0, 0) I(1, 0) I(1, 1) I(2, 0) I(2, 1)

Figure 4.11: The thresholds for the enhanced-HDRG decoder with the first four initialization steps

I(r, s). The error bars and data of some prime dimensions are not included for clarity. The red curve is

the enhanced-syndrome-percolation threshold in the limit of high d.

result, running the above procedure for the first few initialization levels is still a computationally feasible

task. It is important to notice that for each plaquette uj the procedure stops once a neutral sub-cluster

is found, and the worst case of not finding any neutral sub-clusters happens only when the dimension d

and the error rate p are sufficiently high. The depth of searching for the neutral sub-clusters increases as

the initialization levels increase in size. An initialization step is to depth (r, s), denoted by I(r, s), if it

consists of running all the initialization levels in ascending order I(r, s) = {N1,0,N1,1, . . . ,Nr,s}. We

propose an enhanced-HDRG decoder with depth (r, s) that runs the initialization step I(r, s) followed

by the HDRG decoder described in Sec. 4.3.

The numerical estimates for the thresholds achieved by the enhanced-HDRG decoder for the first

four initialization steps are summarized in Fig. (4.11). The thresholds for I(0,0) correspond to the

121

HDRG decoder without any enhancement. For the qubit and qutrit case we see that the thresholds

decrease after initialization steps are introduced. This is because for these low dimensions, finding a

neutral sub-cluster is very probable, and hence the initialization step is in fact too destructive. As a

result the clusters are divided into a very sparse set of smaller clusters, and running the HDRG will end

up connecting these sparse sets of clusters and causing more logical errors.

However, we start to observe an improvement in the thresholds above the qutrit case. Notice that

for all the first listed prime dimensions (d = 2, . . . ,47), after some initialization step the thresholds

start to decrease. This is also because after some depth of searching the initialization step becomes too

destructive. In the limit of high d, we see that a threshold just under 30% can be achieved. In addition,

note that the shape of the curve indicates a potential increase in threshold with initialization step beyond

I(2,1). We leave such investigations for future work.

Finally, in the limit of high d, the saturating thresholds of the enhanced-HDRG decoder can also

be explained by the syndrome percolation effect. We introduce the enhanced-syndrome-percolation

threshold which is determined by simply running the initialization step I(r, s) followed by the syndrome

percolation simulation described in Sec. 4.4.1. The numerical estimates for the enhanced-syndrome-

percolation thresholds are indicated in Fig. 4.11 by the red curve. Our numerical analysis shows that

the enhanced-HDRG decoder can reach the upper-bound of the red line by ignoring small size effects

and considering large lattice sizes only.

4.5 Summary and Open Problems

In this chapter we have presented an efficient decoder for the qudit toric code based on the HDRG

decoder of [25]. This decoder has the convenient feature of having a run-time complexity independent

from the dimension of the physical qudits. This has allowed us to obtain numerical estimates of the

threshold for any desired dimension. We have shown how the original decoder of [25] can be refined to

obtain higher thresholds, at the cost of linear increase of decoding levels. Although this means that our

refined version of the the HDRG decoder is slower (by taking many additional decoding levels), such a

slow down disappears as the dimension increases. This is because the density of the syndrome increases

122

with increasing dimension, and hence both our refined version and the original HDRG decoder would

only require the first few levels of decoding.

Under the IID generalised physical bit-flip noise model, our un-enhanced decoder achieves a thresh-

old increasing with d, saturating around 18% in the limit of high dimension d. We have provided

numerical evidence and this threshold is in fact tightly upper-bounded by the syndrome percolation

threshold. To beat this upper-bound we have included an initialization step, that can boost the threshold

to about 30% with computational feasible run-time overhead. There are many open problems that need

to be addressed in a future investigation.

First, in the original HDRG decoder [25] the authors managed to prove the existence of a threshold

for this decoder. Can we prove the existence of a threshold for our decoder given that the decoding levels

increase linearly? In fact, it is not clear that we need this linear scaling for high decoding levels—one

could consider the case where for the first few levels of decoding we adopt our refined decoding levels

and then switch to the exponential scaling of [25]. The HDRG decoder does not seem to be suitable for

correlated noise models. An open question is then, can we modify the distance measure somehow to

account for correlated errors?

Finally, we have only considered the case of perfect decoding where we consider errors in the

physical qudits only. For future work, we plan to consider a more realistic noise model where each

element of the stabilizer measurement circuits in Fig. (4.3) is prone to errors. This means that the

outcome of the stabilizer measurements are themselves faulty. For this case, we will have to create a 3D

history of the stabilizer syndrome measurements. More precisely, we will have to record the changes

(difference in outcome measurements modulo d) of the syndromes between time slices. The threshold

that will be obtained from this simulation will be the actual fault-tolerant threshold below which qudits

can be robustly stored by the qudit toric code.

123

Chapter 5

Summary and Outlook

Building a scalable quantum computer is one of the major challenges in modern physics. The main ob-

stacle that face any physical realisation of a quantum computer is the problem of quantum decoherence,

where due to the delicate nature of quantum systems, any unwanted interaction with the environment

can destroy the coherence (or superposition) of the quantum states, causing an instant loss of any useful

information stored. Despite this serious problem, over the past two decades the theory of quantum fault-

tolerance was developed to combat quantum decoherence and to show how an error-free computation

can be accomplished. This was proven by the threshold theorem, which asserts that arbitrary accurate

and long computations can be performed in a fault-tolerant manner provided that the rate at which each

computational element fails is below a certain threshold.

A typical quantum fault-tolerant scheme consists of two crucial components. First, it must include a

fault-tolerant implementation of an error correction code to protect the information during all steps of the

computation. Second, it must provide the means to achieve universal quantum computation. Arguably,

the most promising fault-tolerant scheme known to date is that introduced by Raussendorf et al. [132,

131] for the measurement-based cluster-state architecture [129, 130, 128]—achieving a fault-tolerant

threshold of about 1%. The two central components of this fault-tolerant scheme are the topological

error correction codes1 for robust protection against noise and magic state distillation for achieving
1Note that although this scheme borrows many techniques from the topological computational model (including, for exam-

124

quantum universality. Our main focus in this thesis has been to investigate the advantages of using higher

dimensional quantum systems (qudits) instead of the conventional two-level quantum systems (qubits),

as candidates for fault-tolerant quantum computation. We have chosen the scheme by Raussendorf et al.

as the testbed in our qudit generalisation. Since the model of measurement-based quantum computation

generalises naturally to higher dimensions [172], what remains is the generalisation of magic state

distillation protocols and topological error correction, which is our contribution in this thesis.

In our investigation of higher dimensional magic state distillation we have considered two ap-

proaches which were independently presented in chapters 2 and 3. In chapter 2, we introduced a

numerical approach to study the distillation properties of any qudit stabilizer code [7]. We showed

how the generic distillation map of a distillation protocol can be evaluated when only the stabilizers of

the code are known. By numerically searching the state space as input states to the distillation map, the

distillable magic states (attractors of the distillation map) can be determined. We used this approach

to study the distillation capability of the five-qutrit code and identified, for the first time, new families

of magic states (the H– and H2–type magic states) beyond the qubit case. We then showed how such

states can be converted into a more suitable form to perform a non-Clifford qutrit gate, thus achieving

universality. This approach has the drawback of being inefficient for large codes, but nevertheless, it is

very useful when little is known about the nature of magic states that a small code can distil, and thus it

was very convenient to us as a first investigation.

In chapter 3, we adopted a more analytic approach by studying the distillation properties of the

family of Reed-Muller codes in all prime dimensions [35]. In the qubit case, it was known that Reed-

Muller codes have the remarkable property of having a transversal non-Clifford gate. For example the

15-qubit code has a transversal π/8 gate—a property that plays a central role in its magic state distillation

performance [27]. Using this property as a guideline, we developed a generalisation of the π/8 gate to all

prime dimensions. By exploiting the transversality property we were able to employ techniques from

classical coding theory that allowed us to analytical evaluate distillation thresholds for various error

ple, the braiding concept to implement logical gates via code deformation [131, 21]), it is not actually topological in nature,

i.e. there are no non-Abelian anyons involved in the computation.

125

models and determine the yield of the protocol. In particular, we found a small five-dimensional code,

QRM5(1), which has a superior performance in comparison to many qubit protocols. With respect to

depolarising noise, it achieves an error thresholds of 36.3%—the highest distillation threshold known to

date. In addition, it has a very high yield (γ∗ = 2)—outperforming its qubit counterpart by many orders

of magnitude.

In chapter 4, we studied the higher dimensional toric code2 serving as a quantum memory [6]. In our

study presented in this thesis, we assumed that the syndrome measurements are noise-free. We chose a

very fast hard-decisions renormalization group (HDRG) decoder [25], and we refined its construction to

improve its threshold performance. This decoder has a run-time complexity that is almost independent

of the physical qudit dimensions of the code—a feature that allowed us to numerically estimate the

threshold for any dimension of the qudit toric code. We saw that the thresholds obtained by this decoder

increases as the qudit dimension increase, and reach a saturating value of about 18%. We discovered

that this behaviour was due to a syndrome percolation effect, such that the percolation thresholds always

upper bound the thresholds achieved by the HDRG decoder. To beat this upper bound, we introduced

a special procedure (the initialization step) which can disrupt the percolation effect and can boost the

threshold to about 30% for a sufficiently high qudit dimensions. In a future work, we plan to extend

our investigation by applying our HDRG decoder to the more realistic 2D surface code—which is the

same as the toric code, but without the periodic boundaries—in addition to allowing for noisy syndrome

measurements. Given a fully realistic noise model, the thresholds that will be obtained in that study will

be the actual ‘fault-tolerant’ threshold below which information can be stored for arbitrary long time3.

An important problem that needs to be addressed is the physical implementation of qudits. It is

commonly known that many current physical realisations of qubits [156] are in fact multi-level quan-

tum systems (with two sets of multi-level regimes that distinguish the two levels of a qubit). In the case

of the Raussendorf et al. qubit scheme, the computation is carried out on a 2D lattice with only local

and nearest-neighbour (ferromagnetic Ising-type) interactions are required. Such a model can be poten-
2Also known as the Zd Kitaev’s code.
3Note that because logical gates are performed via code deformation in the scheme of Raussendorf et al., the fault-tolerant

threshold for the quantum memory that will be obtained is similar to that for the fault-tolerant computation.

126

tially realised in experimental setting where short-range interactions are readily available. Promising

examples include cold atoms in optical lattices [68, 106, 107, 29, 80], trapped ions [19, 113], photons

[102] and solid-state systems (such as quantum dots and superconducting circuits) [155, 164, 22]. For

the remaining components of the scheme, small scale experiments have been recently demonstrated for

magic state distillation (with NMR quantum processor [146]) and topological error correction (with an

eight-photon cluster state [167]). In the case of qudit implementations, the work of Zhou et al. [172]

showed the Hamiltonian needed to create a qudit cluster states is simply the 2D spin-d−1
2 Ising model.

Higher spins Ising models are studied both theoretically and experimentally in condensed matter theory

[168, 109, 79, 78, 153, 145, 38, 12, 54, 97]. We speculate that exploring such models can provide the

key for an experimental realisation of the qudit scheme of Raussendorf et al.

Our study in this thesis can be extended in two ways. First, throughout we assumed that the qudit

dimension is always a prime number. This was mainly to simplify the arguments by using the structure

of finite fields in our construction of quantum codes that were used for magic state distillation. We

predict that the generalisation to include dimensions that are prime powers should be straightforward as

the same language of finite fields can be used (with some modifications to our definitions in chapter 1

[8, 9]). However, the generalisation for the remaining dimensions could prove to be more technical and

would require a more careful investigation. Second, the noise models that we used to evaluate the error

thresholds for magic state distillation and the qudit toric code were not physically motivated. Instead we

considered the natural generalisation of the qubit depolarizing noise channel and the uncorrelated bit-flip

noise model in our studies. In reality, noise models are more likely to be correlated and asymmetric with

respect to bit- and phase-flip errors. In order to give a fairer comparison between the noise thresholds

of qudit systems (d > 2) and those achieved in the qubit case, it would be perhaps more constructive

to consider a noise model that is motivated by an experimental implementation of qudit systems. For

example, we can consider an experiment implementation that involves a nuclear spin and electron spin

system such as the one in [116, 13]. Without going into the experimental details, the system in this

experiment is effectively a 20-dimensional qudit. However, a closer look reveals that in such a system

the allowed operations are restricted and the noise involved is very specific. For instance, the 20-level

127

system is divided into two regions each containing 10-levels, and within each region only nearest-level

transitions are allowed and across the two regions only certain transitions are allowed. If such aspects

can be incorporated in our qudit model of computation, then the noise thresholds that will be obtained

can be directly compared to those of qubit systems.

It is still far from clear what will be the winning physical implementation in the race to build a

quantum computer, and what will be the key feature(s) that will make quantum computers a physi-

cal reality one day. We hope that this thesis has offered persuasive theoretical evidence that higher-

dimensional systems have some intrinsic properties that give them advantage over two-level systems,

and we hope that the our results can serve as a motivation for more intensive investigations considering

higher-dimensional systems as building blocks for fault-tolerant quantum architectures.

128

Bibliography

[1] S. Aaronson and D. Gottesman. Improved simulation of stabilizer circuits. Physical Review A,

70:052328, (2004).

[2] L.M. Adleman, J. Demarrais, and M.D.A. Huang. Quantum computability. SIAM J. Comput.,

26:1524–1540, (1997).

[3] D. Aharonov and M. Ben-Or. Fault-tolerant quantum computation with constant error. In Proc.

28th Ann. ACM Sympo. Theo. Comp. (STOC’97), pages 176–188, (1997).

[4] J.T. Anderson. On the power of reusable magic states. arXiv:1205.0289, (2012).

[5] I. Andriyanova, D. Maurice, and J.-P. Tillich. New constructions of CSS codes obtained by

moving to higher alphabet. arXiv:1202.3338, (2012).

[6] H. Anwar, B. Brown, E.T. Campbell, and D.E. Browne. Efficient decoders for the qudit toric

code. arXiv:1311.4895, (2013).

[7] H. Anwar, E.T. Campbell, and D.E. Browne. Qutrit magic state distillation. New J. Phys.,

14:063006, (2012).

[8] D.M. Appleby. SIC-POVMs and the extended Clifford group. J. Math. Phys, 46:052107, (2005).

[9] D.M. Appleby. Properties of the extended Clifford group with applications to SIC-POVMs and

MUBs. arXiv:0909.5233, (2009).

129

[10] E.F. Assmus and J.D. Key. Designs and their Codes. Cambridge University Press, (1994).

[11] D. Bacon. Operator quantum error-correcting subsystems for self-correcting quantum memories.

Phys. Rev. A, 73:012340, (2006).

[12] L. Bahmad, A. Benyoussef, and H. Ez-Zahraouy. Order-disorder layering transitions of a spin-

1 Ising model in a variable crystal field. J. Magnetism and Magnetic Materials, 251:115–121,

(2002).

[13] S.J. Balian, M.B.A. Kunze, M.H. Mohammady, G.W. Morley, W.M. Witzel, C.W.M. Kay, and

T.S. Monteiro. Measuring central-spin interaction with a spin bath by pulsed endor: Towards

suppression of spin diffusion decoherence. Phys. Rev. B, 86:104428, (2012).

[14] A. Barenco. A universal two-bit gate for quantum computation. Proc. R. Soc. London, 449:679–

683, (1995).

[15] A. Barenco, C.H. Bennett, R. Cleve, D.P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J.A.

Smolin, and H. Weinfurter. Elementary gates for quantum computation. Phys. Rev. A, 52:3457–

3467, (1995).

[16] I. Bengtsson, S. Weis, and K. Zyczkowski. Geometry of the set of mixed quantum states: An

apophatic approach. arXiv:1112.2347, (2011).

[17] C.H. Bennett, H.J. Bernstein, S. Popescu, and B. Schumacher. Concentrating partial entangle-

ment by local operations. Phys. Rev. A, 53:2046–2052, (1996).

[18] C.H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W.K. Wootters. Teleporting an

unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev.

Lett., 70:1895–1899, (1993).

[19] R. Blatt and D. Wineland. Entangled states of trapped atomic ions. Nature, 453:1008–1015,

(2008).

130

[20] H. Bombin, R.S. Andrist, M. Ohzeki, H.G. Katzgraber, and M.A. Martin-Delgado. Strong re-

silience of topological codes to depolarization. Phys. Rev. X, 2:021004, (2012).

[21] H. Bombin and M.A. Martin-Delgado. Quantum measurements and gates by code deformation.

J. Phys. A, 42:095302, (2009).

[22] M. Borhani and D. Loss. Cluster states from heisenberg interaction. Phys. Rev. A, 71:034308,

(2005).

[23] L.J. Boya and K. Dixit. Geometry of density matrix states. Phys. Rev. A, 78:042108, (2008).

[24] P.O. Boykin, T. Mor, M. Pulver, V. Roychowdhury, and F. Vatan. On universal and fault-tolerant

quantum computing: a novel basis and a new constructive proof of universality for Shor’s basis.

In Proc. IEEE: 40th Ann. Sympo. Found. Comp. Sci. (FOCS’99), pages 486–494, (1999).

[25] S. Bravyi and J. Haah. Analytic and numerical demonstration of quantum self-correction in the

3D cubic code. arxiv:1112.3252, (2011).

[26] S. Bravyi and J. Haah. Magic-state distillation with low overhead. Phys. Rev. A, 86:052329,

(2012).

[27] S. Bravyi and A. Kitaev. Universal quantum computation with ideal Clifford gates and noisy

ancillas. Phys. Rev. A, 71:022316, (2005).

[28] S.B. Bravyi and A.Y. Kitaev. Quantum codes on a lattice with boundary. arXiv:quant-

ph/9811052, (1998).

[29] H.J. Briegel and R. Raussendorf. Persistent entanglement in arrays of interacting particles. Phys.

Rev. Lett., 86:910–913, (2001).

[30] S.R. Broadbent and J.M. Hammersley. Percolation processes I. Crystals and mazes. Math. Proc.

Cambridge Philos. Soc., 53:629–645, (1957).

131

[31] S.S. Bullock and G.K. Brennen. Qudit surface codes and gauge theory with finite cyclic groups.

J. Phys. A, 40:3481–3505, (2007).

[32] A.R. Calderbank, E.M. Rains, P.W. Shor, and N.J.A. Sloane. Quantum error correction and

orthogonal geometry. Phys. Rev. Lett., 78:405–408, (1997).

[33] A.R. Calderbank and P.W. Shor. Good quantum error-correcting codes exist. Phys. Rev. A,

54:1098–1105, (1996).

[34] E.T. Campbell. Catalysis and activation of magic states in fault-tolerant architectures. Phys. Rev.

A, 83:032317, (2011).

[35] E.T. Campbell, H. Anwar, and D.E. Browne. Magic-state distillation in all prime dimensions

using quantum Reed-Muller codes. Phys. Rev. X, 2:041021, (2012).

[36] E.T. Campbell and D.E. Browne. On the structure of protocols for magic state distillation. In

Proc. Theo. Quant. Comput. Comm. Crypt. 4th Workshop (TQC’09), page 20, (2009).

[37] E.T. Campbell and D.E. Browne. Bound states for magic state distillation in fault-tolerant quan-

tum computation. Phys. Rev. Lett., 104:030503, (2010).

[38] Y. Canpolat, A. Torgürsül, and H. Polat. The magnetic properties of spin-1/2 and spin-1 Ising

models in an applied magnetic field by introducing the effective-field approximation. Phys. Scr.,

76:597–605, (2007).

[39] J.A. Smolin C.H. Bennett, D.P. DiVincenzo and W.K. Wootters. Mixed-state entanglement and

quantum error correction. Phys. Rev. A, 54:3824–3851, (1996).

[40] S. Popescu B. Schumacher J.A. Smolin C.H. Bennett, G. Brassard and W.K. Wootters. Pu-

rification of noisy entanglement and faithful teleportation via noisy channels. Phys Rev Lett.,

76:722–725, (1996).

[41] H.F. Chau. Five quantum register error correction code for higher spin systems. Phys. Rev. A,

55:R839–R841, (1997).

132

[42] X. Chen, H. Chung, A.W. Cross, B. Zeng, and I.L. Chuang. Subsystem stabilizer codes cannot

have a universal set of transversal gates for even one encoded qudit. Phys. Rev. A, 78:012353,

(2008).

[43] S. Clark. Valence bond solid formalism for d-level one-way quantum computation. J. Phys. A,

39:2701–2721, (2006).

[44] S.L.A. de Queiroz. Location and properties of the multicritical point in the gaussian and ±J ising

spin glasses. Phys. Rev. B, 79:174408, (2009).

[45] P. Delsarte, J.M. Goethals, and F.J. Mac Williams. On generalized Reed-Muller codes and their

relatives. Inf. Control, 16:403–442, (1970).

[46] E. Dennis. Toward fault-tolerant quantum computation without concatenation. Phys. Rev. A,

63:052314, (2001).

[47] I. Devetak and A. Winter. Distillation of secret key and entanglement from quantum states. Proc.

R. Soc. A, 461:207–235, (2005).

[48] G. Duclos-Cianci and D. Poulin. Fast decoders for topological quantum codes. Phys. Rev. Lett.,

104:050504, (2010).

[49] G. Duclos-Cianci and D. Poulin. A renormalization group decoding algorithm for topological

quantum codes. IEEE ITW, page 1, (2010).

[50] G. Duclos-Cianci and D. Poulin. Fault-tolerant renormalization group decoder for abelian topo-

logical codes. arXiv:1304.6100, (2013).

[51] G. Duclos-Cianci and D. Poulin. Kitaev’s Zd-codes threshold estimates. arXiv:1302.3638,

(2013).

[52] B. Eastin and E. Knill. Restrictions on transversal encoded quantum gate sets. Phys. Rev. Lett.,

102:110502, (2009).

133

[53] J. Edmonds. Paths, trees, and flowers. Can. J. Math., 17:449–467, (1965).

[54] R.S. Ellis, P.T. Otto, and H. Touchette. Analysis of phase transitions in the mean-field

blumeemerygriffiths model. Ann. Appl. Probab., 15:1591–2254, (2005).

[55] A.G. Fowler, S.J. Devitt, and C. Jones. Surface code implementation of block code state distilla-

tio. Sci. Rep., 3:1939, (2013).

[56] A.G. Fowler and K. Goyal. Topological cluster state quantum computing. Quantum Inf. Comput.,

9:0721, (2009).

[57] A.G. Fowler, A.M. Stephens, and P. Groszkowski. High-threshold universal quantum computa-

tion on the surface code. Phys. Rev. A, 80:052312, (2009).

[58] A.G. Fowler, A.C. Whiteside, and L.C.L. Hollenberg. Towards practical classical processing for

the surface code: Timing analysis. Phys. Rev. A, 86:042313, (2012).

[59] K.M. Svore G. Duclos-Cianci. A state distillation protocol to implement arbitrary single-qubit

rotations. arXiv:1210.1980, (2012).

[60] F. Gaitan. Quantum Error Correction and Fault Tolerant Quantum Computing. CRC Press,

(2008).

[61] M. Gardner. The Last Recreations. Springer-Verlag New York Inc., (1997).

[62] D. Gottesman. Class of quantum error-correcting codes saturating the quantum hamming bound.

Phys. Rev. A, 54:1862–1868, (1996).

[63] D. Gottesman. Stabilizer codes and quantum error correction (phd thesis). arXiv:quant-

ph/9705052, (1997).

[64] D. Gottesman. Theory of fault-tolerant quantum computation. Phys. Rev. A, 57:127–137, (1998).

[65] D. Gottesman. Fault-tolerant quantum computation with higher-dimensional systems. Chaos

Solitons Fractals, 10:1749–1758, (1999).

134

[66] D. Gottesman and I.L. Chuang. Demonstrating the viability of universal quantum computation

using teleportation and single-qubit operations. Nature, 402:390–393, (1999).

[67] S.K. Goyal, B.N. Simon, R. Singh, and S. Simon. Geometry of the generalized Bloch sphere for

qutrit. arXiv:1111.4427v1, (2011).

[68] M. Greiner, O. Mandel, T.W. Hänsch, and I. Bloch. Collapse and revival of the matter wave field

of a Bose-Einstein condensate. Nature, 419:51–54, (2002).

[69] G. Grimmett. Percolation. Springer, (1989).

[70] J. Haah. Local stabilizer codes in three dimensions without string logical operators. Phys. Rev.

A, 83:042330, (2011).

[71] J.W. Harrington. Analysis of quantum error-correcting codes: symplectic lattice codes and toric

codes. PhD Thesis, (2004).

[72] P. Heijnen and R. Pellikaan. Generalized hamming weights of q−ary Reed-Muller codes. IEEE

Trans. Inf. Theory, 44:181–196, (1998).

[73] A. Honecker, M. Picco, and P. Pujol. Universality class of the Nishimori point in the 2D ±J

random-bond Ising model. Phys. Rev. Lett., 87:047201, (2001).

[74] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki. Quantum entanglement. Rev.

Mod. Phys., 81:865–942, (2009).

[75] E. Hostens, J. Dehaene, and B.D. Moor. Stabilizer states and clifford operations for systems of

arbitrary dimensions and modular arithmetic. Phys. Rev. A, 71:042315, (2005).

[76] M. Howard and J. Vala. Qudit versions of the qubit π/8 gate. Phys. Rev. A, 86:022316, (2012).

[77] P. Iyer and D. Poulin. Hardness of decoding quantum stabilizer codes. arXiv:1310.3235, (2013).

[78] N.Sh. Izmailian. A spin-3/2 Ising model on a square lattice. J. Exp. Theor. Phys. Lett., 63:290–

295, (1996).

135

[79] N.Sh. Izmailian and N.S. Ananikian. General spin-3/2 Ising model in a honeycomb lattice: Ex-

actly solvable case. Phys. Rev. B, 50:6829–6832, (1994).

[80] D. Jaksch, H.J. Briegel, J.I. Cirac, C.W. Gardiner, and P. Zoller. Entanglement of atoms via cold

controlled collisions. Phys. Rev. Lett., 82:1975–1978, (1999).

[81] T. Jochym-O’Connor, Y. Yu, B. Helou, and R. Laflamme. The robustness of magic state distilla-

tion against errors in Clifford gates. Quant. Inf. Comput., 13:361–378, (2013).

[82] C. Jones. Composite Toffoli gate with two-round error detection. Phys. Rev. A, 87:052334,

(2013).

[83] C. Jones. Distillation protocols for Fourier states in quantum computing. arXiv:1303.3066,

(2013).

[84] C. Jones. Low-overhead constructions for the fault-tolerant Toffoli gate. Phys. Rev. A, 87:022328,

(2013).

[85] C. Jones. Multilevel distillation of magic states for quantum computing. Phys. Rev. A, 87:042305,

(2013).

[86] N.S. Jones and N. Linden. Parts of quantum states. Phys. Rev. A, 71:012324, (2005).

[87] R.M. Karp. Reducibility among combinatorial problems. Complexity Computer Computations,

Plenum Press, pages 85–103, (1972).

[88] T. Kasami, Shu Lin, and W. Peterson. New generalizations of the Reed-Muller codes–I: Primitive

codes. IEEE Trans. Inf. Theory, 14:189–199, (1968).

[89] A.Y. Kitaev. Quantum computations: algorithms and error correction. Russ. Math. Surv.,

52:1191–1249, (1997).

[90] A.Y. Kitaev. Fault-tolerant quantum computation by Anyons. Ann. of Phys., 303:2–30, (2003).

136

[91] E. Knill. Fault-tolerant postselected quantum computation: Schemes. arXiv:quant-ph/0402171,

(2004).

[92] E. Knill. Fault-tolerant postselected quantum computation: Threshold analysis. arXiv:quant-

ph/0404104, (2004).

[93] E. Knill. Quantum computing with realistically noisy devices. Nature, 434:39–44, (2005).

[94] E. Knill, R. Laflamme, and W. Zurek. Threshold accuracy for quantum computation.

arXiv:quant-ph/9610011, (1996).

[95] E. Knill, R. Laflamme, and W.H. Zurek. Resilient quantum computation: error models and

thresholds. Proc. R. Soc. Lond. A, 454:365–384, (1998).

[96] V. Kolmogorov. Blossom V: a new implementation of a minimum cost perfect matching algo-

rithm. Math. Prog. Comp., 1:43–67, (2009).

[97] J.J. Krebs, P. Lubitz, A. Chaiken, and G.A. Prinz. Magnetic resonance determination of the

antiferromagnetic coupling of Fe layers through Cr. Phys. Rev. Lett., 63:1645–1648, (1989).

[98] K.-Y. Kuo and C.-C. Lu. On the hardnesses of several quantum decoding problems.

arXiv:1306.5173, (2013).

[99] P. Kurzynski. Multi-bloch vector representation of the qutrit. arXiv:0912.3155v1, (2009).

[100] R. Laflamme, C. Miquel, J.P. Paz, and W.H. Zurek. Perfect quantum error correcting code. Phys.

Rev. Lett., 77:198–201, (1996).

[101] A.J. Landahl and C. Cesare. Complex instruction set computing architecture for performing

accurate quantum Z rotations with less magic. arXiv:1302.3240, (2013).

[102] D. Leibfried, E. Knill, S. Seidelin, J. Britton, R.B. Blakestad, J. Chiaverini, D.B. Hume, W.M.

Itano, J.D. Jost, C. Langer, R. Ozeri, R. Reichle, and D.J. Wineland. Creation of a six-atom

Schrödinger cat state. Nature, 438:639–642, (2005).

137

[103] F.J. MacWilliams and N.J.A. Sloane. The Theory of Error-Correcting Codes. North-Holland,

(1977).

[104] M. Majewski and K. Malarz. Square lattice site percolation thresholds for complex neighbour-

hoods. Acta Phys. Pol., B38:2191, (2007).

[105] K. Malarz and S. Galam. Square-lattice site percolation at increasing ranges of neighbor bonds.

Phys. Rev. E, 71:016125, (2005).

[106] O. Mandel, M. Greiner, A. Widera, T. Rom, T.W. Hänsch, and I. Bloch. Coherent transport of

neutral atoms in spin-dependent optical lattice potentials. Phys. Rev. Lett., 91:010407, (2003).

[107] O. Mandel, M. Greiner, A. Widera, T. Rom, T.W. Hänsch, and I. Bloch. Controlled collisions for

multi-particle entanglement of optically trapped atoms. Nature, 425:937–940, (2003).

[108] A. Mari and J. Eisert. Positive Wigner functions render classical simulation of quantum compu-

tation efficient. Phys. Rev. Lett., 109:230503, (2012).

[109] V. Matveev and R. Shrock. Zeros of the partition function for higher-spin 2D Ising models. J.

Phys. A: Math. Gen., 28:L533, (1995).

[110] A.M. Meier, B. Eastin, and E. Knill. Magic-state distillation with the four-qubit code. Quant. Inf.

Comput., 13:195–209, (2013).

[111] F. Merz and J.T. Chalker. Two-dimensional random-bond Ising model, free fermions, and the

network model. Phys. Rev. B, 65:054425, (2002).

[112] D.A. Meyer M.H. Freedman. Projective plane and planar quantum codes. Foun. Comp. Math.,

1:325–332, (2001).

[113] D.L. Moehring, P. Maunz, S. Olmschenk, K.C. Younge, D.N. Matsukevich, L.-M. Duan, and

C. Monroe. Entanglement of single-atom quantum bits at a distance. Nature, 449:68–71, (2007).

138

[114] C. Monroe, D.M. Meekhof, B.E. King, W.M. Itano, and D.J. Wineland. Demonstration of a

fundamental quantum logic gate. Phys. Rev. Lett., 75:4714–4717, (1995).

[115] J.C. Moreira and P.G. Farrell. Essentials of Error-Control Coding. Wiley, (2006).

[116] G.W. Morley, P. Lueders, M.H Mohammady, S.J. Balian, G. Aeppli, C.W.M. Kay, W.M. Witzel,

G. Jeschke, and T.S. Monteiro. Quantum control of hybrid nuclear-electronic qubits. Nature

Materials, 12:103–107, (2013).

[117] D.E. Muller. Application of boolean algebra to switching circuit design and to error detection.

IRE Trans. Elect. Comput., 3:6–12, (1954).

[118] G. Nebe, E.M. Rains, and N.J.A. Sloane. The invariants of the Clifford groups. Des. Codes and

Cryptogr., 24:99–122, (2001).

[119] G. Nebe, E.M. Rains, and N.J.A. Sloane. Self-Dual Codes and Invariant Theory. Springer

(Berlin), (2006).

[120] M.A. Nielsen and I.L. Chuang. Quantum Computation and Quantum Information. Cambridge

University Press, (2000).

[121] M. Ohzeki. Locations of multicritical points for spin glasses on regular lattices. Phys. Rev. E,

79:021129, (2009).

[122] A. Paetznick and B.W. Reichardt. Universal fault-tolerant quantum computation with only

transversal gates and error correction. arXiv:1304.3709, (2013).

[123] M. Plenio and S. Virmani. Upper bounds on fault tolerance thresholds of noisy Clifford-based

quantum computers. New J. Phys., 12:033012, (2010).

[124] M.B. Plenio and S. Virmani. An introduction to entanglement measures. Quant. Inf. Comput.,

7:1–51, (2007).

[125] J. Preskill. Reliable quantum computers. Proc. R. Soc. A, 454:385–410, (1998).

139

[126] J. Proakis and M. Salehi. Digital Communications. McGraw-Hill Higher Education, (2000).

[127] N. Ratanje and S. Virmani. Generalised state spaces and non-locality in fault tolerant quantum

computing schemes. Phys. Rev. A, 83:032309, (2011).

[128] R. Raussendorf. Measurement-based quantum computation with cluster states. Int. J. Quant. Inf.,

07:1053, (2009).

[129] R. Raussendorf and H.J. Briegel. A one-way quantum computer. Phys. Rev. Lett., 86:5188–5191,

(2001).

[130] R. Raussendorf, D. Browne, and H. Briegel. The one-way quantum computer–a non-network

model of quantum computation. J. Mod. Optics, 49:1299–1306, (2002).

[131] R. Raussendorf and J. Harrington. Fault-tolerant quantum computation with high threshold in

two dimensions. Phys. Rev. Lett., 98:190504, (2007).

[132] R. Raussendorf, J. Harrington, and K. Goyal. A fault-tolerant one-way quantum computer. Ann.

of Phys., 321:2242–2270, (2006).

[133] R. Raussendorf, J. Harrington, and K. Goyal. Topological fault-tolerance in cluster state quantum

computation. New J. Phys., 9:199, (2007).

[134] I.S. Reed. A class of multiple-error-correcting codes and the decoding scheme. Trans. IRE Prof.

Group Inf. Theo., 4:38–49, (1954).

[135] I.S. Reed and G. Solomon. Polynomial codes over certain finite fields. J. Soc. Indust. Appl.

Math., 8:300–304, (1960).

[136] B.W. Reichardt. Quantum universality from magic states distillation applied to CSS codes. Quan-

tum Info. Processing, 4:251–264, (2005).

[137] B.W. Reichardt. Quantum universality by state distillation. Quant. Inf. Comput., 9:1030–1052,

(2006).

140

[138] J.M. Renes, F. Dupuis, and R. Renner. Efficient quantum polar coding. Phys. Rev. Lett.,

109:050504, (2012).

[139] E. Rieffel and W. Polak. Quantum Computing. The MIT Press, (2011).

[140] P.K. Sarvepalli and A. Klappenecker. Nonbinary quantum Reed-Muller codes. Intl. Symp. Inform.

Theory (Adelaide, Australia), pages 1023–1027, (2005).

[141] B. Schumacher. Quantum coding. Phys. Rev. A, 51:2738–2747, (1995).

[142] Y. Shi. Both Toffoli and controlled-NOT need little help to do universal quantum computation.

Quant. Inf. Comput., 3:84–92, (2003).

[143] P.W. Shor. Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A,

52:R2493–R2496, (1995).

[144] P.W. Shor. Fault-tolerant quantum computation. In Proc. 37th Conference on Found. Comp. Sci.,

pages 56–65, (1996).

[145] J. Sivardiére and M. Blume. Dipolar and quadrupolar ordering in S=3/2 Ising systems. Phys. Rev.

B, 5:1126–1134, (1972).

[146] A.M. Souza, J. Zhang, C.A. Ryan, and R. Laflamme. Experimental magic state distillation for

fault-tolerant quantum computing. Nature Communications, 2:169, (2011).

[147] F.M. Spedalieri and V.P. Roychowdhury. Latency in local, two-dimensional, fault-tolerant quan-

tum computing. Quant. Inf. Comp., 9:666, (2009).

[148] D. Stauffer and A. Aharony. Introduction to Percolation Theory. CRC Press, (1994).

[149] A. Steane. Multiple-particle interference and quantum error correction. Proc. R. Soc. Lond. A,

452:2551–2577, (1996).

[150] A.M. Steane. Error correcting codes in quantum theory. Phys. Rev. Lett., 77:793–797, (1996).

141

[151] A.M. Steane. Quantum Reed-Muller codes. IEEE Trans. Info. Theo., 45:1701–1703, (1999).

[152] A.M. Stephens and Z.W.E. Evans. Accuracy threshold for concatenated error detection in one

dimension. Phys. Rev. A, 80:022313, (2009).

[153] M. Suzuki. Relationship between d-dimensional quantal spin systems and (d+1)-dimensional

Ising systems. Prog. Theor. Phys., 56:1454–1469, (1976).

[154] K.M. Svore, D.P. DiVincenzo, and B.M. Terhal. Noise threshold for a fault-tolerant two-

dimensional lattice architecture. Quant. Inf. Comput., 7:297–318, (2007).

[155] T. Tanamoto, Y. x. Liu, S. Fujita, X. Hu, and F. Nori. Producing cluster states in charge qubits

and flux qubits. Phys. Rev. Lett., 97:230501, (2006).

[156] R. Hughes et al. A quantum information science and technology roadmap part 1: Quantum

computation. http://qist.lanl.gov/, v2.0, (2004).

[157] W. van Dam and M. Howard. Tight noise thresholds for quantum computation with perfect

stabilizer operations. Phys. Rev. Lett., 103:170504, (2009).

[158] W. van Dam and M. Howard. Noise thresholds for higher-dimensional systems using the discrete

Wigner function. Phys. Rev. A, 83:032310, (2011).

[159] V. Veitch, C. Ferrie, D. Gross, and J. Emerson. Negative quasi-probability as a resource for

quantum computation. New J. Phys., 14:113011, (2012).

[160] V. Veitch, S.A.H. Mousavian, D. Gottesman, and J. Emerson. The resource theory of stabilizer

computation. arXiv:1307.7171, (2013).

[161] O. Viyuela, A. Rivas, and M.A. Martin-Delgado. Generalized toric codes coupled to thermal

baths. New J. Phys., 14:033044, (2012).

[162] C. Wang, J. Harrington, and J. Preskill. Confinement-Higgs transition in a disordered gauge

theory and the accuracy threshold for quantum memory. Ann. of Phys., 303:31–58, (2003).

142

[163] D.S. Wang, A.G. Fowler, A.M. Stephens, and L.C.L. Hollenberg. Threshold error rates for the

toric and surface codes. Quant. Inf. Comput., 10:456, (2010).

[164] Y.S. Weinstein, C.S. Hellberg, and J. Levy. Quantum-dot cluster-state computing with encoded

qubits. Phys. Rev. A, 72:020304(R), (2005).

[165] E. Weldon. New generalizations of the Reed-Muller codes–II: Nonprimitive codes. IEEE Trans.

Inf. Theory, 14:199–205, (1968).

[166] N.S. Yanofsky and M.A. Mannucci. Quantum Computing For Computer Scientists. Cambridge

University Press, (2008).

[167] X.C. Yao, T.X. Wang, H.Z. Chen, W.B. Gao, A.G. Fowler, R. Raussendorf, Z.B. Chen, N.L. Liu,

C.Y. Lu, Y.J. Deng, Y.A. Chen, and J.W. Pan. Experimental demonstration of topological error

correction. Nature, 482:489–494, (2012).

[168] J.M. Yeomans. Statistical Mechanics of Phase Transitions. Oxford University Press, (1992).

[169] C. Zalka. Threshold estimate for fault tolerant quantum computation. arXiv:quant-ph/9612028,

(1997).

[170] B. Zeng, Andrew Cross, and I.L. Chuang. Transversality versus universality for additive quantum

codes. IEEE Trans. Inf. Theo., 57:6272–6284, (2011).

[171] L. Zhang and I. Fuss. Quantum Reed-Muller codes. arXiv:quant-ph/9703045v1, (1997).

[172] D.L. Zhou, B. Zeng, Z. Xu, and C.P. Sun. Quantum computation based on d-level cluster state.

Phys. Rev. A, 68:062303, (2003).

[173] X. Zhou, D.W. Leung, and I.L.Chuang. Methodology for quantum logic gate construction. Phys.

Rev. A, 62:052316, (2000).

143

