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Abstract

Current BitTorrent tracking data discovery methods
rely on either centralised systems or structured peer-
to-peer (P2P) networks. These methods present se-
curity weaknesses that can be exploited in order to
censor or remove information from the network. To
alleviate this threat, we propose incorporating an un-
structured peer-to-peer information discovery mech-
anism that can be used in the event that the cen-
tralised or structured P2P mechanisms are compro-
mised. Unstructured P2P information discovery has
fewer security weaknesses. However, in this case, the
performance of the search is both probabilistic and
approximately correct (PAC) since it is not practical
to perform an exhaustive search. The performance
of PAC search strongly depends on the distribution
of documents in the network. To determine the prac-
ticality of PAC search over BitTorrent, we first con-
ducted a 64 day study of BitTorrent activities, look-
ing at the distribution of 1.6 million torrents on 5.4
million peers. We found that the distribution of tor-
rents follows a power law which is not amenable to
PAC search. To address this, we introduce a simple
modification to BitTorrent which enables each peer
to index a random subset of tracking data, i.e. tor-
rent ID and list of participating nodes. A success-
ful search is then one that finds a peer with track-
ing data, rather than a peer directly participating in
the torrent. The distribution of this tracking data is
shown to be capable of supporting an accurate PAC
search for torrents. We assess the overheads intro-

duced by our extension and conclude that we would
require small amounts of bandwidth, that are eas-
ily provided by current home broadband capabilities.
We also simulate our extension to verify our model
and to explore our extension’s capabilities in different
situations. We demonstrate that our extension can
satisfy 99% of queries for popular torrents, as well as
discover torrents found on as few as 10 nodes in 5
million after only 8 repeated queries to 100 random
nodes.

1 Introduction and Motivation

BitTorrent is a popular method of distributing multi-
media content, software and other data. BitTorrent
requires users to interact with a centralised service
called the tracker. This central focus point for the
protocol is a potential security weakness that could
be exploited to disrupt the network. Studies have
shown tracker failure to be a common and disruptive
occurrence [1]. Disrupting the tracker’s service effec-
tively halts the running of the BitTorrent network.
In order to strengthen the network to attack, a dis-
tributed hash table (DHT) extension has been intro-
duced and widely adopted. The DHT spreads the
responsibilities of the tracker across the network and
thereby makes it more difficult to disrupt the tracking
service. However, whilst this improves the security
of BitTorrent, the DHT mechanism is also vulnera-
ble to attack. For example, [2, 3] show that the most
popular DHT implementation for BitTorrent allows

1



malicious nodes to passively monitor nodes and even
remove nodes from the network.

Information discovery or retrieval in an unstruc-
tured P2P network is more resistant to attacks at-
tempting to censor that information [4]. However,
since it is not practical to search the entire net-
work, the accuracy of such search is both probabilistic
and approximate. Recent work on modelling proba-
bly approximately correct (PAC) search has provided
a strong mathematical framework for modelling the
search accuracy, i.e. the probability of finding a tor-
rent, which is primarily a function of the number of
nodes queried and the number of nodes a torrent is
replicated onto [5, 6, 7].

To determine whether PAC search in feasible on
the BitTorrent network, we first conducted a 64 day
study of BitTorrent activities, looking at the distri-
bution of 1.6 million torrents on 5.4 million peers.
Our measurements show that the torrent distribution
across nodes follows a power-law. The vast majority
of torrents are known to very few nodes. Section 3
describes this work. Given the current distribution of
torrents, a probabilistic search is unlikely to succeed.

We say that a node is participating in a torrent
if it is downloading or uploading the torrent’s data.
Currently, nodes in a BitTorrent network know only
of the torrents that they are participating in. In or-
der for a PAC search to be successful, a search query
must reach at least one node that is participating
in the torrent searched for. Unfortunately, finding a
participating node is difficult, as Section 3 reveals.
To improve the probability of a successful search,
Section 4 proposes a modification to the BitTorrent
protocol such that, if a node receives a query for a
torrent it is not participating in, it stores the tor-
rent’s ID, together with the address of the querying
node. If the queried node then receives a subsequent
query for this torrent, it responds with the address
of the previous querying node(s). This modification
substantially improves the probability of a successful
search for a torrent in the network. Section 4 provides
a detailed analysis.

Section 5 then considers the overheads associated
with the modification of the protocol. Additional
bandwidth is required in order to discover torrents
and each node must provide a small amount of local

storage for indexing purposes. We show that even
under extreme conditions the overheads introduced
by this extension are not prohibitive. Search queries
cost between 6.8KB and 8.8KB and our extension
requires only 3.5Kbytes of local storage per hour.

In order to verify our model we run a series of ex-
tensive simulations in Section 6. These simulations
confirm our theoretical analysis. The simulations also
consider various models of network churn in order
to demonstrate the extension’s effectiveness in real-
world environments.

2 Background and Related
Work

We first provide a brief introduction to the BitTor-
rent protocol, including defining the terminology as-
sociated with BitTorrent. We then summarize some
results from PAC search that we require for our the-
oretical analysis.

2.1 The BitTorrent Protocol

The BitTorrent protocol 1 is a mechanism for dis-
tributing files around a large number of computers
in a peer-to-peer network. It was designed to allow
many users to concurrently download files without
demanding excessive bandwidth from any single ma-
chine. This is achieved by first partitioning a file into
many pieces. A node then downloads these pieces
from many other nodes in the network and subse-
quently merges the pieces to recover the original file.
Each piece of a file is small enough that, individually,
they are easy to supply. The requesting node receives
a torrent of these small pieces that it can combine to
form the desired file. When the requesting node re-
ceives a piece of the file it can also start to offer that
piece to other nodes. Since pieces of popular files
will reside on many nodes, BitTorrent also provides
an inherent load balancing capability.

In order to share data over BitTorrent, an author
or publisher of a file must create a meta-data file
called the .torrent file. Each .torrent file contains (i)

1http://bittorrent.org/beps/bep_0003.html
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a list of the pieces that constitute the file, (ii) the
URL of the torrent’s tracker, and (iii) an identifier
for the torrent. This identifier, called the infohash, is
used to negotiate the download.

A tracker is a centralised server that monitors the
sharing of data in the network. For every torrent
a tracker is responsible for, the tracker keeps a list
of the peers that are uploading or downloading the
torrent’s data. When a new node enters the network
it can request a copy of this list from the tracker. The
new node can then contact the nodes listed and start
to request pieces. Nodes that are downloading or
uploading data must periodically communicate with
the tracker in order to keep the list up-to-date. We
refer to the combination of the torrent’s unique ID,
i.e. the infohash, and the list of nodes participating
in the torrent as the tracking data.

The centralised nature of the tracker is a secu-
rity weakness as attackers can attempt to disrupt the
tracker. This weakness is well recognised by the Bit-
Torrent community and several solutions have been
adopted. The multi-tracker extension2 to the pro-
tocol allows torrent authors to list more than one
tracker URL in the .torrent file. If one tracker fails,
the node can attempt to contact a second and is
therefore less affected by individual tracker failure.
HTTP3 and FTP4 seeding extensions allow torrent
authors to make their files available via a direct
HTTP/FTP connection. If the trackers are unavail-
able then nodes can fall back to a more traditional
form of direct downloading. Tracker exchange5 lets
nodes share information on BitTorrent trackers. Us-
ing this extension, nodes can learn which trackers are
the most popular or robust for a particular torrent.
Each of these solutions provide additional security by
replicating the centralised services. This tactic pro-
tects against accidental failure but can do little to
prevent a coordinated attack. Each individual ser-
vice remains susceptible to disruption.

The peer exchange (PEX) [8] extension enables
node discovery without using a tracker. Peer ex-
change lets nodes share tracking data directly. There

2http://bittorrent.org/beps/bep_0012.html
3http://bittorrent.org/beps/bep_0017.html
4http://bittorrent.org/beps/bep_0019.html
5http://bittorrent.org/beps/bep_0028.html

are several, independent, implementations of the peer
exchange protocol[8], and each achieves the same
goal. When two nodes, participating in a torrent,
communicate with each other, they can optionally
choose to exchange tracking data. Each node sends
a list of other nodes that it knows to have recently
joined or left that torrent. By doing this nodes are
made aware of new nodes to contact and old nodes
not to contact without needing to poll the tracker.
Reducing traffic to the tracker means that it is less
likely to become overloaded. If the tracker were to
fail nodes can still successfully gather tracking data.
PEX only works if a node is aware of at least one
other node. It does not, therefore, remove the re-
quirement for the tracker in the first place. Our Bit-
Torrent modification in Section 4 uses the fact that if
details of a single node can be discovered then details
of other nodes can be shared using PEX.

The distributed hash table (DHT) extension6

moves the tracking data from the tracker into a
shared and distributed database. BitTorrent uses an
implementation of a Kademlia DHT system[9] that
enables nodes that are new to the network to retrieve
a torrent’s tracking data without requesting anything
from a tracker. The DHT extension to the BitTorrent
protocol successfully removes the requirement for a
centralised tracking service, a single point of failure in
the original protocol. Unfortunately, there are some
side effects to this DHT implementation which may
introduce new security concerns as well as potentially
undermining some of the previously assumed bene-
fits. For example, in [2] a Sybil attack, where many
nodes are controlled by a single entity, is performed
that successfully pollutes the DHT and manages to
eclipse targeted torrents. Eclipsed torrents are effec-
tively removed from the DHT by making them undis-
coverable.

2.2 Probably Approximately Correct
Search

Probably approximately correct (PAC) search, intro-
duced in [7], is an information retrieval mechanism
that operates under a similar maxim to BitTorrent;

6http://bittorrent.org/beps/bep_0005.html
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let many machines do small amounts of work. PAC
search is a system that enables full-text search over
a document collection. The collection is randomly
distributed around a network of nodes, each node
holding a small fraction of the total collection in a
local index. Documents are duplicated across nodes
to provide redundancy. To perform a search, a node
issues a query to a randomly sampled set of nodes.
Each node applies the query to its local index and re-
turns any matching documents. The results from all
queried nodes are collated and duplicate results re-
moved. If the resulting document set does not meet
the search requirements the query can be re-issued to
a newly sampled set of nodes.

PAC search distributes text-search tasks across
multiple nodes and so reduces the workload of each
node. PAC can scale to accommodate large collec-
tions, as additional nodes can be easily added to the
network[7]. Documents can be added and removed
from the collection without requiring any complex re-
partitioning. It achieves these goals at the expense
of accuracy and efficiency[10, 6]. In comparison to a
deterministic full-text search system, PAC search is
unlikely to be able to return the exact same results.
Given the overheads introduced for network commu-
nications, a PAC search request is also likely to take
longer to return and may require more bandwidth.

There are three factors that influence the ability
of a PAC search system to correctly retrieve a doc-
ument, di, namely (i) the number of nodes in the
network, n, (ii) the number of nodes that index the
document, ri, and (iii) the number of nodes contacted
per query, z. A search over a collection of documents
distributed across n nodes involves a node querying
z other nodes. Each of the z nodes will perform a
search for the document across their local index and
return any matching results. A document can only
appear in PAC search results if it is present in the
local index of at least one of the z nodes that were
queried. From [7] the probability, P (di), that docu-
ment di is present in at least one of the z local indexes
is given by:

P (di) = 1 − (1 − ri
n

)z (1)

In the context of BitTorrent, we are performing a

known item search, where we are searching for one
and only one document, uniquely identified by its
infohash. As such, broader definitions of accuracy
introduced in [10, 6] are not relevant and Eqn (1)
provides the probability of a successful search. In
Section 3 we observe 5.4 million unique nodes in the
BitTorrent network. Using this value and Eqn (1) we
can calculate the number of nodes that a document
needs to be replicated over in order to achieve a given
accuracy. For example, if P (di) = 0.8 and z = 100
then we would require a document to be replicated
across 86,214 nodes, i.e. 1.6% of the network. If we
were to contact more nodes per query then our repli-
cation requirement decreases, for example z = 500
requires a document to be replicated across 17,354
nodes (0.32%).

Information retrieval in unstructured networks is
a well-researched area. In [11] the authors study
the performance of search using different replication
strategies; uniform, proportional and square-root.
They conclude that uniform and proportional strate-
gies, where documents are distributed uniformly or
according to their popularity respectively, require the
same expected search length, i.e. the average num-
ber of nodes that need to be contacted in order to
find documents is the same. Square-root replication,
where documents are distributed over a number of
nodes proportional to the square root of their pop-
ularity, performs optimally, i.e. has the lowest ex-
pected search length. In [12] the authors introduce
BubbleStorm, a system for search over unstructured
peer-to-peer networks, very similar to PAC search.
BubbleStorm provides a gossiping algorithm that is
very resilient to network churn and large numbers of
node failure.

In this paper we do not consider the issue of peer
sampling, that is, we assume that a PAC search client
is capable of taking a uniformly random sample of
nodes from the network. Methods that achieve this
goal are numerous. BubbleStorm uses local-view gos-
siping to achieve this. In [13] the authors consider us-
ing random walks over an unstructured networks to
replace flooding found in systems such as Gnutella.
In [14] the authors introduce Brahms, a system for
random peer sampling in unstructured networks that
uses another gossip-based protocol. Brahms also pro-
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vides security measures for sampling in a Byzantine
environment.

3 The Measurement Study

In order to evaluate the applicability of PAC search
to BitTorrent we conducted a measurement study of
public BitTorrent networks. In order to evaluate PAC
search over BitTorrent it is necessary to know: (i)
how many nodes are in the network and (ii) how tor-
rents are distributed over those nodes.

3.1 Design

The data was collected from public BitTorrent track-
ers discovered using the TrackOn7 API. Using the
API we gathered a list of online public trackers. Pub-
lic BitTorrent trackers are public facing trackers that
place few restrictions on use. Any torrent can be reg-
istered at the tracker and any BitTorrent node can
communicate with it. Each tracker was periodically
polled with a scrape request. A scrape request asks
the tracker to return a list of all of the torrents that
it is tracking. For each torrent in the scraped list, the
tracker was asked to list all of the nodes that were
currently sharing that torrent’s file.

This process was initiated at most once an hour.
In practise a complete scrape took much longer than
an hour to complete so additional scrapes were only
started when the previous finished. Nodes were iden-
tified by IP address, it was assumed that each unique
IP address represents a unique node and that ev-
ery node has a single, unchanging IP address. This
means that we cannot tell the difference between
nodes that operate behind network address transla-
tion (NAT) and so may, as a result, undercount the
number of nodes. We also cannot distinguish between
nodes that share an IP address, for instance if an ISP
reallocates an IP address to a different node. Again,
this means that we undercount the number of nodes.
We assume that these issues impact only slightly on
our figures.

7http://www.trackon.org

3.2 Results

Between 1st May and 3rd July 2012, 13 public Bit-
Torrent trackers were periodically scraped8. A total
of 1.6 million distinct torrents were observed on over
5.4 million distinct nodes over 64 days. Considering
each torrent as a document in the collection, the num-
ber of documents, m = 1, 600, 000 and the number of
nodes n = 5, 400, 000. A PAC search is heavily influ-
enced by the distribution of torrents over the nodes.
In order to determine this distribution, the number
of nodes registered to each torrent was counted. The
frequencies at which these counts were observed was
then calculated. Figure 1 shows these frequencies on
a log-log scale, along with a line of best fit. The dis-
tribution follows a power law with the vast majority
of torrents being found on very few nodes. These
figures align roughly with those observed in [15, 16].
The analysis shows that 25% of all torrents are only
found on a single node and 76% of all torrents are
found on 10 or fewer. Only 2% of observed torrents
were found on more than 100 nodes. Torrents were
found on anywhere between 0 and 21,445 nodes, the
average torrent was owned by 27 nodes and the me-
dian torrent by 3. We saw in Section 2 that docu-
ments needed to be replicated on tens of thousands
of nodes in order to have a high probability of suc-
cessful search. We observe that very few torrents
meet those requirements. For a required probability
of finding a document, P (di) = 0.8 when querying
z = 500 nodes we need a document to be replicated
on ri = 17, 354 nodes. We only observed 9 torrents
with a replication at or above this level.

8Those trackers were:
http://bttrack.9you.com

http://exodus.desync.com:6969

http:/announce.xxx-tracker.com:2710

http://h33t.com:3310

http://bt.rghost.net

http://61.154.116.205:8000

http://fr33dom.h33t.com:3310

http://announce.opensharing.org:2710

http://bttrack.9you.com:8080

http://tracker.torrentbay.to:6969

http://bigtorrent.org:2710

http://tracker.coppersurfer.tk:6969

http://a.tv.tracker.prq.to
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Figure 1: The relative frequency of observations of torrent participation, i.e. the number of nodes that are
downloading or uploading the torrent

4 The PAC BitTorrent Exten-
sion

Until now, our analysis has assumed that in order
to find a torrent and begin the download process a
node must directly identify a node currently partic-
ipating in that torrent. This need not be the case.
Rather, to find a torrent, we could first discover the
torrent’s tracking data. The tracking data will con-
tain a list of nodes thought to be participating in
the torrent, and these nodes can be used to initi-
ate the download. This is, of course, analogous to
the original BitTorrent protocol’s torrent-discovery-
via-trackers mechanism. To accomplish this in a un-
structured P2P environment, we need a mechanism
by which each peer indexes a random, non-disjoint
subset of torrent tracking data. Given this mecha-
nism, we can apply PAC search on the collection of
tracking data, where each torrent’s tracking data is
equivalent to a document. The success of PAC search
is then dependent on the distribution of torrent track-
ing data, rather than the distribution of the torrents
themselves.

In Section 4.1 we first introduce the modification to
the BitTorrent protocol that enables peers to index a
random, non-disjoint subset of torrent tracking data.
Section 4.2 provides a mathematical model of our ex-

tension. Section 4.3 then analyses the distribution of
torrent tracking data and the associated performance
of PAC search.

4.1 Indexing

Our modification is based on the following assump-
tions, which are discussed shortly. First, we assume
that a querying node is able to sample and commu-
nicate with z random nodes in the network. This is
a key assumption behind the PAC search framework.
Second, we assume that a querying node will persist
in communicating with nodes until the search is suc-
cessful, i.e. the querying node identifies a node that
is either participating in the torrent or is indexing a
node participating in the torrent. Thus, when a node
performs a search it issues one or more queries for
the same torrent, until such time as a query is suc-
cessful. A query consists of a node sending a request
to z randomly sampled nodes in the network. Each
repeated query for the same torrent selects z different
nodes. A request consists of a querying node sending
the desired torrent’s infohash to a random node. The
queried node responds with either a list of nodes it
believes are participating in the torrent, or an empty
list.

When a node receives a query, it updates its index,
such that the querying node is now added to the re-
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quested torrent’s list of participating nodes. If the
index does not already contain a record for the tor-
rent, a new record is inserted with the querying node
listed as a participating node. In this way, a queried
node builds up a local database of tracking data.

In the next section, we analyse the expected distri-
bution of tracking data across nodes and show that
this distribution is capable of supporting PAC search.

4.2 Model

When querying a fixed number of random nodes, z,
the probability of a successful query is now deter-
mined by (i) the number of nodes participating in
the torrent, and (ii) the number of nodes indexing the
torrent’s tracking data, ri. Given our proposed mod-
ification to the BitTorrent protocol, the more queries
the network receives for a torrent, the more that tor-
rent’s tracking data is replicated, and the easier it
becomes to find. The number, r(t), of nodes index-
ing a torrent at a time t depends on: the number, u,
of requests made for the torrent at t, and the pro-
portion, c, of nodes that leave the network at t. The
change in replication over time can be expressed as:

dr(t)

dt
= u(1 + z(1 − r(t)

n
)) − cr(t) (2)

Here, 1 − r(t)
n gives the proportion of the z nodes

that were not already indexing the torrent. We can
solve this ODE to give us an equation for the repli-
cation as a function of time:

r(t) = ke−t(c+
uz
n ) +

un(1 + z)

uz + cn
(3)

The constant, k, is given by the initial condition,
r(0). Conceptually, r(0) is the number of nodes that
index the torrent before any queries have been made
for it. The torrent’s author can control r(0) in order
to enable early queries to be successful. The author-
ing node simply makes dummy requests to r(0) nodes
in order to push tracking data into the network.

4.3 Discussion

Eqn 3 gives the replication of a torrent’s tracking
data as a function of time. It depends on a number

of constants; c, the network churn rate, u the torrent
query rate, z the query size, and n the network size.

We see that r(t) approaches a limit of un(1+z)
uz+cn at an

exponential rate. After some small t, therefore, we
can consider r(t) to be stable, with negligible devi-
ation from the limit. In this steady state condition,
the replication is controlled by u, n, z and c. Both n
and c are constants defined by the network and so are
not controllable. It is possible to control z. In this
discussion we assume a value of z = 100. This value
could be decided globally and apply to all torrents,
or perhaps a dynamic value of z could be picked by
the torrent author or querying node. The effects and
ramifications of when to pick z and who gets to pick
it are left for future work. The number of queries
performed for the torrent, u, depends on the number
of nodes searching for the torrent. It is also possible
for participating nodes to issue dummy queries, as
the authoring node does at t = 0. In this way the
query rate can also be controlled.

In the following discussion we assume n = 5000000.
We set the churn rate c=0.06, i.e. 6% of nodes leave
the network every hour and the same number of fresh
nodes enter the network. This value is based on
[17, 18], where the authors estimate that the aver-
age time it takes a node to download a torrent is 8.06
hours and the average time a node spends seeding
that torrent is 8.42 hours. If nodes spend an aver-
age of 16.48 hours in the network then we expect

1
16.48 = 6% of the network to leave every hour. This
does not account for nodes that download multiple
torrents and so may be an over estimate. If a torrent
receives u = 100 queries per hour then Eqn 1 tells us
that P (di) = 0.96 when z = 100, thus any torrents
that are receiving at least 100 queries per hour will
have 96% of the queries performed for it succeed if
queries go to 100 nodes. Any query that fails can
be repeated with a different set of 100 nodes and so
in practise it is unlikely that any search will fail. If
we decrease u = 50 then P (di) = 0.81, decreasing
z = 50 instead gives P (di) = 0.57. We see that the
probability of a successful query is much more sen-
sitive to z than u. For this reason it is important
that a suitable value for z is picked. Note that even
when P (di) = 0.57 the expected number of reepated
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queries required before success is only 1.75. Figure 2
shows the relationship between z and u for three dif-
ferent values of P (di) = 0.5, 0.7, 0.9. We conclude
that even if the desired probability of a successful
query were high, e.g. P (di) = 0.9, that reasonable
strategies for z and u can be picked. If the torrent
is popular then low values of z will still provide the
probability required. If the torrent is not popular, as
the majority of the torrents we observed were, then
high probabilities can still be achieved by either set-
ting z higher or by artificially increasing the number
of queries performed for it. For example, if we fix
z = 100 and decide on an acceptable probability of
successful query, P (di) = 0.9 then Eqn 1 tells us the
replication needed to meet those requirements:

r(t)required = n(1 − exp
log(1−P (di))

z ) (4)

= 113814 (5)

For the same rate of churn, c = 0.06, and number
of nodes in the network, n = 5000000, we see the
replication of a torrent’s tracking data, r(t), tend-
ing towards at least this replication level when the
query rate, u ≥ 69.17. So torrents with at least 69
queries performed for it per hour will be discoverable
90% of the time if nodes query z = 100 nodes at
a time. In our measurement study 76% of the tor-
rents that we observed were available on fewer than
10 nodes. It seems unlikely, therefore, that the major-
ity of torrents would have 69 queries being performed
for them. But as the torrent spreads, this may be-
come overwhelming. It might be worth emphasising
(i) that dummy request only originate from partici-
pating nodes rather than nodes that index the tor-
rent data. Also, participating nodes could decrease
or stop issuing queries if a dummy query was suc-
cessfully answered, an indication that the torrent was
sufficiently replicated.

The above analysis assumed that the replication
had reached a stable point. As noted, this stable
point is reached exponentially quickly. For small t
however, the replication can be very different from
the steady state and therefore the probability of a
successful query is also different. The value of r(0) is
set by the authoring node and directly controls the
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Figure 2: The query rate, u, required to meet the
probability of successful query P (d) for query size, z.

probability of finding the torrent in the first hour.

If r(0) > un(1+z)
uz+cn then the replication levels will be

decreasing towards the limit and the probability of
success will always be at or above the steady state.
As seen in Eqn 4, in the steady state condition the
replication is high, e.g. r(t) = 113814. It is unlikely
that an authoring node would have the capacity or
inclination to issue dummy queries to so many nodes.
Instead the replication will be increasing towards the
limit. r(0) can therefore set a minimum probability
of successful search. For example, if the desired min-
imum were P (di) = 10%, n = 5000000, and z = 100
then, from Eqn 1, r(0) = 5265. As nodes can re-
peat an unsuccessful query, even if the probability
of any individual query is low the expected number
of queries required before success can still be reason-
able. For instance, with P (di) = 0.1 we would expect
nodes to have to query 10 times before success. After
these 10 queries the replication will have increased by
at most 10z and the probability of successful search
will have increased to 12%. Consequently, the next
node to search for the torrent is expected to have
to query 8.3 nodes before success. The distributing
of the bootstrap tracking data can be achieved over
time and so should not constitute a significant drain
on the resources of the authoring node. A more in
depth analysis of the overheads introduced by this
extension to BitTorrent follows.
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5 The Overheads

The BitTorrent extension described in the previous
section introduces a number of overheads. The intro-
duction of an additional index at each node requires
additional local storage space. Discovery of tracking
data is achieved by having nodes make requests to
other nodes. This requirement increases bandwidth
compared with the current BitTorrent protocol. We
shall now quantify these overheads.

Bandwidth consumption is calculated using the fol-
lowing assumptions and generalisations about com-
munication costs:

1. TCP/IP overhead amounts to 64 bytes per
packet9

2. We never send more bytes than can fit into a
single packet (1500 bytes)

3. BitTorrent requires an initial 68 bytes for a
handshake10

4. BitTorrent adds 4 bytes of length prefix per mes-
sage

5. A torrent infohash is 20 bytes

6. Results can be communicated using 6 bytes per
node11

5.1 Single Node Sending Single Query

Using these assumptions we can estimate the com-
munication cost for a node to send a query. For each
query the node will contact z other nodes, and receive
a response from all of them. An unsuccessful response
will contain no details of other nodes. A successful
response will contain some number of results. A suc-
cessful query is one in which at least one response was
successful. For a successful query, the total cost de-
pends on, (i) the number of successful requests and,
(ii) the number of nodes listed in each response. For

9http://sd.wareonearth.com/~phil/net/overhead/
10http://bittorrent.org/beps/bep_0003.html
11Details of the IP and port for each node will make up

the results list. http://bittorrent.org/beps/bep_0023.html

explains how BitTorrent clients communicate IP:port combi-
nations in 6 bytes.

simplicity, we consider three cases; responses contain
the details of a single node, of ten nodes and of 100
nodes. In practise, the size of a response will vary
according to how many applicable nodes each of the
queried nodes indexes. The cost, in bytes, to send
a query is z(64 + 68) = 132z. An unsuccessful re-
sponse costs 64+4 = 68 bytes. A successful response
costs 64 + 4 + 6a = 68 + 6a bytes, where a is the
number of results returned, a = 1, 10, or 100. The
mean number of successful responses to a query can
be determined by taking the expected value of the
binomial distribution where each trial (each request)
has probability of success r(t)n−1. There are z tri-
als (requests) made per query and therefore zr(t)n−1

successful responses on average. The expected cost
of a query is the combination of the upload cost, Cu,
to send the requests, and Cd, the download cost to
receive the responses:

Cu = 132z (6)

Cd = 68z(1 − r(t)n−1) + (68 + 6a)zr(t)n−1 (7)

A query will cost a minimum of 132z bytes in up-
load and 68z bytes in download. This minimum is
seen for unsuccessful queries where every response is
empty. In order to estimate the cost of a successful
query we need to know r(t). We know that, for con-
stant query rates, Eqn 3 tells us that r(t) approaches
an asymptote, and, assuming it increases towards this
limit, we can derive an upper bound for the download
cost:

maxCd = z(68 +
6au(1 + z)

cn+ uz
) (8)

Using an example from Section 4.3, if z = 100,
u = 100, n = 5000000 and c = 0.06 then we see that
the upper bound of the cost to download responses to
a query is 6.8Kbytes when a = 1 and 8.8Kbytes when
a = 100. These costs are acceptable. In fact the size
of an average webpage (on 2013/04/15), estimated to
be 1.411MB12, far exceeds this.

12http://httparchive.org/interesting.php
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5.2 Authoring Node Bootstrapping

Given a constant query rate, u, we know that the
replication of a torrent’s tracking data approaches a
limit at an exponential rate. After a sufficient amount
of time the amount of replication in the network will
be relatively stable; the new nodes querying for the
torrent will increase the replication removed by the
nodes that are leaving the network. The replication
can either decrease towards this limit or increase, de-
pending on the number of dummy queries performed
by the authoring node at time t = 0. Since the num-
ber of replicas in the steady state condition is likely
to be too high for a single node to generate we as-
sume the replication to be always increasing towards
the steady state limit. The r(0) bootstrap replica-
tion then provides a minimum replication level, and
so the authoring node can set a minimum probability
for successful search. In previous examples we have
used z = 100 and n = 5000000, if we use these val-
ues in Eqn 1 we can calculate the required replication
for a desired probability of successful query. A mini-
mum probability of P (d) = 0.1 requires r(0) = 5265,
P (d) = 0.5 requires r(0) = 34538. The latter baseline
would cost the author 34538∗132 bytes, or 4.5Mbytes.
For comparison purposes we ntoe that the default
minimum number of packets sent in a ping flood is
100 per second, at this rate the baseline could be
reached in just under 6 minutes at an upload band-
width requirement of 0.1Mbit/s. At this minimum
probability a querying node is only expected to have
to perform 10 queries before sucess.

5.3 Single Node Responding to Mul-
tiple Queries

In order for searches to be successful, queried nodes
must respond to requests. In order to estimate the
communication cost of providing responses we need
to know the number of times a node will be contacted
and how large each response will be. In [15] the au-
thors observe that the average BitTorrent node will
perform q = 1.33 searches every hour. We can esti-
mate the number of requests generated by the entire
network every hour as qzn.These requests will be sent
to nodes uniformly at random, each individual node

receiving an expected 1
nth of the total. If we use, as

in previous examples, z = 100, then we would expect
each node to receive 133 requests per hour. The cost
of responding to these queries depends on the size of
the response that can be sent. The longer a node re-
mains in the network the more likely it is to index a
requested torrent. If, for simplicity, we assume that
for every request received a = 1, 10, or 100 results
can be returned, we have that the cost of respond-
ing to requests is 133(68 + 6a) bytes per hour. The
cost of receiving requests is 132 ∗ 133 bytes per hour.
We estimate that our extension therefore requires 39
bits/sec in download bandwidth and between 22 and
198 bits/sec in upload bandwidth, amounts easily
provided, given current home broadband capabilities.

5.4 Storing the Index

In addition to using bandwidth to query and respond,
each node must keep a local index of the torrents
and nodes it is aware of. If we assume a worst case
scenario where each received request is for a distinct
torrent, then each item in the index will require 26
bytes; 20 for the infohash and 6 for the requesting
node’s IP and port details. For a received-request
rate, s per hour, and total hours of operation, h, the
local index size has an upper bound of 26sh. The
local index increases in size at a constant rate. In
practise, requests will be received for torrents that
are already in the index and so will only require an
additional 6 bytes per request. As above, we estimate
that nodes will receive, on average, 133 requests per
hour. At this rate, a node’s local index will reach
1GB after 289,184 hours, or 33 years of continuous
use.

We see that the index size remains comfortably
small even after extended usage. We consider then,
that the most pressing reason for removing data from
the index is to remove incorrect data, i.e. data that
suggests that a node owns a torrent when it does
not. We briefly consider three strategies for remov-
ing incorrect data. Using a Least Recently Used al-
gorithm, nodes could remove old index data to make
room for new. Given the churn rate of BitTorrent net-
works, newer data is more likely to be correct. One
of the current BitTorrent DHT implementations pe-
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riodically sends a ping to indexed nodes. If the ping
times out then a negative mark is given that node,
too many negative marks and the node is removed.
A simpler method would be to remove data from the
index as soon as it reaches a certain age. We imagine
that a combination of either timed or least recently
used with periodic ping will provide the best solution.
When a record is considered for deletion, the node is
pinged to check for correctness. If the record was in
fact correct then it is left in the index. If the record
is incorrect it is removed. We leave the analysis of
these (and other) solutions as future work.

6 The Simulations

In this section we discuss the simulations we ran in
order to verify our extension’s ability to enable PAC
search over BitTorrent. In the simulations we model
complex node behaviour that is not accounted for in
our models and analysis so far. Each of our simula-
tions creates a BitTorrent network of 5 million nodes,
each node operating independently of each other. We
simulate a single torrent in the network and analyse
the queries, replication and participation over time.
Each simulation is comprised of multiple trials, trials
are repeated until the minimum number have been
run or the confidence level of the recorded statistics is
5%, which ever is greater. For each simulation we ap-
ply a PAC search using a query size of z = 100. Until
now we have assumed that network churn removes a
constant proportion of nodes from the network every
hour. In [19, 17] a fluid model of BitTorrent net-
works is created that instead describes churn as a
function of each individual node’s time spent in the
network, a combination of time spent downloading
the torrent and time spent seeding it. In this model
the amount of time a node is willing to seed a torrent
for is assumed to be exponentially distributed with
mean 1

γ . In order to implement this, we have each
node sample from an exponential distribution with
γ = 0.016̇ in order to determine how long to seed
the torrent for. The amount of time spent down-
loading the torrent is more complicated; the maxi-
mum amount of time a node is willing to wait for
a download to complete is exponentially distributed

with mean 1
θ . The actual time spent downloading is

determined by the node’s available download band-
width and the amount of upload bandwidth avail-
able from participating nodes. We implement this
by assuming that each node’s bandwidth allows for
a maximum of 10% of the torrent file to be down-
loaded every hour and 1% of the torrent file to be
uploaded. We then have each node sample from an
exponential distribution with mean θ = 0.025 in or-
der to determine how long they are willing to wait. If
there are enough participating nodes that a node can
complete a download before aborting then the node
seeds the torrent for the randomly sampled time pe-
riod described above. If a node aborts a download or
finishes seeding, then the node leaves the network. In
order to keep network size a constant 5 million, when
a node leaves, we add a fresh node to the network to
compensate. This more complex model of churn al-
lows us to verify our extension under a more realistic
setting. We model and observe a single torrent in the
network for a maximum of 450 hours. Not every node
participates in the observed torrent. Nodes that do
not participate still exhibit the behaviours outlined
above but they make no PAC queries. Instead they
simply progress through their downloading and seed-
ing phases, responding to any PAC queries made of
them, before leaving the network.

Using this model for churn we ran simulations
of torrents with constant numbers of participating
nodes, i.e. whenever a participating node left the net-
work it was immediately replaced by another, new,
participating node. We ran three such simulations:
one for a torrent with a constant 1000 node participa-
tion; one with 100; and one with 10. These numbers
cover the range of constant participation observed by
the authors in [20], who noted that a significant num-
ber of torrents over 40 weeks old displayed a constant
level of participation. With constant participation
the amount of time it took each node to download the
torrent was almost equal across all nodes. This meant
that we observed a close to constant query rate. Fig-
ure 3 shows the probability of a successful query over
time for the three simulations. As expected from our
previous analysis, with a constant query rate we ob-
serve a steady probability. When the participation
is set to 10 nodes we observe an average probabil-
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Figure 3: The probability, P (di), of a successful query
over time for three different levels of constant torrent
participation.

ity of a successful query of 14.26%, this might seem
low, but each joining node is running an average of
only 8 queries before success. This is in-line with
our previous analysis and shows that even if only 10
out of 5 million nodes own a torrent our extension
enables that torrent’s discovery. For greater levels
of participation the probability of successful query is
higher and therefore the torrent is even easier to find.
When 1000 nodes participate, the average probabil-
ity of finding the torrent after a single query to 100
nodes is 87%.

Our next set of simulations explore what happens
if a fixed number of nodes participate in a torrent but
no additional queries are made for it. In this situa-
tion we define a fixed number of nodes that remain in
the seeding state for the duration of the simulation.
No nodes search for the torrent and so the replica-
tion decreases with network churn. Figure 4 shows
the probability of a successful query for torrents with
fixed participation levels of 1000, 100, and 10 nodes.
We observe that the probability declines at an almost
linear rate, dropping between 11.55 and 28.51 per-
centage points over the 450 hours of the simulation.
We conclude that if a torrent’s participating nodes re-
main in the network then our extension is reasonably
resilient to churn before any steps have been made to
mitigate it. This is because each participating node
will have replicated tracking data that will never be-
come incorrect. If these nodes wished to stabilise
the probability of discovering their torrents then they
could make dummy requests to mitigate the loss of
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Figure 4: The probability, P (di), of a successful query
over time for three different levels of fixed torrent
participation.

replication due to network churn. For participation
levels of 1000, 100, and 10 on average as few as 181,
46, and 15 dummy requests per hour would have to
be made respectively.

Our next simulations use the fluid model from
[19, 17] to model not only the network churn but
also query rate over time. Our analysis so far has
assumed a query rate at or near a constant value but
we cannot expect that torrents will always exhibit
such constant popularity. In the fluid model, query
rate is determined using the node arrival time; the
amount of time that passes before a node first starts
to participate in the torrent. Node arrival time is
exponentially distributed with mean 1

λ . In our sim-
ulations a number of nodes are chosen to participate
in the torrent, each node samples form an exponen-
tial distribution with mean λ = 0.03̇. This tells
the node how many hours to wait before initiating
a PAC search. We simulate three types of torrent;
torrents whose participation peaks at 10,000 simul-
taneous nodes; torrents with a peak at 1000 nodes;
and torrents with peaks at 100 nodes. These numbers
broadly cover the range of participation we observed
in our measurement study. We omit torrents with a
participation peak of one node because there is no
query rate to simulate over time. Such a torrent, and
any torrents with similarly small participation, will
have to have nodes issues dummy requests in order
to make the torrent discoverable, as discussed in Sec-
tion 4. Figure 5 shows the probability of a successful
query over time during these three simulations. As
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Figure 5: The probability, P (di), of a successful query
over time for three different levels of peak participa-
tion under fluid modelled query rates.

expected, if a torrent has a higher participation then
it’s tracking data will have higher replication and so
the probability of success will be greater. Interest-
ingly, under this model of query rate the probability
of successful query peaks with the participation and
so is greatest when the most queries are being per-
formed. For this reason the average probability of a
successful query is 99.06% for torrents that peak at
10,000 nodes, 78.61% for torrents that peak at 1000,
and 25.68% for torrents that peak at 100. This is
despite seemingly long tail of lower probabilities for
each curve. The average number of queries required
before success was 6 for the worst performing curve,
meaning that even if a node is searching for a tor-
rent whose participation never exceeds 100 nodes in
5 million, only 6 queries are expected to be required
before success.

7 Conclusions and Future
Work

The security weaknesses of the BitTorrent protocol
are well known. Improvements to the protocol have
been made to alleviate this issue. However, even the
DHT-based extensions have proven susceptible to at-
tack. Since unstructured networks are usually more
resistant to attack, this paper investigated the fea-
sibility of a probabilistic (PAC) search to discover
torrents.

The performance of PAC search is strongly depen-

dent of the number of nodes queried and the distribu-
tion of torrents in the network. A two month study
of the distribution of torrents across nodes showed a
power law distribution that is not amenable to PAC
search. To address this issue we proposed a mod-
ification of the BitTorrent protocol such that each
node in the network now indexes a random subset of
tracking data. Each node’s local database is indepen-
dently constructed by recording the torrent ID, i.e.
infohash, together with the IP address of the query-
ing node. A subsequent analysis of the distribution of
tracking data revealed that the tracking data is repli-
cated sufficiently to support a PAC search. Moreover,
the communication and storage overheads associated
with the modified protocol were shown to be small.
Thus, no degradation in performance of BitTorrent
is expected.

Simulations were performed on a network of 5 mil-
lion nodes under a variety of torrent query rates and
churn rates. The simulation results support our the-
oretical analysis.

We envision that PAC search could be used to com-
plement rather than replace existing torrent discov-
ery mechanisms. There are a number of directions for
future work. These include (i) developing a mecha-
nism to adaptively select the number of nodes queried
based on the popularity of the queried torrent, and
(ii) developing a mechanism for nodes participating
in a torrent to adaptively issue dummy queries so that
a torrent’s tracking data is sufficiently replicated to
guarantee that the probability of a successful search
is high.
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