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In recent years, there havebeenmanynewdevelopments in the field of regulatory
T cells (Treg), challenging the consensus on their behaviour, classification and
role(s) in disease. The role Treg might play in autoimmune disease appears to
be more complex than previously thought. Here, we discuss the current
knowledge of regulatory T cells through animal and human research and
illustrate the recent developments in childhood autoimmune arthritis ( juvenile
idiopathic arthritis (JIA)). Furthermore, this review summarises our
understanding of the fields and assesses current and future implications for
Treg in the treatment of JIA.

Introduction
Evidence indicates that in health regulatory Tcells
(Treg) play an important role in the maintenance
of immunological tolerance and prevention
of autoimmune diseases by the regulation of
immune responses. Juvenile idiopathic arthritis
(JIA), the most common inflammatory
rheumatic disease in children, comprises of a
group of childhood conditions characterised by
the onset of arthritis before the age of 16. JIA
has a predominance among girls for most forms
of JIA. There are seven main subtypes of
JIA according to the International League of
Associations for Rheumatology (ILAR)
classification (Ref. 1). Each subtype is clinically
distinct with respect to the presenting symptoms,
complications and prognosis. Oligoarticular
arthritis (O-JIA), defined as arthritis that affects
four joints or fewer in the first 6 months, is the
most common form of JIA, whereas polyarticular
JIA (P-JIA), affecting five or more joints, is the
second most common subtype. Conflicting
reports regarding the frequency and functioning
of Treg found in the blood of children with JIA

have been published. However, a consistent
finding by several studies is a clear enrichment of
Treg within the synovial fluid (SF) infiltrate in the
joints of children with JIA compared with the
level observed in peripheral blood (PB) (Refs 2, 3).

The presence of high numbers of Treg in the joint
appears to present a paradox, since arthritis still
persists despite the presence of this regulatory
population. One theory to explain this paradox is
that the proinflammatory milieu of the joint may
inhibit the ability of regulatory T cells to abrogate
inflammation efficiently. In addition, there are
studies demonstrating that effector T cells in the
joint are relatively resistant to suppression
(Refs 4, 5). In this review, we will discuss recent
advances in the field of Treg and how this
knowledge improves our understanding of JIA
pathogenesis and ultimately may help to
optimise clinical treatments for these diseases.

Emergence of regulatory T cells
A central function of the immune system is to
maintain tolerance to self-tissues and molecules
and thereby prevent autoimmune disease. It was
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over 40 years ago that the concept of suppression
of immune responses and its contribution to the
maintenance of tolerance was first proposed.
However, with the identification of markers that
are expressed on regulatory T cells, the
investigation of these cells has gained huge pace.
It was first discovered that inoculation of athymic
(nude/nude) mice with CD4+ T cells, which
were depleted of CD25+ cells, led to severe
autoimmunity, which could be inhibited by the
addition of CD4+CD25+ cells (Ref. 6). Similarly,
in a diabetes rat model, disease was prevented by
using CD4+CD25+ cells and accelerated by
CD4+CD25− cells (Ref. 7). Furthermore, CD4+
CD25+ cells could also inhibit polyclonal CD4+
CD25− T cells in vitro (Ref. 8). However, even
early studies demonstrated that not all CD4+
CD25+ T cells have suppressive capacity (Ref. 9).
Later, several groups described CD4+CD25+

regulatory cells in human blood, which were
functional in vitro (Refs 10, 11, 12). It was also
determined that the CD4+CD25+ cells were
anergic when stimulated alone in vitro,
produced little inflammatory cytokines such as
interleukin (IL)-2 and interferon gamma (IFN-γ),
and in vitro suppression could be overcome by
addition of exogenous IL-2 (Refs 10, 11, 12, 13).
However, these observations indicated that
human CD4+CD25+ T cells are a heterogeneous
population, which may include both suppressive
and non-suppressive cells. This might, in part, be
because of the upregulation of CD25 expression,
the α-chain of the IL-2 receptor, upon division or
activation of human T cells. The demonstration
that very high expression levels of CD25
correlated with good suppression (Refs 11, 14) led
to the proposal that the CD25high population
contains the most suppressive cells.
Together with the identification of CD25high

cells being suppressive, severe autoimmunity
in the murine model scurfy was linked to
mutations in the Foxp3 gene (Ref. 15). In
humans, the FOXP3 gene was shown to be
affected in the severe autoimmune condition
IPEX (immunodysregulation polyendocrinopathy
enteropathy X-linked syndrome) (Ref. 16).
Further research demonstrated that FoxP3 was
crucial for the development of Treg and their
function (Refs 17, 18, 19, 20). Together, these
studies established FoxP3 as a master
transcription factor for Treg. The development of
specific monoclonal antibodies to identify
FoxP3+ T cells by standard assays such as flow

cytometry, combined with the definition of other
typical phenotypic features for these cells (such
as the low level of IL-7Rα (CD127)), has
facilitated the growth of research in this area.
Some controversies exist about the available
reagents to detect FoxP3 protein, but with
appropriate controls reliable detection of FoxP3
protein is now routine (Ref. 21). More recently,
evidence that the stable expression of FoxP3 is
dependent upon demethylation at specific 5′

regions of the FOXP3 locus, the Treg-specific
demethylated region (TSDR), has led to a further
method by which to identify bona fide regulatory
T cells (Refs 22, 23, 24). These studies have also
shown that cells that express FoxP3 transiently
are not demethylated at this region.

Not all Treg are equal
Regulatory T cells can develop in the thymus
(natural Treg) or be induced in the periphery
(induced or adaptive Treg). The IKAROS family
member Helios has been proposed as a possible
marker to distinguish between natural and
induced Treg, as some reports suggest that it is
uniquely expressed by natural Treg (Ref. 25).
However, upon further investigation, Helios
expression could also be detected in induced
Treg under certain conditions (Refs 26, 27). In
mice non-coding DNA sequences (CNS) at the
FOXP3 locus appear to control differentially
thymic and peripheral FoxP3 expression, with
CNS3 necessary for thymic, CNS1 for peripheral
FoxP3 expression and CNS2 for FoxP3
expression stability (Ref. 28), it remains to be
seen if these conserved CNS regions also control
FoxP3 expression in human Treg. Therefore, to
date there is no generally accepted way to
distinguish between natural and induced Treg,
and functionally, both natural and induced Treg
can suppress aberrant responses as shown in
different transgenic and adoptive transfer mouse
models (Refs 29, 30, 31, 32).

Nowadays, it is becoming clearer that the
CD4+ FoxP3+ Treg population, typically 5–10%
of human peripheral blood CD4 T cells, is in
fact, a heterogeneous population, which differs
in terms of phenotype and possibly function.
Various strategies to divide Treg into different
subsets have been used. One proposed
subdivision was based on the expression of the
major histocompatibility complex (MHC) class II
molecule DR (HLA-DR), which is also expressed
on activated T cells (Refs 33, 34). Typically,

expert reviews
http://www.expertreviews.org/ in molecular medicine

2
Accession information: doi:10.1017/erm.2013.14; Vol. 15; e13; November 2013

© Cambridge University Press 2013. The online version of this article is published within an Open Access
environment subject to the conditions of the Creative Commons Attribution licence

http://creativecommons.org/licenses/by/3.0/.

T
re
g
ul
at
o
ry

ce
lls

in
ch

ild
ho

o
d

ar
th
ri
ti
s
–
no

ve
li
ns

ig
ht
s



20–30% of Treg express HLA-DR (Ref. 35) and
functional studies revealed that HLA-DR+ Treg
exert early contact-dependent suppression.
HLA-DR− Treg, on the other hand, skew
cytokine production to a Th2-like phenotype
and may also suppress through contact-
dependent mechanisms (Ref. 36).
Treg can also be subdivided by expression of

markers typical of naïve or memory T cells.
Memory Treg, with the phenotype CD45RA−
CD45RO+ and expression of CCR6 (Refs 37, 38,
39), express high levels of the functional surface
molecules CTLA4 and CD39, the effector
memory marker CD44, but low levels of CD62L.
In comparison with naïve Treg, it has been
suggested that memory Treg have a higher
turnover, suggesting that a greater proportion is
in cell cycle, both in vitro (Ref. 39) and in vivo
(Refs 37, 40). CTLA4 and CD39 are both
important in Treg function (Refs 41, 42, 43). The
exact role of CTLA4 in Treg function is not yet
fully understood, but theories include that
CTLA4 competes with CD28 for co-stimulatory
receptors which in turn provides a negative
signal for T cell activation, or it may act in a T
cell-extrinsic manner such as by stripping co-
stimulatory molecules from antigen-presenting
cells (Ref. 44).
CD39 is a potent cell-surface ATPase, which

breaks down proinflammatory ATP to AMP.
CD73 in turn breaks down AMP to adenosine.
In mice, both these enzymes are expressed on
Treg (Ref. 45). In humans, however, there is
conflicting evidence, whereas some researchers
report CD73 and CD39 expression on Treg
(Ref. 46), while we have observed that CD73 is
not co-expressed with CD39 on Treg (Ref. 47).
Owing to the pro-inflammatory actions of ATP
in the extracellular milieu, ATP breakdown is
thought to contribute to Treg function.
CCR6 is an important chemokine receptor, and a

characteristic hallmark of Th17 cells, but it might
also be important in directing Treg to the site
of inflammation (Refs 48, 49). Treg can also
express a variety of other chemokine receptors,
associated with different Th lineages (Refs 50, 51,
52, 53, 54). Specific chemokine receptor expression
may enable specific co-localisation of certain Treg
with specific T helper lineages (Ref. 52, 54).
Treg can express many activation markers,

which are shared with conventional CD4+ T
cells (Tconv), such as CD44, CD69 and GITR.
Recently, a Treg-specific activation marker has

been demonstrated, the glycoprotein A repetitions
predominant (GARP) protein (Refs 55, 56). GARP
is expressed on Treg recently activated through
the TCR, but not on Tconv, or TGF-β induced
Treg. Interestingly, GARP serves as a receptor
for latent TGF-β, a cytokine known to promote
Treg development and stability (Ref. 57). GARP
overexpression in helper T cells induces an
efficient reprogramming of effector T cells into
Treg although these reprogrammed cells are not
fully demethylated at the TSDR (Ref. 58).

Treg may display effector cell functions
Treg can express a variety of memory markers as
well as chemokine receptors that are associated
with a Tconv phenotype. It has been proposed
that expression of a specific transcription factor
commonly associated with Tconv may ‘assist’
specific Treg to target its suppressive capacity
towards specific Tconv and may even be
absolutely required for such suppression. For
example, Treg suppression of Th1 cells is
dependent on Tbet expression (Ref. 52), IRF4
expression is crucial for Th2-targeting Treg
(Ref. 59), whereas STAT3 is essential for Treg
suppression of Th17 (Refs 60, 61). Furthermore,
BCL6 positive Treg are important in controlling
follicular helper T and B cells in the germinal
centre (Refs 62, 63).

Interestingly, there is now increasing evidence
that some Treg also share some functional
capabilities with Tconv, in particular the ability
to produce proinflammatory cytokines. Treg-
and Th17-like cells have been linked in an
evolutionary sense, because of their emergence
at the same phylogenic stage. These two cell
populations share some induction requirements,
such as the need for TGF-β, and their balance
may play a role in promoting healthy and
diverse commensal colonisation, for example, in
the gut (Ref. 64). Hence, several groups have
tested whether Treg can be skewed towards IL-
17 production upon stimulation in vitro. Koenen
et al. reported that IL-1β, antigen-presenting
cells and epigenetic modifications are necessary
to induce IL-17 production by Treg (Ref. 65).
Others showed that TLR2 stimulation may
contribute to conversion of Treg to Th17-like
cells with lower levels of FoxP3 expression and
reduced suppressive capacity (Ref. 66). The
authors suggested that this could represent an
intermediate population, which is losing Treg
function and become Th17-like Tconv.
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In vitro expansion and induction of Treg has
been shown to induce the development of IFN-
γ-producing Treg (Ref. 67). In this study, the
IFN-γ frequency within FoxP3+ cells was
enhanced by addition of IL-12 to the culturing
conditions. These cytokine-producing induced
Treg showed lower levels of demethylation at
the TSDR region, suggesting that they may
represent an intermediate cell population.
Furthermore, samples from patients with type 1
diabetes showed an increased frequency of
IFN-γ+ Treg after expansion, implicating a
connection between inflammation and cytokine-
producing Treg. Similarly, in a mouse model of
colitis, an IFN-γ-producing inducible Treg
subset has been observed interestingly, these
IFN-γ producing Treg were suppressive in vivo
(Ref. 68). Recently, it has been shown that Treg
isolated during the early inflammatory response
following surgery were less suppressive than
Treg isolated presurgery or at a later time point
postsurgery despite remaining anergic (Ref. 69).
This suggests that Treg in an acute early
inflammatory response, such as after surgery,
did not convert to full effector phenotype.
Together, these studies suggest that Treg can
produce cytokines, perhaps under the influence
of proinflammatory conditions, yet remain
functionally suppressive. The precise expansion
or induction system used to generate these
cytokine producing Treg may be crucial to their
functionality. For example, Zheng et al. showed
that the ratio of B cells to T cells was critical in
yielding either functional Treg that produced
cytokine or highly activated effector Tconv
(Ref. 53).
Treg isolated from several chronic inflammatory

or autoimmune conditions have beendemonstrated
to be functional in vitro. Cytokine-producing Treg
are increased in inflammatory environments
(Refs 68, 70, 71), but can also be found upon ex
vivo stimulation of healthy peripheral blood
mononuclear cells (PBMC) as a small proportion
of total Treg (Refs 54, 72, 73, 74, 75). The
frequency of cytokine-producing Treg can be
increased by cytokine treatments. IL-17
production by Treg was enhanced by IL-6, IL-1β,
IL-21 alone or in various combinations. IL-23
alone had no effect, but could act synergistically
in combination with the cytokines above (Refs 70,
73, 74). The frequency of IFN-γ+ Treg was
increased by IL-12 treatment in several studies
(Refs 68, 71, 76). These data show that the

polarisation ‘requirements’ for cytokine-producing
Treg closely mirror those that drive polarisation of
T effector cells.

The cytokine-producing Treg in these studies
were anergic in vitro without the addition of IL-
2, and were suppressive in Tconv co-cultures
(Refs 54, 68, 70, 71, 72). In addition, the TSDR
region was predominantly demethylated
(Refs 71, 72, 76), and demonstrated a stable
phenotype in long-term cultures or cloning
(Refs 54, 71, 72, 73, 74), thus suggesting a bona
fide Treg phenotype. We have recently
demonstrated that the cytokine-producing Treg
are contained within the CD161+ Treg
population (Ref. 72). Cytokine-producing Treg
also share expression of the transcription factors
and, where tested, chemokine receptors, that are
associated with expression of the respective
cytokine in Tconv. Thus, IFN-γ-producing Treg
have been shown to express Tbet (and CXCR3)
and IL-17+ Treg express RORCv2 (and CCR6).
Furthermore, Treg from mice lacking BCL6
show a Th2-Treg hybrid phenotype (Ref. 77)
with higher levels of IL-4, IL-5, IL-13 transcripts
and increased levels of GATA3.

A beneficial role in the protection against
infection has been proposed for cytokine-
producing Treg (Refs 54, 73, 76), with some
evidence for specific expansion and cytokine
production against certain pathogenic antigens
(Refs 54, 76). Moreover, there is evidence that
such Treg may play a beneficial role during
transplantation (Refs 76, 78): if IFN-γ production
is blocked or specifically knocked out in Treg
in a transplant model, mice suffer from graft-
versus-host disease. Consequently, cytokine-
producing Treg may represent an important
mechanism during immune challenge, and their
further investigation is warranted (Fig. 1).

Biology of Treg in juvenile arthritis
The paradox of increased Treg numbers in the
inflammatory joint of JIA has been known for
some years (Ref. 2). Interestingly, Treg in the
blood of children with O-JIA appear to be
present at normal or even decreased frequency,
compared with healthy children (Refs 3, 79, 80).
In an early study of the very severe form of JIA
known as systemic JIA (sJIA; a form of disease
where in addition to arthritis, patients display
systemic symptoms such as fever, rash and
major organ involvement), Treg were shown to
be reduced in peripheral blood in severe active
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disease, just before autologous stem cell
transplantation. The frequency of Treg increased
up to normal levels upon successful treatment
by autologous stem cell transplantation (Ref. 81).
However, a more recent study has suggested
that while a difference in Treg frequency is
observed between active and quiescent sJIA
patients, Treg numbers in quiescent sJIA disease
were raised compared with healthy controls as
well as compared with active sJIA. In this study,
the increase of total Treg, in the quiescent sJIA
cases, appeared to be because of an increase

in CD45RO+ memory Treg subpopulation,
indicating that a rise in Treg occurs as disease
resolution takes place (Ref. 82). It has recently
been shown that the high level of inflammation
in these patients, readily measureable in
peripheral blood by the levels of the protein
serum amyloid A (SAA) may directly affect Treg
function, via the SAA protein itself, which
prevents and reverses anergy in Treg without
affecting their suppressive function (Ref. 83).
Thus inflammatory proteins could drive an
increase in Treg proliferation.

Effector memoryActivated memory

Foxp3 Foxp3

MemoryNaive

Foxp3
RORC/

Tbet

IL-23/
IL-1R

CD161
CD25

CD45ROCD45RO

CD25

CD25

CD45RA CD45RO

CD4 CD4

CD25

CD4

GARP

CD62L/
GITR

CD4 CCR6/
CXCR3

IL-17/IFN-g

Foxp3

Regulatory T cell families
Expert Reviews in Molecular Medicine © 2013 Cambridge University Press

Figure 1. Regulatory T cell families. Schematic of four different Treg subfamilies (naïve, memory, activated
memory and effector memory) with expression of CD4, CD25 and FoxP3 and suppressive function
common to all, CD45RA expression defining naïve, and CD45RO memory Treg. Activated memory Treg also
express activation markers such as GITR and CD62L, and potentially GARP and CD161. Effector memory
Treg, in addition to being activated, also have the ability to produce pro-inflammatory cytokines like
interleukin (IL)-17 or interferon gamma (IFN-γ), express specific cytokine and chemokine receptors (IL23R,
IL1R, CCR6, CXCR3, etc) and additional transcription factors (Tbet, RORCv2, etc) to facilitate the partial
Tconv-like phenotype.
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We, and others, have shown a relationship of
Treg frequency and disease severity in O-JIA. In
the mild limited form of JIA known as persistent
O-JIA the SF exudate has a higher frequency
and absolute number of Treg compared with SF
from children with the more severe extended O-
JIA (Refs 2, 3). These data suggest that although
immune tolerance has been impaired in JIA,
Treg frequency does correlate with disease
severity and thus Treg might actively restrain
inflammation. When Treg in the joint were
compared with other T cell types within the SF,
it was demonstrated that Treg frequency
negatively correlates with Th17 frequency
(Ref. 3). The same correlation has been observed
for their respective transcription factors FoxP3
and RORCv2 (Th17) at the mRNA level
(Ref. 80). Since Treg and Th17 have been
associated in an evolutionary sense (Ref. 64), the
balance between Treg and Th17 might play a
crucial role in JIA, and local factors that affect
this balance may correlate directly with the
clinical course and outcome. In a study, which
aimed to identify predictive biomarkers of
extension to more severe disease early in O-JIA,
we observed that this difference in Treg frequency
was present very early, even before extension,
with lower Treg frequency in children destined to
go on to more severe arthritis (so-called extended-
to-be O-JIA) (Ref. 84). Interestingly, RORC2 was
one of the gene transcripts found to be
significantly differentially expressed between
patients with persistent O-JIA and extended-to-be
O-JIA phenotype (Ref. 84).
Since Tregwithin the joint clearly do not resolve

inflammation, many studies examining their
phenotype and function have been performed to
determine if there is an intrinsic defect in the
Treg of JIA patients. Treg found in the inflamed
joint all have a memory phenotype (CD45RO+)
(Ref. 2) and are activated, as demonstrated by
high HLA-DR and GITR expression. Expression
of CTLA4 and CD39 is also highly enriched on
SF Treg (Refs 2, 47). Interestingly, in the SF of
JIA, in addition to CD39 on Treg, a population
of CD39+ FoxP3− cells has been demonstrated.
Both Treg and non-Treg expressing CD39 are
functional in breaking down ATP (Ref. 47).
One hallmark of Treg function is the ability to

suppress Tconv in vitro. Several reports have
reported potent suppressive capacity of SF Treg
(Refs 2, 47, 85, 86, 87). However, more recently,
there have been studies demonstrating that SF

Treg fail to suppress Tconv from the joint but
can suppress blood Tconv (Refs 4, 5). Together,
these studies suggest that Treg from patients
with JIA do not appear to have an intrinsic
defect, as they function well when taken out of
their natural environment. However, factors in
the local microenvironment in the joint, or the
effector T cells themselves, may affect the
function of regulatory cells in a way that they
cannot control inflammation within the joint.

Cytokines can abrogate suppression by Treg by
either affectingTregdirectlyor effector Tcells. IL-2,
IL-6, IL-7, IL-15 and tumour necrosis factor alpha
(TNF-α) have all been implicated in diminishing
the suppressive capacity of Treg and these
cytokines are present at high levels in the SF of
JIA (Refs 4, 85, 88). Both TNF-α and IL-6 are now
successfully targeted by therapeutic approaches
in some JIA patients. IL-6 and TNF-α have been
shown to induce higher phosphorylation levels of
protein kinase B, thus activating signaling in
effector T cells. This, in turn, renders effector T
cells unresponsive to both TGF-β and Treg
mediated suppression (Ref. 4). Synovial effector T
cells have also been shown to be able to switch
from IL-17 to IFN-γ-producing cells in the
environment of the joint and in vitro (Refs 89,
90). The major cytokine responsible for this
plasticity is IL-12, which is also enriched within
the joint. The addition of TGF-β could inhibit this
conversion to some extent, but the measurements
showed low levels of TGF-β in SF. Given that SF
Tconv are strong producers of pro-inflammatory
cytokines it is plausible that locally these effector
T cells may contribute to the failure of regulation
by Treg (Ref. 5).

The recent descriptions of pro-inflammatory
cytokine-producing Treg in other autoimmune
conditions led us to investigate whether JIA Treg
also demonstrate this phenomenon. We found a
clear enrichment of Treg with a pro-inflammatory
potential (enrichment for pro-inflammatory
cytokine production ex vivo and in vitro), defined
by CD161 expression, a factor that may also
contribute to the apparent ‘failure’ by Treg to
suppress ongoing inflammation in JIA (Ref. 72).

In addition to these phenotypic and functional
data, there is evidence that genetic factors influence
Treg biology in JIA. Genetic associations with the
IL2 and IL10 gene regions and the gene encoding
CD25 (the IL-2R α-chain) have been demonstrated
in JIA (Refs 91, 92, 93, 94); these genes are
important in Treg maintenance and function.
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Several of these associations have recently been
confirmed at genome-wide association level of
significance (Ref. 95). However, no genetic
association with any FOXP3 SNP itself, or CTLA4,
could be found (Refs 96, 97).
Collectively, these data suggest that the

inflammatory environment plays an important
role in determining the overall effectiveness of
regulatory cells at the diseased site (Fig. 2). The
main findings on Treg in JIA are summarised in
Table 1. Thus, cytokines and other inflammatory
mediators may render T effector cells unresponsive
to suppression. However, Treg should not be
disregarded since they clearly have an effect upon
the clinical outcomes and their manipulation may
be possible in the future, to restore full tolerance.
With conflicting reports on Treg function, and the
emerging knowledge of their capacity of making
pro-inflammatory cytokines themselves, it is
crucial to investigate how these different Treg
populations act at the site of inflammation, how
stable they are and what the effects of the local
environment may be on Treg behaviour and
phenotype.

Clinical implications
Regulatory T cells could potentially be used as
cellular therapy themselves for autoimmune
disease. In addition, many treatments will affect
Treg balance and function. Animal models have
been useful in assessing the role of Treg in
treatment of arthritis.

Antigen specificity of Treg
One key issue is whether Treg influence disease in
an antigen-specific or non-specific manner. Many
arthritis models in rodents use antigen to induce
arthritis. Antigen-specific induced Treg and
natural Treg can prevent disease in these model
systems, but natural Treg did not reverse
established disease (Refs 32, 98), whereas the
use of induced Treg reduced disease severity
and incidence rate slightly in some cases
(Ref. 32). The depletion of Treg before disease
initiation has been shown to worsen the disease
in transgenic, known antigen-driven and
spontaneous models (Refs 98, 99, 100). In some
models, the specific antigen recognised by Treg
that can modulate disease is unknown or
unclear; However, considerable evidence from
several groups suggests that Treg do require a
TCR/antigen signal for them to elicit effective
suppression (Ref. 101).

To address the importance of antigen specific
Treg action, Oh et al. used a transgenic
mouse model with Treg and effector T cells of
mixed specificity and an auto-antigen linked to
MHC class II (Ref. 102). These mice develop
spontaneous arthritis, which is driven by IL-17.
Transfer of Treg that were enriched for auto-
antigen specificity could not prevent disease or
perform bystander suppression, even though
they were functional towards the same antigen-
specific effector cells in vitro, and in a separate in
vivo model. Interestingly, polyclonal Treg did
prevent disease, indicating that a mixed
population of Treg, presumably with multiple
antigen specificities, different to the disease
driving effector cell specificity, may be effective in
arthritis control.

By using a different transgenic model, CD4T
cells expressing a TCR against a cutaneous self-
antigen (SFZ70) resulted in severe lymphocytic
infiltration of the skin and liver in Treg-deficient
animals, whereas in non-deficient mice only a
few developed caudal dermatitis (<2%) with a
high frequency of FoxP3+ among CD4+ T cells.
A comparison of the effector T cells between the
two groups revealed that the antigen-specific
Treg actively suppressed expression of skin
homing receptors and cytokine production by
effector T cells (Ref. 99). Similarly, in a human
graft-versus-host disease skin explant model
early Treg treatment inhibited tissue infiltration
of primed CD8T cell by downregulation of
their homing receptors, such as CXCR3 and
cutaneous leucocyte-associated antigen, and an
overall decrease in chemokine production
(Ref. 103). Therefore, Treg might prevent
homing to the site of inflammation by inhibiting
the expression of homing receptors on effector
cells. In JIA inflammation is highly localised to
the affected joints. Therefore, if Treg could
inhibit homing of inflammatory cells to the
joint, this might present an opportunity to stop
disease progression.

In patients with JIA, stimulation of Tcells with a
human auto-antigen (Hsp60) results in different
responses depending on disease severity
(Refs 104, 105). Surprisingly active O-JIA PBMC
show high IL-10/IFN-γ ratios, whereas samples
from patients in remission had high levels
of IFN-γ, thus a low IL-10/IFN-γ ratio.
Polyarticular JIA samples showed no difference
between active disease and remission with
overall low IL-10/IFN-γ ratios. These data
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Figure 2. Proposed Treg–Tconv balance in juvenile idiopathic arthritis (JIA). (See next page for legend.)
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suggest that responses to self-hsp60 antigen, and
in particular an enrichment of Treg that are
specific for hsp60 antigens, correlate with good
outcomes in JIA (Refs 104, 106).

Influencing Treg in vivo
Strategies aiming to influence Treg function invivo
by either increasing the number or efficiency of
Treg could be a valuable treatment option. Small
biologically active molecules have been used to
expand mice, rat and human Treg with
increased suppressive capacity in vitro and in
vivo that have been used for the treatment of
animal models of disease (Refs 107, 108, 109,
110, 111). We have studied vasoactive intestinal
peptide (VIP), a small neuro-peptide with
immunoregulatory properties. Effects of VIP and
its receptors can induce tolerance or abrogate
inflammation in autoimmune models (Refs 108,
112, 113, 114, 115, 116, 117). Thus, for example,
VIP prevents and treats collagen-induced
arthritis in rodents directly, or by transfer of
Treg that were VIP-treated in vitro or isolated
from VIP-treated mice (Refs 108, 118). Lentiviral
delivery of the VIP gene into mice with
collagen-induced arthritis resulted in complete
regression of disease, which was associated with
an increase in FoxP3+CD25+ Treg (Ref. 119).
Besides the direct effect of VIP on T cells
(Refs 108, 120, 121), VIP also induces tolerogenic
dendritic cells (DC), which in turn induce Treg
(Refs 113, 114, 122, 123). The anti-inflammatory
actions of VIP require interaction with VIP
receptor 1 (VIPR1) (Refs 109, 112, 121).
Beneficial effects of VIP and VIPR1 agonists
have also been reported for human cells
(Refs 109, 121, 123). Furthermore, VIPR1
expression is decreased in some autoimmune
diseases (Refs 124, 125, 126), including JIA
(Ref. 127), suggesting that the lack of VIP–VIPR1
signaling might be involved in disease
pathogenesis. Improved delivery methods and
modifications of agents to increase half-life are
showing promising results in in vitro and

animal models (Refs 114, 119, 128, 129) and
demonstrate the potential of small molecules as
treatment strategies.

Monoclonal antibody therapy
In recent years, monoclonal antibody treatments
that modulate the immune system have been very
successful, both in animal models and in the
clinic. These treatments may affect Treg directly or
indirectly. As described above, Treg exhibit some
of their regulatory capacity through CTLA4.
CTLA4-deficient mice develop spontaneous and
fatal systemic autoimmune disease and have less
functional Treg (Ref. 130). In patients with
rheumatoid arthritis (RA), a defect in CTLA4
expression and recycling resulting in less
functional Treg, because of decreased signaling
through CTLA4, has been demonstrated; this
could be reversed in vitro by chemically
resurfacing CTLA4 (Ref. 131). These results are
intriguing given the availability of a therapeutic
agent, which is recombinant CTLA4–antibody
complex (CTLA4-Ig: including Abatacept and
Belatacept), for the treatment of autoimmune
disease. CTLA4 is a ligand for co-stimulatory
molecules CD80 and CD86, expressed on
professional antigen-presenting cells, including
DC and B cells, and competes efficiently with
CD28 for binding to these molecules. The CTLA4-
Ig fusion drug is thought to exert its therapeutic
effects through its high affinity binding to CD80/
86, thus blocking T cell activation. However,
evidence also exists to suggest that its effects may
also alter Treg function. In mouse models of
collagen-induced arthritis, CTLA4-Ig treatment
decreases disease severity (Ref. 132). Interestingly,
the drug alters DC, which become tolerogenic
DC, and induces highly suppressive Treg.
CTLA4-Ig therapy is successfully used in RA
(Refs 133, 134) and JIA (Ref. 135). It has been
reported that in patients with RA, Abatacept led
to a reduction in peripheral blood Treg numbers
and a significant enhancement in Treg function on
a per cell basis (Ref. 136).

Figure 2. Proposed Treg–Tconv balance in juvenile idiopathic arthritis (JIA). (Legend; see previous page for
figure.) Schematic of milder resolving (left) and more severe and ongoing (right) inflammation of the joint,
showing infiltration of cells. Treg are highlighted in green, Tconv in red, with CD161 expression in blue.
Proinflammatory cytokines are depicted as small red and orange circles. In mild, resolving disease, more
Treg are present in the joint than in severe ongoing disease. We hypothesise that in mild, resolving
inflammation Tconv may be more susceptible to suppression (big block bar), and inflammatory effects of
the micro-environment are smaller (thin arrows) than in more severe disease. In addition, a higher frequency
of CD161+ Treg appears to associate with more severe disease.
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Table 1. Evidence for the role or dysfunction of Treg in JIA

Key findings Disease/JIA subtype* Refs

High Treg frequency in the inflamed joint All JIA 2, 3, 80

Treg frequency normal in blood O-JIA, P-JIA and sJIA 3, 79, 80

Low Treg frequency in blood of active severe cases, before
autologous stem cell transplantation

sJIA 81

Treg frequency in blood decreased in active vs. quiescent
disease, but raised memory Treg frequency in quiescent
versus healthy cases

sJIA 82

Serum amyloid (SAA) protein is high. SAA breaks Treg anergy
without affecting their suppressive function

sJIA 83

Increased Treg frequency in the milder persistent O-JIA
compared with the more severe extended O-JIA and
compared with extended-to-be O-JIA (before extension has
occurred)

O-JIA 2, 3, 84

Reciprocal relationship between Treg frequency/FoxP3
transcripts and Th17 frequency/RORCv2 transcripts

O-JIA 3, 80

Treg in the inflamed joint have an activated memory
phenotype (high expression of: CD45RO, GITR, HLA-DR,
CTLA4 and CD39)

O-JIA 2, 47

In the SF increase of CD39+ FoxP3+ Treg and
CD39+ FoxP3− Tcells; CD39 is functional on both subsets
in vitro

O-JIA 47

SF Treg have potent suppressive behaviour in vitro O-JIA, P-JIA, sJIA, psJIA
and RA

2, 47, 85, 86,
87

SF Treg do not suppress SF Tconv, but do suppress blood
Tconv

O-JIA and P-JIA 4, 5

Cytokines that can affect Treg suppressive capacity are
increased in SF

O-JIA, P-JIA and sJIA 4, 85, 88

CD161+ SF Tconv can change their cytokine profile (IL-17 to
IL-17 and IFN-γ double to IFN-γ single producers) in vitro and
in vivo

O-JIA 89, 90

CD161+ Treg are increased in the inflamed joint. CD161+
Treg can produce pro-inflammatory cytokines (IL-17, IFN-γ
and IL-2)

O-JIA and P-JIA 72

Genetic associations can be found in JIA with genes
important for Treg function (including IL2, IL10 and CD25);
several have been confirmed on a genome wide association
level

all JIA 91, 92, 93, 94,
95

NogeneticassociationwithFOXP3or CTLA4hasbeen found all JIA 96, 97

Self-antigen (Hsp60) specific Treg can be associated with
remission of O-JIA (but not in P-JIA)

O-JIA and P-JIA 104, 106

*Definitions according to Petty et al. (Ref. 1); O-JIA, oligoarticular JIA (juvenile idiopathic arthritis); P-JIA,
polyarticular JIA; psJIA, psoriatic JIA; RA, rheumatoid arthritis; SF, synovial fluid; sJIA, systemic JIA; Tconv,
conventional T cells.
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For some novel therapeutic agents, results
in murine models and humans have been
specifically different. For example, use of
the second-generation co-stimulation-blocking
molecule, Belatacept, in renal transplant
patients, has been shown to lead to an increase
in FoxP3+ Treg cells in the allograft (Ref. 137).
This was notably different to the results in
mice, where CTLA4-Ig has been shown to
compromise Treg function (Refs 138, 139). These
results, as well as the near disastrous results
of blockade of CD28 in a phase I trial of a
super agonist anti-CD28 antibody, TGN1412,
emphasise that extrapolation from the rodent to
the human immune system is not always wise
(Ref. 140).
TNF-α has been implicated in the pathogenesis

of many forms of human inflammatory arthritis,
including JIA, where it has been shown to be
highly enriched within the inflammatory joint
(Ref. 88). There are several TNF-α blockade
agents now being used to treat JIA. Infliximab
and Adalimumab are both anti-TNF-α antibodies,
whereas Etanercept is a soluble TNF-receptor
fusion protein. A third concept is TNF-kinoids,
which are hybrid molecules used to vaccinate the
recipient, such as TNF conjugated to a carrier
protein (e.g. keyhole limpet haemocyanin) that
induces production of polyclonal self-antibodies
against TNF by the host. Mice with knock-in of
the TNF-α gene develop arthritis, and Treg at the
peak of this disease model show only weak
suppressive capacity (Ref. 141). Treatment with
anti-TNF-α (Infliximab) or a TNF-α-kinoid
ameliorated disease and increased Treg frequency
and function. In vitro treatment of healthy human
Treg with TNF-α rendered them less functional
and decreased their level of FoxP3, mimicking the
phenotype of Treg from RA patients. Treg
function and FoxP3 could be restored by culture
with anti-TNF-α antibodies. Treatment with
Infliximab in RA patients can restore Treg levels
and function and the population of Treg that
develop upon Infliximab treatment has been
shown to be a novel, induced CD62L− Treg
population (Refs 142, 143). Others have suggested
that Treg from RA patients actually have a high
amount of TNF-α bound to their surface
membrane, which affects their functionality
(Ref. 144).
TNF-blockade alone is not as efficient in treating

arthritis compared with combinational therapy
with methotrexate (MTX) (Ref. 145). This synergy

between MTX and anti-TNF-α treatment is also
clear for both RA and JIA (Refs 135, 146, 147). A
placebo-controlled study in RA showed a slightly
higher increase in Treg with anti-TNF-α plus
MTX, compared with the placebo plus MTX
group (Ref. 148). In a study showing significant
improvement of RA patients on Etanercept plus
MTX, where the MTX alone group showed only
a trend towards improvement, the ratio between
Treg to Th17 was seen to increase after treatment
(Ref. 149). Others, however, did not find any
prominent difference in the Treg/Th17 ratio
between MTX alone or in combination with
either Etanercept or Adalimumab (Refs 150, 151).
A recent study, exploring the mechanism of
Treg in Adalimumab-responding RA patients
compared with non-responders and active RA,
found that Treg isolated from Adalimumab-
responding patients were able to suppress IL-17
production in vitro, acting via the inhibition of
monocyte-derived IL-6, whereas non-responders
or active RA samples did not (Ref. 152).
Interestingly, this study also compared Treg from
Etanercept-treated patients, which did not
suppress IL-17 in vitro independent of clinical
response to the drug. Therefore, different TNF-α
blockade approaches seem to have different
effects on the Treg and Th17 balance.

Although biologics have drastically improved
treatment for many RA and JIA patients, not all
patients respond in a similar way; these drugs
are relatively expensive and, to date, are not
widely available in all countries. Further
characterisation and definition of different
subgroups of the disease will therefore be
crucial to develop biomarkers that can be used
to help predict which treatment will be best for
each patient.

Cellular therapies
As mentioned previously, Treg cellular adoptive
transfer has been used successfully to treat
experimental arthritis. However, this approach
poses a variety of problems. One concern is that
some Treg could themselves add further to the
inflammatory response by switching on the
production of cytokines, as described above. It
would therefore be useful to develop a strategy
to ensure that Treg with pro-inflammatory
properties are not transferred or at least could
be monitored (Ref. 72). Others have used the
approach to initiate activation-induced cell
death during Treg expansion, which should
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eliminate proinflammatory cells close to the end
of their lifespan (Ref. 153). However, it is still
unclear as to what might happen to expanded
or induced Treg transferred into an
inflammatory environment. Several animal
models showed positive outcomes when used in
the prevention of disease, including antigen-
induced arthritis (Ref. 98), but most Treg
adoptive-transfer models could not reverse
established disease. It is also known that if Treg
alone are transferred into an “empty mouse”,
without other adaptive immune cells, a large
proportion will lose their Treg status as a result
of a lack of IL-2 which is needed for survival
(Ref. 154). Therefore, maybe a transplant of stem
cells, which can reestablish all the cells of the
immune system, might be more favourable. To
reset and reconstitute the immune system,
autologous stem cell transplantation (ASCT) has
successfully been used in the treatment of severe
systemic and polyarticular cases of JIA (Refs 81,
155, 156, 157, 158). After ASCT, Treg numbers
increased relative to CD4+ T cells as a
whole, suggesting a resetting of the immune
system. However, it has been established that
adequate ablation of the immune system before
transplantation is essential to prevent early
relapse of the disease in this approach.
In addition to Treg, human mesenchymal stem

cells (MSC) offer a new treatment avenue
(Ref. 159). MSC can actively suppress immune
responses (Ref. 160). In a model system, human
MSC have successfully been used to treat
experimental arthritis in mice (Ref. 161). In this
study, the development of antigen-specific
mouse Treg was induced by the human MSC
and were essential for amelioration of disease.

Conclusions
Increasing our knowledge of the fundamental
biology of Treg will be extremely important
in helping to optimise the clinical use of
adoptive Treg. Current approaches that use and
monitor Treg are already being tested in clinical
trials: Treg are being used to improve transplant
survival and reduction of graft-versus-host
disease, and initial trials for Treg as cellular
therapy of type one diabetes are also underway.
These trials are mainly at the safety and
efficiency testing stage, using different dosing
regimes and variable immunosuppression. It
will be exciting to follow these and other
ongoing trials; their outcomes might point us

towards novel ways of treating autoimmunity and
will allow us to monitor the safety and behaviour
of human Treg that have been adoptively
transferred into inflammatory environments.
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