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• C. G. Böhmer, A. Mussa and N. Tamanini, “Existence of relativistic stars

in f(T ) gravity,” Class. Quant. Grav. 28 (2011) 245020 [arXiv:1107.4455

[gr-qc]].

These papers can be found in appendices A, B, C respectively, and are referenced

as [1–3] in the bibliography. All other material used to write this thesis has been

cited accordingly.

1



Abstract

Static, spherically symmetric solutions of the Einstein-Maxwell equations in

the presence of a cosmological constant are studied, and new classes of solutions

are derived. Namely the charged Einstein static universe and the interior and

exterior charged Nariai spacetimes, these solutions form a subclass of the RNdS

solution with distinct properties. The charged Nariai solutions are then matched

at a common boundary.

When constructing solutions to gravitational theories it is important that

these matter distributions remain in hydrostatic equilibrium. If this equilib-

rium is lost, with internal gravitational forces dominating internal stresses, the

solution will collapse under its gravitational field. An upper bound on the mass-

radius ratio Mg/R for charged solutions in de Sitter space is derived, this bound

implies hydrostatic equilibrium. The result is achieved by assuming the radial

pressure p ≥ 0 and energy density ρ ≥ 0, plus p+ 2p⊥ ≤ ρ where the tangential

pressure p⊥ 6= p. The bound provides a generalisation of Buchdahl’s inequality,

2M/R ≤ 8/9, valid for Schwarzschild’s solution. In the limit Q → 0 ,Λ → 0,

the bound reduces to Buchdahl’s inequality.

Solutions in hydrostatic equilibrium are also considered in modified f(T )

gravity. It is shown that the tetrads eiµ impact the structure of the field

equations, and certain tetrads impose unnecessary constraints. Two particu-

lar tetrads are studied in more detail, solutions are then found for both tetrads,

and a conservation equation is obtained using an analogous method to obtaining

the Tolman-Oppenheimer-Volkoff equation. Although both tetrad fields locally

give rise to the spherically symmetric metric, the tetrad fields are not globally

well-defined and hence cannot be described as spherically symmetric. We then

derive an upper bound on M/R which also implies hydrostatic equilibrium, this

yields some constraints on the form of f(T ) given a particular tetrad that locally

gives rise to the line element ds2 = eadt2 − ebdr2 − r2dΩ2.
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Outline

This thesis divides into two topics which share the underlying theme of spheri-

cally symmetric matter distributions. The concept of such spherically symmetric
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spacetimes is explored in two distinct theories of gravity, namely general rela-

tivity and f(T ) gravity. The latter is obtained by making modifications to an

alternative theory of gravity known as teleparallelism, this theory is equivalent

to general relativity and is thus often referred to as the teleparallel equivalent of

general relativity or TEGR. In addition to studying such solutions, the balance

of the internal gravitational force with the internal stresses in these spacetimes

will be discussed in the framework of both theories.

The first topic is an investigation of particular spherically symmetric exact

solutions in general relativity, for which the background is given in chapter 1.

My results are presented in chapter 3 along with [1] and [2]. Two new classes of

charged perfect fluid solutions in the presence of a positive cosmological constant

are derived in [1], we then proceed to find an upper bound for the mass of

a charged matter distribution with internal forces in equilibrium in a curved

spacetime in [2]. Most of the calculations used to obtain these results are then

discussed in chapter 3.

The second theme is introduced in chapter 2, this explores various modified

or alternative theories of gravity, and the possibility of obtaining spherically

symmetric solutions within these theories. The theories which will be considered

in most detail are teleparallelism and modified teleparallelism. The latter is

also referred to as f(T ) gravity and is discussed further with results presented

in chapter 4 and in [3]. In the f(T ) gravity framework, I begin by discussing a

recent claim that spherically symmetric solutions do not exist in this theory and

discuss the complexity of achieving such solutions in this theory of gravity. I

then show the role the chosen tetrad field plays in this problem. The publication

inserted in [3] gives some solutions for two distinct tetrad fields, these solutions

are discussed briefly in chapter 4. After considering a tetrad field which admits

a wider class of f(T ) models for the spherically spherically symmetric metric

in modified teleparallelism, that is the so-called rotated tetrad, I consider the

applicability of Birkhoff’s theorem given this tetrad field. Finally, an upper

bound for the mass-radius ratio of a static solution in f(T ) gravity with the

rotated tetrad field is derived. This result is obtained using an analogous method

to the aforementioned bound in general relativity, and allows us to determine

some constraints f(T ) must satisfy in order to respect this bound.
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Chapter 1

Introduction to general

relativity

After many years of development Einstein presented his general theory of rela-

tivity in 1915, it was then published the following year in [4]. General relativity

is an extension of special relativity which includes a modification of Newton’s

law of gravity. It provides a relativistic description of the gravitational field

exerted by a massive object and its effects on the geometric structure of the

surrounding spacetime. The theory states that the gravitational interaction

due to the presence of matter causes spacetime to curve hence distorting the

path of a nearby object. This differs from the original foundations of Newton’s

laws of gravitation, where gravity is an attractive force between two massive

objects which interacts instantaneously. In this description, planetary orbits

are a consequence of this gravitational pull emanating from the sun, therefore

in this theory the suns gravitational field interacts directly with the planet as

opposed to the surrounding spacetime. However given certain circumstances

Newtonian theory provides an accurate description of the gravitational interac-

tion, this includes a weaker gravitational field. This is known as the Newtonian

limit in which spacetime is asymptotically flat and the field equations can be

approximated with Newton’s laws of motion. General relativity is required for

a more significant gravitational field, when Newtonian gravity no longer agrees

with observation. For instance, the observation of the precession of the perihe-

lion of Mercury deviated slightly from the predictions of Newton’s equations,

whereas solutions in general relativity describe this orbit correctly.
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In general relativity, spacetime has the structure of a four-dimensional pseudo

-Riemannian manifoldM, this is equipped with a metric gµν which can be used

to determine local geometric quantities such as angles and lengths. The metric

associated with a pseudo-Riemannian manifold is not positive definite, therefore

it will have signature (1, 3) or (3, 1), for the purposes of this thesis I will consider

a metric with signature (−,+,+,+) for results in general relativity unless other-

wise stated. The metric gµν and its inverse gµν are symmetric so that gµν = gνµ

and gµν = gνµ, where gµσgσν = δµν . The line element ds2 = gµνdxµdxν is invari-

ant under arbitrary invertible transformations known as diffeomorphisms [5].

Curvature, which is often a manifestation of the gravitational force due to

the presence of a nearby matter distribution, is represented by the Riemann

curvature tensor Rσµνρ and its contractions the Ricci tensor Rµν and Ricci

curvature scalar R. Note that the Ricci tensor equals zero in the absence of

matter with a vanishing cosmological constant Λ, which will be shown later

in this section, however the Riemann tensor can be non-zero in such circum-

stances. The Riemann tensor is defined in terms of the covariant derivative ∇µ,

which is the generalisation of the partial derivative ∂µ for a curved spacetime.

For instance, the covariant derivative of a rank-(1, 1) tensor Aµν is defined to

be ∇σAµν = ∂σA
µ
ν + ΓµσρA

ρ
ν − ΓρσνA

µ
ρ, note that the covariant derivative

satisfies the condition ∇σgµν = 0. These derivatives do not commute when

acting on vectors and tensors ∇µ∇νvσ 6= ∇ν∇µvσ whereas partial derivatives

do ∂µ∂νv
σ = ∂ν∂µv

σ, and Rσµνρ exploits this property to measure deviations

from flat spacetime. The Riemann tensor on a manifoldM is then expressed in

terms of the commutator of the covariant derivative as follows

[∇µ,∇ν ]vσ = ∇µ∇νvσ −∇ν∇µvσ = Rσρµν v
ρ − Tµνρ∇ρvσ , (1.0.1)

where vµ is a vector field on M and Tσµν = Γσνµ − Γσµν is the torsion tensor.

Spacetime in the general relativity framework is assumed to be torsion free, this

is attained by using the symmetric Levi-Civita connection Γσµν = Γσνµ associ-

ated with the metric. This connection implies the last term in equation (1.0.1)

vanishes; therefore in general relativity Rσρµν v
ρ = [∇µ,∇ν ]vσ, and for a rank-

(1, 1) tensor this generalises to [∇µ,∇ν ]Aσρ = RσλµνA
λ
ρ − RλρµνA

σ
λ. The
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Levi-Civita connection and the Riemann curvature tensor are defined as follows

Γσµν =
1

2
gσρ
(
∂µgρν + ∂νgρµ − ∂ρgµν

)
,

Rσρµν = ∂µΓσρν − ∂νΓσρµ + ΓσλµΓλρν − ΓσλνΓλρµ , (1.0.2)

where we have used the conventions in [6] for the Riemann tensor. From this

the Ricci tensor Rµν = Rσµσν and Ricci scalar R = gµνRµν = Rµµ can be

constructed. Note that the Riemann tensor satisfies the following properties

(1)Rσρµν = −Rσρνµ, (2)Rσρµν = −Rρσµν ,

(3)Rσρµν +Rσµνρ + Rσνρµ = 0, (4)Rσρµν = Rµνσρ , (1.0.3)

where Rσρµν = gσλR
λ
ρµν . The first property is clear from inspecting defini-

tion (1.0.1), and the second follows from the identity [∇µ,∇ν ]gσρ = −gλρRλσµν−
gσλR

λ
ρµν = 0. The next property can be shown by using the Riemann tensor

given in equation (1.0.2), all terms cancel which yields the result. The final

relation follows from using (1)–(3) to write Rσρµν +Rσµνρ −Rνσρµ = Rσρµν +

Rσµνρ+Rνρµσ+Rνµσρ = 0, or equivalently Rσρµν−Rµνσρ = −
(
Rσµνρ−Rνρσµ

)
.

Using this we can write the following

Rσρµν −Rµνσρ = −
(
Rσµνρ −Rνρσµ

)
= Rσνρµ −Rρµσν = −

(
Rσρµν −Rµνσρ

)
,

which gives the required result.

In the field equations of the theory, matter and energy related quantities are

represented by the stress-energy-momentum tensor Tµν , and the geometry of

the resulting curvature is described by the Einstein tensor Gµν . To derive the

equations relating the effects of matter to the structure of spacetime, consider

the Einstein-Hilbert action

S = Sgravity + Smatter =
1

16π

∫ (
R− 2Λ

)√
−g d4x+

∫
Lmatter

√
−g d4x ,

where we have used geometric units so that the speed of light c and the gravi-

tational constant G are set to unity, the convention c = G = 1 will continue to

be used throughout the thesis. This is not the original form of the action since

it did not initially include the cosmological constant Λ. This was later inserted

by Einstein whilst developing a cosmological model of the universe, and the

presence of Λ was to ensure that the model was static. Observations currently
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support a positive Λ [7].

There have been many reformulations of the variational principle used to

obtain the field equations [8]. Here, the equation of motion is derived by varying

the action with respect to the metric gµν

Gµν + Λgµν ≡ Rµν −
1

2
Rgµν + Λgµν = 8πTµν , (1.0.4)

Tµν = Mµν + Eµν ,

where Mµν and Eµν represent the matter and electromagnetic stress-energy-

momentum tensors respectively. Due to the symmetries of the Einstein tensor

Gµν = Gνµ the sixteen components of the field equation (1.0.4) are reduced to

ten second order differential equations which must be solved for gµν .

Note that the Einstein tensor Gµν satisfies ∇νGµν ≡ 0. This follows from

the combination ∇λRσρµν + ∇µRσρνλ + ∇νRσρλµ = 0 which is referred to as

the Bianchi identity. To show this result, we use the Jacobian identity

0 ≡
(

[∇λ, [∇µ,∇ν ]] + [∇µ, [∇ν ,∇λ]] + [∇ν , [∇λ,∇µ]]
)
gσρv

ρ

=
(

[∇λ, Rσρµν ] + [∇µ, Rσρνλ] + [∇ν , Rσρλµ]
)
vρ

=
(
∇λRσρµν +∇µRσρνλ +∇νRσρλµ

)
vρ ,

where we used the product rule to rewrite the second line −Rσρµν∇λvρ =

vρ∇λRσρµν − ∇λ(Rσρµνv
ρ). Contracting the Bianchi identity with the metric

twice, and using the properties (1.0.3) yields

gσνgρλ
(
∇λRρσµν +∇µRρσνλ+∇νRρσλµ

)
= ∇ρRσµσρ −∇µgσνRλσλν +∇σRλσλµ ,

which can be written as ∇νGµν = ∇νRµν − 1
2∇µR = 0, note that the term

involving the cosmological constant does not affect this result since ∇ν
(
Λgµν

)
≡

0. Plugging this into Einstein’s field equation (1.0.4) implies that the stress-

energy-momentum tensor is conserved ∇νTµν = 0.

A perfect fluid with anisotropic pressure in the presence of an electromag-
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netic field has stress-energy-momentum tensor

Tµν =
(
ρ+ p⊥

)
uµuν + p⊥gµν +

(
p− p⊥

)
vµvν︸ ︷︷ ︸

matter energy Mµν

+
1

4π

(
Fµ

σFνσ −
1

4
gµνF

σρFσρ

)
︸ ︷︷ ︸

electromagnetic energy Eµν

.

(1.0.5)

where Fµν is the electromagnetic field strength tensor, uµ is the four-velocity

so that uµuµ = −1 and vµ is a spacelike unit vector in the radial direction

hence vµvµ = 1. Note if one assumes the pressure is isotropic so that the radial

p and tangential p⊥ pressures are equal, the number of independent equations

will be reduced. Moreover, imposing vanishing radial and tangential pressures

p = p⊥ = 0 gives rise to a dust solution. Alternatively, one can assume the

metric we seek exerts various symmetries, for instance a metric that is static or

spherically symmetric will also simplify the form of the field equations. Putting

these assumptions of a static and spherically symmetric metric together with the

consideration of an isotropic perfect fluid energy-momentum tensor gives rise to

a spherically symmetric isotropic fluid, and will reduce the ten field equations to

two plus a conservation equation which can be then solved for gµν . A static and

spherically symmetric dust solution is determined by one field equation with a

conservation equation. Many results which will be discussed in this introduction

have used an isotropic pressure p = p⊥ unless otherwise stated, whereas most

results presented later will allow for an anisotropic pressure.

When studying spacetime in the absence of both matter and an electro-

magnetic field, one must consider vacuum solutions. This corresponds to a

vanishing stress-energy-momentum tensor, hence the field equation becomes

Gµν + Λgµν = 0 which implies Rµν − Λgµν = 0. The latter is obtained by

using an equivalent formulation of Einstein’s equation which is often referred

to as the trace-reversed field equation. Taking the trace of the Einstein tensor

G = gµνGµν yields

G = gµνRµν −
1

2
gµνgµνR+ Λgµνgµν = −R+ 4Λ = 8πT ,

this can then be substituted into Einstein’s field equation to give the trace-

reversed equation Rµν − Λgµν = 8π
(
Tµν − 1

2T gµν
)
. The aforementioned result

now follows from the vacuum field equations where Tµν = 0.
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1.1 Exact solutions

Exact solutions to Einstein’s field equation have been considered since the de-

velopment of the theory of general relativity, and are represented by the metric

gµν . However, after almost a century of study, there is no concise criterion or

single outlined method for the construction of viable exact solutions of the the-

ory; the derivation of a solution is an extremely broad concept because there are

two rank-two tensors Tµν and gµν each containing up to ten independent com-

ponents. This allows for many parameters when describing spacetime, hence

some reasonable assumptions need to be made in order to proceed. A particular

approach is to fix the form of Tµν so that the matter distribution describes for

example, dust, perfect fluid or vacuum solutions. Thus the metric will usually

describe parts of the spacetime only, and will need to be matched to the relevant

exterior or interior solution to describe the entire spacetime. This simplification

can then be used to solve the field equations to find the metric gµν . As de-

scribed above, assumptions can be imposed on the metric to reduce complexity

of the field equations, this includes constructing solutions which exhibit space-

time symmetries, considering static, stationary or non-charged spacetimes, and

restricting asymptotic behaviour. The conditions used to obtain solutions can

include imposing both physical and mathematical assumptions, and it is im-

portant that the solutions developed are physically consistent. For example, if

we consider a matter distribution in the presence of electromagnetic forces, the

solution must obey the Einstein-Maxwell equations. The presence of the elec-

tromagnetic energy-momentum tensor Eµν in the field equations (1.0.4) implies

that the exterior of a charged matter distribution is not vacuum, it is instead

referred to as an electro-vacuum solution (Tµν = Eµν) whereas the neutral ana-

logue will have a vacuum exterior (Tµν = 0). It was shown that solutions can be

derived from an equation of state and this is viewed as the most physical way of

proceeding [9], where an equation of state relates the energy density and radial

pressure with ρ = ρ(p). The next few paragraphs will outline the development

of some important exterior solutions in Einstein’s theory, then a summary of

some cosmological solutions will follow.

In 1916, shortly after the publication of general relativity, Schwarzschild

discovered the first static, spherically symmetric solution which described the

exterior spacetime of a massive object [10]. This solution was developed prior to

the inclusion of the cosmological constant in the field equations, and before the

effects of charge Q and rotation J were considered important in the construction
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of solutions. The absence of Λ, Q and J means it provides the simplest model

of a static, spherically symmetric matter distribution. More importantly, the

Schwarzschild solution gives an accurate description of Mercury’s orbit. The

charged analogue was also discovered in 1916 by Reissner [11], and indepen-

dently by Nordström in 1918 [12], hence it is known as the Reissner-Nordström

solution. This solution was formulated in Schwarzschild coordinates, and in the

absence of charge it reduces to the exterior Schwarzschild solution. Several years

later, in 1923, Birkhoff proved an important theorem [13]. This stated that solv-

ing the vacuum field equations for a spherically symmetric metric will yield a

static spacetime, moreover the solution is unique and is the Schwarzschild so-

lution. Birkhoff’s theorem has been generalised for the Einstein-Maxwell equa-

tions, the resulting exterior is unique and is given by the Reissner-Nordström

solution [14]. Birkhoff’s result can be proved directly from the field equations

for a spherically symmetric, time-dependent metric.

Similarly, axially symmetric solutions have been studied since the publica-

tion of general relativity, starting with Weyl [15] in 1917. A very well-known

axisymmetric solution of the theory was found by Kerr in 1963 [16], this can

be written in Schwarzschild-like coordinates and it reduces to the Schwarzschild

solution in the absence of rotation. Naturally the charged analogue was the next

generalisation, this was formulated soon after by Newman et al in 1965 [17] and

is referred to as the Kerr-Newman solution.

All solutions mentioned so far describe the exterior of a massive object which

is either a vacuum or electro-vacuum spacetime. Possible interior solutions will

be looked at in more detail in section 1.4, where we will discuss in particular

interior charged perfect fluid solutions in the presence of a cosmological constant

and their neutral analogues.

Cosmological models

The exterior solutions discussed above are useful for describing the gravitational

field outside a massive object, alternatively cosmological solutions potentially

model the formation and evolution of our universe. The importance of such

models in describing our universe will be discussed further in chapter 2, below

we will outline some cosmological solutions in general relativity.

Shortly after Schwarzschild’s solution was published, in 1917 Einstein pro-

posed a static universe which resulted from the introduction of the cosmological

constant Λ in the field equations [18]. This is known as the Einstein static uni-
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verse and was intended to provide a cosmological model. The solution had a

constant energy density and vanishing pressure hence described a homogeneous

universe, the addition of the cosmological constant gave a solution that was

static thus the universe was not expanding. It was later discovered that this

does not provide a good approximation to our universe due to observations by

Hubble in 1929 [19]. The observations showed that distant galaxies are moving

away from the Earth and galaxies which were further away moved with an in-

creased speed. Hubble’s observation lead to the conclusion that the universe is

not static but is in fact expanding, and supported some theoretical work on an

expanding universe given by the de Sitter and Friedmann-Lemâıtre-Robertson-

Walker solutions discovered in 1917 [20] and 1922 [21] respectively, these solu-

tions will be discussed below. Additionally, the stability of the Einstein static

universe has been questioned [21, 22]. Nonetheless, some generalisations of the

Einstein static universe will be derived in section 3.6.

In 1917, de Sitter obtained a maximally symmetric family of vacuum cosmo-

logical solutions as an extension of the Einstein static universe. There are two

solutions, they are known as the de Sitter and anti-de Sitter solutions which

correspond to the presence of a cosmological constant Λ that is either positive

or negative. These new solutions can be viewed as a four-dimensional hyper-

boloid embedded in a five-dimensional manifold, whereas de Sitter showed that

Einstein’s solution would be a three-sphere embedded in a four-dimensional

manifold [20]. Spacetime is assumed to be homogeneous and isotropic which

successfully describes an expanding universe, where a positive or negative Λ

corresponds to accelerated or decelerated expansion respectively. Since obser-

vations show that the universe is experiencing accelerated expansion, a positive

cosmological constant provides a more physically accurate solution. The de

Sitter and anti-de Sitter solutions are often presented in non-static coordinates,

however can be transformed to static form [23]. Both versions differ to the afore-

mentioned solutions asymptotically, the previously mentioned exterior solutions

tend to flat Minkowski spacetime at large distances from the matter distribution

whereas the de Sitter solutions are asymptotically curved. Spacetime equipped

with this metric is often studied in cosmology, and de Sitter predicted an ex-

panding universe with this solution prior to Hubble’s discovery. Additionally,

the non-static form with a positive cosmological constant has been considered

as a model for inflation in the early universe [24], this model uses the so-called

inflationary coordinates for de Sitter space [25].

The Schwarzschild exterior in the presence of a positive cosmological con-

12



stant was found in 1918 by Kottler [26] and later by Weyl in 1919 [27]. This is

given by a combination of the Schwarzschild and static de Sitter solutions and

is often referred to as the Schwarzschild-de Sitter or Kottler solution. In the

absence of mass this solution becomes the static de Sitter universe, similarly

setting the cosmological constant to zero gives rise to the Schwarzschild exterior

and a negative cosmological constant yields the anti-de Sitter analogue of the

Kottler solution. These solutions describe the exterior of a matter distribution

in de Sitter or anti de Sitter space, and the asymptotic behaviour of the metric is

dominated by the Λ contribution. Following this, such asymptotically de Sitter

solutions have continued to be studied and generalised, for example the charged

analogue is known as the Reissner-Nordström de Sitter (or RNdS) solution [28].

The RNdS solution will be discussed in more detain in chapter 3. Likewise the

Kerr [28] and Kerr-Newman [29] solutions have been studied in the presence of

a positive or negative cosmological constant Λ. The Nariai solutions, found in

1951 [30] form a particular subclass of the Kottler solution which are asymptot-

ically distinct. Hence this spacetime requires an alternative metric to describe

the exterior, this is known as the exterior Nariai solution. More details will be

provided in chapter 3, and the charged analogue is derived in section 3.5 and [1].

In 1922 Friedmann discovered a time-dependent solution which paved the

way for the analysis of expansion in cosmology. This solution was later rediscov-

ered independently by Lemâıtre, Robertson and Walker and is therefore known

as the Friedmann-Lemâıtre-Robertson-Walker or FLRW metric. The FLRW

metric, which can be considered as a generalisation of the de Sitter solution,

provides the standard model of cosmology in which it gives a description of

the expanding universe. The FLRW solution was later identified as a special

case (the homogeneous version) of the more general inhomogeneous Lemâıtre-

Tolman-Bondi model [31].

There are numerous solutions to Einstein’s field equations, many of these

solutions have been omitted and some areas such as the axially symmetric Kerr

solution, and the time-dependent FLRW model have only been mentioned very

briefly above. The remainder of this chapter will concentrate on the discussion

of static, spherically symmetric solutions, and more detail will be given to such

solutions in the presence of charge Q which reside in de Sitter space. However,

the FLRW solution will briefly enter the discussion of modified gravity in chap-

ter 2. For a more detailed account of exact solutions of Einstein’s field equations

which are not mentioned here see for instance [6].
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1.1.1 Causal structure of spacetime

The exterior Schwarzschild solution is given by the line element

ds2 = −ea(r)dt2 + eb(r)dr2 + r2dΩ2 , (1.1.1)

where dΩ2 = dθ2 + sin2 θdφ2 is the line element of the unit two-sphere, and

ea = 1− 2M
r = e−b. The derivation of the mass appearing in the Schwarzschild

metric will be shown in section 1.2, which gives rise to this relation for e−b.

The solution is valid for r ≥ R, where R is the boundary of the matter dis-

tribution. The exterior Schwarzschild solution is required to be valid at the

boundary R so that it can be matched to a suitable interior, see section 1.4 for

a more detailed discussion. Notice that ea(0) → ∞ and eb(2M) → ∞. Hence

the metric would contain two singularities if the boundary lies within the region

R ≤ 2M ≡ rs, where rs is referred to as the Schwarzschild radius. Studying

these singularities showed that the latter is a coordinate singularity as opposed

to a gravitational singularity, and it can be removed by using an alternative

coordinate system. However the former is a gravitational singularity, this can

be seen by considering a particular contraction of the Riemann curvature ten-

sor known as the Kretschmann invariant K = RµνρσR
µνρσ. The scalar K is

invariant under coordinate transformations, and for the Schwarzschild solution

K = 48M2

r6 . Therefore when r = 0 in the Schwarzschild metric we have K →∞,

thus the singularity at r = 0 cannot be removed by changing coordinates.

If the radius of the matter distribution reaches the Schwarzschild radius

R = rs, the object will collapse under its gravitational field and will develop a

singularity at r = 0, the reason for this collapse will be discussed in section 1.3.

This object is known as a black hole, the Schwarzschild radius rs gives the

location of the black hole boundary which forms a hypersurface and is referred

to as the event horizon of the black hole. Beyond the event horizon lies the

singularity, and if a particle passes rs it will not return, this implies that once

in the interior a particle is causally disconnected from the exterior (that is a

particle will not reach the exterior in a finite amount of time). Due to this

property the event horizon is often referred to as ‘the point of no return’. In

particular light cannot escape, which hinders our visibility of the event horizon

and beyond. It is possible to construct interior Schwarzschild solutions with

the boundary R > rs which do not contain a singularity, and subject to certain

conditions the boundary will remain greater than rs, this will be discussed in
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section 1.4. Note, when we consider solutions involving more quantities such as

charge, rotation or a cosmological constant this gives rise to additional horizons.

For instance, the Reissner-Nordström solution contains two horizons which are

referred to as the inner r− and outer r+ horizons. Likewise, the Kottler solution

has a cosmological horizon rc as well as the black hole horizon rs.

The nature of a curved spacetime can be visualised further by adopting a

different coordinate system, and some alternative coordinate systems enable

an analysis of the event horizon and the region beyond. This allows us to

study the path of a particle and its behaviour once the event horizon has been

passed, in particular its causal relation with other points in spacetime. The

causal structure of spacetime can be understood further by exploring its ge-

ometric structure, and to study the geometry we study the possible paths of

light. In general relativity freely falling particles travel along geodesics, which

are the curved analogue of straight lines. The trajectories are governed by the

geodesic equation vµ∇µvν = 0 which is obtained by finding the extrema of∫
ds =

∫ √
gµν ẋµẋνdτ , where vµ = ẋµ = dxµ

dτ is tangent to the curve xµ(τ).

The tangent vector vµ can be classified as either space-like, time-like or null

and this depends on whether the quantity gµνv
µvν is positive, negative or zero

respectively. Similarly if the quantity gµνv
µvν is either positive, negative or zero

at every point along the curve xµ, the curve is described as either space-like,

time-like or null. Light travels along null geodesics, where all other physical

points follow a time-like trajectory and a space-like curve does not connect two

events. Null curves determine the boundary of a light cone, which can be seen

in figure 1.1.

In order to study null geodesics near the event horizon in the radial direction

we need to employ an alternative description of coordinates. This is because

radial null geodesics of the Schwarzschild metric correspond to ds2 = 0 with θ

and φ constant, this gives rise to the equation dt
dr = ±

(
1− 2M

r

)−1

, which is not

well-behaved at the horizon. There is a collection of coordinate transformations

which allow us to extend null geodesics to the event horizon and beyond this

region of spacetime. More details will be provided in section 3.4 where the

transformations will be given explicitly for the Reissner-Nordström spacetime.

These notions of causality can be used to define some conditions a physically

reasonable matter-energy-momentum tensor must satisfy, these are known as the

null, weak, strong and dominant energy conditions, see for instance [5,38]. The

null energy condition imposes that for any null vector vµ we have Tµνvµvν ≥
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Figure 1.1: This figure contains the light cone originating from the point p. All
points inside the light cone are connected to p with a time-like curve and points
along the boundary are connected to p with a null curve. Inside the light cone
one can distinguish between the future and past, and each point inside the light
cone is time-like separated from p, whereas each point on the light cone is null
separated from p and if outside the cone they are space-like separated from p.

0, the weak energy condition requires the same for all time-like vectors vµ

so that the energy-momentum tensor contains positive energy densities. The

strong energy condition states the trace-reversed field equation satisfies (Tµν −
1
2T gµν)vµvν ≥ 0 for all time-like unit vectors vµ. Finally, the dominant energy

condition imposes the weak energy condition holds along with the requirement

that if vµ is time-like (or null) then −T µν vν is also a time-like (or null) vector.

When Tµν is a perfect fluid, these conditions can be stated explicitly in terms

of the components of Tµν . For an isotropic pressure p = p⊥ the energy mo-

mentum tensor from equation (1.0.5) is Tµν = (ρ+ p)uµuν + pgµν , where uµ is

the four-velocity with uµu
µ = −1. Note that the quantity gµνv

µvν = −1 if vµ

is a time-like unit vector and vanishes if vµ is null. Using this the null energy

condition becomes ρ + p ≥ 0, whereas the weak energy condition requires that

the former holds along with ρ ≥ 0. The strong energy condition also requires

the null condition plus ρ+3p ≥ 0. Finally, the dominant energy condition states

that |p| ≤ ρ holds in addition to the weak energy condition.
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1.1.2 Static, spherically symmetric spacetimes

Symmetry is an important assumption when considering solutions, particularly

exact solutions, it is important due to the mathematical simplifications which

can be applied to the governing physics. Spherically symmetric solutions have

had many successful theoretical predictions which support Einstein’s theory,

such as the Schwarzschild solution implying all three empirical tests of general

relativity [32].

Symmetries are described by maps that preserve the structure of spacetime.

In flat Minkowski space such maps are a part of the Lorentz group plus transla-

tions, which constitute the larger Poincaré group. For the more general, curved

manifoldM the geometric structure of spacetime is modified and so is the notion

of symmetry. Given two manifolds M and N of the same dimension, the map

f : M → N is a diffeomorphism if the ranks of all tensor fields are preserved

by f and f−1. Equivalently f is a diffeomorphism if it is bijective and both

f and f−1 are smooth, where a function is smooth (or C∞) if all derivatives

are continuous. The manifolds M and N related by the diffeomorphism f are

referred to as diffeomorphic and share the same structure. The diffeomorphism

f : M → M is described as an isometry if it preserves the metric, and hence

geometric quantities such as distances. Symmetries on a manifold are then de-

scribed by a one-parameter family of isometries; such maps are generated by a

vector field ξa which belongs to the tangent space to a given point onM, and for

each a in R the map ξa :M→M is an isometry. This vector field ξa is referred

to as a Killing vector field and obeys Killings equation ∇µξν +∇νξµ = 0.

Thus spacetime symmetries can simply be expressed in terms of Killing vec-

tors and when the line element ds2 = gµνdxµdxν is independent of a coordinate

xµ for a particular µ (in Schwarzschild coordinates xµ = t, r, θ or φ) then the

unit vector in the direction of xµ is a Killing vector of the metric. For ex-

ample if the metric is independent of t then ξµ =
(
gtt, 0, 0, 0

)
is a time-like

Killing vector, where ξµ = gµνξν =
(
1, 0, 0, 0

)
. If the metric admits a time-like

Killing vector ξµ this implies spacetime is stationary, the spacetime can then

be described as static if the Killing vector is orthogonal to a family of hyper-

surfaces. Additionally, an n + 1-dimensional spherically symmetric spacetime

will permit (n−1)n/2 rotational Killing vectors, thus there are three rotational

Killing vectors in a four-dimensional spherically symmetric spacetime. An n-

dimensional maximally symmetric spacetime allows (n+ 1)n/2 Killing vectors,

thus in four-dimensions there are ten Killing vectors.
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A four-dimensional static and spherically symmetric spacetime such as the

Schwarzschild solution admits four Killing vectors. Since this solution is static

it is independent of t this gives rise to one time-like ξ1
µ =

(
−ea, 0, 0, 0

)
, spherical

symmetry implies that there are also three rotational Killing vectors. One of the

rotational Killing vectors is obvious from the line element ξ2
µ =

(
0, 0, 0, r2 sin2 θ

)
,

the other two can be expressed as ξ3
µ =

(
0, 0, r2 sinφ, r2 sin2 θ cot θ cosφ

)
and

ξ4
µ =

(
0, 0,−r2 cosφ, r2 sin2 θ cot θ sinφ

)
, for a derivation of the latter two Killing

vectors see [33]. On the other hand, four-dimensional de Sitter (or anti-de Sit-

ter) space is maximally symmetric and hence permits ten killing vectors, they

can similarly be obtained by solving Killings equation.

The consequences of symmetry are stressed further by an important theorem

discovered by Noether [34], this states that certain symmetries of the action lead

to conservation laws. Such symmetries are coordinate transformations which

leave the action unchanged. Since they imply conservation of quantities such

as energy and momentum they are useful when defining the mass in general

relativity, in particular the Komar mass which will be discussed in the next

section, 1.2. This theorem however is not relevant for calculations in this thesis,

and therefore will not be considered any further.

1.2 Defining mass in general relativity

Before discussing solutions which describe the interior of a matter distribution,

it is useful to understand the concept of mass in general relativity. Newtonian

gravity and special relativity both have a simple definition for the mass of an

object, however this single definition is lost in general relativity. Newtonian

gravity assumed the equivalence of the inertial and gravitational masses, and

Newton’s laws of motion imply that the inertial mass of an object determines

its acceleration ~a due to a force acting on it ~F = m~a = d~k
dt , with ~a = d~u

dt where

~u is the velocity and ~k = m~u is the momentum. Alternatively, the mass in

Newtonian gravity can be calculated with Gauss’s law, which expresses the mass

in terms of the matter density ρ, this relation is given below (1.2.1). Einstein’s

theory of special relativity resulted in the equivalence of the rest or proper mass

m0 and energy of an object. This equivalence arises since the total energy E
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and three-momentum ~k of an object with three-velocity ~u are defined as

E =

√
m2

0 + ~k2 ,

~k :=m~u = m0~u/(
√

1− ~u2) ,

where the momentum of a stationary object is zero, thus E = m0. From the

definition of ~k we can write down the relativistic mass (the mass of an object

in motion) m and relativistic energy E as follows

m =
m0√

1− ~u2
,

E =

√
m2

0 +
m2

0~u
2

(1− ~u2)
=

m0√
1− ~u2

.

therefore when the momentum is non-zero, we also have E = m. From this we

see the rest mass is the smallest possible mass. Note, the related four-momentum

is given by the four-vector kµ = (E,~k) = muµ, where uµ is the four-velocity

and E is the relativistic energy.

The equivalence of inertial and gravitational masses is not lost in general

relativity due to the equivalence principle, and neither is the equivalence of

energy and rest mass. However there are many possible definitions of mass in

general relativity and the applicable definition is dependent on the situation.

The equivalence principles imply that we can abandon the effects of gravity for

particles in free fall in an inertial frame, this results in the difficulty of defining

the local gravitational energy. This problem leads to a difficulty in extending

the concept of total energy from special relativity for a matter distribution, and

hence the related mass. In calculating the mass of a particular solution, the

symmetries, asymptotic behaviour such as curvature, and presence of charge or

rotation will alter the definition. In the absence of charge, the mass of a static,

spherically symmetric object from its centre r = 0 to the radial value 0 < r ≤ R
is defined using the energy density

m(r) = 4π

∫ r

0

r̃2ρdr̃ , (1.2.1)

this definition of mass is analogous to Gauss’s law which gives rise to the

Newtonian mass. Since r = R is the boundary of the object, where the in-

terior and exterior solutions are matched, the metric is required to be well
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behaved in this region. Therefore m(R) ≡ M denotes the total mass. In the

Schwarzschild solution m is obtained by writing the Einstein field equations

in component form for the line element (1.1.1). The (t, t) field equation can be

written as 8πr2ρ = d
dr

(
r−re−b

)
, then inserting this into definition (1.2.1) yields

e−b = 1− 2m
r . The mean density of a spherically symmetric matter distribution

is defined from this formulation of the mass and is given by

ρ̂(r) =
3m

4πr3
.

Now this definition of mass (1.2.1) can be extended to include the effects

of the presence of charge, the stress-energy-momentum tensor in the Einstein-

Maxwell field equations includes a non-zero contribution from the electromag-

netic energy-momentum tensor Eµν . This was studied by Florides in 1962 [35],

prior to this it was largely believed that the electromagnetic force did not con-

tribute to the gravitational mass. However, this result was speculated prior to

Florides discovery during the study of charged interior solutions, the relevant

solutions will be discussed further in section 1.4.1. The non-zero component of

this additional tensor quantity that contributes to the (t, t) field equation in a

static and spherically symmetric spacetime is Ett = − q4

8πr4 . Here the charge is

given in terms of its charge density σ, and is defined to be

q(r) = 4π

∫ r

0

e(a+b)/2r̃2σdr̃ .

The governing Maxwell equations that lead to this derivation of Ett will be

discussed further in chapter 3. Given the same line element as above, the (t, t)

component of the Einstein-Maxwell equations is now given by

8πr2ρ+
q2

r2
=

d

dr

(
r − re−b

)
.

Hence the charge contributes to the mass of the object

m(r) = 4π

∫ r

0

r̃2ρdr̃ =
1

2

∫ r

0

{
d

dr̃

(
r̃ − r̃e−b

)
− q2

r̃2

}
dr̃ , (1.2.2)

where q = q(r) cannot be integrated directly unless q is defined explicitly. Fol-

lowing the notation used in [1] and [2] yields m(r) = mi = mg − mq, where

mg is the total gravitational mass and mq is the electromagnetic contribution,
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these definitions will be explained further in chapter 3. The total gravitational

mass at the boundary r = R is given by Mg = mg(R) = mi(R) + mq(R), and

for the Schwarzschild solution the absence of charge implies mg = mi. A similar

relation can be made for the mass in the presence of a cosmological constant,

for instance in the Kottler solution

m(r) = 4π

∫ r

0

r̃2ρdr̃ =
1

2

∫ r

0

{
d

dr̃

(
r̃ − r̃e−b

)
− Λr̃2

}
dr̃ , (1.2.3)

thus mi = mg − Λr3

6 . However this distinction is not as important as in the

presence of charge, this is because Λ = constant this can be directly integrated

unlike q(r). Therefore in the Kottler solution mi is typically used instead of

mg, where e−b = 1 − 2Mi

r −
Λr2

3 = 1 − 2Mg

r . When we consider the Reissner-

Nordström de Sitter solution in chapter 3 we will not absorb the cosmological

constant contribution into mg.

Alternatively, the Komar mass describes the mass in any stationary and

asymptotically flat spacetime [36]. The only requirements are that spacetime

admits a time-like killing vector field and the exterior solution is vacuum. Then

Noether’s theorem states that this symmetry defined by the killing vector ηµ

leads to a conserved current which is in turn used to define the Komar mass.

The Komar mass can be shown to be equal to the total mass M = m(R) given

in equation (1.2.1) for the spherically symmetric and static Schwarzschild solu-

tion, see [5]. There has been much more work on this area of general relativity,

which resulted in many alternative definitions dependent on the situation, for

instance [37]. However, these other definitions of mass are not relevant for the

work in this thesis, for the Reissner-Nordström de Sitter solution the defini-

tion (1.2.2) in the presence of a cosmological constant will be used.

1.3 Compact stars and black holes

The theoretical idea of the existence of an object so massive that no particle,

including light, can escape its gravitational field was first introduced in 1798

by Laplace [38], but this concept did not receive much attention due to its

unusual properties. Over a century later, Einstein’s theory of relativity pre-

dicted the existence of such objects, now known as black holes. However, at

this time, these exotic objects still proved to be a controversial area with much

doubt on the possibility of their existence [39]. This prediction had followed
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Schwarzschild’s solution, where the singular behaviour at the Schwarzschild ra-

dius initiated further study alongside debate. It remained a controversial area

until approximately half a century later in 1958, when research [40–43] showed

that the black hole solution is an unavoidable consequence of general relativity.

This cleared up some previously unaccepted properties of black holes such as

their associated ‘singularities’. The Schwarzschild solution now gives the first

black hole solution [44] and the Schwarzschild radius rs = 2M is known not to

be a singularity [40,41,45] but the black hole event horizon.

During this development of the understanding of black holes, the possibility

of another exotic object emerged. In 1932 it was speculated that a supernova

explosion is due to the gravitational collapse of a stellar object, and this ex-

plosion transforms the star into a neutron star [46, 47]. A neutron star is an

extremely dense but relatively small object, and is classified as a compact ob-

ject due to its compressed density. The first observation to support this theory

was more than three decades later [48] in 1968. Other compact objects include

white dwarfs. Since these objects are so dense, it is possible that they will at-

tract and collect more mass. If enough mass is collected, the compact object

may experience gravitational collapse again and become a black hole. These

two developments led to widespread interest in compact objects and black holes

in general relativity. The next section will discuss the life cycle of a star and

the possibility of gravitational collapse.

1.3.1 Star formation and gravitational collapse

From observation and theory, we now have an idea of the life cycle of a star, from

birth when it is only visible via an infra-red telescope, up to the gravitational

collapse which forms a compact object.

A star eventually emerges from a nebula, which is an interstellar cloud of

cosmic dust and gases such as helium and hydrogen. Formation begins when

regions of increased gravity cause the gas and dust to condense, as these regions

become more massive they then collapse under the strengthened gravitational

field, causing an increase in temperature and thus forming a protostar. The star

remains in this stage for many thousands of years, until the core temperature

and density reach the necessary levels for nuclear fusion to occur and support its

gravitational field; this conversion of hydrogen into helium will produce enough

energy to stop the internal gravitational force causing collapse. At this stage

the star is often referred to as a main sequence star, although there are many
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subclassifications of stars.

In order to avoid gravitational collapse or explosion, a massive object such

as a main sequence star must remain in hydrostatic equilibrium. That is the

gravitational force pushing inwards and internal stresses (due to nuclear fusion

etc) pushing outwards need to be balanced. If the gravitational force exceeds

that of the internal stresses, the object will collapse under the dominating gravi-

tational field and will eventually be reduced to a compact object such as a white

dwarf or neutron star. The compact object also needs to remain in hydrostatic

equilibrium to avoid collecting more mass, and consequently experiencing gravi-

tational collapse again which will result in a black hole. Hoyle and Narlikar [49]

stated that given Einstein’s field equations, a large enough mass in the process

of gravitational collapse will continue to collapse until a singularity is developed.

It is possible that a charged interior matter distribution subject to certain con-

straints can avoid becoming massive enough to develop such a singularity. For

instance, some work which will be discussed in section 1.4 shows that the bal-

ance of the gravitational attraction with the electric repulsion gives rise to a

charged object in hydrostatic equilibrium, however there are charged interior

spacetimes which do contain a singularity. This can also be achieved for neutral

solutions, the corresponding bounds on M/R required to maintain this equi-

librium will then be discussed in section 1.5. The possible fate of a star after

gravitational collapse and hence the classification of compact objects, depends

on the configuration of the matter distribution; this includes the mass, density,

internal stresses and forces involved. This configuration is equally important

in the initial stages when denser regions of begin to form in the nebula and

throughout the life of the star. The gravitational collapse of a stellar object

indicates the radial value has reduced hence the collected mass is concentrated

into this smaller region of spacetime, causing it to become more dense. If the

radius coincides with the event horizon the object is reduced to a black hole.

Maintaining hydrostatic equilibrium, and circumstances which allow this

are of importance for a solution to be viable. In order to determine these

circumstances, the radial value at which hydrostatic equilibrium is lost and

gravitational collapse occurs needs to be studied further. There have been many

results that show the Schwarzschild solution subject to particular conditions,

may get rather close but will not reach rs. Therefore it will not experience

gravitational collapse provided that the restrictions are satisfied. Section 1.5

will discuss some of these results in more detail, but first we will discuss an

important result on maintaining hydrostatic equilibrium.
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1.3.2 Maintaining hydrostatic equilibrium

A star will remain in hydrostatic equilibrium provided that its gravitational

force which points inwards balances against its outward pointing internal pres-

sures. Given a particular solution, the Tolman-Oppenheimer-Volkoff equa-

tion [50] states a relationship between the mass, density and pressure which

will allow the star to remain in hydrostatic equilibrium. In this section, we

will derive this result, which is valid for a static, spherically symmetric solu-

tion describing for instance a neutron star in Schwarzschild coordinates (1.1.1).

With the perfect fluid energy-momentum tensor for an isotropic pressure, in the

absence of charge Tµν =
(
ρ + p

)
uµuν + pgµν = diag

(
−eaρ, ebp, r2p, r2 sin2 θ p

)
.

Computing the field equations yields

8πρ =
b′e−b

r
+

1

r2

(
1− e−b

)
, (1.3.1)

8πp =
a′e−b

r
− 1

r2

(
1− e−b

)
, (1.3.2)

8πp⊥ =
e−b

2

(
a′′ +

(a′
2

+
1

r

)(
a′ − b′

))
, (1.3.3)

for this calculation the pressure is assumed to be isotropic, so that p = p⊥ and

the last two equations are required to be equal. This gives rise to the isotropy

condition e−b

2

(
a′′+ a′

2

(
a′−b′)− 1

r

(
a′+b′

))
+ 1
r2

(
1−e−b

)
= 0, which means only

two independent field equations remain. Taking the derivative of the expression

for p given by (1.3.2) with respect to r gives

8πp′ =
e−b

r

(
a′′ − a′b′ − 1

r
(a′ + b′)

)
+

2

r3

(
1− e−b

)
, (1.3.4)

while the field equations can be manipulated to construct the following equations

0 =
e−b

r

(
a′′ +

a′

2

(
a′ − b′

)
− 1

r

(
a′ + b′

))
+

2

r3

(
1− e−b

)
,

4πa′(ρ+ p) =
a′e−b

2r
(a′ + b′)

=− e−b

r

(
a′′ − a′b′ − 1

r

(
a′ + b′

))
− 2

r3

(
1− e−b

)
,

24



the former is obtained by subtracting (1.3.2) from (1.3.3), this combination is

the isotropy condition which is then multiplied by 2/r. The latter is given by

adding (1.3.1) to (1.3.2) and multiplying by a′/2, then the former expression is

utilised to rewrite the right-hand side of the latter. The expression for ρ+p can

now be substituted into equation (1.3.4) which yields

p′ = −a
′

2

(
ρ+ p

)
, (1.3.5)

this is a conservation equation for the pressure. Note that the general con-

servation equation ∇ν
(
Gµν − 8πTµν

)
= 0 for this static solution reduces to

∇r
(
Grr − 8πTrr

)
= e−b∂r

(
a′

r −
1
r2

(
eb − 1

)
− 8πebp

)
= 0. This coincides with

equation (1.3.4) when expanded out, then following the same steps as above

leads to equation (1.3.5). We now require an expression for a′ in the interior,

which can be obtained by firstly rewriting the (t, t) field equation

8πr2ρ =
d

dr

(
r − re−b

)
,

and integrating with respect to r, this then leaves an equation which can be

solved for b in the interior

e−b =1− 1

r

∫ r

0

8πr̃2ρdr̃ = 1− 2m

r
, (1.3.6)

where we have used the definition of the mass given in equation (1.2.1), which

states

m(r) =

∫ r

0

4πr̃2ρ dr̃ ,

for 0 < r ≤ R and the total mass M is given by the integral evaluated at the

boundary r = R, hence m(R) = M . Now this can be inserted into the (r, r)

field equation, (1.3.2), to obtain an expression for a′

a′ =
2m+ 8πr3p

r2 − 2mr
, (1.3.7)
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which is then substituted into the equation for p′ given by equation (1.3.5), this

yields

p′ = −m+ 4πr3p

r2
(
1− 2m

r

)(ρ+ p
)
. (1.3.8)

Equation (1.3.8) is the Tolman-Oppenheimer-Volkoff equation of hydrostatic

equilibrium for a static, spherically symmetric solution (1.3.3). Note in the

Newtonian limit, when m � r , p � ρ, the equation of hydrostatic equilib-

rium is given by p′ = −m
r2 ρ. The TOV equation follows directly from the field

equations and can be generalised further for an anisotropic pressure, so that

p 6= p⊥. We will also see that anisotropy of the energy-momentum tensor af-

fects the mass-radius ratio, which is obviously due to the additional independent

(θ, θ) field equation involving p⊥. This in turn gives rise to additional values

appearing in the conservation equation, the modified equation for hydrostatic

equilibrium was generalised for the anisotropic pressure in 1973 [51]. This result

will be generalised further for the Reissner-Nordström de Sitter solution with

anisotropic pressure in chapter 3. A similar method will be utilised to derive a

conservation equation in the modified gravity framework in chapter 4 and [3].

1.4 Interior solutions

So far, we have seen numerous exterior solutions with a wide range of properties,

including the Schwarzschild, Kottler and Nariai solutions along with various

charged analogues. In studying such objects, we are also interested in modelling

the interior spacetime. The interiors need to be matched at the boundary to

their exterior counterparts using the correct matching conditions [52–55], the

boundary r = R forms a hypersurface which is referred to as the matching

hypersurface. At this matching hypersurface the metrics must take the same

value, also both the interior and exterior metrics are required to be at least C1.

A metric is Ck if the first k derivatives are continuous in the required region.

Before the solutions can be matched we require that the interior is regular and

hence singularity free, in particular the metric should be finite at the centre r = 0

with finite energy density and pressure throughout the interior. In addition

to the first fundamental forms which are given by the metric coefficients, the

second fundamental forms must also agree at the hypersurface [52–54], this will

be discussed in more detail in section 3.5.2. Alternatively, both the interior and
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exterior metrics can be rescaled into Gauss coordinates, so that the coefficient

of the transformed radial coordinate in the metric is set to unity, then it must

be shown that the metrics are continuous and differentiable at the boundary or

hypersurface [55]. See section 3.5.2 for a comparison of matching methods with

the interior and exterior charged Nariai solutions, or [1] for the matching with

the latter method in more detail. Some solutions assume the boundary to be

the vanishing pressure hypersurface p(R) = 0 in order to match [55], which we

will see more of in the discussion below.

In 1916, Schwarzschild developed the first interior solution which matched

to the exterior vacuum Schwarzschild solution at the boundary, where both

metrics were C1 [10]. This was an incompressible fluid with the feature of

a constant energy density ρ. For a further investigation on Schwarzschild’s

interior as an incompressible fluid see [56], the solution was later redeveloped

in isotropic coordinates [57]. Further analysis of the Schwarzschild interior was

carried out in 1975, it was shown that this interior is conformally flat and is the

only static and spherically symmetric perfect fluid solution of Einstein’s field

equations to have this property [58]. A spacetime manifold M is conformally

flat if for every neighbourhood about a point onM there is a conformal mapping

to Minkowski spacetime, that is the spacetime metric of M can be expressed

as a multiple of the Minkowski metric gµν = αηµν for some scalar α, such a

conformal map preserves angles. It was also shown that the homogeneous limit

of the Schwarzschild interior yields the Einstein static or de Sitter universe [58],

in the homogeneous limit we restrict the pressure p(r) = constant.

In 1939, Tolman developed several interior solutions, where hydrostatic equi-

librium was imposed with various constraints, these solutions were matched to

the relevant exterior [50]. Among the new solutions developed in [50], a partic-

ular model was shown to give rise to either the Einstein universe, Schwarzschild

interior or Kottler solutions under the correct constraints. The remaining so-

lutions and their properties have been studied further and generalised in for

instance [59]. The Whittaker solutions [60] were developed in 1968, this aban-

doned the concept of constant energy density solutions and instead imposed

ρ+ 3p = constant, which allowed for a variable ρ and p.

The interior solutions discussed in this section so far have an isotropic pres-

sure, this means it is assumed that the radial and tangential pressures are equal

p = p⊥. It was realised in the 1970’s [51] that solutions with anisotropic pressure,

p 6= p⊥ provide more realistic stellar models, which generated interest [61, 62].

In [63], some known interior Schwarzschild solutions were generalised to accom-
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modate p⊥, among the anisotropic pressure solutions was a Schwarzschild-like

model and various Tolman-like solutions. These solutions are derived from the

TOV-like conservation equation which is generalised for an anisotropic pressure.

In 1973, Florides introduced a new class of Schwarzschild interior solutions with

a regular centre and anisotropic pressure [64]. This solution was matched to

the exterior Schwarzschild solution, in order to do this, Florides assumed the

existence of a vanishing pressure hypersurface at the boundary. In fact, this so-

lution had the distinguishing property of vanishing radial pressure throughout

the interior, although the tangential pressure and energy density were allowed

to vary. Koftini also introduced a Florides style interior solution [65]. In this

solution, the matching conditions required at the boundary did not constrain

the solutions since the radial value was allowed to be arbitrarily close to the

Schwarzschild radius rs. A generalisation of the Florides interior solution, in

the presence of a cosmological constant [66], was obtained in 1986. The Florides

solution, and its generalisations are of particular importance for some of the

work carried out in this thesis, in particular a similar method is applied in [1]

to obtain the interior charged Nariai solution, see chapter 3 for more details.

Interior solutions which can be embedded within cosmological models are

also of importance. Analogously to the Kottler solution, McVittie combined

the Schwarzschild solution in isotropic coordinates with the FLRW solution in

1933, this is known as the McVittie solution and describes an interior of a matter

distribution embedded in an expanding universe [67], for a more detailed analysis

of this solution see for instance [6,68]. However the interior Kottler solution was

derived much later [69, 70]. This interior solution was among various constant

and non-constant density solutions in the presence of a cosmological constant

derived in [70] and [71] respectively. Also accompanying the eleven new solutions

in [70] was the interior Nariai solution, which was matched to its exterior [30]

thus describing the entire Nariai spacetime.

1.4.1 Charged interior solutions

It is clear from the field equations of general relativity that the exterior of a

charged matter distribution will not be vacuum, this is due to the presence of

electromagnetic energy. In addition to this, the presence of electromagnetic en-

ergy affects the interior since the gravitational and electromagnetic forces are

required to be in equilibrium in this region. The Reissner-Nordström exterior

provides some information on the nature of the relationship between M ,Q and
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the effects on hydrostatic equilibrium. However either the mass or charge can

be set to zero without affecting equilibrium in the exterior solution, but this

is not always possible in the interior [72]. Constructing an interior with the

internal gravitational and electromagnetic forces in equilibrium will tell us more

about the required relationship between the parameters. The search for inte-

rior charged solutions began to gather more interest from the 1960’s, after a

charged solution with an infinite mass singularity was obtained by Papapetrou

in 1947 [73]. For several decades many interior solutions, with various defining

properties and symmetries, were matched to the Reissner-Nordström exterior at

the boundary where both metrics are at least C1. This section will be devoted

to a brief overview of the timeline and induced properties of such solutions, and

their de Sitter analogues.

Bonnor [72] derived some interior, spherically symmetric charged solutions

in 1960, including a charged dust sphere with vanishing pressure throughout the

interior. It was shown with a particular model, that a solution with vanishing

mass m = 0 is only possible if the matter density ρ is negative, and concluded

that the electromagnetic energy made some small contributions to the overall

gravitational mass [72]. Another regular, spherically symmetric charged dust

interior solution was obtained by Bonnor several years later. This remained in

equilibrium subject to the assumption that the matter density was equal to the

charge density σ = |ρ| [74], in both cases the solutions were C1 at the boundary

where they were matched to the exterior Reissner-Nordström spacetime and it

was shown that for very large masses the electric repulsion can balance the grav-

itational pull and prevent gravitational collapse. Effinger, in 1965, constructed

a charged interior solution, however this solution contained a singularity at the

origin r = 0 [75]. This singularity was removed in 1967 by Kyle’s constant den-

sity solution [76], and separately by Wilson [77]. Although it was only shifted

to another point in spacetime in both solutions, the required restrictions for

the spacetime metric to avoid these singularities were outlined. The following

year, Cohen [78] developed a static, spherically symmetric charged interior so-

lution that satisfied the conditions to be matched to the Reissner-Nordström

exterior. Similarly to Bonnor’s conclusion [72] Cohen deduced that in this solu-

tion, the charge density generated mass, which can be seen in equation (1.2.2).

Bailyn subsequently obtained an interior solution with the gravitational and

electromagnetic forces in equilibrium, which again like Bonner’s solution re-

sulted negative matter density when Q was much larger than M to attain this

equilibrium [79]. It was concluded that this implied that matter cannot exist
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without charge since the overall energy density dmg/dr|r=R, with the electric

contribution from (1.2.2), is positive similarly to [78]. Krori and Barura, in 1975,

obtained a singularity free, static and spherically symmetric spacetime with non-

zero charge, this was matched to the Reissner-Nordström exterior [80]. In [81],

several charged interiors which match to the exterior Reissner-Nordström solu-

tion were obtained, and a distinction was made between this analysis and the

solutions in [75–77,80]. Buchdahl analysed the previous paper in [82], and stated

that these solutions were derived without imposing any physically reasonable

assumptions which leads to certain problems. Physical properties in the context

of charged solutions includes an equation of state along with equations relating

the matter and charge densities, Buchdahl considered the latter in more detail

to derive interior solutions in [82].

In 1977, Cooperstock highlighted that most Reissner-Nordström interior so-

lutions were developed mathematically without considering physical interpreta-

tions or restrictions [83], and developed various alternative solutions. Amongst

the solutions was a charged analogue of the interior Schwarzschild incompress-

ible fluid and a solution that assumed ρ + q2/r2 = constant (where q = q(r) is

the charge in the interior), a similar method will be used for the interior charged

Nariai solution derived in chapter 3 and [1]. Florides derived the charged ana-

logue of his original interior solution [84] also in 1977, where a charged dust

solution with vanishing pressure is provided as a special case. Following this,

Florides obtained several charged solutions with various features [85], in partic-

ular the method used in [83] was adapted.

Still in the pursuit of a physically consistent interior charged solution, in

1979, Mehra obtained a singularity free spherically symmetric spacetime with

constant energy density [86]. The following year, in 1980, Mehra [87] then

stated that a problem with some previous solutions [72, 75–77, 80] arises since

the matter density is non-zero at the boundary, and derived a regular interior

which satisfies this with σ = constant. Then, in 1992, Mehra developed another

static, spherically symmetric class of interior solutions with maximum matter

density in the centre, which decreased as the radius increased and eventually

vanished at the matching surface [88]. In this solution, the charge density σ was

not restricted to be constant. The charged interiors considered above are not

conformally flat, Shi-Chang considered the results in [58] and derived singularity

free, conformally flat solutions for various mass densities in [89]. Following this

Tiwari et al derived an interior metric with the condition gttgrr = −ea+b =

−1, the mass in this solution was shown to have electromagnetic contributions
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only [90]. A regular interior solution with finite pressure that matched to the

exterior Reissner-Nordström solution was found by Xingxiang [91], the solution

was not completely fixed and under the correct conditions reduced to either [83,

87, 89]. Recently, a charged analogue of the Whittaker solution was obtained

and was matched to the Reissner-Nordström exterior at a vanishing pressure

hypersurface, this solution again imposed ρ+ 3p = constant [92] like its neutral

counterpart. However the energy density increases as r moves away from the

origin towards the boundary contrary to the results in [87, 88], which is largely

considered an non-physical solution.

All the solutions [72–81, 83–89, 91, 92] exhibit spherical symmetry and are

static, various solutions which did not impose such constraints were also con-

structed during this period. A collection of static charged interiors were exam-

ined by Das in 1962, with no spatial symmetries assumed. It was concluded that

the solutions only remain static if the electromagnetic and energy densities are

equal in magnitude [93]. Non-static, charged interiors were then constructed

almost a decade later by Bekenstein [94], this analysis showed that the non-

static interior must be matched to the static Reissner-Nordström exterior. In

1968, Raychaudhuri derived charged dust distributions with various charge and

mass densities which remain in hydrostatic equilibrium, a result showed that the

equilibrium of the solutions may be lost if spherical symmetry is assumed. In

developing the solutions, various relationships were imposed between the con-

figuration of matter and charge in order to maintain hydrostatic equilibrium,

this construction lead to the derivation singularity free spacetimes [95].

Equilibrium of the gravitational and electromagnetic forces for the charged

counterparts have been an issue, initiated in 1962 when Dirac contemplated the

stability of the electron. In 1964, Bonnor [74] discussed hydrostatic equilibrium

of a charged solution, results showed that in particular models the electric re-

pulsion can counteract the gravitational field exerted by large masses and stop

gravitational collapse. On the other hand, Bekenstein [94] also considered hy-

drostatic equilibrium and gravitational collapse in 1971, and concluded that the

generalised charged analogue of the TOV conservation equation may not apply

to neutron stars. In [94] it was also stated that the conservation equation does

not imply that the gravitational attraction and electric repulsion will remain in

equilibrium, which opposes the results in [74].

Whilst many contributions were being made to modelling the interior of a

charged matter distribution, which are C1 at the boundary and can be matched

to the exterior Reissner-Nordström solution, some results embedded such solu-
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tions in an expanding universe. Bertotti [96] and Robinson [97] considered a

similar model in 1959, this solution described a uniform magnetic field in the

presence of a cosmological constant, however it was stated by Bertotti that the

particular model may not have cosmological applications [96]. In 1966, Vaidya

and Shah obtained a charged particle in an FLRW expanding universe [98],

which can be considered as the charged generalisation of the McVittie solution.

A decade later, Bohra and Mehra introduced a cosmological solution in the form

of charged dust and radiation, they found that matter has a positive effect on

curvature and charge has a negative effect [99]. However, these solutions do

not describe the interior of the Reissner-Nordström de Sitter solution, and to

the best of my knowledge no such solutions have been found other than the

solutions we derive in [1]. A discussion of these solutions will be provided in

chapter 3.

1.5 Bounds on M/R

There have been many results devoted to the study of solutions which remain in

hydrostatic equilibrium, particularly since the discovery of neutron stars and the

concept of black holes became more accepted in general relativity [40,41,46,47].

An area of particular interest is determining what prevents an already extremely

dense compact object, such as a neutron star, collecting more mass and eventu-

ally becoming a black hole. A neutron star also requires that the gravitational

force and internal pressures remain in hydrostatic equilibrium, and as we have

seen in equation (1.3.8) this can be expressed as a relationship between the mass,

radius and internal pressures for particular solutions modelling a neutron star.

Equivalently, given a particular solution, it is possible to develop some condi-

tions which imply the solution will not reach its event horizon, this is shown by

deriving a lower bound on the total radius R. This lower bound will be larger

than the event horizon, and shows that R will not reduce to the event hori-

zon provided that the conditions are satisfied. For example it was shown that

the Schwarzschild interior in hydrostatic equilibrium, which satisfies particular

conditions such as constant energy density and isotropic pressure, is bounded

by R ≥ 9
8rs [10]. This result was initially derived by Schwarzschild which was

only valid for a solution that is an incompressible fluid. Note that the bound

R ≥ 9
8rs is often rewritten as an upper limit on M/R. In 1959 the result was

derived based on different conditions in Buchdahl’s theorem [100], which ex-
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tended the result to hold for a compressible fluid. The conditions imposed and

the derivation of the bound will be discussed further in the next section 1.5.1.

It has also been shown that in isotropic coordinates, the upper bound on M/R

is smaller [57] than that found by Schwarzschild and Buchdahl.

Deriving such ratios will enable us develop an accurate model of a neutron

star, this can be used to categorise such compact objects in terms of their mass.

It was stated in [101] that this will allow us to detect black hole candidates,

since if the mass of an observed dense object exceeds that of a neutron star it

can be distinguished from a compact object and hence classified as a black hole,

see [101]. Additionally, it has been shown that upper and lower bounds on M/R

can be translated into bounds on the gravitational redshift z resulting from the

star [100–102].

In Newtonian gravity, the Chandrasekhar limit provides an upper bound for

the mass of a stable white dwarf star subject to necessary conditions in [103].

If any of the restrictions are violated and the mass exceeds this bound, gravi-

tational collapse will occur and the result will be a denser compact object. It

was the following year, in 1932, that Baade and Zwicky [46] and Landau [47]

suggested the existence of a neutron star which is categorised as a compact ob-

ject. The TOV equation found in 1939 [50], can be used to derive a bound on

M/R for such relativistic neutron stars. This bound is analogous to the Chan-

drasekhar limit for a white dwarf, since it provides the necessary conditions for

a neutron star to remain stable. The TOV and Chandrasekhar limits are given

in terms of solar masses.

From 1965, it was discovered that nuclear forces need to also be considered

when checking hydrostatic equilibrium [104] and abandoning these forces will

alter the value for which equilibrium is maintained or therefore lost. However,

neglecting these forces in a calculation can still provide useful information on

maintaining hydrostatic equilibrium and avoiding gravitational collapse as out-

lined in [38]. In order to derive a bound that implies hydrostatic equilibrium, an

appropriate model of a stellar object is required, whilst we can neglect nuclear

forces, we need to have physically viable models. For example, models of com-

pact objects with a constant energy density or those assumed to have most of its

density concentrated in the core describe physically allowed solutions, whereas

a solution whose density increases as the boundary is approached is largely

considered non-physical. Following one of the former assumptions, in [105] an

upper bound on the mass-radius ratio was derived, but constrained to the mass

and radius of spherical regions of the stars, and in particular this region was
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restricted to be the core of the star.

An important quality in deriving these bounds is ensuring that they are op-

timal, or sharp, so that at least a particular solution will saturate the inequal-

ity. For example in the Schwarzschild solution, an appropriate bound could be

R ≥ rs which was shown in [106, 107]. But there are no solutions which sat-

urate this inequality, other than solutions with the radius coinciding with its

event horizon and hence describe black holes. Therefore the inequality can be

made more accurate such as the bound provided above by Schwarzschild and

Buchdahl [10,100].

When extra parameters are considered such as charge, or the cosmological

constant, there is an additional event horizon, hence the mass-radius bounds

and equations for hydrostatic equilibrium will need to be redeveloped to in-

clude more information. Therefore, constraints on M/R have been studied for

other solutions, for instance a bound was developed for the Krori-Barua solution

which is an interior of the Reissner-Nordström solution [108]. Extensions of the

Buchdahl limit will be considered in the presence of the cosmological constant

or charge, and will be discussed further at the end of this chapter 1.5.2.

The majority of research devoted to finding bounds on M/R is restricted

to providing upper bounds for compact objects in hydrostatic equilibrium,

where exceeding the limit means equilibrium is broken by the internal gravi-

tational force overcoming its internal pressures. The Eddington limit or Ed-

dington luminosity provides a bound which if exceeded means nuclear fusion

has broken hydrostatic equilibrium, as opposed to gravity overcoming the in-

ternal stresses [109]. Additionally, minimum bounds on M/R have been con-

sidered [110–113] and mass-radius bounds have been studied on non-compact

objects in [114].

As we can see, limits on M/R apply to a stellar object at different stages in

its life cycle in order for its internal forces to remain in equilibrium and avoid

becoming compact object, and such limits are useful for studying other aspects

of the object. In this thesis, we will concentrate on upper bounds on M/R, this

will be studied in various contexts, including in the RNdS solution which will

be discussed in chapter 3 and [1,2], and also will be considered in an alternative

theory of gravity in chapter 4 . In the next two sections, we will show some

previous and pioneering results beginning with a result from Buchdahl.
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1.5.1 Buchdahl’s theorem

In 1959, Buchdahl generalised an existing result on maintaining hydrostatic

equilibrium in [100], where he derived an upper bound in which the mass must

satisfy for its internal forces to remain in equilibrium, M/R ≤ 4/9. This had

previously only applied to the Schwarzschild interior solution [10]. Buchdahl’s

theorem states that a neutral spherically symmetric perfect fluid solution of

Einstein’s field equation will also satisfy the bound M/R ≤ 4/9. This holds for

any solution with energy density ρ ≥ 0 and the isotropic pressure p⊥ = p ≥ 0. It

is also required that ρ is non-increasing outwards which means it is a decreasing

function of r, in terms of its derivative ρr ≤ 0 in the interior. A solution

satisfying these conditions is considered to be in hydrostatic equilibrium, and

provided the restrictions are not broken, the radius R will remain larger than

the Schwarzschild radius rs = 2M or more precisely R ≥ 9
8rs. Moreover, this

result somewhat restricts the equation of state which relates ρ and p.

In order to derive Buchdahl’s result we will follow the relabelling of variables

outlined in [100] whilst bearing in mind the results obtained in section 1.3.2.

Consider the following relabelling of variables x = r2 , y = e−b/2 , z = ea/2 and

ω = 4π
3 ρ̂ ≡ m/r3, using this we can write the combination e−b = 1 − 2m/r

as y2 = 1 − 2xω provided that the interior is regular. Next we rewrite the

(r, r) field equation given by equation (1.3.2) and ρ by taking the derivative of

equation (1.2.1) in new variables

4πp =
2zx
z

(
1− 2xω

)
− ω ,

4πρ =
mr

r2
= 2xωx + 3ω ,

where the latter is obtained using the definition of the mass. Now equa-

tion (1.3.5) can be written in terms of new variables

4πpx = −2zx
z

(
xωx + ω +

(
1− 2xω

)zx
z

)
,

additionally the expression for p in new variables can be used to eliminate px,
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first we take its derivative with respect to x

4πpx =
2

z

(
y2zxx + 2yyxzx −

y2z2
x

z

)
− ωx

=
2

z

((
1− 2xω

)
zxx − 2

(
xωx + ω

)
zx −

(
1− 2xω

)z2
x

z

)
− ωx .

Putting the two expressions for px together and cancelling the relevant terms

yields (
1− 2xω

)
zxx −

(
xωx + ω

)
zx −

zωx
2

= 0 . (1.5.1)

This equation can be simplified further by considering the function α defined

by the relation

dα

dx
=

1√
1− 2xω

=
1

y
,

now derivatives with respect to x can be written as zx = αxzα thus zαα =

y2zxx − yyxzx. With this equation (1.5.1) becomes

zαα =
z

2
ωx . (1.5.2)

Since we have assumed that ρ decreases with r so that ρr ≤ 0, this implies the

mean density ρ̂ is such that ρ̂r ≤ 0. Therefore ωr ≤ 0 from the definition of ω,

and thus ω also decreases with r. Hence the value of ω at the origin r = 0 will

be larger than the value at the boundary r = R, then for 0 ≤ r ≤ R we have

ω(0) ≥ ω(r) ≥ ω(R) and thus w(R)
w(r) ≤ 1. This implies the following relationship

y2 = 1− 2xω(r) ≤ 1− 2xω(R) . (1.5.3)

The restriction wr ≤ 0 also yields a relationship between p and ω, namely if

ρ ≥ 3γ−1p for some constant γ, this can be written as rωr + 3ω ≥ 3γ−1p. Thus

the constraint wr ≤ 0 implies

γω ≥ p .

Additionally, due to the positivity of z = ea(r)/2 and negativity of ωr, equa-

tion (1.5.2) implies zαα ≤ 0. This means zα decreases as a function of α, and
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again the value of zα is larger at the origin r = 0 than at the boundary r = R

hence

dz

dα

∣∣∣∣
r=0

≥ dz

dα
≥ dz

dα

∣∣∣∣
r=R

,

where dz
dα = yzr

2r . At the boundary R and for all r ≥ R the solution becomes the

Schwarzschild exterior so that z = ea/2 =
√

1− 2M
r , where M = m(R) is the

total mass. Then in particular at the boundary dz
dα

∣∣
R

= M
2R3 = ω(R)

2 , therefore

∫ R

0

dz ≥ 1

2

∫ R

0

ω(R)dα = w(R)

∫ R

0

rdr

y
,

where the left hand side of this inequality is simply z(R)− z(0) =
√

1− 2M
R −

z(0) ≤ z(R). Using equation (1.5.3) the right hand side becomes

ω(R)

∫ R

0

rdr

y
≥ ω(R)

y(R)

∫ R

0

rdr =
1− y(R)2

2y(R)
≥ 1− y(R)2

2(1 + y(R))
=

1

2

(
1− y(R)

)
.

Putting this together, the inequality reduces to√
1− 2M

R
= y(R) ≥ 1

2

(
1− y(R)

)
, (1.5.4)

or equivalently y(R) ≥ 1
3 which yields the result 1− 2M

R ≥
1
9 . For a full discussion

of the proof and result see [100].

1.5.2 Beyond Buchdahl’s theorem

In response to Buchdahl’s work, Bondi provided an extension in 1964 [115], in

which he studied some circumstances which allow the radius to go below 9
4M

as it decreases so that it approaches and eventually reaches rs, although it was

shown that in general Buchdahl’s bound is satisfied.

It was later pointed out that the conditions imposed in Buchdahl’s theorem

are rather restrictive due to the assumptions on the energy density ρ and since

the tangential pressure p⊥ is not allowed to differ from the radial stresses. The

assumptions were then relaxed to allow for p⊥ ≤ p and p⊥ > p separately, the

former gives a result similar to that of Buchdahl whereas the latter differs more

significantly whilst remaining above the Schwarzschild radius [116].

Since these restrictions have been highlighted, the mass radius ratio has been
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generalised many times under various assumptions for various solutions. From

2000, the charged [117] and de Sitter [118] analogues of Buchdahl’s theorem

and hence the gravitational redshift limits were obtained, each corresponding

to the Reissner-Nordström and Schwarzschild de Sitter interiors respectively.

Several years later, it was generalised further for anisotropic objects in de Sitter

space [119]. This bound explicitly relied on the difference between the tangential

and radial stresses p⊥ − p at the surface r = R. During the same period an

alternative method for obtaining the Buchdahl-like upper bound on M/R was

used for isotropic, constant density [70] and non-constant density [71] perfect

fluids in the presence of a cosmological constant. It was later shown that the

limit obtained, which utilized the central pressures approach, can be used to

bound the cosmological constant [120].

Buchdahl’s restrictions were then relaxed further in 2007 to obtain a sharp

bound on M/R, the new conditions only require that the energy density and

radial pressure are positive with p 6= p⊥ and satisfy p + 2p⊥ ≤ Ωρ for some

constant Ω. Consequently, the resulting inequality differs to that of Buchdahl’s,

however Ω = 1 yields that particular result [121].

Following this revival of Buchdahl type inequalities and their importance in

general relativity, using a different method some sharp bounds were obtained

for M/R given various conditions on the energy density ρ and pressures p and

p⊥ [122]. This analysis covered results presented in [100, 121], a specific result

outlined in this paper is of importance for various calculations in this thesis and

the method will be outlined below.

Consider the relabelling of variables x = 1 − e−b and y = 8πr2p then the

definition of the mass yields x = 2m/r and the conditions on ρ and p imply that

the new variables belong to the set

U =
{

(x, y) : 0 ≤ x < 1, y ≥ 0
}
.

The first two field equations (1.3.1) and (1.3.2) can now be written in new

coordinates

8πr2ρ =2ẋ+ x ,

8πr2p =y = 2ȧ
(
1− x

)
− x ,

where ẋ = dx
dβ and β = 2 ln r, so that for instance 2ẋ = rx′. The (r, r) field
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equation defined to be equal to y can be used to obtain ȧ

ȧ =
x+ y

2(1− x)
,

taking the derivative of this with respect to β yields a first order expression for

ä. Using this, the third field equation (1.3.3) can also be transformed into a

first order equation

8πr2p⊥ =
(
1− x

)(
2ä+ ȧ

(
ȧ− ẋ

1− x

)
− ẋ

1− x

)

=
ẋ
(
x+ y

)
2
(
1− x

) + ẏ +

(
x+ y

)2
4
(
1− x

) .
Then writing the inequality p+ 2p⊥ ≤ ρ in new variables leaves

ẋ
(

3x+ y − 2
)

+ 2ẏ
(
1− x

)
≤− 1

2

(
3x2 + y2 − 2

(
x− y

))
=− 1

2
u(x, y) .

The next step is to find a function w(x, y) of the form w = γ2/(1−x) such that

ẇ =
γ

(1− x)2

{
ẋ
(

2γx(1− x) + γ
)

+ 2ẏγy(1− x)

}

=
γ

(1− x)2

{
ẋ
(

3x+ y − 2
)

+ 2ẏ(1− x)

}
,

where γ = γ(x, y) can be found by comparing coefficients and solving the re-

sulting differential equations. The function that satisfies this is

w =
(4− 3x+ y)2

1− x
, (1.5.5)

which is a specific case of the function derived in [122]. By deriving the optimal

value of w, this can be rearranged and translated into an upper bound on

2M/R, therefore we refer to w as the optimisation function. To proceed we put

the expressions for ẇ and p+ 2p⊥ ≤ ρ together which yields

ẇ(x, y) ≤ −4− 3x+ y

2(1− x)2
u(x, y) , (1.5.6)
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the sign of u is fixed based on the sign of its prefactor 4 − 3x + y, which is

positive since 0 ≤ x < 1 and y ≥ 0. The function w is required to be increas-

ing, and we assume w has a maximum value so that w ≤ supU w. Therefore,

since the aforementioned combination is positive we must maximise w given the

constraints on x and y plus u ≤ 0. Here u ≤ 0 implies

0 ≥ 3x2 + y2 − 2(x− y) = (3x+ 1)(x− 1) + (y + 1)2 ,

this condition can be used to write down the following two conditions

(y + 1)2 ≤ (3x+ 1)(1− x) ,

2y ≤ (3x+ 1)(1− x)− y2 − 1 ≤ (3x+ 1)(1− x)− 1 .

(1.5.7)

The first equation in (1.5.7) can now be used to write w as

w =
(4− 3x+ y)2

1− x
=

(y + 1)2

1− x
+ 6(y + 1) + 9(1− x)

≤ 3x+ 1 + 6(y + 1) + 9(1− x) = 16− 6(x− y) ,

using the second relation in (1.5.7) to replace 6y, this then reduces to w ≤
16−9x2 ≤ 16. The maximum value is therefore supU w = 16 where this value is

attained at x = y = 0, from this the bound on M/R can be derived. Rearranging

the combination w(x, y) ≤ 16 by collecting the terms involving x leads to(
2− 3

√
1− x

)2

≤ 1 =⇒ 2− 3
√

1− x ≤ 1 ,

or equivalently
√

1− x ≥ 1
3 . Using x = 2M/R at the boundary r = R, then

rearranging gives the desired inequality 2M/R ≤ 8/9.

This particular method has been extended and includes the Schwarzschild de

Sitter [123] and Reissner-Nordström solutions [124] and relies on the condition

p + 2p⊥ ≤ ρ with the energy density ρ and the anisotropic pressures p, p⊥

positive. These conditions imply that the dominant energy condition holds.

The bound on M/R is then obtained as above, by representing this combination

of the field equations as an optimisation problem for w and solving for the

maximum.

The optimisation method outlined above [122–124] will be generalised to give

an upper bound on M/R in the Reissner-Nordström de Sitter class of solutions
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in chapter 3 and [1]. Whilst transforming the corresponding field equations

into an optimisation problem, it became clear that a particular subclass of

solutions were excluded from this result due to the coordinate system used.

These solutions are known as the charged Nariai solutions, and occur when the

inner, outer and cosmological horizons are degenerate. The degenerate horizons

manifest when the coefficient of the RNdS solution ea = 0, hence the a more

suitable coordinate system is required. I developed an interest for this peculiar

class of solutions and began to study its neutral counterpart, the Nariai solutions

which are a subclass of the Kottler solutions. However the interior Nairiai does

not match to the exterior Kottler spacetime. In deriving the charged analogues

we utilised the central pressures approach used in [70, 71] to derive the same

bound, but in this case it was valid for the charged Nariai solutions also, see

chapter 3 and [2].
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Chapter 2

Introduction to

non-classical gravity

General relativity is often referred to as classical gravity to distinguish it from

alternative or modified theories of gravity. There has been much research dedi-

cated to developing an alternative theory that delivers the possibility of unifying

gravity with the remaining fundamental forces, such as electromagnetism. Sim-

ilarly, paralleling the development of cosmological theories, modifications have

been applied to general relativity to incorporate our new understanding of the

universe. This chapter will discuss both ideas, concentrating the former to the

developments in the first few decades following Einstein’s theory of relativity,

therefore omitting alternatives to classical gravity which require quantum me-

chanics.

2.1 Alternative theories of gravity

Although alternative theories of gravity have received an increased amount of

interest over recent decades, physicists and mathematicians have worked on

such theories by making modifications to general relativity since its birth in

1915. Initially, such modifications were made in order to find a theory which

unified the two fundamental forces known at that time, namely the gravitational

and electromagnetic forces. The remaining two fundamental forces, known as

the weak and strong nuclear forces, were not discovered until the revelation

that the atom is made up of smaller particles [125] which inspired work by
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Fermi in 1934 [126] and others thereafter. Although most of these attempts

were unsuccessful at unifying the two forces, we will see that most endeavours

at early unification introduced important concepts which remain prominent in

parts of physics and mathematics we study today.

There was much disagreement on how to incorporate the electromagnetic

field as an amendment to general relativity. In 1917, there were some ideas

regarding an asymmetric metric [127], this change intended to describe electro-

magnetism alongside gravity, but this approach was quickly abandoned. Weyl

was the first to introduce a method of unification that captured attention in

1918 [128]. The connection in this theory differed from the Levi-Civita con-

nection since it was defined from the metric plus an additional vector quan-

tity, which represent the gravitational and electromagnetic fields respectively.

However, Einstein found some problems with the physical interpretation [127].

Despite this, the theory introduced gauge transformations which motivated the

notion of gauge invariance and these concepts now provide the foundations for

gauge theory.

Kaluza, in 1921 [129], introduced a five-dimensional theory in which the ex-

tra spatial dimension adhered to the cylindrical condition [127]. The cylindrical

condition imposes that physical phenomena do not interact with the fifth di-

mension. That is if the indices X,Y denote five-dimensional coordinates with

X,Y = 0, 1, 2, 3, 4 and 4 is the coordinate relating to the fifth dimension, the

cylindrical condition becomes ∂4gXY = 0. However, Einstein proved that spher-

ically symmetric exact solutions did not exist in Kaluza’s theory [130]. This

five-dimensional theory is now known as Kaluza-Klein theory [131], where the

additional dimension is compact as opposed to obeying the cylindrical condi-

tion [132] and the field equations separate into Einstein’s and Maxwell’s field

equations. The extra dimension implies the metric now has fifteen components,

of which four are required for the electromagnetic four-potential and ten for

gravity, the remaining component corresponds to a scalar field. Kaluza-Klein

theory remains an attempt to unify gravity with electromagnetism which contin-

ues to be studied today [133], and has set the foundations for higher dimensional

theories which intend to unify the four fundamental forces, such as string theory.

During the same year Eddington developed an affine theory [134], which

treated the metric and connection as independent variables in the construction of

the field equations governing spacetime. Einstein initially favoured this method,

but eventually realised the theory lacked physical applications and shifted to

the opposing view held by Weyl and Pauli [135]. The approach of treating the
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connection and metric independently did not lead to a unified theory, but it is

still utilized in the Palatini variational principle. This particular method is vital

for the Palatini formalism in both classical and modified gravity.

In 1928, Einstein proposed a unification based on the notion of absolute or

distant parallelism [136], although unsuccessful as a unified theory, this idea

later regained popularity. The theory is now known as the teleparallel equiv-

alent of general relativity (TEGR), this abandons the aim of unification and

surprisingly gives an alternative yet equivalent formulation of general relativ-

ity. TEGR and the developments the theory has experienced will be discussed

further in the next section. After teleparallelism failed to unify gravity and

electromagnetism, Einstein began work on a theory that assumed non-zero tor-

sion and curvature which was initiated by Cartan in 1922. This theory is now

referred to as Einstein-Cartan theory [137], however this was not an attempt at

unification and remains a theory of gravitation alone.

Currently, electromagnetic phenomena in the presence of a gravitational field

are usually described by the Einstein-Maxwell field equations of general relativ-

ity, see chapter 3 for more details. Unification attempts no longer aim to modify

classical gravity to include the effects of electromagnetism, but now intend to

unify all four forces. For instance, areas such as quantum gravity and string

theory concentrate on unifying classical gravity with quantum mechanics, where

the latter successfully describes the electromagnetic and nuclear forces. Black

hole thermodynamics provides an example of quantum field theory and classical

gravity being applicable at the same scale [138]. The no hair conjecture states

that a black hole solution to Einstein’s field equations is characterised by up

to three parameters, this includes its mass M , electric charge Q and angular

momentum J . It was observed that this implies the laws of thermodynamics

do not apply to black holes [139] since there is no temperature or visible en-

tropy present from these variables. Following this the laws were reformulated to

apply to black holes where temperature was represented by the surface gravity

and entropy by the horizon area, the relationships between the parameters were

merely an analogy. These modified laws are referred to as the laws of black hole

thermodynamics and were originally obtained purely using differential geometry

and concepts in general relativity [139]. It later became clear that quantum field

theory can provide some useful contributions to the laws of black hole thermo-

dynamics, studying these quantum effects gave rise to Hawking radiation which

confirmed a physical relationship between temperature and surface gravity [140].
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2.2 Teleparallelism

In 1928, Einstein attempted to unify gravity and electromagnetism based on

the notion of teleparallelism, also referred to as ‘distant parallelism’, ‘absolute

parallelism’ or ‘fernparallelismus’ [136]. This formulation differs from general

relativity since teleparallelism assumes vanishing curvature and non-zero tor-

sion. Hence the gravitational force exerted by a massive object causes a change

in torsion as opposed to resulting in the curvature of spacetime, which in turn

leads to the distortion of geodesics.

Moreover, teleparallelism utilizes objects which belong to the tangent space

to a given point on a manifold, the tangent space is Minkowski space with

the metric ηij = diag(1,−1,−1,−1). In the teleparallel formalism we consider

spacetime metrics with signature (+,−,−,−) which differs from our convention

in general relativity. Latin indices i, j, k . . . denote tangent space coordinates and

such indices are raised and lowered with ηij , whereas Greek indices µ, ν, ρ . . .

denote spacetime coordinates which are raised and lowered using gµν . Given a

tangent space to a point p on the manifold, there exists a field of orthonormal

unit vectors forming a basis of the local tangent space. This is referred to as

the tetrad, vierbein or n-bein field eiµ, whose inverse is such that eiµei
ν =

δνµ and eiµej
µ = δij . Note that all tensors defined on the spacetime can be

expressed in terms of the tetrad field, for example given a vector vµ we have

the relationship eiµv
µ = vi. The metric tensor, and hence other geometric

quantities are determined by the tetrad field with the relation gµν = ηije
i
µe
j
ν ,

where eiµdxµ = ei thus the line element ds2 = gµνdxµdxν = ηije
iej . In addition

to this, eiµ enables us to assign ‘direction’ to the line element ds2 between

two points which are a finite distance apart and hence provides the notion of

parallelism, whereas the metric alone does not allow for this distinction to be

made in general relativity. The tetrad field associated with the metric is not

unique, since arbitrary Lorentz transformations applied to eiµ will leave the

metric unchanged (see section 4.2), therefore eiµ is not fully determined by the

metric. The tetrad field has sixteen degrees of freedom, whereas the metric

tensor is symmetric (gµν = gνµ) and thus only has ten degrees of freedom.

Since the description of gravity only requires ten degrees of freedom this leaves

six extra variables to fix. Einstein’s attempt at unification aimed to utilize the

six additional degrees of freedom to include a description of electromagnetism

alongside gravity, it seemed promising since the electric and magnetic fields of

Maxwell’s theory require precisely six degrees of freedom.

45



Einstein proposed the tetrad field since it enables us to define the notion of

parallelism which can be expressed as ∇νvσ = 0 or equivalently ∂νv
σ = −Γσµνv

µ

where the latter is obtained by using the definition of the covariant derivative

∇ν for a vector vσ. This gives rise to the connection that is asymmetric in

its lower indices and invariant under rotations Γσµν = −eiµ∂νeiσ . It was later

discovered that this connection had already been derived by assuming that the

Riemann tensor vanishes Rσµνρ = 0 by Weitzenböck [141] in 1921, hence this is

known as the Weitzenböck connection

Γσµν = ei
σ∂νe

i
µ = −eiµ∂νeiσ .

The defined symmetry of the Levi-Civita connection results in non-zero cur-

vature and vanishing torsion, on the other hand the Weitzenböck connection

results in vanishing curvature and non-zero torsion, this can be seen by ex-

pressing the Riemann curvature tensor in terms of the new connection, where

Rσµνρ = ∂νΓσµρ − ∂ρΓσµν + ΓσλνΓλµρ − ΓσλρΓ
λ
µν . Writing this explicitly in terms of

the tetrad field gives the expression

Rσµνρ = ∂ν

(
ei
σ∂ρe

i
µ

)
− ∂ρ

(
ei
σ∂νe

i
µ

)
+ ei

σ
(
∂νe

i
λ

)
ej
λ
(
∂ρe

j
µ

)
− eiσ

(
∂ρe

i
λ

)
ej
λ
(
∂νe

j
µ

)
,

then applying the product rule to expand the first two terms, and utilising the

defining property of the Weitzenböck connection to rewrite the last two terms

yields

Rσµνρ =
(
∂νei

σ
)(
∂ρe

i
µ

)
−
(
∂ρei

σ
)(
∂νe

i
µ

)
+ ei

σ
(
∂ν∂ρe

i
µ − ∂ρ∂νeiµ

)
− eiλ

(
∂νei

σ
)
ej
λ
(
∂ρe

j
µ

)
+ eiλ

(
∂ρei

σ
)
ej
λ
(
∂νe

j
µ

)
≡ 0 ,

where eiλe
λ
j = δij , using this identity the last two terms can be written as

−δij(∂νeiσ)(∂ρe
j
µ)+δij(∂ρei

σ)(∂νe
j
µ) = −(∂νei

σ)(∂ρe
i
µ)+(∂ρei

σ)(∂νe
i
µ) which

cancels the first two terms. The remaining two terms vanish since partial deriva-

tives commute.

Although the connection is not a tensor, Einstein found that the skew sym-

metric part of Γσµν gives rise to what is now known as the torsion tensor

Tσµν = 2Γσ[νµ] = Γσνµ − Γσµν ,
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Einstein constructed another tensor from the connection which is now referred

to as the contortion tensor Kσ
µν . The contortion tensor is defined as the dif-

ference between the Weitzenböck connection Γσµν used in teleparallelism and

the Levi-Civita connection Γ̂σµν used in general relativity, Kσ
µν = Γσµν − Γ̂σµν .

Alternatively, this can be written in terms of the torsion tensor

Kµν
σ = −1

2

(
Tµνσ − T νµσ − Tσµν

)
.

Additionally, in order to write down the field equations, Einstein introduced a

tensor which provides a useful combination of the quantities Kσ
µν and Tσµν ,

this is given by the tensor

Sσ
µν =

1

2

(
Kµν

σ + δµσTρ
ρν − δνσTρρµ

)
,

Sσ
µν is antisymmetric so that Sσ

µν = −Sσνµ and is sometimes referred to as the

superpotential. This quantity is useful since it enables us to define the torsion

scalar T in the following way

T =Sσ
µνTσµν , (2.2.1)

In teleparallelism, the Lagrangian density appearing in the action contains a

contraction of the torsion tensor as opposed to the Riemann curvature ten-

sor, Einstein outlined several possibilities for the Lagrangian, the second was a

generalised version of the others and is given by the combination

Lgravity = e
(
c1T

σ
µνTσ

µν + c2T
σ
µνT

νµ
σ + c3Tσµ

σT νµν

)
= e
(
c1L1 + c2L2 + c3L3

)
, (2.2.2)

where e = det
(
eiµ
)

=
√
−g, note that this combination is in the absence of

matter hence any resulting field equations will be vacuum. The components

of the Lagrangian density L1, L2, L3 are invariants of the torsion tensor and

c1, c2, c3 are constants. The quantities L1, L2 and L3 had also been outlined

by Weitzenböck in [142]. The constants c1, c2 and c3 mean teleparallelism has

three free parameters, hence it is often referred to as a three parameter theory

of gravity.

The first Lagrangian Einstein tried was that given in equation (2.2.2) with

c2 = 1 and c1 = c3 = 0, which was later shown to be equivalent to the action
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with c1 = 1 and c2 = c3 = 0. These actions gave rise to two sets of equations

which could be interpreted as the vacuum Einstein and Maxwell equations,

however this separation was viewed as synthetic. Following this many other

combinations were considered, including a particular combination given by the

Lagrangian with c1 = 1/2, c2 = 1/4 and c3 = −1 which gives rise to a set

of vacuum field equations equivalent to those of general relativity. Einstein

experienced a lengthy search for the field equations, many of the systems of

equations obtained contained additional components. This meant the sixteen

degrees of freedom offered by the tetrad were described by more than sixteen

equations and the system of equations was over-determined, these were then

fixed with added constraints. Since the action with c1 = 1/2, c2 = 1/4 and c3 =

−1 implies general relativity, Einstein altered the Lagrangian to L = 1+α1

2 L1 +
1−4α2

4 L2 − 4+α1

4 L3 and again obtained the equations of general relativity plus

electromagnetism provided the condition α2

α1
→ 0 was satisfied.

However, it soon became clear that the electromagnetic field must be treated

separately from the gravitational field because of their vast differences in strength

and range of spacetime affected. The gravitational field is always attractive, the

collected gravitational field of a relatively small massive object is weak and does

not have much of an effect on its surroundings, whereas the accumulated gravita-

tional field of a sufficiently large massive object will have more significant effects

on the surrounding spacetime. On the other hand, charged particles are either

attractive or repulsive, and the electromagnetic field produced by a charged

particle is much stronger than the gravitational force exerted by a massive par-

ticle. But it is believed that the overall charge of the universe is neutral due

to the balance of attractive and repulsive charges. Therefore gravity dominates

on the large scales and electromagnetic forces dominate smaller scales, although

both fields have infinite ranges unlike the weak and strong nuclear forces. It

was realised that this attempt at unification failed in 1930, when the search for

solutions was unsuccessful since there was no Schwarzschild solution and the

field equations allowed for an non-physical solution [143]. Additionally, McVit-

tie discovered that his axially symmetric solution from general relativity was not

a solution of teleparallelism [144]. Following this, Einstein discontinued further

research on teleparallelism and worked on Kaluza-Klein and Einstein-Cartan

theory.
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2.2.1 New general relativity and TEGR

Many years after the abandonment of teleparallelism, in 1961, Møller reconsid-

ered Einstein’s teleparallel theory, but as an alternative theory of gravity [145] as

opposed to a unification of gravity and electromagnetism. This was formulated

on the Weitzenböck spacetime and utilized the tetrad field approach, similarly

to Einstein’s original theory, however the six additional degrees of freedom due

to the tetrad were fixed with an extra field equation ψµν = 0 containing six com-

ponents. This method gives rise to the Schwarzschild solution unlike Einstein’s

unification approach, thus this gravitational theory also validates the three em-

pirical tests of general relativity. Møller’s idea quickly developed interest as

the following year, Pellegrini and Plebanski reformulated Møller’s approach to

teleparallelism, and attempted to obtain the field equations from a modified ver-

sion of the Einstein-Hilbert action [146]. They first considered a general form

of the Lagrangian density containing invariants of the torsion tensor as above,

this choice can then be narrowed down by checking which combination reduces

to Newtonian gravity under the correct conditions, the Schwarzschild solution is

again recovered. However both these theories were only invariant with respect

to constant tetrad rotations, and were based on the assumption that all sixteen

degrees of freedom from the tetrad are of physical significance.

Hayashi and Nakano, in 1967, imposed that the classical gravitational La-

grangian is invariant under translations and hence developed a gauge theory

for the translation group [147], and later associated this formulation to the

geometric structure of teleparallelism on the Weitzenböck spacetime [148]. In

this paper, the phrase ‘new general relativity’ was coined as a synonym for the

teleparallel theory of gravity, it was also shown that this gauge theory does

not lead to general relativity only new general relativity. Hayashi’s approach to

teleparallelism differed from Einstein’s since the action was allowed to be invari-

ant under global gauge transformations instead of local [149] and it differed from

the reformulation in [145, 146] since an alternative combination of contractions

of the torsion tensor were used for the Lagrangian. More importantly, new gen-

eral relativity differs from the teleparallel theory of gravity that is studied in this

thesis (TEGR), this is again is due to the differences in the Lagrangian where

new general relativity uses the Lagrangian from equation (2.2.2) plus an addi-

tional quantity see [149]. In 1979 Hayashi and Shirafuji considered a particular

Lagrangian density which fixed two of the three free parameters of new general

relativity thus leaving a one-parameter teleparallel theory of gravity, similar to
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the theory considered by Møller. There was much debate on the validity of the

revised theory, in 1982, Kopczyński stated that the Lagrangian used at the time

led to unpredictable behaviour of torsion since the field equations did not fully

determine the torsion tensor [150]. To resolve this, an alternative formulation

of the Lagrangian was suggested.

As mentioned in section 2.2 a particular combination of the three free pa-

rameters in the action, c1 = 1/2, c2 = 1/4 and c3 = −1, gives rise to the

field equations of general relativity. This theory is now known as the telepar-

allel equivalent to general relativity or TEGR. It was shown in [151] that the

gravitational Lagrangian with this combination of parameters can be written as

Lgravity = Sσ
µνTσµν = T . This combination continues to constitute the action

of TEGR and its modifications today, since this particular theory is utilised in

this thesis, the words TEGR and teleparallelism will be used as synonyms for

the remainder of the thesis. General relativity and teleparallelism are found to

be equivalent theories which give rise to the same solutions, despite some major

differences in their description of gravity and its effects on spacetime.

The quantities Tσ
µν ,Kσ

µν and Sσ
µν are required to construct the field equa-

tions, which are obtained in an analogous way to general relativity, with the

torsion scalar T = Sσ
µνTσµν replacing the Ricci curvature scalar R in the

Einstein-Hilbert action

S = Sgravity + Smatter =
1

16π

∫
e T d4x+

∫
eLmatter d4x .

The field equations are then obtained by varying the action with respect to

the tetrad field eiµ

e−1∂µ
(
eSi

µν
)
− TσµiSσνµ −

1

4
ei
νT = −4πT νi ,

where T νi = ei
µT νµ denotes the energy-momentum tensor. For a perfect fluid

we can ensure conservation due to the antisymmetry of Sσ
µν = −Sσνµ

4π∂ν

(
e
(
ji
ν + Tiν

))
= 0 , (2.2.3)

where jνi denotes the gauge current and represents the energy-momentum of the

gravitational field

ji
ν =

1

4π

(
ei
σT ρµσSρ

νµ − 1

4
ei
νT
)
.
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Note that equation (2.2.3) is the teleparallel analogue of the conservation equa-

tion from general relativity, where the latter is given by ∇ν
(
Gµν + 8πTµν

)
(the energy-momentum tensor has the opposite sign to chapter 1 since we have

adopted the opposite sign convention in teleparallelism).

2.3 Modified gravity

Shortly after Einstein’s theory of gravity emerged, observational data and the-

oretical predictions began to revolutionise our view of the universe. Prior to

the observational facts, there was disagreement on particular properties of our

universe predicted by theoretical models. The FLRW solution predicted that

the universe originated from a singularity or a ‘big bang’ from which it continues

to expand [21], this theory contradicted Einstein’s idea of a static universe with

no beginning [18]. In fact many opposed the big bang theory and agreed the

universe had no beginning or end, [152,153]. For instance, the main rival to the

big bang model was the steady state theory.

The first major observation is owed to Hubble in 1929 [19]. This confirmed

speculation that the universe is expanding, where the idea of expansion was

already modelled by some cosmological solutions to Einstein’s field equations

several years prior to the observations [20, 21]. The steady state theory was

then modified by Hoyle to incorporate this discovery, this now stated while

the universe is expanding matter is continuously being created thus we observe

a homogeneous and isotropic universe [153]. Many years later, in 1965, the

big bang theory had finally become accepted as the mainstream cosmological

model. This was due to various observations which led to the discovery of cosmic

microwave background radiation (CMB) [154], these observations followed the

preceding development in radio astronomy. The discovery of CMB supported

another prediction from the big bang model outlined by the FLRW solution,

and contradicted the steady state model.

However, over the years, the big bang theory has also seen modifications

based on observations of some issues with the model. This began with the

flatness problem, which is the realisation that only a particular set of initial

conditions are admissible after the big bang to create our universe, and any

small changes would yield significant differences. Secondly, the assumption of

homogeneity and the measured CMB radiation implies a uniform background

temperature and energy density across the entirety of our vast universe, this
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led to what is known as the horizon problem. These problems initiated the

notion of early time inflation as a possible solution [155], this imposes a very

short period of exponential inflation after the big bang. It was previously be-

lieved that the universe expanded at a uniform rate, now it is known to have

undergone certain phases of expansion [156], and the current phase is not uni-

form but expanding at an accelerated rate [7, 157]. The accelerated phase of

expansion is often attributed to dark energy, and this exotic energy is believed

to constitute a large part of our universe. Including the big bang and short

inflationary period the universe is viewed to have undergone four main stages

of expansion, the remaining three are known as the radiation, matter and dark

energy dominated eras, in each stage the evolution of the universe is governed

by either radiation, matter or dark energy. There are various cosmological mod-

els which describe these phases of the universe for example, the ΛCDM model

(Λ cold dark matter) [158]. Also, quintessence and kinetic quintessence aim to

provide an alternative description of accelerated expansion compared with dark

energy [159].

Modified theories of gravity have developed a considerable amount of in-

terest, primarily due to their ability to provide an alternative framework for

understanding the effects which are normally attributed to dark energy [160].

Additionally, these theories are viewed to have the potential to unify the stages

of early time inflation and late time accelerated expansion. Similarly to the

teleparallel equivalent of general relativity, such theories of gravity are typi-

cally obtained by modifying the Einstein-Hilbert action accordingly. But this

does not necessarily require defining additional objects or changing concepts of

the underlying theory of gravity as in TEGR. We will limit our discussion to

modified general relativity or teleparallelism, for instance such alterations to

Newtonian gravity will not be considered here.

Following the adjustments to general relativity discussed previously, alter-

native modifications to the Lagrangian have been considered further. In 1934

Born and Infeld [161] investigated transformations of the Lagrangian which re-

moved divergences from the theory, but the effects of gravity were abandoned

in this particular calculation and only applied it to electromagnetic phenomena.

Many years later, in 1962, actions which included higher order invariants of the

Ricci curvature were considered. Such modifications were viewed as necessary

in order to quantise general relativity [162]. Almost a decade later, in 1971

Lovelock considered generalisations to Einstein’s field equations by considering

the Lagrangian in higher dimensions, this can be applied to theories of gravity
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which require more than four dimensions of spacetime [163].

In 1961, general relativity was modified to incorporate Mach’s principle,

which states that there is a relationship between local and distant motion [5],

this entailed allowing Newton’s gravitational constant to evolve in spacetime

G → G(φ) where φ is a scalar field. The idea of the fundamental constants of

nature being allowed to evolve with time had already been raised by Dirac in

1937 [164], which in particular encompassed the gravitational constant becoming

time dependent. This modification to general relativity is now referred to as

Jordan-Brans-Dicke theory [165,166] or more often just Brans-Dicke theory, and

provides an alternative description to the classical model of gravity outlined by

general relativity. Brans-Dicke theory is in fact a particular model of a wider

class of modifications known as scalar tensor theory which was first investigated

by Jordan [165]. The foundations of this theory came from the Kaluza-Klein

model, and is also general relativity coupled to a scalar field, see [167] for more

information.

Another approach to modifying general relativity is given by f(R) gravity,

this modification was initiated by Buchdahl in 1970 [168] and has captured much

interest over the years [169]. Prior to this arbitrary modification, the widely ac-

cepted generalisation to the Einstein Hilbert action was the ΛCDM model given

by f(R) = R−2Λ. There are various formalisms in f(R) gravity, which depend

on the variational principle used to obtain the field equations from the action.

These variational approaches are analogues to the methods utilised in general

relativity [8] and give rise to the metric, Palatini, and metric-affine formalisms

in f(R) gravity. It has been shown that these theories are equivalent to Brans-

Dicke theory, see [169,170] for a thorough review. Each of these f(R) theories are

described by fourth order field equations, whereas the fourth order terms vanish

in general relativity and hence gives rise to second order field equations [171].

Note that some view the Palatini f(R) field equations as second order, however

the Ricci scalar R(Γ) contains higher derivatives of the function f making it a

fourth order theory. It is believed that these higher order corrections to general

relativity will provide a description of the accelerated expansion of our universe

without the need for dark energy. However, these modified equations prove to

be extremely complex, even for static solutions in the absence of rotation, and

because of this results presented are often in the absence of matter. During this

advancement in modified f(R) gravity, the Born-Infeld approach was applied to

the gravitational action. This was first considered in 1998 [172], it has subse-

quently been shown that this modification also successfully describes accelerated
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expansion without the need for dark energy and also provides a description of

dark matter [173].

The modification in f(R) gravity only modifies R in the classic Einstein-

Hilbert action of general relativity, therefore only the gravitational action is

changed. It was recently proposed that modifications should also be applied

to the matter action, and that this will allow for a non-minimal coupling be-

tween curvature and matter. This particular modification is often referred to

as f(R,Lm) gravity, where Lm = Lmatter is the matter Lagrangian. In 2011

the concept of modifying our description of matter was extended and modified

further in f(R, T ) gravity, here the action is a function of the Ricci scalar R

and the trace of the energy-momentum tensor T [174]. However it was shown

that most models of f(R, T ) gravity violate the first law of black hole thermo-

dynamics [175]. Note that f(R, T ) is sometimes interpreted as a function of the

Ricci scalar R and torsion tensor T .

For a more in depth review of the various modifications to general relativity

described in, or omitted from, this section see [176].

2.3.1 Modified Teleparallelism

Modifications to the teleparallel equivalent of general relativity have been con-

structed more recently. These theories are obtained in an analogous manner

to f(R) gravity, by modifying the gravitational Lagrangian to be an arbitrary

function of its original argument T . In 2007, the Born and Infeld approach to

modifying the Lagrangian was applied to TEGR, this gave rise to a theory that

successfully described early time inflation [177]. This particular modification

also contained black hole solutions and cosmological models without a singu-

larity [178]. The theory is now known as f(T ) gravity [179, 180], although the

modifications are more arbitrary than in [177, 178]. The field equations of the

theory are second order and hence provide a simpler approach compared with

the fourth order field equations of f(R) gravity.

It was later shown that modifications to teleparallel gravity give rise to an

alternative framework for dark energy by describing accelerated expansion [179]-

[186] and this was unified with a description of the radiation and matter domi-

nated stages of the universe [179,182]. Additionally, f(T ) gravity offers a unifi-

cation of early time inflation with the current accelerated expansion phase [183].

However some oppose that f(T ) gravity successfully provides a description of

the accelerated expansion epoch, for example it was shown that certain f(T )
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models which describe this phase differ greatly from the ΛCDM model and hence

requires too many restrictions to avoid this [187]. It was also shown that vari-

ous solutions do not allow for the crossing of the phantom divide [188] whereas

others do [189–191], the phantom divide refers to the equation of state of dark

energy (p/ρ = −1) in the description of the accelerated expansion epoch [192].

There have been many results comparing modified teleparallel gravity with

observational results, and the constraints this data will impose on the allowed

models of f(T ) have been presented [179, 188, 191, 193]. In addition to an al-

ternative to dark energy, it was shown that modifications to teleparallelism can

provide an alternative to dark matter [194]. The study of cosmological models

was extended to inhomogeneous and anisotropic universes in order to derive

additional early time inflation models such as the de Sitter solution [195]. It

was found that the de Sitter solution in an anisotropic universe will not exist

unless an anisotropic pressure is imposed.

The models which imply accelerated expansion in f(T ) gravity have been

compared to alternative theories of gravity which have a successful descrip-

tion of this phase, the alternative theories considered were f(R) gravity [196],

kinetic quintessence models [197] and ΛCDM models [187, 198, 199]. Vari-

ous models in f(T ) gravity provide results which differ to that of the ΛCDM

model [187,198,199]. In addition to this, Dirac’s idea of a time-dependent grav-

itational constant was applied to modified teleparallel gravity, and the conse-

quential constraints on f(T ) were examined [200]. Certain black hole solutions

in modified teleparallel gravity supposedly violate the first law of black hole

thermodynamics due to the absence of local Lorentz invariance [201]. However,

the second law is satisfied from early time inflation up to the present late time

acceleration phase, though it has been stated it can be violated in later phases

for various models [202]. It was then shown that the first law is satisfied for most

models and that the second law of black hole thermodynamics is always satisfied

unless the law is misinterpreted [203, 204]. Comparisons have also been made

with general relativity with the conclusion that f(T ) may provide a simpler

modification to general relativity than f(R) gravity [179,180].

2.3.2 f(T ) field equations

Modified teleparallelism is constructed on the Weitzenböck spacetime, hence

the underlying theory of teleparallelism and the tensors constructed from the

Weitzenböck connection Tσ
µν , Kσ

µν , Sσ
µν remain unchanged. The modifica-
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tion is made to the action

S = Sgravity + Smatter =
1

16π

∫
e f(T ) d4x+

∫
eLmatter d4x . (2.3.1)

Note that some authors make a slightly different modification to the action [199],

where the gravitational Lagrangian in the action is instead of the form Lgravity =

T + f(T ), and it was shown that when f(T ) = constant for such an action this

theory reduces to general relativity [198]. In this thesis, we will only consider

the action (2.3.1) for calculations in modified teleparallelism, however in chap-

ter 4 we will make a similar relabelling f(T ) = T + h(T ) in the field equations.

It has been observed that both versions of the action do not obey local Lorentz

symmetries, only global [187, 205, 206], it was then deduced that this causes

problems with the dynamics of the field equations [187] and gives rise to ad-

ditional degrees of freedom [206]. Recently, the impact of the extra degrees of

freedom were discussed further in [207], it was concluded that this can cause

problems including the possibility of particles travelling faster than the speed

of light (superluminal propagation) unless fTT = 0. In [208], the Noether sym-

metries of the Lagrangian were discussed, this analysis was then used to derive

a time dependent solution.

Varying the action (2.3.1) with respect to the tetrad field eiµ gives rise to

the f(T ) field equations

Si
µνfTT∂µT +

(
e−1∂µ

(
eSi

µν
)
− TσµiSσνµ

)
fT −

ei
νf

4
= −4πTiν , (2.3.2)

where Si
µν = ei

σSσ
µν . In [3] the conservation equation (2.2.3) for a perfect

fluid energy-momentum tensor in teleparallel gravity was generalised for f(T )

gravity, in order to proceed we rewrite the field equations as

eδσρSσ
µνfTT∂µT +

(
eiρ∂µ

(
eSi

µν
)
− eδσρTλµσSλνµ

)
fT −

e

4
δνρf = −4πeδσρTσν ,

where we have just multiplied the equations of motion by eeiρ. This yields the

conservation equation

4π∂ν

(
e
(
ji
ν + Tiν

))
= 0 , (2.3.3)

which is similar to the conservation equation in TEGR, see equation (2.2.3),

however the energy-momentum for the gravitational field ji
ν has been modified
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to

ji
ν = − 1

4π

(
ei
σT ρµσSρ

νµfT +
1

4
ei
νf

)
. (2.3.4)

This is a possible reformulation of the gauge current ji
ν , for example, one could

also consider the alternative which gives rise to the same conservation equation

ji
ν = − 1

4π

(
ei
σSσ

µνfTT∂µT − eiσT ρµσSρνµfT +
1

4
ei
νf

)
.

Spherically symmetric solutions, without restricting to cosmological models

as described above, have been analysed in f(T ) gravity more recently [209–214].

There was a recent claim that spherically symmetric solutions cannot be at-

tained in modified teleparallelism [209]. Whilst investigating this claim, we

found that the usual diagonal tetrad field chosen gives rise to an additional

off-diagonal field equation. This extra equation imposes a severe constraint on

the torsion scalar T ′ = 0 which in turn restricts f(T ). In addition to this, the

diagonal tetrad field is not a global solution since it contains singularities, this

will be discussed further in section 4.2.1. By rotating the diagonal tetrad we

removed these restrictions on T , however the rotated tetrad still contains the

aforementioned singularities, this tetrad field will be discussed in section 4.2.2,

and possible alternative tetrads will also be discussed in section 4.2.3. These

results show that the modified teleparallel field equations and hence constraints

on f(T ) depend on the chosen tetrad field. In [210], static and spherically

symmetric solutions were analysed further, and constraints on f(T ) were pre-

sented which allow for the existence of various solutions. This included the the

Schwarzschild and Reissner-Nordström solutions in the presence of a cosmolog-

ical constant, the sign of Λ was not restricted.

Following this, static solutions with anisotropic pressure have been consid-

ered for the diagonal tetrad [211]. This analysis gives rise to wormhole and black

hole solutions, such models were analysed further for the off-diagonal tetrad and

it was shown that the anisotropic case violates the null energy condition [212].

However in [213, 214] wormhole and black hole solutions with the same setting

of anisotropic pressure and off-diagonal tetrad field were derived, in which the

null energy condition is satisfied. Recently, solutions exhibiting circular [215]

and planar symmetry [216] were derived, the latter aided the construction of

various solutions including the Møller, Kottler and Whittaker solutions.

Recall that for a given metric gµν the associated tetrad field ei
µ is not
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unique since one can perform arbitrary Lorentz transformations on the tetrad

field without changing the metric, whereas a given tetrad field corresponds to

a unique metric. So far, the literature discussed above uses the diagonal and

rotated tetrad fields, where the latter is simply a rotated version of the former.

However, the rotated tetrad is not the most general form and applying a Lorentz

boost to the diagonal tetrad field will result in a more generalised version [217].

It was shown that this gives rise to the Schwarzschild solution. In [218,219] fur-

ther transformations of the tetrad fields were derived, where tetrads which give

rise to the FLRW solution (for both positive and negative curvature scenarios)

were examined in [218]. Additionally, some ‘good’ tetrad fields were described

in the context of f(T ) gravity, where it was shown that the so called rotated or

off-diagonal tetrad field is a special case of a more general rotated tetrad, and

the Schwarzschild de Sitter vacuum was derived [219].

Birkhoff’s theorem was shown to hold for the diagonal tetrad field [220],

but the off-diagonal field equation and hence the restriction on T had been

overlooked. I considered Birkhoff’s theorem for the rotated tetrad, so these

restrictions no longer apply in chapter 4. Additionally, I derived a bound on

M/R in f(T ) gravity with the rotated tetrad field, using the usual method of

constrained optimization, which can also be found in chapter 4. This has given

some insight on the required constraints on f given the existence of a solution

with this mass radius bound.
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Chapter 3

Charged solutions in de

Sitter space

In this chapter we will first derive the Reissner-Nordström de Sitter spacetime

from the Einstein-Maxwell field equations with a non-zero cosmological constant

in section 3.1 and the TOV conservation equation will be generalised to include

the effects of charge in the presence of a cosmological constant in section 3.2.

Hydrostatic equilibrium will be explored further in section 3.3, where we will

derive an upper limit on Mg/R. Following this, we will discuss the causal

structure of the RNdS spacetime and present the corresponding Carter-Penrose

diagrams, an outline of the derivation for the Reissner-Nordström solution using

a method that can be extended for the RNdS solution.

A peculiar subclass of the Reissner-Nordström de Sitter spacetime will be

derived in section 3.5.1, these are known as the charged Nariai solutions, this

follows a discussion of the neutral analogue in section 3.5. Finally, we will use

results from this chapter to derive generalisations of the Einstein static universe

in the presence of an electromagnetic field in section 3.6.

3.1 Reissner-Nordström de Sitter spacetime

The Reissner-Nordström de Sitter metric is a known exterior, electro-vacuum

solution of the Einstein-Maxwell equations. Einstein’s field equation was given
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in equation (1.0.4) and can be written as

Rµν −
1

2
Rgµν + Λgµν = 8π

(
Mµν + Eµν

)
. (3.1.1)

Mµν and Eµν are the matter and electromagnetic energy-momentum tensors

respectively. The electromagnetic energy-momentum tensor Eµν is given in

terms of the electromagnetic field strength tensor Fµν , which is often referred

to as the Faraday tensor

Eµν =
1

4π

(
Fµ

σFνσ −
1

4
gµνF

σρFσρ

)
, (3.1.2)

where Fµν is an anti-symmetric rank-two tensor so that Fµν = −Fνµ. This

tensor is defined in terms of the spatial three-vectors ~E and ~B which represent

the electric and magnetic fields respectively. These vectors can be expressed

using the electromagnetic four-potential Aµ = (ψ, ~Ac) with ~Ac =
(
Ãx, Ãy, Ãz

)
,

where ~E = −~∇ψ − ∂t ~Ac =
(
−∂xψ − ∂tAx ,−∂yψ − ∂tAy ,−∂zψ − ∂tAz

)
, ~B =

~∇× ~Ac =
(
∂yAz − ∂zAy , ∂zAx − ∂xAz , ∂xAy − ∂yAx

)
. The Faraday tensor is

then given by the relation F̃µν = ∂µÃν − ∂νÃµ, thus in Cartesian coordinates

this tensor becomes

F̃µν =


0 Ex Ey Ez

−Ex 0 Bz −By
−Ey −Bz 0 Bx

−Ez By −Bx 0

 . (3.1.3)

To obtain this tensor in spherical coordinates, consider the transformation r =√
x2 + y2 + z2 , cos θ = z/r , tanφ = y/x with inverse x = r cosφ sin θ , y =

r sinφ sin θ , z = r cos θ. Using this we can now rewrite the electric and magnetic

fields in new coordinates

~E =


sin θ

(
cosφEx + sinφEy

)
+ cos θEz

cos θ
(

cosφEx + sinφEy

)
− sin θEz

cosφEy − sinφEx

 =

 Er

Eθ

Eφ

 ,

~B =


sin θ

(
cosφBx + sinφBy

)
+ cos θBz

cos θ
(

cosφBx + sinφBy

)
− sin θBz

cosφBy − sinφBx

 =

 Br

Bθ

Bφ

 , (3.1.4)
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these can be written in terms of the four-potential Aµ with the relation given

above, but this is not necessary for this calculation.

Now the electromagnetic field strength tensor can be given in spherical coor-

dinates, using the tensor transformation law Fµν = ∂xµ

∂x̃ρ
∂xν

∂x̃σ F̃
ρσ we can convert

each component of (3.1.3) and make use of the relations in (3.1.4) to simplify

the resulting expressions. This yields for instance, F tr = sin θ
(
cosφEx

+sinφEy
)
+cos θEz = Er = −F rt and F tθ = cos θ

r

(
cosφEx+sinφEy

)
− sin θEz

r =
Eθ
r = −F θt. Computing the remaining components yields the Faraday tensor

in spherical coordinates

Fµν =


0 Er

Eθ
r

Eφ
r sin θ

−Er 0
Bφ
r − Bθ

r sin θ

− Eθ
r −Bφr 0 Br

r2 sin θ

− Eφ
r sin θ

Bθ
r sin θ − Br

r2 sin θ 0

 , (3.1.5)

then indices can be lowered with Fµν = gσµF
σρgρν , using the spherically sym-

metric metric gµν =
(
−ea , eb , r2 , r2 sin2 θ

)
. This gives for example Ftr =

−ea+bEr = −Frt, and the remaining components can be calculated similarly.

The electromagnetic field strength tensor Fµν must satisfy Maxwell’s equa-

tions, which can be written as

∂µ

(√
−gFµν

)
=
√
−gJν , (3.1.6)

∂[µFνσ] =0 , (3.1.7)

Jµ = 4πσuµ is the four-current density and is a product of the proper charge

density σ and the four-velocity uµ = dxµ

dt which satisfies uµuµ = −1. The

definition of the electromagnetic field strength tensor, Fµν = ∂µAν − ∂νAµ,

implies that Maxwell’s equation (3.1.7) is automatically satisfied.

Since we are working in a static and spherically symmetric spacetime with

line element of the form

ds2 = −eadt2 + ebdr2 + r2dΩ2 , (3.1.8)

where dΩ2 = dr2 + sin2 θdφ2 is the line element for the two-sphere with unit

radius, this implies Jµ is independent of the temporal and angular coordinates

so that the only contribution is the radial component Jr. Thus equation (3.1.6)

reduces the components of the field strength tensor to just the Fµr entries
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in (3.1.5). Since we consider solutions in the absence of a magnetic field ~B,

this means the only non-zero components of Fµν in a static and spherically

symmetric spacetime are F tr = −F rt = Er. Using Maxwell’s equation (3.1.6)

we obtain e(a+b)/2r2 sin θJr = ∂t
(
e(a+b)/2r2 sin θF tr

)
, where Jr = 4πσur =

4πσ dr
dt therefore

F tr = 4π
e−(a+b)/2

r2

∫ r

0

(
e(a+b)/2r̃2σ

dr̃

dt

)
dt

=
e−(a+b)/2

r2
q(r) ,

or equivalently Frt = e(a+b)/2q/r2 = −Ftr. Here q = q(r) is the total charge in

the region [0, r] and is defined in terms of the charge density σ. Thus q(r) is

given by

q(r) = 4π

∫ r

0

e(a+b)/2r̃2σdr̃ . (3.1.9)

Using this we can compute the components of the electromagnetic energy-

momentum tensor (3.1.2), the non-zero entries are the four diagonal elements

Et
t = Er

r = −Eθθ = −Eφφ = − q2

8πr4 . The matter energy-momentum tensor for

a perfect fluid is given in section 1.3.2, with an anisotropic pressure this becomes

Mµ
ν = diag

(
−ρ, p, p⊥, p⊥

)
. This can be put together to yield the components

of the total energy momentum tensor

Tµν = diag
(
−ρ− q2

8πr4
, p− q2

8πr4
, p⊥ +

q2

8πr4
, p⊥ +

q2

8πr4

)
.

Note that for non-zero charge q and pressures p , p⊥, the condition of isotropy

in the total energy momentum tensor Trr − Tθθ = 0 becomes p − p⊥ = q2

4πr2 .

Now the field equations can be written in component form

8πρ+
q2

r4
=
b′e−b

r
+

1

r2

(
1− e−b

)
− Λ , (3.1.10)

8πp− q2

r4
=
a′e−b

r
− 1

r2

(
1− e−b

)
+ Λ , (3.1.11)

8πp⊥ +
q2

r4
=

e−b

2

(
a′′ +

(a′
2

+
1

r

)(
a′ − b′

))
+ Λ . (3.1.12)

The (t, t) field equation, given by equation (3.1.10), can be used to obtain the
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mass, similarly to the method used in section 1.2 in the absence of charge. The

total gravitational mass is defined to be

mg(r) := 4π

∫ r

0

r̃2ρdr̃︸ ︷︷ ︸
mi(r)

+ 4π

∫ r

0

e(a+b)/2r̃σq dr̃︸ ︷︷ ︸
mq(r)

. (3.1.13)

In the presence of a cosmological constant and charge, mi can be obtained by

inserting (3.1.10) in place of the energy density ρ. This yields

mi =
1

2

∫ r

0

{ d

dr̃

(
r̃ − r̃e−b

)
− q2

r̃2
− Λr̃2

}
dr̃

=
r(1− e−b)

2
− Λ

6
r3 −

∫ r

0

q2

2r̃2
dr̃ . (3.1.14)

Next, in order to obtain the exterior Reissner-Nordström de Sitter line element,

the electromagnetic mass mq must be written as

mq =

∫ r

0

q2

2r̃2
dr̃ +

q2

2r
, (3.1.15)

see for instance [35, 82] for further discussion of the electromagnetic mass and

a derivation of (3.1.15). Substituting mi and mq into the definition of mg in

equation (3.1.13) and rearranging gives e−b = 1 − 2mg
r + q2

r2 − Λ
3 r

2. In the

Reissner-Nordström de Sitter exterior, we have r ≥ R, where R is the boundary

of the matter distribution and is often referred to as the total radius. This

implies the metric coefficient

e−b = 1− 2Mg

r
+
Q2

r2
− Λ

3
r2 , (3.1.16)

where Mg = mg(R) and Q = q(R) represent the total gravitational mass and

charge respectively.

To fix the remaining metric coefficient ea, consider the (r, r) component of

the electro-vacuum field equations, that is when r ≥ R. Rearranging for a′

yields

a′ =
2eb

r

(
Mg

r
− Q2

r2
− Λ

3
r2

)
.

Note, taking the derivative of equation (3.1.16) and comparing with the equation
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above yields the relation b′ = − 2eb

r

(
Mg

r −
Q2

r2 − Λ
3 r

2
)

= −a′, this implies ea =

e−b. Therefore the remaining metric coefficient for the exterior solution can be

written explicitly as

ea = 1− 2Mg

r
+
Q2

r2
− Λ

3
r2 . (3.1.17)

In the interior, the metric coefficients can be written as

ea = 1− 2mg

r
+
q2

r2
− Λ

3
r2 = e−b . (3.1.18)

The solution (3.1.8) with metric coefficients (3.1.16) and (3.1.17) gives the exte-

rior Reissner-Nordström de Sitter solution. This reduces to the Kottler solution

when Q = 0 or the Reissner-Nordström solution when Λ = 0.

3.2 Hydrostatic equilibrium

In this section, we will construct a TOV-like conservation equation which gov-

erns the hydrostatic equilibrium of a charged spherically symmetric solution in

de Sitter space. Given the RNdS spacetime with anisotropic pressure p 6= p⊥,

first we differentiate p with respect to r using equation (3.1.11), this becomes

8πp′ =
e−b

r

(
a′′ − a′b′ − 1

r

(
a′ + b′

))
+

2

r3

(
1− e−b

)
− 4q2

r5
+

2qq′

r4
, (3.2.1)

similarly to section 1.3.2, we combine the first two field equations (3.1.10)

and (3.1.11), then the second two field equations (3.1.11) and (3.1.12)

8π
(
ρ+ p

)
=

e−b

r

(
a′ + b′

)
, (3.2.2)

8π
(
p− p⊥

)
=− e−b

2

(
a′′ +

a′

2

(
a′ − b′

)
− 1

r

(
a′ + b′

))
− 1

r2

(
1− e−b

)
+

2q2

r4
,

(3.2.3)
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multiplying equation (3.2.2) by a′/2 and equation (3.2.3) by 2/r

4πa′
(
ρ+ p

)
=
a′e−b

2r

(
a′ + b′

)
,

16π

r

(
p− p⊥

)
=− e−b

r

(
a′′ +

a′

2

(
a′ − b′

)
− 1

r

(
a′ + b′

))
− 2

r3

(
1− e−b

)
+

4q2

r5
,

combining these equations gives

4πa′
(
ρ+ p

)
+

16π

r

(
p− p⊥

)
=

4q2

r5

− e−b

r

(
a′′ − a′b′ − 1

r

(
a′ + b′

))
− 2

r3

(
1− e−b

)
. (3.2.4)

Now we can use this equation to eliminate some terms in equation (3.2.1), which

yields the conservation equation

p′ +
a′

2

(
ρ+ p

)
+

2

r

(
p− p⊥

)
− qq′

4πr4
= 0 . (3.2.5)

In order to proceed we make use of the expression for e−b in the interior, given

by (3.1.18), and insert this into the (r, r) field equation. This can be rearranged

to give the following expression for a′

a′

2
=

4πrp+
mg
r2 − q2

r3 − Λ
3 r

1− 2mg
r + q2

r2 − Λ
3 r

2
, (3.2.6)

putting this in place of a′ in equation (3.2.4) yields

p′ +
4πrp+

mg
r2 − q2

r3 − Λ
3 r

1− 2mg
r + q2

r2 − Λ
3 r

2

(
ρ+ p

)
+

2

r

(
p− p⊥

)
− qq′

4πr2
= 0 , (3.2.7)

this is the TOV-like conservation equation for a charged massive object in de

Sitter space.

Now we have a set of four independent equations, this includes the three inde-

pendent field equations (3.1.10)–(3.1.12) plus the conservation equation (3.2.7).

Initially, there were six unknown functions, namely the energy density, pres-

sures, charge and metric coefficients
{
ρ , p , p⊥ , q , a , b

}
, in this case the system

of equations was under-determined. Since we have fixed the metric coefficients

ea , eb with the relation in equation (3.1.18), four unknowns remain therefore
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the system of equations is closed.

3.3 Bounds on Mg/R in RNdS spacetime

In this section, the results obtained in [2] will be summarised. Given the field

equations (3.1.10)–(3.1.12), we can relabel the variables in the following way

x =
2mg

r
− q2

r2
+

Λr2

3
= 1− e−b ,

y = 8πr2p ,

z1 =
q2

r2
,

z2 = Λr2 .

Based on the ranges of the variables b , p , q and Λ, the new variables are valid

over the set

U =
{(
x, y, z1, z2

)
: 0 ≤ x < 1 , y ≥ 0 , z1 ≥ 0 , z2 ≥ 0, z1 + z2 ≤ 1

}
, (3.3.1)

where we also impose z1 + z2 ≤ 1. We can now reconstruct the field equations

in a similar manner to section 1.5.2 in the absence of q and Λ. First we need

the following quantities in new variables

e−b = 1− x ,

ḃ =
rx′

2(1− x)
=

ẋ

1− x
,

2ȧ =
x+ y − z1 − z2

1− x
,

2ä =
ẋ
(
y − z1 − z2 + 1

)
(1− x)2

+
ẏ − ż1 − ż2

1− x

=
r2a′′

2
+ ȧ ,

where β = 2 log r so that ṙ = dr/dβ = r/2, hence ḃ = rb′/2. Note that the (r, r)

component of the field equations was used to obtain ȧ. Putting this together
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gives three first order field equations in new variables

8πr2ρ = 2ẋ+ x− z1 − z2 , (3.3.2)

8πr2p = y , (3.3.3)

8πr2p⊥ =
ẋ(x+ y − z1 − z2)

2(1− x)
+ ẏ − ż1 − z1 +

(x+ y − z1 − z2)2

4(1− x)
. (3.3.4)

Using this the combination p+ 2p⊥ ≤ ρ becomes

ẋ
(

3x+ y − z1 − z2 − 2
)

+ 2
(
1− x

)(
ẏ − ż1 − z2

)
≤− 1

2

(
3x2 +

(
y − z1 − z2

)2 − 2
(
x− y

)
− 2
(
z2(4x− 3) + z1

))
≤− 1

2
u
(
x, y, z1, z2

)
,

where we have defined the right hand side of the inequality to be u. The next

section will give some insight on the derivation of the optimisation function w

which is required for the calculation in the aforementioned paper [2].

3.3.1 Finding w

In order to represent this combination of the field equations as a problem that

can be optimised, we require a function w(x, y, z1, z2) such that the derivative

ẇ is equal to the left hand side of the inequality p+ 2p⊥ ≤ ρ with some unde-

termined pre-factor, this pre-factor will also be a function of x, y, z1 and z2. In

the interest of generalising the result from [122], we deduce that this function

should be of the form w = γ2/(1 − x) for some function γ(x, y, z1, z2), and in

this section we will check whether this hypothesis is valid.

Calculating the one-form or exterior derivative dw = ẇdβ

dw =
γ

(1− x)2

{
dx
(

3x+ y − z1 − z2 − 2
)

+ 2
(
1− x

)(
dy − dz1 − dz2)

}
=

γ

(1− x)2

{
dx
(
γ + 2γx(1− x)

)
+ 2
(
1− x

)(
γydy + γz1dz1 + γz2dz2

)}
=wxdx+ wydy + wz1dz1 + wz2dz2 ,

(3.3.5)

where γx = ∂xγ. The first line gives the form of the function we are searching

for and the last two lines are implied by the chain rule, comparing the two we
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can see the restrictions γy = 1 and γz1 = γz2 = −1.

Note that in the three-dimensional case ~w = (w1, w2, w3) the following is

always true ~∇.
(
~∇ × ~w

)
= ∂x

(
∂yw3 − ∂zw2

)
+ ∂y

(
∂zw1 − ∂xw3

)
+ ∂z

(
∂xw2 −

∂yw1

)
= 0, in four-dimensions this becomes d2w = 0. Thus if the w we require

exists then the exterior derivative must satisfy d2w = 0, where

d2w = (wyx − wxy)dx ∧ dy + (wz1x − wxz1)dx ∧ dz1 + (wz2x − wxz2)dx ∧ dz2

+ (wz1y −wyz1)dy ∧ dz1 + (wz2y −wyz2)dy ∧ dz2 + (wz2z1 −wz1z2)dz1 ∧ dz2 .

Writing this out explicitly gives rise to the following equations

wyx − wxy =− γy(3x+ y − z1 − z2 − 2)

(1− x)2
+

2γx
1− x

+
γ

(1− x)2
= 0 ,

wz1y − wyz1 =− 2(γy + γz1)

1− x
= 0 ,

wz2y − wyz2 =− 2 (γy + γz2)

1− x
= 0 ,

wz1x − wxz1 =− γz1(3x+ y − z1 − z2 − 2)

(1− x)2
− 2γx

1− x
− γ

(1− x)2
= 0 ,

wz2x − wxz2 =− γz2(3x+ y − z1 − z2)

(1− x)2
− 2γx

1− x
− γ

(1− x)2
= 0 ,

wz1z2 − wz2z1 =
2(γz1 − γz2)

1− x
= 0 .

Inserting the condition γy = −γz1 = −γz2 = 1 we found from (3.3.5) reduces

three of the six equations to zero as we require. The remaining three are reduced

to one non trivial equation which will be used to solve for γ

wyx − wxy = −
(
wz1x − wxz1

)
= −

(
wz2x − wxz2

)
= −3x+ y − z1 − z2 − 2

(1− x)2
+

2γx
1− x

+
γ

(1− x)2
= 0 ,

hence we have

2γx(1− x) + γ − 3x− y + z1 + z2 + 2 = 0 ,

this is a first order differential equation for γ, and is exactly what we would

obtain by comparing the coefficients of dx in equation (3.3.5). Solving this first
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order differential equation yields

γ = 4− 3x+ y − z1 − z2 +
√

1− xΓ(y, z1, z2) ,

where Γ is a function that is constant when integrating with respect to x, this

function may have dependence on the variables y, z1, z2. However, the con-

tributions from y , z1 and z2 are consistent with the observation that γy =

−γz1 = −γz2 = 1 which implies Γ = constant. Since w must coincide with

equation (1.5.5) in the limit z1 → 0 and z2 → 0 this implies Γ = 0. Thus the

function we seek is

w =

(
4− 3x+ y − z1 − z2

)2
1− x

. (3.3.6)

This function will be maximised to give the required ratio on mg/r in the next

section.

3.3.2 Maximising w

The derivative of w with respect to β is

ẇ =

(
4− 3x+ y − z1 − z2

)(
1− x

)2 (
ẋ
(
3x+ y − z1 − z2 − 2

)
+ 2
(
ẏ − ż1 − z2

)(
1− x

))
≤ −1

2

(
4− 3x+ y − z1 − z2

)(
1− x

)2 u(x, y, z1, z2) . (3.3.7)

Given the constraints on x, y, z1 and z2 in (3.3.1) it is straightforward to see

that 4− 3x+ y − z1 − z2 ≥ 0, therefore if u(x, y, z1, z2) ≤ 0 then w(x, y, z1, z2)

is increasing. Hence we firstly require that u ≤ 0, which implies

0 ≥ 3x2 +
(
y − z1 − z2

)2 − 2
(
x− y

)
− 2
(
z2

(
4x− 3

)
+ z1

)
= 3x

(
x− 1

)
+ x− 8xz2 +

(
y − z1 − z2

)2
+ 2y − 2z1 + 6z2

=
(
3x− 8z2 + 1

)(
x− 1

)
+
(
y − z1 − z2 + 1

)2
,

or equivalently

(
y − z1 − z2 + 1

)2 ≤ (3x− 8z2 + 1
)(

1− x
)
.
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This condition can be rearranged to give the relation

2
(
y − z1 − z2

)
≤
(
3x− 8z2 + 1

)(
1− x

)
− 1−

(
y − z1 − z2

)2
≤
(
3x− 8z2 + 1

)(
1− x

)
− 1 . (3.3.8)

Secondly, we deduce that w has a maximum w ≤ supU w(x, y, z1, z2). Next, we

will determine the maximum of w and the values of x, y, z1 and z2 for which

this is attained. Note that

w =
(4− 3x+ y − z1 − z2)2

1− x

=
(1 + y − z1 − z2)2

1− x
+ 6(1 + y − z1 − z2) + 9(1− x)

≤ 3x− 8z2 + 1 + 6(1 + y − z1 − z2) + 9(1− x)

= 16− 6x+ 6y − 6z1 − 14z2 = 16− 6x+ 6(y − z1 − z2)− 8z2 , (3.3.9)

Using equation (3.3.8) gives

w ≤16− 6x+ 3(3x− 8z2 + 1)(1− x)− 3− 8z2

=16− 9x2 − 24z2(1− x)− 8z2 ≤ 16 , (3.3.10)

thus supU w = 16, for 0 ≤ x < 1 and z1 , z2 ≥ 0. From equation (3.3.6) we can

see the maximum value of 16 is achieved at x = y = z1 = z2 = 0.

3.3.3 Deriving the bound

Thus, when the variables x , y , z1 , z2 satisfy the conditions outlined by U and

u ≤ 0 the function w has an upper bound

w =

(
4− 3x+ y − z1 − z2

)2
1− x

≤ 16 , (3.3.11)

this can be translated into an upper bound on Mg/R. Rearranging equa-

tion (3.3.11) gives

4− 3x− z1 − z2 ≤ 4
√

1− x ,
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collecting the terms involving 1− x and grouping them on the left hand side of

the inequality yields

(
2− 3

√
1− x

)2 ≤ 1 + 3z1 + 3z2 =⇒ 2− 3
√

1− x ≤
√

1 + 3z1 + 3z2 ,

which reduces to

√
1− x ≤ 2

3
− 1

3

√
1 + 3z1 + 3z2 ,

1− x ≤ 4

9
+

1

9

(
1 + 3z1 + 3z2

)
− 4

9

√
1 + 3z1 + 3z2 .

Therefore we have found the following upper bound for x

x ≤ 4

9
− z1

3
− z2

3
+

4

9

√
1 + 3z1 + 3z2 , (3.3.12)

this gives rise to the required result since x =
2mg
r −

q2

r2 + Λr2

3 , z1 = q2

r2 and

z2 = Λr2. Reverting to original variables yields

mg

r
≤ 2

9
+

q2

3r2
− Λr2

3
+

2

9

√
1 +

3q2

r2
+ 3Λr2 .

Then at the boundary when R = r we have the total mass and total charge

given by mg(R) = M and q(R) = Q respectively, therefore

Mg

R
≤ 2

9
+

Q2

3R2
− ΛR2

3
+

2

9

√
1 +

3Q2

R2
+ 3ΛR2 , (3.3.13)

when Λ = Q = 0, this equation reduces to 2M/R ≤ 8/9 which agrees with the

bound derived in section 1.5.2. It was shown in [2] that the inequality (3.3.13)

is sharp.

3.4 Maximally extended RNdS spacetime

So far we have studied some conditions for maintaining hydrostatic equilibrium

in the Reissner-Nordström de Sitter spacetime. In this section we will consider

the effects of the radius not respecting the bound (3.3.13). In this case, the

radius of the matter distribution R will reduce to the event horizon and develop

a singularity at r = 0.

As mentioned in section 1.1.1 there are various coordinate systems which
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allow us to see the full causal structure of a solution, and explore sections of

spacetime that might be hidden behind an event horizon. The RNdS solution

contains three horizons, namely the cosmological rc inner r+ and outer r− hori-

zons. Due to the complicated nature of these horizons, in this section we will set

Λ = 0 and show the derivation of the maximally extended Reissner-Nordström

solution. This method can be generalised to obtain the maximally extended

RNdS spacetime, but will not be shown in this thesis.

3.4.1 Extension of the Reissner-Nordström solution

The Reissner-Nordström solution is given by the line element

ds2 = −
(

1− 2Mg

r
+
Q2

r2

)
dt2 +

(
1− 2Mg

r
+
Q2

r2

)−1

dr2 + r2dΩ2 ,

and the event horizons correspond to the radial values that satisfy the condition

1− 2Mg

r + Q2

r2 = 0 which generates the outer r+ and inner r− horizons

r± = Mg ±
√
M2
g −Q2 .

This solution has four possibilities depending on the relationship between Q and

Mg, and only one of these cases gives rise to a spacetime that will contain two

event horizons if gravitational collapse occurs. The first case Q = 0 yields the

trivial result r+ = rs , r− = 0, secondly when Q2 > M2
g this gives rise to an non-

physical solution that contains a naked singularity with no event horizons. The

remaining two cases correspond to Q2 = M2
g and Q2 < M2

g , the former implies

the black hole will have the minimal possible mass with degenerate horizons

r+ = r− and this is referred to as an extremal black hole, whereas the latter

yields a solution with r+ > r− which is divided into three regions with two

event horizons. In the construction of the spacetime diagram, we will consider

the case r+ > r− thus Q2 < M2
g .

If we use the coordinate system (t, r, θ, φ) to construct a spacetime diagram,

it will not be possible to extend beyond the coordinate singularity located at r+.

This can be seen by studying null geodesics in the radial direction for constant

θ and φ, then examining the behaviour as r+ is approached. Such geodesics

travel along the boundary of the light cone and can be used to measure the

slope of the boundary (or tilting of the light cone). The geodesics are obtained
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by calculating ds2

dτ2 = 0 where τ denotes the proper time, this yields

dt

dr
=
(

1− 2Mg

r
+
Q2

r2

)−1

=
r2

(r − r+)(r − r−)
.

As the horizon r+ is approached dt
dr → ∞ and the light cones become smaller

then eventually are reduced to a line at r = r+, therefore null geodesics cannot

be extended beyond the outer horizon.

We can now introduce the so-called tortoise coordinate r∗, by integrating

the null geodesic r∗ =
∫ (

1− 2Mg

r̃ + Q2

r̃2

)−1

dr̃ which yields

r∗ = r +
1

2
√
M2
g −Q2

(
r2
+ ln(r − r+)− r2

− ln(r − r−)
)
. (3.4.1)

Therefore r is defined implicitly in terms of r∗ by the relation in (3.4.1). The

new line element is then given by

ds2 =
(

1− 2Mg

r
+
Q2

r2

)(
dr∗2 − dt2

)
+ r2dΩ2 ,

where r = r(r∗) is viewed as a function of r∗. We can see the (t, t) and (r∗, r∗)

metric coefficients now vanish at r+ as opposed to becoming singular, however

when r = r+, r∗ → −∞ therefore r∗ is not well-defined beyond the horizon.

Thus we need another change of coordinates to describe this region of spacetime.

To achieve this, we extend the tortoise transformation to eliminate t and r∗

from the metric by adopting the Eddington-Finkelstein coordinates [40, 41] as

follows u = t − r∗ and v = t + r∗, these are often referred to as the ingoing

and outgoing null coordinates respectively. Note that v − u = 2r∗, and setting

u = constant or v = constant gives rise to ingoing or outgoing null geodesics

respectively. Eddington-Finkelstein coordinates enable a better understanding

of spacetime, particularly in the region of the horizon r+. In this region we

can write down two metrics corresponding to (u, r) and (v, r), each metric de-

scribes versions of the spacetime geometry relating to ingoing and outgoing null

geodesics respectively. In each spacetime, geodesics can be extended beyond the

horizon therefore the light cones do not tilt to the extent that they close up as

the horizon is approached. Alternatively we can write the metric in double null

coordinates (u, v) where r is given in terms of u and v implicitly by the relations

v−u = 2r∗ and equation (3.4.1). Using uv = t2− r∗2 the first two terms of the

73



line element reduce to

ds2 = −

(
1− 2Mg

r
+
Q2

r2

)
dudv = −

(
r − r−

)
r2

(
1+

r2−
r2
+

)
e

√
M2
g−Q

2

r2
+

(
v−u−2r

)
dudv ,

(3.4.2)

where we used r∗ = 1
2 (v − u) to rewrite the metric coefficient. Alternatively,

the metric can be written as follows

ds2 = −

(
1− 2Mg

r
+
Q2

r2

)
dudv = −

(
r − r+

)
r2

(
1+

r2+

r2−

)
e

−
√
M2
g−Q

2

r2−

(
v−u−2r

)
dudv .

(3.4.3)

The line elements in double null Eddington-Finkelstein coordinates (3.4.2)

and (3.4.3) need to be transformed further in order to be extended beyond

the horizons r±. The new coordinates required are referred to as the Kruskal-

Szekeres representation, which can be used to construct the Kruskal-Szekeres

extension and from this the Carter-Penrose diagrams. The latter allows a vi-

sualisation of both the ingoing and outgoing null geodesics in one spacetime

diagram. We will show a derivation of the metrics used to obtain this diagram,

but will not explicitly show the Kruskal-Szekeres spacetime diagram. First we

relabel the coordinates as

U+ = −e
−
√
M2
g−Q

2

r2
+

u
, V+ = e

√
M2
g−Q

2

r2
+

v
,

U− = e

√
M2
g−Q

2

r2−
u

, V− = −e
−
√
M2
g−Q

2

r2−
v
,

therefore r(U+, V+) and r(U−, V−) are both defined implicitly by the relation

given in equation (3.4.1) and

U+V+ =− e

√
M2
g−Q

2

r2
+

(v−u)
= −e

2
√
M2
g−Q

2

r2
+

r∗

,

U−V− =− e
−
√
M2
g−Q

2

r2−
(v−u)

= −e
−

2
√
M2
g−Q

2

r2−
r∗

.

This can be used to transform equations (3.4.2) and (3.4.3) to the two-dimensional

(U+, V+) and (U−, V−) line elements respectively, where the line element in equa-
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tion (3.4.2) becomes

ds2 = −
r4
+

(
r − r−

)(1+
r2−
r2
+

)
e
−

2r
√
M2
g−Q

2

r2
+

r2(M2
g −Q2)

dU+dV+ ,

inspecting the metric reveals that the singularity at r = r+ has been removed,

but at r = r− the coefficient vanishes. Using (U−, V−) coordinates yields an

alternative metric that is well-defined at r = r− but vanishes at r = r+, this

can be written as

ds2 = −
r4
−
(
r − r+

)(1+
r2+

r2−

)
e

2r
√
M2
g−Q

2

r2−

r2(M2
g −Q2)

dU−dV− .

Now we can transform the metric into Kruskal-Szekeres coordinates (T±, R±)

defined by T+ − R+ = U+ , T+ + R+ = V+ , so that −dT 2
+ + dR2

+ = −dU+dV+

to obtain the metric

ds2 =
r4
+

(
r − r−

)(1+
r2−
r2
+

)
e
−

2r
√
M2
g−Q

2

r2
+

r2(M2
g −Q2)

(
−dT 2

+ + dR2
+

)
+ r2dΩ2 .

A similar relabelling can be made for the (U−, V−) coordinates with T−−R− =

U− and T− + R− = V−. The Carter-Penrose diagrams can be obtained from

the Kruskal-Szekeres extension in either (U±, V±) or (T±, R±) coordinates, and

will be shown in the next section.

3.4.2 Carter-Penrose diagrams

Carter-Penrose diagrams are often referred to as conformal diagrams, they en-

able us to visualise the entire spacetime in a two-dimensional diagram. This

is achieved by suppressing the two spatial dimensions θ, φ and considering the

two-dimensional metric with coordinates (t, r) → (U±, V±). Then each point

on the diagram represents a two-sphere with radius r and null geodesics are

depicted by straight lines.

Applying a conformal transformation of the form U ′± = arctanU±+ , V ′± =
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arctanV± gives rise to the rescaled metrics

ds2 =
r4
+

(
r − r−

)(1+
r2−
r2
+

)
e
−

2r
√
M2
g−Q

2

r2
+

r2 cos2 U ′+ cos2 V ′+(M2
g −Q2)

dU ′+dV ′+ ,

ds2 =
r4
−
(
r − r+

)(1+
r2+

r2−

)
e

2r
√
M2
g−Q

2

r2−

r2 cos2 U ′− cos2 V ′−(M2
g −Q2)

dU ′−dV ′− .

This conformal transformation allows the diagram to include infinity in a finite

diagram. There are five distinct infinities appearing on the diagram including

the future and past null J±, future and past time-like i± infinities and spatial

infinity i0. Here J− and J + correspond to V ′+ = π/2 or U ′+ = π/2 respectively,

then i− and i+ satisfy V ′+ = −U ′+ = π/2 or U ′+ = −V ′+ = π/2 respectively,

finally spatial infinity i0 is located at U ′+ = V ′+ = π/2. The region r > r+ can

be described by either the Kruskal-Szekeres extension or the exterior Reissner-

Nordstrom solution, however extending geodesics into the region r− < r ≤ r+

will require the use of Kruskal-Szekeres coordinates (U+, V+) and likewise the

region r ≤ r− will need the alternative description given by (U−, V−).

In the construction of the Carter-Penrose diagram for the Schwarzschild

solution, passing the horizon rs results in the time-like coordinate t becoming

space-like and thus r becomes time-like, the singularity at r = 0 is space-like.

However, the singularity in the Reissner-Nordström solution is time-like.

Below are some Carter-Penrose diagrams for the Reissner-Nordström de Sit-

ter spacetime. In particular we can see how the path of a particle is affected as

it approaches the horizon, and its fate once the horizon is crossed.
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3.5 The Nariai solutions

The Kottler solution has line element ds2 = eadt2 + ebdr2 + r2dΩ2 with ea =

e−b = 1− 2Mi

r −
Λ
3 r

2. This solution contains two horizons, namely the event rs

and cosmological rc horizons. Let

H(r) = 3re−b = −Λr3 + 3r − 6Mi ,

then the cubic H = 0 will have three distinct roots provided that the discrimi-

nant D3 > 0. For the function H the discriminant D3 only contains two terms

since it has no quadratic term, where D3 = −4αβ3−27α2γ2 with α = −Λ , β = 3

and γ = −6Mi. The presence of a quadratic term would make D3 considerably

longer. Then D3 > 0 yields the condition 9ΛM2
i < 1. The function H contains

three roots, and two of these roots give the locations of the horizons rc and rs,

whereas the third root is negative and does not have any physical significance

since the radial value must be positive.

The Kottler spacetime has a subset of solutions with maximal mass, this is

achieved when the horizons rc and rs are degenerate or equivalent. The repeated

root implies the discriminant of H = 0 satisfies D3 = 0 therefore 9ΛM2
i = 1.

In the region of the repeated horizons the metric coefficients in Schwarzschild-

like coordinates become ea = e−b = 1 − 2Mi

r −
Λ
3 r

2 = 0, therefore the (t, r)

coordinates in the Kottler solution are not sufficient to describe this region

of spacetime and a more suitable description is required. This is given by the

Nariai solution, where the exterior Nariai solution has been derived using various

methods [30, 221, 222]. In [221], it was shown that the Nariai spacetime can be

viewed as a four-dimensional submanifold of a flat six-dimensional Lorentzian

manifold with inner product structure. This is described by the line element

ds2 = −dx2
0 + dx2

1 + dx2
2 + dx2

3 + dx2
4 + dx2

5 , (3.5.1)

subject to the constraints −x2
0 + x2

1 + x2
2 = 1

Λ and x2
3 + x2

4 + x2
5 = 1

Λ , these

conditions state that the line element (3.5.1) is a product of a three-sphere

and hyperbolic three-space. Using a coordinate transformation we obtain the

exterior Nariai metric

ds2
ext =

1

Λ

(
−(α sinχ+ β cosχ)2dt2 + dχ2 + dΩ2

)
, (3.5.2)

this exterior solution was obtained by Nariai in 1951, [30]. The coordinate
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transformation will be described in more detail in the presence of charge in the

next section 3.5.1, where setting Q = 0 will yield the above metric. Note that

α and β are constants which will be fixed when matching to the interior metric.

The Nariai metric is more commonly written with the constants already fixed

to α = 0 and β = 1.

An alternative method was used to derive the exterior Nariai solution in [222],

where (3.5.2) was obtained by considering a slight deviation from the maximal

mass Nariai solutions. This was achieved with 9ΛM2
i = 1 − ε2 for 0 ≤ ε � 1,

then letting ε→ 0 implies rc → rs and yields the Kottler spacetime with degen-

erate horizons. Then the relevant coordinate transformation, which is outlined

in [222], will give rise to a spacetime which deviates from the Nariai spacetime

slightly, and letting ε→ 0 gives the Nariai metric (3.5.2) with α = 0 and β = 1.

The interior metric can be obtained directly from the TOV-like equation (3.2.7)

with isotropic pressure, constant density 4πρ = Λ and in the absence of charge,

similarly to [70]. The interior Nariai metric is given by

ds2
int = −

(
ρ+ pc
ρ

)2(
1− pc cosχ

pc + ρ

)2

dt2 +
1

Λ

(
dχ2 + dΩ2

)
, (3.5.3)

this metric was obtained much later than the exterior Nariai solution, following

it by over half a century in [70]. The derivation will be shown in the next section

in the presence of charge, and by setting q = 0 and assuming a constant density

4πρ = Λ will yield the interior Nariai solution (3.5.3).

3.5.1 Charged Nariai counterpart

The charged Nariai spacetime forms a subclass of the Reissner-Nordström de

Sitter solution and contains three degenerate horizons referred to as the in-

ner, outer and cosmological horizons. In the region of the three horizons, the

RNdS metric coefficient e−b → 0, therefore two of the RNdS coordinates be-

come unsuitable in this spacetime region, namely the (t, r) coordinates. Hence

an alternative description of spacetime is required in this region, analogously to

the Nariai spacetime as a subset of the Kottler solution. In what follows we will

derive the exterior and interior metric and match these metrics at the boundary.

The method utilised in [221] can also be applied to the charged Nariai

spacetime, which is embedded in a six-dimensional flat Lorentzian manifold

with line element (3.5.1). This line element is now subject to the constraints
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−x2
0 + x2

1 + x2
2 = 1

A and x2
3 + x2

4 + x2
5 = 1

B , where A 6= B are constants with

2Λ = A + B and 2Q2 = B − A therefore A = Λ − Q2 and B = Λ + Q2. The

metric is reformulated in the following way

x0 =
sinh

(
t
√
α2 + β2

)
√
A(α2 + β2)

(
α sinχ+ β cosχ

)
,

x1 =
cosh

(
t
√
α2 + β2

)
√
A(α2 + β2)

(
α sinχ+ β cosχ

)
,

x2 =
1√

A(α2 + β2)

(
β sinχ− α cosχ

)
,

which parametrises hyperbolic three-space. The remaining three components

describe the three-sphere with radius 1/
√
B and are given by

x3 =
1√
B

sin θ cosφ , x4 =
1√
B

sin θ sinφ , x5 =
1√
B

cos θ .

This coordinate system yields the exterior charged Nariai metric

ds2
ext =

1

A

(
−
(
α sinχext + β cosχext

)2
dt2 + dχ2

ext

)
+

1

B
dΩ2 , (3.5.4)

where the subscript ‘ext’ is used to distinguish between this and the interior

charged Nariai spacetime. In the absence of charge, we have A = B = Λ which

yields the Nariai metric (3.5.2).

The interior, first derived in [1], is also obtained from the conservation equa-

tion (3.2.5) with isotropic energy-momentum tensor, which implies p − p⊥ =
q2

4πr4 . In order to proceed, we write

8πµ := 8πρ+
q2

r4
:= constant ,

with this assumption we can use the (t, t) field equation (3.1.10) to write the

metric coefficient e−b as

d

dr

(
r − re−b

)
= 8πr2ρ+

q2

r2
+ Λr2 . (3.5.5)
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Integrating both sides gives

r − re−b =

∫ r

0

(
8πr̃2ρ+

q2

r̃2
+ Λr̃2

)
dr̃

=

∫ r

0

(
8πr̃2µ+ Λr̃2

)
dr̃ =

8πr3µ

3
+

Λr3

3
. (3.5.6)

Thus the metric coefficient e−b becomes

e−b = 1− 8πr2µ

3
− Λr2

3
:= 1− r2

R2
,

b′ =
2r

R2 − r2
, (3.5.7)

where we have defined 3
R2 := 8πµ + Λ = constant. Using equation (3.2.2) we

can write a′ = 8πreb
(
ρ + p

)
− b′. Now let z = ρ + p, then the conservation

equation (3.2.5) becomes

z′ +
4πrR2

R2 − r2
z2 − r

R2 − r2
z − d

dr

(
ρ+

q2

8πr4

)
= 0 , (3.5.8)

we have used the relations in equation (3.5.7) in place of e−b and b′. Since the

quantity ρ+ q2

8πr4 = constant, this can be integrated to obtain z, which yields

z = ρ+ p =
1

4πR2

(
1 + C

√
1− r2

R2

)−1

, (3.5.9)

where C is an integration constant. From equation (3.2.2), we can obtain an

expression for a′, thus fixing the remaining metric component ea/2

a′ =
2r

R2 − r2

{(
1 + C

√
1− r2

R2

)
− 1

}
,

ea/2 =B

(
1 + C

√
1− r2

R2

)
=

1 + C
√

1− r2

R2

1 + C
, (3.5.10)

the constant of integration B is fixed by setting ea(0) = 1 = B(1 + C). The

remaining constant of integration C is now fixed by considering the values of

the energy density and pressure at the origin r = 0, given by ρ(0) = ρc and

p(0) = pc, these are referred to as the central density and pressure respectively.

Evaluating the central value of z gives z−1
c =

(
ρc + pc

)−1 = 4πR2
(
1 +C

)
hence
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C = 1

4πR2
(
ρc+pc

) − 1.

The current coordinate system has a singularity as r → R, since eb = R2

R2−r2 .

The spatial part of the interior solution is a three-sphere, where the dΩ2 compo-

nent of the line element describes the two-sphere in terms of the two Euler angles

θ and φ, we can thus introduce the third Euler angle χ such that r = R sinχ.

Using this coordinate we have 1 − r2

R2 = cos2 χ. This gives rise to the interior

metric

ds2
int = −

(
1 + C cosχint

1 + C

)2

dt2 +R2
(

dχ2
int + sin2 χint dΩ2

)
. (3.5.11)

The charge parameter q does not appear explicitly in the metric since it is

contained in the constant R with the relation 3
R2 = 8πρ+ q2

r4 + Λ, this quantity

is constant since 8πµ = 8πρ+ q2

r4 = constant. The constant of integration C also

contains R since C = −1+1/4πR2(ρc+pc), therefore q enters the metric through

both R and C. Using these expressions the metric can be written explicitly in

terms of q and Λ as

ds2 =

(
12π(ρc + pc)

8πρ+ q2

r4 + Λ

)2(
1 + cosχint −

8πρ+ q2

r4 + Λ

12π(ρc + pc)
cosχint

)2

dt2

+
3

8πρ+ q2

r4 + Λ

(
dχ2

int + sin2 χintdΩ2

)
. (3.5.12)

The same method as above can be used in the derivation of the Nariai

interior (3.5.3) in the absence of charge, with q = 0 and a constant energy

density 4πρ = Λ. This implies that 1
R2 = 4πρ, following the same steps with

these changes and writing the integration constant C in terms of central values

yields the metric (3.5.3).

3.5.2 Matching the charged Nariai spacetimes

Let q = er2 = eR2 sin2 χ, then for consistency the constant e must have di-

mension of charge/length2. This implies 8πµ = 8πρ + e2 = constant, since

e = constant this yields a constant energy density ρ.

The interior metrics (3.5.11) and (3.5.12) are singularity free, and in par-

ticular the metric coefficients are finite and non-zero at the centre. Thus the

interior is regular and can be matched to the exterior charged Nariai metric
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at the boundary χb. The boundary and matching conditions will be discussed

further in this section.

Matching hypersurface

The boundary shared by the two metrics is referred to as the matching hypersur-

face Σb where χint = χb, the pressure is assumed to vanish here in order to match

to the electro-vacuum exterior without any discontinuities in the field equations.

The pressure can be written as p = z − ρ, which using equation (3.1.11) in new

coordinates r → χint yields

p(χint) =

(
ρc + pc

)(
4πρc − Λ− e2

)
− ρc

(
4π
(
ρc + 3pc

)
− Λ− e2

)
cosχint(

4π
(
ρc + 3pc

)
− Λ− e2

)
cosχint − 12π

(
ρc + pc

) ,

(3.5.13)

this equation (3.5.13) and the equations below which follow from (3.5.13) are

valid for all solutions to the field equations (3.1.10)–(3.1.12) which satisfy equa-

tion (3.5.7) with 8πµ = constant.

Since the pressure vanishes at the matching hypersurface when χint = χb,

the condition p(χb) = 0 can be used to give an expression for χb

cosχb =

(
ρc + pc

)(
4π − Λ− e2

)
ρc

(
4π
(
ρc + 3pc

)
− Λ− e2

) , (3.5.14)

this can be rearranged to obtain an expression for the central pressure

pc =
ρc
(
1− cosχb

)(
4πρc − Λ− e2

)
4πρc

(
3 cosχb − 1

)
+ Λ + e2

.

Since pc is required to be positive and finite, this implies the denominator is

positive 4πρc
(
3 cosχb − 1

)
+ Λ + e2 > 0, which yields

cosχb >
1

3
− Λ + e2

12πρc
. (3.5.15)

This inequality can be rearranged to provide an upper bound on M/rb which is

valid for the charged Nariai spacetime. Here r = rb denotes the radial value at

the boundary, or the total radius. The previous bound derived (3.3.13) does not

include the charged Nariai solutions; this is due to the condition x = 1− e−b <
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1 which excludes the degenerate horizon RNdS solution. Reverting back to

original coordinates χb = arcsin(rb/R), then using the trigonometric identity

cos
(
arcsin(rb/R)

)
=
√

1− r2
b/R

2, this implies

cosχb = cos
(

arcsin
rb
R

)
=

√
1−

r2
b

R2
= e−b/2,

e−b/2 =

√
1− 2Mg

rb
− Λ + e2

3
r2
b .

Therefore the inequality becomes√
1− 2Mg

rb
− Λ + e2

3
r2
b >

1

3
− Λ + e2

12πρc
, (3.5.16)

setting Λ = e2 = 0 and rearranging slightly yields Buchdahl’s inequality
2Mg

rb
<

8
9 .

Matching conditions

There are two methods for matching solutions at a common hypersuface. Firstly

one can transform the metrics to Gaussian coordinates, which requires the re-

labelling ψext = χext/
√
A and ψint = Rχint in the exterior and interior respec-

tively. Then we must show that the metrics and their derivative take the same

value at the matching hypersurface. Alternatively, one can use the Darmois-

Israel method and show that both the first and second fundamental forms agree

at the matching hypersurface [53, 54]. We used the former approach in [1] to

match the charged Nariai solutions, therefore here we will follow the latter to

illustrate the equivalence of the two methods.

The metrics now need to be matched at Σb where χint = π/2. Using the

method in [55], the metrics (3.5.4) and (3.5.11) can be written of the form

ds2 = −ef(χ)dt2 +
1

g(χ)2
dχ2 + h(χ)2dΩ2 .

In the exterior charged Nariai line element (3.5.4) g(χ) = 1√
A

and h(χ) = 1√
B

are constants.

The value of χext at the matching hypersurface Σb is yet to be determined,

this can be obtained using the coordinate transformation between the χ coor-
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dinate of the two metrics (3.5.4) and (3.5.11). This is given by

1√
A

dχext → Rdχint .

Which yields χext → R
√
Aχint, this transfers between χext and χint coordinates

on the matching hypersurface Σb. Thus when χint = π/2 we have χext =

R
√
Aπ/2.

The first fundamental form is simply given by the metric components and

hence the coefficients of the line elements ds2
int and ds2

ext are required to be

equal at Σb. This yields the conditions

R2 =
1

B
,

1

1 + C
=

1√
A

(
α sin

(
R
√
A
π

2

)
+ β cos

(
R
√
A
π

2

))

=
1√
A

(
α sin

(√A

B

π

2

)
+ β cos

(√A

B

π

2

))
. (3.5.17)

The second fundamental form is represented by the extrinsic curvature Kµν of

the matching hypersurface, the extrinsic curvature is Kµν = hµ
ρ∇ρnν , see [5,55].

Here hµν = gµν − nµnν is a three-dimensional (t, θ, φ) projection of the four-

dimensional (t, r, θ, φ) metric gµν , and nµ is the outward pointing unit normal

vector to Σb which has constant χ in both the interior and exterior spacetimes.

The unit normal vectors are nµext = (0,
√
A, 0, 0) and nµint = (0, 1

R , 0, 0). The

projection metric and extrinsic curvature are given by the following

hµν = diag
(
−ef , h2 , h2 sin2 θ

)
,

Kµν = diag

(
−gef

2

df

dχ
,
gh

2

dh

dχ
,
gh

2

dh

dχ
sin2 θ

)
.

In the exterior and interior charged Nariai spacetimes the projection metrics
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and second fundamental forms are given by

hext
µν = diag

(
−
(
α sinχext + β cosχext

)2
A

,
1

B
,

sin2 θ

B

)
,

Kext
µν = diag

(
−
(
α sinχext + β cosχext

)(
α cosχext − β sinχext

)
√
A

, 0 , 0

)
,

hint
µν = diag

(
−
(1 + C cosχint

1 + C

)2

, R2 sin2 χint , R
2 sin2 χint sin2 θ

)
,

Kint
µν = diag

(
2C sinχint

(
1 + C cosχint

)
R
(
1 + C

)2 ,

R3

2
sinχint cosχint ,

R3

2
sinχint cosχint sin2 θ

)
.

The remaining matching conditions are obtained by imposing hext
µν = hint

µν and

Kext
µν = Kint

µν at Σb, that is when χint = π/2 and χext = R
√
Aπ/2 := ξ. The

first condition hext
µν = hint

µν confirms the matching conditions (3.5.17) obtained by

matching the first fundamental forms, thus we only need to check Kext
µν = Kint

µν .

When χint = π/2 the conditions Kext
θθ = Kint

θθ and Kext
φφ = Kint

φφ are satisfied

trivially, therefore one condition remains. Namely Kext
tt = Kint

tt , which yields

− 2C

R(1 + C)2
=

1√
A

(
α sin ξ + β cos ξ

)(
α cos ξ − β sin ξ

)
, (3.5.18)

the matching conditions given in equations (3.5.17) and (3.5.18) coincide with

those derived in [1], thus illustrating the equivalence of the aforementioned

matching methods. In [1], the matching conditions are put together and written

as (
sin ξ cos ξ

cos ξ − sin ξ

)(
α

β

)
=

( √
A/(1 + C)

−2C/R

)
, (3.5.19)

where the matching conditions also imposes a relationship between χint and χext

which can be expressed as ξ = R
√
Aπ/2 =

√
A/B π/2.

3.6 Generalised charged Einstein static universes

In this section we will utilise some results derived in this chapter to obtain

generalisations of the Einstein static universe, and amongst these models will
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be the usual Einstein static universe in the presence of charge.

The RNdS metric is given by equations (3.1.8) with metric coefficients (3.1.16)–

(3.1.17), the centre of this solution lies at r = 0. In new coordinates r = sinχ,

thus r = 0 gives rise to two regular centres at χc1 = 0 and χc2 = π. Note that

the Nariai universe does not contain a second centre since the interior is valid

for the range 0 ≤ χ ≤ π/2, whereas this solution does.

We assume a constant energy density ρ ≡ ρc, similarly to the neutral Einstein

static universe. We also require that the pressure is strictly positive and finite

for all values of χ including χc1 and χc2 , where the latter implies 0 < p(π) <∞.

Using the pressure equation (3.5.13) evaluated at χ = π, this condition is then

expressed as

0 <
(Λ + e2)(2ρc + pc)− 8πρc(ρc + 2pc)

8π(2ρc + 3pc)− Λ− e2
<∞ ,

which is finite and strictly positive provided that both the numerator and de-

nominator are strictly positive, this yields the respective constraints

Λ + e2 >
8πρc(ρc + 2pc)

2ρc + pc
,

Λ + e2 < 8π(2ρc + 3pc) .

Thus in the generalised Einstein static universe the combination Λ + e2 is re-

stricted to the range

8πρc
(
ρc + 2pc

)
2ρc + pc

< Λ + e2 < 8π
(
2ρc + 3pc

)
.

By examining the pressure equation (3.5.13) it is straightforward to see that

this becomes constant if we let Λ + e2 = 4π(ρc + 3pc), since the terms in-

volving the parameter χ vanish. With this constraint the pressure becomes

p = pc(ρc+pc)
ρc+pc

, and the radius 3
R2 = 8πρc + Λ + e2 reduces to R2 = 1

4π(ρc+pc)
.

This gives rise to the charged analogue of the usual Einstein static universe,

with constant energy density and pressure.

Next, allowing a non-constant pressure p(χ) and evaluating the pressure

equation (3.5.13) at the two centres χc1 = 0 and χc2 = π yields the central
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pressures pc1 and pc2

pc1 := p(χ = 0) = pc ,

pc2 := p(χ = π) =
8πρc(ρc + 2pc1)− (Λ + e2)(2ρc + pc1)

Λ + e2 − 8π(2ρc + 3pc1)
.

The expression for pc2 can be rewritten to give an equation for Λ + e2 in terms

of the central energy density ρc and central pressures pc1 , pc2

Λ + e2 =
8πρc(ρc + 2pc1) + 8πpc2(2ρc + 3pc1)

2ρc + pc1 + pc2

Now this quantity can be eliminated from the pressure equation (3.5.13), and

it can therefore be written as a function of the central values ρc , pc1 , pc2 and χ

p(χ, ρc, pc1 , pc2) =
ρc(pc1 + pc2) + 2pc1pc2 + ρc(pc1 − pc2) cosχ

2ρc + pc1 + pc2 − (pc1 − pc2) cosχ
. (3.6.1)

Additionally, the vanishing pressure hypersurface χb given by equation (3.5.14)

can be expressed in terms of central values ρc , pc1 and pc2 ,

cosχb =

(
ρc − pc1

)(
pc2(2pc1 − 1)− pc1

)
pc1(ρc + pc1 + pc2(2ρcpc1 − ρc + pc1)

. (3.6.2)
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Chapter 4

Modified f (T ) gravity

The tetrad field plays an extremely important role in determining the field

equations of modified f(T ) gravity, this will be illustrated with an example

in section 4.1. Given a metric gµν the associated tetrad field eiµ not unique,

hence an arbitrary Lorentz transformation applied to the tetrad field will leave

the corresponding metric unchanged, this statement will be shown explicitly in

section 4.2, and various tetrads will be summarised. The remaining results will

utilise the so-called rotated tetrad, first we will explore Birkhoff’s theorem in

the context of f(T ) gravity in section 4.3. Next we will consider solutions in

hydrostatic equilibrium in section 4.4, we will derive an upper bound on M/R in

f(T ) gravity using an analogous method from chapter 3. This bound gives rise

to some constraints on the form of f(T ) given a static solution in hydrostatic

equilibrium.

4.1 Absence of relativistic stars

This section is dedicated to review the results obtained in [209], which aimed to

show that spherically symmetric solutions are not attainable in modified telepar-

allelism. This result was obtained by deriving the analogue of the TOV-like con-

servation equation (1.3.5) in f(T ) gravity for the static, spherically symmetric

line element

ds2 = eadt2 − ebdr2 − r2dΩ2 , (4.1.1)
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which is generated locally by the tetrad field eiµ = diag
(
ea/2, eb/2, r, r sin θ

)
whose determinant is the product of its diagonal elements e = e(a+b)/2r2 sin θ =
√
−g. We refer to this as the diagonal tetrad field to distinguish from other

tetrads used later, note that the opposite sign convention was used in [209].

Although the diagonal tetrad field locally gives rise to the spherically sym-

metric line element (4.1.1), it should be noted that the tetrad field contains

singularities at the north (θ = 0) and south (θ = π) poles2, therefore it is not

well-defined globally and hence cannot be described as spherically symmetric.

The torsion scalar in a Weitzenböck spacetime (2.2.1) and the field equa-

tions (2.3.2) can be written explicitly in terms of the metric, and in component

form

T (r) =
2e−b

r

(
a′ +

1

r

)
, (4.1.2)

4πρ =− e−b

r
T ′fTT −

(
T − 1

r2
− e−b

r

(
a′ − b′

))fT
2

+
f

4
, (4.1.3)

4πp =

(
T − 1

r2

)
fT
2
− f

4
, (4.1.4)

4πp⊥ =
e−b

2

(
a′

2
+

1

r

)
T ′fTT

+

(
T

2
+

e−b

2

(
a′′ +

(
a′

2
+

1

r

)(
a′ − b′

)))fT
2
− f

4
. (4.1.5)

These are the field equations derived for the diagonal tetrads in [209], where an

isotropic pressure was used so p⊥ = p. This particular tetrad field is the simplest

possible orthonormal basis of TM that locally gives rise to gµν , however using

the diagonal tetrad field results in an additional off-diagonal field equation

e−b/2 cot θ

2r2
T ′fTT = 0 , (4.1.6)

this equation was overlooked in [209] and [220]. Note that when using the

diagonal tetrad field in TEGR, fTT = 0 therefore this additional off-diagonal

equation is not among the field equations.

However in the absence of this equation, the remaining field equations still

do not give rise to the aforementioned result. From the three field equations

above with isotropic pressure, without the restriction (4.1.6), we can derive a

2I am very grateful to Dmitri Vassiliev for bringing this to my attention.
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conservation equation. This is obtained in an analogous way to general relativ-

ity; add equation (4.1.3) to equation (4.1.4) to give ρ+ p then multiply this by

a′/2, subtract (4.1.4) from (4.1.5) and multiply the result by 2/r, the latter is

then used to simplify the former. The resulting equation is substituted into the

derivative of (4.1.3) which yields

4πp′ = − T ′

2r2
fTT − 2πa′(ρ+ p) . (4.1.7)

This is the same equation derived in [209], it was deduced that since this conser-

vation equation does not agree with the conservation equation (1.3.5) from gen-

eral relativity, the additional term T ′

2r2 fTT must vanish. But modified teleparal-

lelism is not required to be equivalent to general relativity. The limit f(T ) = T

which is teleparallelism is required to be equivalent to general relativity, and the

additional term in the the conservation equation vanishes in this limit. There-

fore (4.1.7) would be an acceptable conservation equation if the field equations

were correct, and the aforementioned result does not follow from the field equa-

tions used in [209] for the diagonal tetrad field.

However, the additional field equation (4.1.6) implies that either T ′ = 0 or

fTT = 0, the latter would yield f(T ) = αT + β (where α and β are constants

of integration) which would restrict our results to general relativity thus we

assume the former condition. This condition T ′ = 0 means T = constant = T0

therefore f(T0) = constant, which causes too much of a restriction on the allowed

f(T ) models and the possible solutions which satisfy all four field equations.

But this does not imply that spherically symmetric solutions do not exist in

modified teleparallelism, it just means an alternative tetrad field would be more

suitable. The singularities of the diagonal tetrad field also imply alternative

tetrads are required. For instance, in [3] we rotated the diagonal tetrad field,

this change removes the restrictions on T however the singularities of the tetrads

remain. Therefore we conclude that an alternative coordinate system for the

metric (4.1.1) will produce spherically symmetric solutions, possible alternatives

include Gullstrand-Painlevé coordinates [210] or isotropic coordinates [217]. For

instance, the Schwarzschild solution was obtained using Gullstrand-Painlevé

coordinates in [210] and boosted isotropic coordinates in [217]. Some of the

results in [3] will be summarised in the next section.
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4.2 Various tetrad fields

Different tetrad fields corresponding the the same metric gµν do not give rise to

the same field equations, and as we have seen above choosing the simplest form

of the tetrad will not necessarily yield meaningful field equations. This section

will make use of results derived in [3, 217–219], and will provide a derivation of

some of the results obtained in [3]. The results in this section will assume an

isotropic pressure p = p⊥.

4.2.1 Diagonal tetrad field

Recall the diagonal tetrad field used above, it is also used in some literature on

teleparallelism and its modification including [149,209,220]. Here we will state

the slightly generalised version which we utilised in [3]

eiµ = diag
(

ea(r)/2, eb(r)/2, R(r), R(r) sin θ
)
, (4.2.1)

the corresponding torsion scalar and its derivative is given below

T (r) = 2e−b
R′

R

(
a′ +

R′

R

)
,

T ′(r) = −2e−b
(
−a′′R

′

R
− a′R

′′

R
− 2R′R′′

R2
+
R′3

R3

)
− T

(
b′ +

R′

R

)
. (4.2.2)

This can be used to write the tensors Tσ
µν and Sσ

µν more explicitly, with this

the field equations become

(t, t) : 4πρ = −e−bR′

R
T ′fTT +

(
1

R2
− T + e−b

((
a′ − b′

)R′
R
− 2R′′

R

))
fT
2

+
f

4
,

(4.2.3)

(r, r) : 4πp =

(
T − 1

R2

)
fT
2
− f

4
, (4.2.4)

(θ, θ) : 4πp =
e−b

2

(
a′

2
+
R′

R

)
T ′fTT

+

(
T

2
+ e−b

(
R′′

R
+
a′′

2
+

(
a′

4
+
R′

2R

)
(a′ − b′)

))
fT
2
− f

4
, (4.2.5)

(r, θ) :
e−b/2 cot θ

2R2
T ′fTT = 0 . (4.2.6)
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Using the same method outlined in the previous section, 4.1, the conservation

equations becomes

4πp′ + 2πa′(ρ+ p) = − T ′

2R2
fTT . (4.2.7)

Note, this can be obtained directly from the general conservation equation (2.3.3)

which states 4π∂ν
(
e(ji

ν + Tiν)
)

= 0. Writing this explicitly in terms of the di-

agonal tetrad yields

ea/2 sin θT ′fTT
2

+ 4π ea/2R2 sin θ

(
p′ +

a′p

2
+

2p

R
+
a′ρ

2
− 2p

R

)
= 0 ,

which simplifies to 4πp′ + 2πa′(ρ + p) + T ′fTT
2R2 = 0. Since the right hand side

vanishes due to the field equation (4.2.6), the conservation equation becomes

p′+ a′

2

(
ρ+p

)
= 0, which unexpectedly coincides with the conservation equation

of general relativity (1.3.5).

The field equations and conservation equation (4.2.3)–(4.2.7) provide five

equations for the six unknowns
{
ρ(r) , p(r) , a(r) , b(r) , R(r) , f(T )

}
. Therefore

the system of equations is under-determined, and we need to make some rea-

sonable assumptions in order to close the set of equations and find solutions. In

what follows, various assumptions will be made in order to obtain a solution.

Solutions with diagonal tetrad field

As we have seen, this tetrad field gives rise to a constraint T ′ = 0, (4.2.6), which

will in turn restrict the allowed solutions and the form of f(T ). Two of the three

solutions which we derived in [3] are given below.

Solutions with T = 0:

Assuming a vanishing torsion scalar T will give rise to the simplest solution that

satisfies T ′ = 0. Inserting T = 0 into the torsion scalar (4.2.2) gives rise to an

equation that can be solved for a′

a′ = −R
′

R
, a(r) = ln

(
c1/R(r)

)
, (4.2.8)

where c1 is an integration constant. The constraint T = 0 implies f(0), fT (0)

and fTT (0) are constants. Inserting this into the field equations (4.2.4)–(4.2.5)
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yields

4πρ =

(
1

2R2
− e−b

2

(
R′

R

(
R′

R
+ b′

)
+

2R′′

R

))
fT (0) +

f(0)

4
, (4.2.9)

4πp = −fT (0)

2R2
− f(0)

4
, (4.2.10)

4πp =
e−b

4

(
R′′

R
+
R′2

2R2
− R′b′

2R

)
fT (0)− f(0)

4
. (4.2.11)

Inserting a′ = −R
′

R into the conservation equation (4.2.7) with T ′ = 0 leaves

4πp′ =
2πR′

R

(
ρ+ p

)
.

Since we have assumed an isotropic pressure, the following must be satisfied

e−b

2

(
R′′

R
+
R′2

2R2
− R′b′

2R

)
+

1

R2
= 0 .

This can be solved for b, which yields

b = − ln

(
c2 − 4R

RR′2

)
, (4.2.12)

where c2 is a constant of integration. Therefore, the metric coefficients are given

by

ea =
c1
R
, eb =

RR′2

c2 − 4R
,

thus the line element becomes

ds2 =
c1
R

dt2 − RR′2

c2 − 4R
dr2 −R2dΩ2 . (4.2.13)

Notice that the metric (4.2.13) becomes singular as R → 0 and R → c2/4, we

expect the latter to be a coordinate singularity, however the true nature of these

singularities requires a more detailed analysis.

Now we can use the field equations to find ρ and p, let f(T = 0) = f0 =

constant and also let fT (T = 0) = 0, where f and fT are both non-singular at
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T = 0. This yields a constant energy density and pressure ρ0 , p0 respectively

ρ0 = −p0 = − f0a

16π
,

this closes our set of equations, and all unknowns are fixed. Note that ρ0 and

p0 obey the dark energy equation of state which in its general form is given by

p/ρ = −1.

Triviality of the Einstein static universe

For this solution, we will assume a constant energy density ρ = ρ0. Consider

the case R(r) = r and the metric (4.1.1) with ea(r) and eb(r) fixed such that

ds2 = dt2 − 1

1− kr2
dr2 − r2dΩ2 , (4.2.14)

so that the corresponding diagonal tetrad field is given by

eiµ = diag

(
1,

1√
1− kr2

, r, r sin θ

)
. (4.2.15)

Since we have now chosen three functions, we have three remaining functions

and the system of equations is closed. For this choice the torsion scalar reads

T = −2(1− kr2)

r2
, T ′ =

4

r3
, (4.2.16)

and the field equations (4.2.3)–(4.2.5) become

4πρ0 = −4(1− kr2)

r4
fTT −

(
1

2r2
− k
)
fT −

f

4
, (4.2.17)

4πp =

(
1

2r2
− k
)
fT +

f

4
, (4.2.18)

4πp =
2(1− kr2)

r4
fTT +

(
1

2r2
− k
)
fT +

f

4
, (4.2.19)

0 =
e−b/2 cot θ

2r2
T ′fTT . (4.2.20)

The last field equation, and the isotropy of the pressure respectively imply

T ′fTT = 0 , −2(1− kr2)

r4
fTT = 0 . (4.2.21)
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Since 1− kr2 cannot be zero, this can only be satisfied if fTT = 0 which takes

us back to TEGR. Note that we cannot achieve T ′ = 0 due to (4.2.16).

4.2.2 Rotated tetrad field

Since eiµ belongs to the local tangent space, which is Minkowski space equipped

with the metric ηij , a local Lorentz transformation will leave the metric un-

changed. A Lorentz transformation is of the form

ẽiµ = Λije
j
µ (4.2.22)

where Λij is a four-dimensional Lorentz transformation matrix which belongs

to the Lorentz group

L =
{

Λij ∈ GL(4,R) : ηijΛ
i
kΛj l = ηkl

}
, (4.2.23)

GL(4,R) is referred to as the general linear group, this group contains all 4× 4

real valued matrices with non-zero determinant, the latter condition implies the

inverse is well-defined for all matrices in GL(4,R). The condition ηijΛ
i
kΛj l =

ηkl is the defining relation of the Lorentz group. The Lorentz group L has the

following four connected components

L↑+ =
{

Λij ∈ L : detΛ = 1,Λ0
0 > 0

}
, L↑− =

{
Λij ∈ L : detΛ = −1,Λ0

0 > 0
}
,

L↓+ =
{

Λij ∈ L : detΛ = 1,Λ0
0 < 0

}
, L↓− =

{
Λij ∈ L : detΛ = −1,Λ0

0 < 0
}
,

where the groups L↑+ and L↑− are referred to as orthochronous groups since they

preserve the direction of time (Λ0
0 > 0), and L↑+, L↓+ are referred to proper

groups since they preserve orientation (detΛ = 1). Therefore, L↑+ is called the

proper orthochronous Lorentz group, or sometimes the restricted Lorentz group.

A Lorentz transformation applied to eiµ leaves the metric unchanged. This

can be seen by writing the metric explicitly in terms of the transformed tetrad

field ẽiµ

gµν = ηij ẽ
i
µẽ
j
ν = ηijΛ

i
kΛj le

k
µe
l
ν

= ηkle
k
µe
l
ν ,

where the defining relation of the Lorentz group (4.2.23) was used to obtain the

last line. The group L contains all spatial rotations and boosts, we begin by
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considering a rotation that belongs to L and applying it to the diagonal tetrad.

A tetrad field previously used in teleparallelism to obtain the Schwarzschild

solution is obtained by applying the following spatial rotation

Λij =


1 0 0 0

0 sin θ cosφ cos θ cosφ − sinφ

0 sin θ sinφ cos θ sinφ cosφ

0 cos θ − sin θ 0

 ,

this is a spatial rotation of the elements of the diagonal tetrad by the angles θ

and φ. Since Λ0
0 > 0 and detΛ = 1 this belongs to the proper orthochronous

Lorentz group L↑+. Applying this rotation to the diagonal tetrads yields the

tetrad field

ẽiµ =


ea/2 0 0 0

0 eb/2 sin θ cosφ R cos θ cosφ −R sin θ sinφ

0 eb/2 sin θ sinφ R cos θ sinφ R sin θ cosφ

0 eb/2 cos θ −R sin θ 0

 , (4.2.24)

we often refer to this as the off-diagonal or rotated tetrad, and the field equa-

tions are significantly different to those corresponding to the diagonal tetrad.

However, the tetrad field is still not globally defined due to the singularities

at the poles, thus we can obtain the spherically symmetric line element (4.1.1)

using (4.2.24) but this tetrad field is not spherically symmetric. The field equa-

tions and conservation equation, along with some solutions are derived for the

rotated tetrad in [3], and will be summarised in this section. The field equations
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for the rotated tetrad field are given by

4πρ = − e−b/2

R

(
R′e−b/2 − 1

)
T ′fTT +

(
1

2R2
− T

4

)
fT

− e−b

2R2

(
2RR′′ −RR′b′ +R′2

)
fT +

f

4
, (4.2.25)

4πp =

(
T

4
− 1

2R2
+

e−b

2R2
R′
(
R′ +Ra′

))
fT −

f

4
, (4.2.26)

4πp =
e−b

2

(
a′

2
+
R′

R
− eb/2

R

)
T ′fTT

+

(
T

4
+

e−b

2R

(
R′′ +

(
R′

2
+
Ra′

4

)
(a′ − b′) +

Ra′′

2

))
fT −

f

4
, (4.2.27)

where the torsion scalar is given by

T (r) =
2e−b

R2

(
eb/2 −R′

)(
eb/2 −Ra′ −R′

)
,

T ′(r) =
2e−b

R2

(
eb/2 −R′

)(
eb/2b′ −Ra′′ −R′a′ − 2R′′

)
+

e−ba′

R

(
b′eb/2 − 2R′′

)
−
(
b′ +

2R′

R

)
T

Therefore the tetrad (4.2.24) does not yield the additional off-diagonal field

equation which appears in the field equations corresponding to (4.2.1). Thus

we no longer are restricted to solutions gµν with T ′ = 0, also as a result this

admits a wider class of f(T ) models. In [3], and what follows some solutions

which satisfy the field equations (4.2.25)–(4.2.27) will be derived.

Conservation equation

The conservation equation will now be obtained for the rotated tetrad. Taking

the derivative of (4.2.26) gives

4πp′(r) = − e−b

2R2

(
2R′
(

eb/2 −Ra′ −R′
)

+Ra′eb/2

)
T ′fTT +

R′

R3
fT

+
e−b

2R

(
R′

R

(
R′
(
a′ + b′

)
− 2R′′

)
+
(
a′
(
R′b′ −R′′

)
− a′′R′

)
+

2R′3

R2

)
fT .

(4.2.28)
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Next, we take a combination of the field equations (4.2.25) and (4.2.26) to obtain

4π(ρ+ p) = −e−b/2

R

(
R′e−b/2 − 1

)
T ′fTT +

R′e−b

2R2
(R′ +Ra′) fT

− e−b

2R2

(
2RR′′ −RR′b′ +R′2

)
fT . (4.2.29)

The isotropy of pressure allows us to write

− e−b

2

(
a′

2
+
R′

R
− eb/2

R

)
T ′fTT +

R′e−b

2R2
(R′ +Ra′)fT

− e−b

2R

(
R′′ +

(
R′

2
+
Ra′

4

)
(a′ − b′) +

Ra′′

2

)
fT −

1

2R2
fT = 0 . (4.2.30)

We now multiply (4.2.29) by a′/2 and (4.2.30) by 2R′/R and subtract the two

resulting equations

2πa′
(
ρ+ p

)
=

e−b

2R2

(
2R′
(

eb/2 −Ra′ −R′
)

+Ra′eb/2

)
T ′fTT −

R′

R3
fT

− e−b

2R

(
R′

R

(
R′
(
a′ + b′

)
− 2R′′

)
+
(
a′
(
R′b′ −R′′

)
− a′′R′

)
+

2R′3

R2

)
fT ,

(4.2.31)

comparing this with equation (4.2.28), we obtain the conservation equation for

the off diagonal tetrad field (4.2.24)

p′ +
a′

2
(ρ+ p) = 0 . (4.2.32)

Thus the conservation equation for the rotated tetrad coincides with the general

relativistic conservation equation, surprisingly this is true without any restric-

tions on T or f .

Below is an outline of one of the five solutions found in [3].

Solutions with b = 0

Consider our metric (4.1.1) and tetrad field (4.2.24) with b(r) = 0 and R(r) = r,

then for all values of a and r the torsion scalar is given by T (r) = 0 . Again,

since we have a vanishing torsion scalar, f and its derivatives are constant. The
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field equations simplify to

4πρ =
f(0)

4
, (4.2.33)

4πp =
a′

2r
fT (0)− f(0)

4
, (4.2.34)

4πp =

(
a′′

4
+
a′

4

(
a′

2
+

1

r

))
fT (0)− f(0)

4
. (4.2.35)

Isotropy of the pressure yields a′′ + a′2

2 −
a′

r = 0 , which we can solve for a and

find a = 2 ln(r2 +c1)+ln c2 , where c1 and c2 are constants of integration. Thus,

with b = 0, we arrive at the metric

ds2 = c2(r2 + c1)2dt2 − dr2 − r2dΩ2 . (4.2.36)

Since f(0) and fT (0) are constants we can label f(0) = f1 and fT (0) = f2.

Using this and the metric coefficient a, we can write the field equations more

explicitly

4πρ =
f1

4
, (4.2.37)

4πp =
2

r2 + c1
f2 −

f1

4
, (4.2.38)

4πp =
2

r2 + c1
f2 −

f1

4
. (4.2.39)

One can immediately see that ρ and p are given by

ρ0 =
f1

16π
, p =

f2

2π(r2 + c1)
− f1

16π
.

Notice that the pressure is regular everywhere provided that c1 > 0.

The rotated tetrad field will be utilised further in the remainder of this

thesis to derive some more results in the f(T ) framework. In section 4.3, we

will consider Birkhoff’s theorem for the non-static rotated tetrad field, and in

section 4.4 we will derive an upper bound on M/R for a static and spherically

symmetric metric locally generated by the rotated tetrad.
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4.2.3 Alternative tetrad fields

It was later shown, in [219], that the rotated tetrad field (4.2.24) is a special

case of a more general rotated tetrad. In this paper, the Schwarzschild, Kottler

and FLRW solutions were obtained for this more general tetrad field. Similarly,

we can perform a Lorentz boost to the diagonal tetrad, a particular boost was

used in [218] to obtain the Schwarzschild solution in isotropic coordinates in

the f(T ) gravity framework. A more general tetrad field used in teleparallelism

is given in [223], this is a composition of various rotations and boosts, and

under the correct restriction it reduces to either the diagonal or rotated tetrad

field (4.2.24) or the tetrads used in [218,219]. This however has not been applied

to the modified teleparallel framework in its full generality, due to the complexity

of the resulting field equations. The field equations corresponding to this tetrad

field are under-determined due to the number of variables appearing in the

tetrads, therefore assumptions are required to simplify the tetrad field in order

to derive any results.

As mentioned above, the diagonal (4.2.1) and rotated (4.2.24) tetrad fields

contain singularities. This means that these particular tetrad fields are not

global solutions of the field equations, and cannot be described as spherically

symmetric. However, the diagonal and rotated tetrads do give rise to the spher-

ically symmetric metric (4.1.1). This problem can be eliminated by considering

the metric in Cartesian coordinates then using the appropriate tetrad field for

this metric, for instance isotropic or Gullstrand-Painlevé coordinates have been

used to give the Schwarzschild solution in [210,217] respectively.

As we can see, there are many tetrad fields for a given metric. Certain

tetrads will give rise to unnecessary constraints, whereas others will yield under-

determined field equations which will then require additional assumptions in

order to derive solutions. The remainder of calculations in this thesis in the

f(T ) framework will utilise the rotated tetrad.

4.3 Birkhoff’s theorem for the rotated tetrad

Consider the time dependent, spherically symmetric metric

ds2 = ea(t,r)dt2 − eb(t,r)dr2 − r2dΩ2 , (4.3.1)
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where ea and eb now depend on time and we let R(r) = r. With these

changes (4.3.1) is locally generated by the following rotated tetrad field

eiµ =


ea(t,r)/2 0 0 0

0 eb(t,r)/2 sin θ cosφ r cos θ cosφ −r sin θ sinφ

0 eb(t,r)/2 sin θ sinφ r cos θ sinφ r sin θ cosφ

0 eb(t,r)/2 cos θ −r sin θ 0

 . (4.3.2)

The torsion scalar is also time-dependent due to the non-static metric compo-

nents

T (t, r) =
2e−b

r2

(
eb/2 − 1

)(
eb/2 − rar − 1

)
, (4.3.3)

and the derivatives of the torsion scalar can be written as

Tt(t, r) =
2e−b

r2

(
eb/2 − 1

)(
eb/2bt − rart

)
− e−b/2

r
arbt − Tbt ,

Tr(t, r) =
2e−b

r2

(
eb/2 − 1

)(
eb/2br − ar − rarr

)
− e−b/2

r
arbr −

(
br +

2

r

)
T .

The time-dependence of the tetrads means the of the sixteen components of the

field equations, we have the following five independent components

(t, t) : 4πρ =
e−b/2 − e−b

r
TrfTT +

(
1− e−b

r2
− T

2
+
bre
−b

r

)
fT
2

+
f

4
, (4.3.4)

(r, r) : 4πp =

(
T

2
− 1− e−b

r2
+
are
−b

r

)
fT
2
− f

4
, (4.3.5)

(θ, θ) : 4πp =

((
ar
2

+
1− eb/2

r

)
e−bTr −

e−abtTt
2

)
fTT

2
− f

4
+

(
e−barr

− e−abtt + T +
e−abt

2

(
at − bt

)
+ e−b(ar − br)

(
1

r
+
ar
2

))
fT
4
, (4.3.6)

(t, r) :
(

1− e−b/2
) eb/2TtfTT

r
+
btfT
2r

= 0 , (4.3.7)

(r, t) :
btfT
2r

= 0 . (4.3.8)
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The remaining components of the field equations are related to the three field

equations (4.3.5), (4.3.6) and (4.3.8) as follows

(r, r) = (θ, r) = (φ, r) ,

(θ, θ) = (r, θ) = (φ, θ) = (φ, φ) = (r, φ) = (θ, φ) ,

(r, t) = (θ, t) = (φ, t) ,

(t, θ) = (t, φ) = 0 ,

therefore the (t, t) and (t, r) components of the field equation are found to be

independent of the other components.

In addition to the five field equations (4.3.4)–(4.3.8), we must write down the

conservation equation (2.3.3) explicitly. Since we are interested in the vacuum

equations, the conservation equation becomes

∂ν

(
e
(
ei
σT ρµσSρ

νµfT +
1

4
ei
νf
))

= 0 , (4.3.9)

before computing this, we will examine the field equations more closely. Equa-

tion 4.3.8 is satisfied if fT ≡ 0 or bt = 0, the former would again restrict us

to models with f(T ) = constant, so we consider the latter. This implies b is

independent of time, so

b(t, r) ≡ b(r) .

We can now insert this into the four remaining independent field equations.

Firstly, the three diagonal components become

4πρ =
e−b/2

r

(
1− e−b/2

)
TrfTT +

(
1

r2
− T

2
+

e−b

r2
(rbr − 1)

)
fT
2

+
f

4
, (4.3.10)

4πp =

(
T

2
− 1

r2
+

e−b

r2
(rar + 1)

)
fT
2
− f

4
, (4.3.11)

4πp =
e−b

2

(
ar
2

+
1− eb/2

r

)
TrfTT

+

(
T + e−b

(
arr +

(
1

r
+
ar
2

)
(ar − br)

))
fT
4
− f

4
, (4.3.12)

the diagonal components with b = b(r) now coincide with the field equa-

tions (4.2.25)–(4.2.27) with R = r, however a (and thus T ) still have time
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dependence.

One independent field equation still remains, this is the (t, r) component

given by equation (4.3.7). The condition bt = 0 implies Tt = 2art
r

(
1− eb/2

)
and

the (t, r) field equation becomes

(
1− e−b/2

) eb/2TtfTT
r

= −
(

1− e−b/2
)2 artfTT

r2
= 0 . (4.3.13)

Returning back to the conservation equation (4.3.9), this can now be written

more explicitly as follows

∂ν
(
eji

ν
)

=TTrfTT +

(
3Tr
2

+

(
ar
2

+
2

r
− eb/2

r3

)
T − ar

r2
(1− e−b/2)

)
fT

+
e(b−a)/2Tt

sin θ(sinφ+ cosφ) + cos θ
fT +

(
ar
4

+
1− eb/2

r

)
f = 0 ,

(4.3.14)

where we have utilised the conditions b ≡ b(r) and (4.3.13) to simplify the

expressions.

Now, equation (4.3.13) gives rise to four possibilities. Firstly it is satisfied

if fTT ≡ 0 so that f(T ) = c1T + c2 for c1 and c2 constants. This condition

leads to TEGR where Birkhoff’s theorem is already valid, hence to avoid such

limitations we will look at the remaining three cases in more detail

1. b = 0: from equation (4.3.3), we see that this condition leads to a vanishing

torsion scalar. Such solutions encompass f(T ) models with f(0), fT (0)

and fTT (0) constants. Consider the vacuum field equations with T = b =

f(0) = 0, then equations (4.3.11) and (4.3.12) impose the following

arfT = 0 ,

(
arr +

ar
r

+
a2
r

2

)
fT = 0 , (4.3.15)

both of these are satisfied if either a(t, r) = constant, a(t, r) = a(t) or

fT (0) = 0. The latter will again put stringent restrictions on the f(T )

models we can work with, and a = a(t) will be considered as the next

possible solution to (4.3.13). We are now left with a = constant = a0 and

hence obtain the static exterior metric

ds2 = ea0dt2 − dr2 − r2dΩ2 ,
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this solution is Minkowski space which can be seen by rescaling the tem-

poral coordinate ea0/2dt→ dτ .

2. a(t, r) = a(t): this ansatz leads to the metric

ds2 = ea(t)dt2 − eb(r)dr2 − r2dΩ2 . (4.3.16)

The temporal coordinate can be rescaled so that ea(t)/2dt→ dτ , then the

metric (4.3.16) becomes

ds2 = dτ2 − eb(r)dr2 − r2dΩ2 ,

which is independent of time.

3. a(t, r) = a(r): this constraint on a gives rise to the static, spherically

symmetric exterior metric

ds2 = ea(r)dt2 − eb(r)dr2 − r2dΩ2 ,

therefore Birkhoff’s theorem is automatically satisfied.

Hence given the non-static rotated tetrad (4.3.2), the second off-diagonal field

equation (4.3.13) and the conservation equation (4.3.14) will be satisfied if

the line element is static and spherically symmetric, therefore yields the re-

sult required by Birkhoff’s theorem for this tetrad. Notice that, provided

b(r, t) = b(r) 6= 0, this avoids additional constraints on f or T .

4.4 Bounds on M/R in f(T ) gravity

Here we will apply the method used in sections 1.5.2, 3.3 and [2] to the f(T )

framework, recall that this method was adapted from [122]. We will obtain a

bound on M/R for a solution with the rotated tetrad, this bound ensures the

solution will remain hydrostatic equilibrium subject to some constraints on f(T )

and fT (T ).

This result will make use of the rotated tetrad (4.2.24) and the corresponding

field equations (4.2.25)–(4.2.27) with R(r) = r.
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4.4.1 New variables

Let

f(T ) =
h(ζ2T )

ζ2
+ T , (4.4.1)

where ζ2 is a constant of dimension length2 and h is dimensionless, this ensures

that the dimension of the first term is consistent with that of T . Then fT = h′+1

and fTT = ζ2h′′, where a prime always denotes differentiation with respect to

the argument. Additionally, let β = 2 log r, we denote differentiation with

respect to β as ṙ = dr/dβ = r/2, so that for example 2Ṫ = rT ′. With this

relabelling of f(T ), the field equations (4.2.25)–(4.2.27) become

8πr2ρ =− 4ζ2e−b/2
(
e−b/2 − 1

)
Ṫ h′′ +

(
1 + e−b

(
2ḃ− 1

))(
h′ + 1

)
+
r2

2

(
h

ζ2
− Th′

)
, (4.4.2)

8πr2p =

(
e−b
(

2ȧ+ 1
)
− 1

)(
h′ + 1

)
− r2

2

(
h

ζ2
− Th′

)
, (4.4.3)

8πr2p⊥ = 2ζ2e−b
(
ȧ+ 1− eb/2

)
Ṫ h′′

+
e−b

2

(
r2a′′ + 2

(
ȧ+ 1

)(
ȧ− ḃ

))(
h′ + 1

)
− r2

2

(
h

ζ2
− Th′

)
. (4.4.4)

In order to simplify the field equations, we change variables in the following way

x = 1− e−b ,

y = 8πr2p ,

z1 = h′ ,

z2 = r2

(
h

ζ2
− Th′

)
= r2

(
h

ζ2
− Tz1

)
.
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The new variables x, y, z1, z2 are all dimensionless. In order to rewrite the field

equations in these variables, we first convert the following expressions

eb =
1

1− x
,

r2a′′ = 4ä− 2ȧ ,

ḃ =
rb′

2
=

ẋ

1− x
,

h′ = z1 ,

rζ2T ′h′′

2
= ζ2Ṫ h′′ = ż1 ,

r2

2

(
h

ζ2
− Th′

)
=
z2

2
.

Inserting this into the field equations gives

8πr2ρ = (2ẋ+ x)(z1 + 1)− 4ż1(1− x−
√

1− x) +
z2

2
, (4.4.5)

8πr2p = y =
(
(1− x)(2ȧ+ 1)− 1

)(
z1 + 1

)
− z2

2
, (4.4.6)

8πr2p⊥ = 2ż1(1− x−
√

1− x)− z2

2

+ (1− x)(z1 + 1)

(
2ä+ ȧ

(
ȧ− ẋ

1− x
+

2ż1

1 + z1

)
− ẋ

1− x

)
, (4.4.7)

now we can rearrange (4.4.6) to obtain ȧ, and hence deduce ä, in new variables.

This equation for ä will only involve first order derivatives, therefore inserting

into (4.4.7) will then leave us with three first order field equations. The functions

ȧ and ä are now

ȧ =
x+ y + xz1 + z2

2

2(1− x)(z1 + 1)
,

2ä =
ẋ(y + 1) + ẏ(1− x)

(1− x)2(z1 + 1)
+

2z1ẋ+ ż2

2(1− x)(z1 + 1)

+
ẋ
(
2xz1 + z2

)
2(1− x)2(z1 + 1)

−
ż1

(
2y + z2

)
2(1− x)(z1 + 1)2

.
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Inserting this into equation (4.4.7) eliminates ä hence p⊥ is now a first order

equation

8πr2p⊥ =
ẋ(x+ y)

2(1− x)
+ ẏ +

(
x+ y

)2
4(1− x)(z1 + 1)

− z2

2
+ 2ż1(1− x−

√
1− x)

+ xż1 +
ż2

2
+

2xz1 + z2

4(1− x)

(
x+ y

z1 + 1
+

2xz1 + z2

4(z1 + 1)
+ ẋ

)
.

To summarize, using the new variables x, y, z1 and z2 we can reduce the field

equations to three first order equations

8πr2ρ = (2ẋ+ x)(z1 + 1)− 4ż1(1− x−
√

1− x) +
z2

2
, (4.4.8)

8πr2p = y , (4.4.9)

8πr2p⊥ =
ẋ(x+ y)

2(1− x)
+ ẏ +

(
x+ y

)2
4(1− x)(z1 + 1)

− z2

2
+ 2ż1(1− x−

√
1− x)

+ xż1 +
ż2

2
+

2xz1 + z2

4(1− x)

(
x+ y

z1 + 1
+

2xz1 + z2

4(z1 + 1)
+ ẋ

)
. (4.4.10)

4.4.2 Main result

Consider the combination

p+ 2p⊥ ≤ ρ ,

inserting the field equations in new variables (4.4.8)–(4.4.10), this expression

becomes

y +
ẋ(x+ y)

(1− x)
+ 2ẏ +

(
x+ y

)2
2(1− x)(z1 + 1)

− z2 + 2xż1 + ż2

+ 4ż1(1− x−
√

1− x) +
2xz1 + z2

2(1− x)

(
x+ y

z1 + 1
+

2xz1 + z2

4(z1 + 1)
+ ẋ

)
≤ (2ẋ+ x)(z1 + 1)− 4ż1(1− x1 −

√
1− x) +

z2

2
.
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Next, we rearrange by grouping the derivatives on the left hand side of the

inequality

ẋ(x+ y)

(1− x)
− 2ẋ(z1 + 1) +

ẋ(2xz1 + z2)

2(1− x)
+ 2ẏ + 8ż1(1− x−

√
1− x) + 2xż1 + ż2

≤ x(z1 + 1)−
(
x+ y

)2
2(1− x)(z1 + 1)

− y +
3z2

2
− 2xz1 + z2

2(1− x)

(
x+ y

z1 + 1
+

2xz1 + z2

4(z1 + 1)

)
,

multiplying this expression by (1− x) yields

ẋ

((
3x− 2

)(
z1 + 1

)
+ y +

z2

2

)
+ 2ż1

(
4− 3x− 4

√
1− x

) (
1− x

)
+
(
2ẏ + ż2

)(
1− x

)
≤− 1

2

(
3x2 + y2 − 2(x− y)

z1 + 1
−
(
1− x

)(2xz1(z1 + 2)

z1 + 1
+ 3z2

))

− 2xz1 + z2

2(z1 + 1)

(
x+ y +

2xz1 + z2

4

)
=:− 1

2
u(x, y, z1, z2) .

We can see that setting z1 = z2 = 0 reduces this expression to the combination

p+2p⊥ ≤ ρ written explicitly with the field equations of general relativity which

was derived in section 1.5.2.

4.4.3 Finding the optimisation function

Following the results obtained in section 3.3.1, we now derive the optimisation

function w(x, y, z1, z2) ≡ w which we again want to be of the form

w =
γ2

1− x
, (4.4.11)
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such that

ẇ =
γ(

1− x
)2
{
ẋ
((

3x− 2
)(
z1 + 1

)
+ y +

z2

2

)
+ 2ż1

(
1− x

)(
4− 3x− 4

√
1− x

)
+
(
2ẏ + ż2

)(
1− x

)}

=
γ(

1− x
)2
{
ẋ
(

2γx
(
1− x

)
+ γ
)

+ 2
(
1− x

)(
ẏγy + ż1γz1 + ż2γz2

)}
.

(4.4.12)

where the second line was obtained using the chain rule, note that γx = ∂xγ.

Using this we can write down dw = dw
dβ dβ, which yields

dw =
γ(

1− x
)2
{

dx
((

3x− 2
)(
z1 + 1

)
+ y +

z2

2

)
+
(
2dy + dz2

)(
1− x

)
+ 2dz1

(
1− x

)(
4− 3x+

√
1− x

)}
=wxdx+ wydy + wz1dz1 + wz2dz2 , (4.4.13)

To ensure such a w exists, we must check that d2w = 0, analogously to sec-

tion 3.3.1 this becomes

d2w =
(
wyx − wxy

)
dx ∧ dy +

(
wz1y − wyz1

)
dy ∧ dz1

+
(
wz2y − wyz2

)
dy ∧ dz2 +

(
wxz1 − wz1x

)
dz1 ∧ dx

+
(
wxz2 − wz2x

)
dz2 ∧ dx+

(
wz2z1 − wz1z2

)
dz1 ∧ dz2 = 0 ,

where wxy = ∂x∂yw. The constraints resulting from d2w = 0 can be used to

solve for γ, alternatively comparing the two lines in equation (4.4.12) will also

give the required function. In what follows, we will use the latter and check

that the resulting γ satisfies d2w = 0.

To find an expression for γ, first compare the coefficients of the two lines in

equation (4.4.12). Comparing the pre-factors of ẋ in the two equations gives a

differential equation involving γx which can be partially solved for γ

2γx(1− x) + γ =
(
3x− 2

)(
z1 + 1

)
+ y +

z2

2
.
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Solving this first order differential equation yields

γ =
(
4− 3x

)(
z1 + 1

)
+ y +

z2

2
+
√

1− xΓ1(y, z1, z2) , (4.4.14)

where Γ1(y, z1, z2) is a function that is constant when integrating with respect

to x, and Γ1 may depend on the other variables y, z1, z2. Inspecting equa-

tion (4.4.12) further, and comparing the ẏ, ż1 and ż2 coefficients gives the fol-

lowing three equations

γy = 1 or γ = y + Γ2(x, z1, z2) ,

γz1 = 4− 3x− 4
√

1− x or γ =
(

4− 3x−
√

1− x
)
z1 + Γ3(x, y, z2) ,

γz2 =
1

2
or γ =

z2

2
+ Γ4(x, y, z1) ,

(4.4.15)

where Γ2 ,Γ3 ,Γ4 are functions which are constant when integrating with respect

to y, z1 and z2 respectively, thus act as constants of integration. Comparing with

equation (4.4.14), we see that Γ1 is independent of y and z2 since there are no

terms involving these variables with the pre-factor
√

1− x. The only term that

does involve this pre-factor is −4z1

√
1− x, thus Γ1 = −4z1 + constant. The

remaining terms in the set of equations (4.4.15) are already included in (4.4.14),

and since this equation is already consistent with equation (1.5.5) from general

relativity in the limit z1 → 0 and z2 → 0 we deduce that the functions Γi do

not contribute any constants to γ (for i = 1, 2, 3, 4). Thus Γ1 = −4z1 ,Γ2 =

Γ3 = Γ4 = 0, putting this together w becomes

w =

(
4− 3x+ y + z1(4− 3x− 4

√
1− x) + z2

2

)2
1− x

, (4.4.16)

which yields the required result outlined in equation (4.4.12). It is straightfor-

ward to check that d2w = 0 is satisfied by this expression for w.
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4.4.4 Maximising w

Determining the maximum of w will enable us to deduce a bound on M/R. First

we recall the derivative of w with respect to β satisfies the following inequality

ẇ ≤−

(
4− 3x+ y + z1

(
4− 3x− 4

√
1− x

)
+ z2

2

)
2
(
1− x

)2 u(x, y, z1, z2)

=: −γ(x, y, z1, z2)

2
(
1− x

)2 u(x, y, z1, z2) . (4.4.17)

Note that w(x, y, z1, z2) is decreasing if the right hand side of the above in-

equality is negative. Alternatively, given certain conditions on x, y, z1 and z2

which impose ẇ ≥ 0 and if the right hand side is positive then w is increas-

ing. This will also put constraints on the sign of u and γ. In general rela-

tivity the requirement that w is increasing imposes the conditions γ ≥ 0 and

u ≤ 0, this was shown in [122] where the calculation was valid for solutions with

0 ≤ x = 1− e−b < 1, this is further stressed by our result in section 3.3. Notice

that if we instead assumed γ ≤ 0 and u ≥ 0 in general relativity, the former

would imply y ≤ 4− 3x thus since 0 ≤ x < 1 this would restrict the pressure y.

The definition of u implies that h′ = z1 6= −1, which just means this calculation

does not include models with f(T ) = constant. Additionally the pressure p

must be positive so y ≥ 0, and in general relativity w attained the maximum

value of 16 at x = y = 0. Following these constraints; u ≤ 0 and γ ≥ 0 with

0 ≤ x < 1 , y ≥ 0 and z1 6= −1, we can vary the ranges of z1 and z2 to determine

the behaviour of w. Using Mathematica to numerically maximise this function

subject to these constraints, we find that w ≤ 16 when −1 < z1 ≤ 0 and z2 ≤ 0.

The maximum value is achieved at x = y = z1 = z2 = 0. This can now be

translated back to original variables so that we can determine which functions

f(T ) satisfy the constraints on z1 and z2. The two conditions −1 < z1 ≤ 0 and

z2 = r2
(
h
ζ2 − Th′

)
≤ 0, translate to

−1 < h′ ≤ 0 ,

h ≤ ζ2Th′ , (4.4.18)

It is possible to find reasonable functions f(T ) = h/ζ2 + T which satisfy both

constraints on z1 and z2 given by the relations in equation (4.4.18). However,

these functions will not be explored in this thesis, the aim of this calculation is
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derive the bound on M/R which will be discussed in the next section.

4.4.5 Mass-radius ratio

In this section the bound w ≤ 16 will be used to derive an upper bound for

2M/R(
4− 3x+ y + z1

(
4− 3x− 4

√
1− x

)
+ z2/2

)2

≤ 16
(
1− x

)
, (4.4.19)

since y ≥ 0, the left hand side of (4.4.19) will still satisfy the bound if y is omitted

from the equation. Then taking the square root and rearranging slightly gives

3(1− x)(z1 + 1) + z1 + 1 + z2/2 ≤ 4
√

1− x
(
z1 + 1

)
. (4.4.20)

Collecting the terms involving x leaves the expression

(
2− 3

√
1− x

)2

≤ 1− 3z2

2(z1 + 1)
=⇒ 2− 3

√
1− x ≤

√
1− 3z2

2(z1 + 1)
,

or equivalently

√
1− x ≥ 2

3
− 1

3

√
1− 3z2

2(z1 + 1)
.

This can now be rearranged to give an upper bound for x

x ≤ 4

9
+

3z2

18(z1 + 1)
+

4

9

√
1− 3z2

2(z1 + 1)
. (4.4.21)

In order to translate this bound to an upper bound on the mass, we need to

define the mass in f(T ) gravity and find a valid relation between x and m. One

possibility is to recall that in general relativity for the Schwarzschild solution we

know x = 2m
r (section 1.5.2) then in the presence of charge and a cosmological

constant this becomes x =
2mg
r −

q2

r2 + Λr2

3 (section 3.3), therefore we postulate

x =
2mf
r =

2mg
r + g(f, f ′, f ′′). Here mf has possible dependence on f(T ) and

its derivatives via the unknown function g, for instance this is equivalent to

rewriting x =
2mg
r −

q2

r2 + Λr2

3 =
2mΛ,q

r in section 3.3. At the boundary r = R
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we have mf (R) = Mf and x =
2Mf

R , using this estimate the bound becomes

√
1− 2Mf

R
≥ 2

3
− 1

3

√√√√
1−

3R2
(
h/ζ2 − Th′

)
2(h′ + 1)

,

which can be expanded out and written in terms of f(T ) and fT using f(T ) =
h
ζ2 + T and fT = h′ + 1. The bound then becomes

2Mf

R
≤ 4

9
−
R2
(
f − TfT

)
6fT

+
4

9

√
1−

3R2
(
f − TfT

)
2fT

.

This bound is an estimate, and can depend on f and other quantities which may

be contained in Mf . The general relativity limit is achieved when f(T ) = T

and the inequality then reduces to Buchdahl’s inequality 2M/R ≤ 8/9, provided

that 2Mf/R → 2M/R in this limit. Notice writing the quantity L = f−TfT
2fT

puts the inequality in the form

2Mf

R
≤ 4

9
− LR2

3
+

4

9

√
1− 3LR2 ,

which is similar to the mass-radius ratio for the Kottler solution given by equa-

tion (3.3.13) with Q = 0, that is 2M
R ≤ 4

9 −
2ΛR2

3 + 4
9

√
1− 3ΛR2. Note that

once the function f(T ) is specified, the upper bound on Mf can be translated

into an upper bound on Mi using the (t, t) field equation (4.4.2).

In what follows, we will use the (t, t) field equation, that is equation (4.2.25)

with R(r) = r, and the constraints on the variables x, z1, z2 to provide an

alternative estimate for the mass, this estimate will be referred to as m̃. Again,

m̃ is related to the mass mi and may have additional dependence on f(T ) and

its derivatives. Using the definition of mass from section 1.2 gives rise to the

integral

2m̃(R) = 8π

∫ R

0

ρr2dr

=

∫ R

0

{
2ζ2r

(
e−b/2 − e−b

)
T ′h′′ +

r2
(
h/ζ2 − Th′

)
2

+ (h′ + 1)
d

dr

(
r − re−b

)}
dr

=R
(
h′ + 1

)(
1− e−b

)
+

∫ R

0

{
−ζ2r

(
1− e−b/2

)2

T ′h′′ +
r2
(
h/ζ2 − Th′

)
2

}
dr ,
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where we have used (h′+ 1)(1− e−b + rb′e−b) = (h′+ 1) d
dr

(
r− re−b) to rewrite

part of the (t, t) field equation (4.2.25), then integrated by parts to evaluate

this term. Since 0 ≤ x < 1, this implies (1 − e−b/2)2 =
(
1 −
√

1− x
)2

< 1,

then provided that ζ2T ′h′′ = dh′

dr ≤ 0 the following inequality holds and we can

integrate by parts

2M̃ = R
(
h′ + 1

)(
1− e−b

)
+

∫ R

0

{
−ζ2r

(
1− e−b/2

)2

T ′h′′ +
r2
(
h/ζ2 − Th′

)
2

}
dr

≤ R
(
h′ + 1

)(
1− e−b

)
+

∫ R

0

{
−rdh′

dr
+
r2
(
h/ζ2 − Th′

)
2

}
dr

= R
(
h′ + 1

)(
1− e−b

)
− rh′ +

∫ R

0

{
h′ +

r2
(
h/ζ2 − Th′

)
2

}
dr .

In new variables, this becomes

2M̃ ≤ Rx
(
z1 + 1

)
−Rz1 +

∫ R

0

{
z1 +

z2

2

}
dr ,

where m̃(R) = M̃ . Given the restrictions on the variables x , z1 we see x(z1 +

1)−z1 ≥ 0, and since both z1 , z2 are negative we can omit the last term so that

2M̃/R ≤ x
(
z1 + 1

)
− z1, this can be rearranged slightly to give

2M̃/R+ z1

z1 + 1
≤ x . (4.4.22)

Putting the inequalities (4.4.21) and (4.4.22) together leaves

2M̃/R ≤ 4

9

(
z1 + 1

)
+
z2 − 6z1

6
+

4

9

(
z1 + 1

)√
1− 3z2

2(z1 + 1)
, (4.4.23)

or equivalently

2M̃/R ≤ 4

9

(
h′ + 1

)
+
R2

6

(
h/ζ2 − (T + 6/R2)h′

)
+

4

9

(
h′ + 1

)√
1− 3R2(h/ζ2 − Th′)

2(h′ + 1)
,

In the general relativity framework when z1 = z2 = 0 we require M̃ = M ,

the inequality again reduces to 2M/R ≤ 8/9. As mentioned earlier, this is an
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estimate based on the condition ζ2T ′h′′ ≤ 0 and can thus be made more precise

by directly evaluating the integral 2m̃(R) = 8π
∫ R

0
ρr2dr, and plugging this into

the inequality (4.4.21). This would be more straightforward to compute given

a particular function f(T ) that satisfies (4.4.18).
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[1] C. G. Böhmer and A. Mussa, “Charged perfect fluids in the pres-

ence of a cosmological constant,” Gen. Rel. Grav. 43 (2011) 3033-3046

[arXiv:1010.1367 [gr-qc]].
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