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Summary 

Epithelial cells maintain an essential barrier despite continuously undergoing mitosis and 

apoptosis. Biological and biophysical mechanisms have evolved to remove dying cells 

whilst maintaining that barrier. Cell extrusion is thought to be driven by a multicellular 

filamentous actin ring formed by the neighbouring cells, with its contraction providing the 

mechanical force for extrusion, with little or no contribution from the dying cell. We use 

live confocal imaging, providing time-resolved 3D observations of actomyosin dynamics 

to reveal new mechanical roles for dying cells in their own extrusion from monolayers. 

Dying cell clearance could be subdivided into two-stages. The first, previously 

unidentified, stage was driven by the dying cell, which exerted tension on its neighbours 

through the action of a cortical contractile F-actin and myosin ring at the cell apex. The 

second stage, consistent with previous studies, was driven by a multicellular F-actin ring 

in the neighbouring cells that moved from the apical to the basal plane to extrude the 

dying cell. Critically, these data reinstate the dying cell as an active physical participant in 

cell extrusion rather than an innocent bystander. 

Introduction 

An essential role of epithelial tissues is to form a tight barrier that prevents the passage of 

cells, macromolecules, and solutes across the epithelium (Marchiando et al., 2010). In 

developing and mature tissues, under both physiological and patho-physiological 

conditions, epithelial cell death continuously occurs and therefore a variety of mechanisms 

have evolved to remove dead or dying cells whilst preserving barrier integrity. In 

intestinal epithelia, division and differentiation of stem cells gives rise to a constant flux 

of cells from the crypts to the villus tips where individual cells are extruded (Madara, 

1990; Potten and Loeffler, 1990). In inner ear sensory epithelia, cell divisions are 

relatively rare but after a damaging event non-sensory supporting cells scission dying the 

apical surfaces of hair cells, releasing the apical parts into the lumen (Bird et al., 2010). In 

cultured epithelial monolayers, dying cells can be extruded from the epithelium either 

apically (Rosenblatt et al., 2001) or basally (Slattum et al., 2009) and the latter has been 

proposed as a possible cause for cancer progression (Marshall et al., 2011). Recently, cell 

extrusion has also been shown to play a fundamental role in tissue homeostasis 

(Eisenhoffer and Rosenblatt, 2013), and in both developing and mature tissues, 
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overcrowding is relieved by extruding extranumerary cells (Eisenhoffer et al., 2012; 

Marinari et al., 2012). 

The molecular mechanisms underlying cell extrusion have been the focus of much 

attention. A seminal study reported that cell extrusion is driven by a multicellular 

filamentous actin (F-actin) ring formed within the cells surrounding the dying cell 

(Rosenblatt et al., 2001). Following induction of cell death by UV-exposure, a signal 

emanates from the dying cell through sphingosine-1-phosphate (Gu et al., 2011). 

Immunostaining studies and live imaging studies of wound healing after single-cell 

ablation within monolayers have revealed that this signal then leads to the formation of a 

multicellular F-actin ring that originates at the monolayer apex (Gu and Rosenblatt, 2012; 

Rosenblatt et al., 2001; Tamada et al., 2007). Subsequently, myosin is recruited to the 

intercellular junction of surrounding cells in a process dependent upon p115-RhoGEF, 

rho-kinase, and GTPases of the rho family (Rosenblatt et al., 2001; Slattum et al., 2009; 

Tamada et al., 2007). The multicellular ring descends basally and, once at the base of the 

monolayer, lamellipodial protrusions originating from the neighbouring cells join below 

the dying cell reforming intercellular junctions that extrude the dead cell (Tamada et al., 

2007). Based on these studies, the current consensus is that the dying cell provides a 

biochemical signal for its neighbours but plays no mechanical role in extrusion (Andrade 

and Rosenblatt, 2011; Cai and Sheetz, 2009; Gu and Rosenblatt, 2012). However, detailed 

time-resolved observations of actomyosin dynamics during cell extrusion are lacking, 

making a thorough understanding of the biological and biophysical mechanisms of 

extrusion impossible.  

Here, using live 3-D imaging, we examined F-actin and myosin dynamics underlying cell 

extrusion from cultured monolayers over the entire duration of the process. In contrast to 

previous studies, we identified distinct roles for both the dying cell and its neighbours. We 

show that removal of dying cells is a multi-step process involving distinct stages of 

actomyosin activity. The initial stage involving an increase in actomyosin contractility in 

the dying cell has not previously been reported. 

Results 

A multistep process leads to cell extrusion in UV-treated monolayers 
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Previous studies have relied on exposure of epithelial monolayers to UV to induce cell 

death (Gu et al., 2011; Marshall et al., 2011; Rosenblatt et al., 2001; Slattum et al., 2009). 

Although this is a robust experimental protocol, all of the cells are exposed to the stimulus 

and eventually die. This makes long-term observation of single-cell extrusion events 

challenging, because neighbouring cells often die within tens of minutes of one another. 

To overcome these limitations, we placed a custom-made mask in the 

epifluorescence light-path of a microscope to expose individual cells within confluent 

MDCK-monolayers to UV and selectively induce cell death. We combined this 

technique with 3-D live imaging to follow the cellular processes leading to cell extrusion. 

Live imaging of extrusion within confluent lifeact-GFP MDCK-monolayers revealed that 

the removal of dying cells involved multiple phases of F-actin dynamics occurring in 

different focal planes (Figure 1, Movie 1). During the initial phase, a rosette formed at the 

monolayer apex cleaving the dying cell and enclosing most of its body within the 

epithelium. This phase involved F-actin activity at the monolayer apex. In the apical plane, 

the intercellular junctions around the dying cell closed inwards over the course of 15-30 

minutes (Figure 1a). Simultaneously, the surrounding cells spread towards the centre of 

the dying cell enclosing it and forming a multi-cellular rosette visible in the apical plane. 

This process led to bulging of the apex of the dying cell at the surface of the monolayer 

before scission as a result of junctional closure. The remainder of the cell body was 

enclosed within the monolayer. This “scission” phase was observed in all cell death events 

(48/48 cells, 12 experiments). At the onset of rosette formation, strong F-actin enrichment 

in the shape of a ring was visible at the apical contacts between healthy cells and the dying 

cell (Figure 1a). Closure of this apical ring occurred horizontally in a single z-plane with 

a steady speed of 0.2±0.1 μm.min−1 (18 cells, 4 experiments, Figure 1b and S1a, Movie 

2). 

In the second phase, the apical F-actin ring moved basally around the dying cell over 

30-40 minutes, leading to extrusion from the monolayer (Figure 1c). As soon as the 

F-actin ring reached the basal plane, the aspect of the F-actin-enriched zone changed from 

ring-like to lamellipodial-like (Figure S1b). Over the next 60-90min the neighbouring 

cells crawled underneath the dying cell, in a process resembling the later stages in cell 

ablation experiments (Tamada et al., 2007) and see Figure 5. This extrusion stage was 

observed in all death events that occurred in cells surrounded by healthy neighbours 
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(17/17 cells, 8 experiments). However, in cases in which one or several surrounding cells 

also died, extrusion was not observed. These data suggest that the neighbouring cells were 

necessary for the process and acted collectively to bring about extrusion. Overall, F-actin 

activity observed during extrusion in the present experiments supports the multi-cellular 

F-actin ring mechanism proposed to drive the extrusion of dying cells (Rosenblatt et al., 

2001) and wound healing of epithelia at both the single-cell (Tamada et al., 2007) and 

tissue level (Martin and Lewis, 1992). Hence, our observations revealed that the extrusion 

of dying cells is a multistep process taking ~2.5h to complete from the initial movement of 

the cell-cell junctions (Figure 1d). Only part of this process had previously been 

described, therefore we investigated the acto-myosin dynamics underlying extrusion.  

Cell membranes do not permeabilise until extrusion is complete 

To gain insight into the relative timing of cell death and extrusion, we determined when 

membrane permeabilisation occurred by including propidium iodide (PI, a membrane-

impermeant nucleic acid probe) in the imaging medium. We also determined when 

phosphatidyl serine appeared on the outer leaflet of the plasma membrane by including 

AlexaFluor633-tagged annexin-V (an early death signal (Fadok et al., 1998)). During 

apical contraction and rosette formation, no PI or annexin-V labeling were observed in 

dying cells (45/45 cells from 4 experiments and 8/8 cells from 3 experiments respectively, 

Figure 2a). In contrast, cells that had been fully extruded had both strong annexin and PI 

labeling (10/10 cells, 3 experiments, Figure 2b), in agreement with (Rosenblatt et al., 

2001). These data indicated that the integrity of dying cells remained uncompromised 

during the initial apical contraction stage and that membrane permeabilization only 

occurred once extrusion was complete. This sequence of events contrasts with single-cell 

laser wounding experiments, where permeabilisation precedes F-actin ring formation 

(Tamada et al., 2007).  

An F-actin ring is present in dying cells but not in surrounding cells during apical 

contraction and enclosure 

To distinguish F-actin activity in dying cells from that in surrounding cells we used 

monolayers formed by mixing MDCK cells stably expressing either mRFP-actin or 

lifeAct-GFP (Figure 3a). By live-imaging in locations where dying cells expressed a 

different fluorophore from its neighbours, it was possible to definitively identify whether 

the F-actin enrichment observed during initial apical contraction was localized in the 
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dying or surrounding cells. During rosette formation, scission, and enclosure, a uniform 

F-actin enrichment was observed at the cortex of the dying cell in the apical plane 

consistent with previous work (Rosenblatt et al., 2001) (Figure 3b, Movie 3, 11/11 cells, 

4 experiments). This F-actin ring contracted inwards over 15-30 min concurrent with 

junctional closure (Figure 3b and Movie 3), apparently driving self-scission and occurring 

considerably faster than reported previously (Rosenblatt et al., 2001). Simultaneously, 

less-organised F-actin activity was observed in the basal plane of the dying cell (Figure 

3b, Movie 4), perhaps reflecting loss of focal adhesions. Crucially, there was little 

evidence of F-actin enrichment in the surrounding cells in any plane during this initial 

phase, in contrast to previous descriptions (Rosenblatt et al., 2001) (Figure 3c, Movie 5, 

9/9 cells, 4 experiments). At the apical surface, neighbouring cells moved inwards 

synchronously with apical contraction of the dying cell (Figure 3d, t=0-35 minutes, 

Movies 6 & 7). In the absence of an F-actin ring in the surrounding cells, this suggested 

that, at this stage, they were pulled inwards by the contractile ring in the dying cell, 

perhaps via the tight junctions that remained intact during cell removal (Figure 4a). 

Immunostaining of monolayers fixed 2h after UV-exposure revealed the presence 

of strong cortical F-actin enrichment located inside the tight junctions between the dying 

cell and its neighbours (Figure 4a). Together, the data from fixed specimens, live-

imaging data, and the lack of membrane permeabilisation during this new initial 

phase suggests that an F-actin ring within the dying cell drives rosette formation by 

pulling neighbouring cells inwards. 

Extrusion involves F-actin activity in the neighbouring cells 

During the latter phase of cell extrusion, F-actin enrichment appeared in the surrounding 

cells at the monolayer apex, forming a multicellular ring encircling the dying cell (Figure 

3d, 45min, and Figure S1b). This multicellular ring then moved basally, following the 

contour of the dying cell (Figure 3d, 40-60min, Movies 6 & 7). During this time, cortical 

F-actin enrichment persisted at the apex of the dying cell (Movies 1 & 6). Once the 

multicellular F-actin ring reached the basal plane, F-actin-rich protrusions extended 

beneath the dying cell, consistent with the lamellipodial crawling described in wound 

healing experiments (Martin and Lewis, 1992; Tamada et al., 2007). This sequence 

occurred in all extrusions imaged to completion (6/6 cells, 4 experiments). In monolayer 

samples fixed 2.5h after UV-exposure, multicellular F-actin rings were clearly visible 

outside of the tight-junctions between dying cells and their neighbours (Figure 4b). 

Jo
ur

na
l o

f C
el

l S
ci

en
ce

A
cc

ep
te

d 
m

an
us

cr
ip

t



7 

Overall, F-actin dynamics during the latter extrusion phase were consistent with the 

multicellular F-actin rings described in single cell laser ablation experiments (Tamada et 

al., 2007) and in cell extrusion in UV-treated monolayers (Gu et al., 2011; Marshall et al., 

2011; Rosenblatt et al., 2001; Slattum et al., 2009).  

The dynamics of extrusion reflect those observed in single-cell wound healing 

experiments 

In our experiments, ~75min separated the initial movement of intercellular junctions at the 

monolayer apex from the arrival of the multicellular F-actin ring in the basal plane, far 

longer than reported (20min) in single-cell wound healing experiments (Tamada et al., 

2007). We hypothesized that the slower overall dynamics were due to our inclusion and 

the occurrence of an initial apical contraction and enclosure phase not observed during 

single-cell wound healing experiments. To test this, we observed F-actin dynamics during 

single-cell wound healing under conditions identical to our UV experiments. Following 

laser-ablation, the cell’s membrane was immediately permeabilized and a multicellular F-

actin ring was formed around the ablated cell. This ring then descended towards the basal 

plane while contracting over the course of 30min (16 cells, 4 experiments, Figure 5). This 

behaviour was in all aspects identical to a previous report (Tamada et al., 2007) and its 

duration was very similar to that of the extrusion phase in our UV-induced cell death 

experiments. Based on its duration and characteristic F-actin dynamics, we propose that 

the multicellular extruding F-actin ring reported in single-cell wound healing (Tamada et 

al., 2007) is equivalent to the multicellular F-actin ring we observe during the extrusion of 

dying cells in UV-exposed monolayers.  

Active myosin co-localises with the F-actin ring and myosin activity is required 

during apical contraction and enclosure  

Having identified this new, earlier event in cell extrusion, we investigated a potential role 

for myosin contraction in generating the mechanical forces underlying this phase. First, 

we imaged UV-exposed MDCK-cell monolayers stably expressing myosin regulatory 

light chain-(MRLC)-GFP. Prior to any detectable evidence of cell death, MRLC-GFP 

fluorescence was cytoplasmic, with a slight enrichment at the basal plane in focal 

adhesions (0 min, Figure 6a and Movie 8). Simultaneous with the onset of apical 

contraction, myosin relocalised within the dying cell to form a distinct ring in the same 

plane as the F-actin ring (5-10min, Figure 6a and Movie 8). As rosette formation 
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progressed, myosin fluorescence increased correlating with the F-actin enrichment noted 

in lifeact-GFP cells (16/16 cells, 4 experiments, Figure 1a-b). To determine whether the 

increase in myosin fluorescence intensity resulted from additional recruitment or 

concentration of already bound protein over a smaller area, we tracked the apical junctions 

surrounding the dying cell during rosette formation and measured total junctional MRLC 

fluorescence intensity. Between the onset of junctional movement and the completion of 

apical contraction, intensity of MRLC-GFP increased 5±3 fold (6 cells, 3 experiments), 

indicating that the observed increase in myosin fluorescence represented 

protein recruitment. Furthermore, immunostaining of MDCK-monolayers fixed 

2h after UV-exposure revealed enrichment in phosphorylated myosin light chain 

(pMLC) at the cortex of dying cells (Figure 6b). 

To determine if myosin contraction was necessary to drive rosette formation during the 

apical contraction phase, we imaged live UV-exposed monolayers stably expressing 

lifeact-Ruby in the presence of the myosin-II ATPase inhibitor blebbistatin. At low 

blebbistatin concentrations (10-25μM), rosette formation began normally but, once the 

ring contracted to 50-75% of the initial cell diameter, contraction stopped and the dying 

cell lost its junctional actin ring and detached from the substrate leaving an epithelial 

“hole” (16/16 cells, 4 experiments, Figure 6c, Movie 9). Simultaneous with loss of the 

junctional actin ring, the intercellular junctions surrounding the cell relaxed to their initial 

positions. Live imaging with PI confirmed membrane permeabilisation along with the 

tearing apart of the dying cell. In addition, the observed partial apical closure took 30±12 

min (n=16), ~2-fold slower than controls and a duration normally sufficient for complete 

rosette formation in control conditions. With 100μM blebbistatin, we could not detect any 

evidence of F-actin ring formation or junctional closure. Instead, the dying cell either 

disintegrated or appeared to be torn apart by its neighbours in the absence of any 

contraction and this process was accompanied by membrane permeabilisation (22/22 cells, 

3 experiments, Figure 6d). These data showed that myosin contraction was necessary for 

successful rosette formation. 

Rho-mediated contractility in the dying cell drives the apical contraction phase of 

cell removal 

Next, we sought to determine which of the dying or the surrounding cells provided the 

motile force for the progression of the initial apical contraction phase. Previous work has 
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shown that, during the process that we have identified as the later extrusion phase, active 

RhoA is necessary in the neighbouring cells but not in the dying cell (Rosenblatt et 

al., 2001). Immunostaining of monolayers fixed 2h after UV-exposure revealed that, 

during the apical-contraction phase, dying cells displayed strong RhoA-GTP staining 

(Figure 7a). This suggested that increases in RhoA activity may drive the observed 

increase in myosin contractility (Figure 6a and b). 

We therefore investigated the role of RhoA activity during the apical contraction phase. 

To distinguish between activity in the dying cell and its neighbours, we used mosaics of 

lifeact-GFP-MDCK cells and MDCK cells in which RhoA activity was inhibited by 

doxycycline-induced expression of the catalytic domain of p50-RhoGAP tagged 

with mCherry (Figure 7b-c). First, we verified that high RhoGAP expression 

correlated with reduced RhoA-GTP labelling in MDCK cells showing that RhoGAP 

expression was able to reduce RhoA-GTP levels (Figure S2). A similar effect was noted 

with pMLC staining in MDCK cells expressing p50-RhoGAP (Figure S3). Next, we 

examined how RhoGAP expression affected the two phases of cell clearance. In MDCK-

monolayer mosaics, dying wild-type lifeact-GFP cells could still drive rosette formation 

and undergo self-scission even when the majority of their neighbours were RhoGAP-

positive (5/5 cells from 3 experiments, Figure 7b, Movie 10). Furthermore, rosette 

morphology was unperturbed at junctions with RhoGAP-positive cells. In contrast, in 

50% of cases, dying RhoGAP-positive cells with a majority of lifeact-GFP 

neighbours could not complete rosette formation or scission, a phenotype observed 

with low blebbistatin concentrations (6/12 cells, 5 experiments, Figure 6c, 7c, Movie 

11). These data suggest that in our experiments induction of RhoGAP expression only 

led to a partial, rather than a total reduction in myosin activity in dying cells. The 

remaining cells were able to drive normal rosette formation, perhaps via caspase-

mediated rho-kinase activation (Coleman et al., 2001; Sebbagh et al., 2001) or due to 

an insufficient reduction in RhoA activity by p50-RhoGAP expression (Figure S2). 

Together, these experiments indicated that RhoA-mediated myosin contractility in 

the dying cell was necessary to drive the initial apical contraction phase of cell extrusion 

and that, during this phase, the contribution of neighbouring cells was minimal.  

Numerical simulations suggest that the apical contraction phase can be driven by the 

dying cell alone 
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Our experimental observations indicated that, during the apical contraction phase, the 

dying cell provided the mechanical force for rosette formation through a ~5-fold increase 

in myosin localization to its apical cortex that, we assumed, resulted in a proportional 

increase in contractility. To verify this hypothesis and explore alternate biophysical 

mechanisms leading to rosette formation, we developed a simple numerical simulation of 

the monolayer apex using a vertex model (Farhadifar et al., 2007; Marinari et al., 2012). 

Based on uniform cortical-localization of myosin throughout apical contraction, we 
assumed that all cortical tension could be represented by a single contractility termΓ 

acting over the cell perimeter. In our model, cells possessed an area elastic modulus K 
arising from limited cell volume compressibility, a contractilityΓ arising from cortical 

myosin activity, and intercellular adhesion Λ acting at cell-cell junctions. The model was 

carefully calibrated to represent mechanical equilibrium in monolayer-epithelia growing 

on glass (see Materials and Methods). We carried out numerical experiments in which, at 

time t=0, we changed the physical properties of either the dying cell (ΛD, ΓD, KD),  its 

immediate neighbours (ΛN, ΓN, KN), or both the dying cell and its neighbours. From these, 

we determined the combinations of physical changes that could in principle drive rosette 

formation (defined here as a >80% reduction in the apical area of the dying cell).  

Changes in the dying cell’s adhesion to its neighboursΛD alone could not drive rosette 

formation (Figure 8a-b). Changes in the dying cell’s elasticity KD alone could only 

drive rosette formation if KD was reduced to zero at the onset of rosette formation (Figure 

8a, Figure 8b, KD=0 and 0.5K). In our experiments, the preservation of membrane 

integrity (Figure 2a) and the presence of a well-defined F-actin cytoskeleton in the dying 

cells (Figure 3b) suggest that their elasticity is not reduced to zero. Furthermore, 

measurements of cell elasticity during cell death report either increases in elasticity (Kim et 

al , 2012 or decreases (at most 75%) of cellular elasticity during cell death  (Kim et al., 

2012; Wang and Pelling, 2010), suggesting that rosette formation through reduction of KD 

to zero does not occur during apoptosis. In contrast, a five-fold increase in the 

contractilityΓD of the dying cell,  comparable to our live-imaging of myosin, was sufficient 

alone to generate a rosette (Figure 8b,ΓD=5Γ). Interestingly, a partial decrease in dying 

cell elasticity KD coupled with complete loss of adhesion to neighbours Λ D could also 

drive rosette formation (Figure 8b,ΛD=0, KD=0.3). Whilst a decrease in elastic modulus 

KD during cell death has been reported in some conditions (Wang and Pelling, 2010), 

complete loss 
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of adhesion between the dying cell and its neighboursΛD is in contradiction with our 

experimental observations (Figures 3 and 4) and previous work showing that the barrier 

function of monolayers is maintained during extrusion (Rosenblatt et al., 2001). Changes 

in the neighbouring cells alone or in combination with changes in the dying cell could in 

theory also give rise to rosette formation. Indeed, rosettes could be obtained through 
moderate increases in the adhesion of neighbouring cells to one another ΛN , combined or 

not with decreases in the adhesion between the surrounding cells and the dying cell ΛD 

(Figure 8b, ΛN=4Λ and ΛN=3Λ with ΛD=0). Although an increase in the elasticity KN of 

neighbouring cells has been suggested to drive extrusion of transformed cells from 

epithelia, even a 100-fold increase in KN, far greater than measured experimentally (Hogan 

et al., 2009), was insufficient to drive rosette formation in our model, perhaps 

signifying that extrusion of transformed cells may occur through mechanisms different 

to that of dying cells (Figure 8b, KN=100K).   

Discussion 

In this study, we captured the cellular and cytoskeletal changes leading to the extrusion of 

dying cells with high spatio-temporal accuracy and critically, we revealed new mechanical 

roles for dying cells in their own extrusion. Indeed, clearance of dying cells could be 

subdivided into two-stages based on the location of actomyosin activity (Figure 8c). The 

first, previously unidentified, stage was driven by the dying cell which exerted tension on 

its neighbours through a cortical contractile F-actin ring resulting in formation of a 

cellular-rosette at the epithelial surface. The second stage was driven by a multicellular 

F-actin ring in the neighbouring cells that moved apico-basally to extrude the dying cell, 

consistent with previous studies (Rosenblatt et al., 2001; Tamada et al., 2007). 

The apical contraction and enclosure phase involved formation of apical rosettes through 

assembly of a contractile cortical actomyosin ring downstream of RhoA in the dying cell. 

Live-imaging of mosaics of cells expressing F-actin markers tagged with different 

fluorophores together with immunostaining data provided definitive localization of the 

contractile F-actin ring within the dying cell during this initial phase. Apical contraction of 

the dying cell was accompanied by enrichment in total myosin (5-fold) and a 

clear increase in pMLC. This coincided with scission of the dying cell, with cell’s apex 

being shed and the remaining cell body being enclosed within the monolayer. Apical 

ring closure required myosin contractility downstream of RhoA in the dying 

cell as 
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myosin-inhibition and expression of the catalytic domain of p50RhoGAP in the dying cell 

both resulted in failure of rosette formation. These results contrasted with the extrusion 

observed in crowding-induced delamination in the drosophila notum, where rosette 

formation around the delaminating cell is driven by increased myosin contractility in the 

surrounding cells (Marinari et al., 2012). The present data suggest an altruistic role for the 

dying cell during cell extrusion (Andrade and Rosenblatt, 2011; Mills et al., 1999). 

Cortical F-actin enrichment in the dying cell has been observed in MDCK-monolayers but 

the authors concluded that it did not participate in extrusion based on the lack of effect of 

C3-toxin (a RhoA/RhoC/cdc42 inhibitor) injected into the dying cell (Rosenblatt et al., 

2001). However, in that study dying cells were selected for injection morphologically 

using phase contrast microscopy and thus, ipso facto were likely to have already 

completed the initial apical contraction phase.  

Why is an initial phase of apoptotic cell extrusion driven by increased contractility of the 

dying cell necessary if the later extrusion phase can proceed in its absence, i.e. as in 

single-cell wound healing experiments (Tamada et al., 2007)? One simple explanation is 

that the initial phase is an altruistic act by the dying cell to trigger its own effective 

extrusion, while ensuring preservation of the monolayer’s barrier function. The initial 

phase may harness the increase in contractility that is concomitant with cell death to bring 

intercellular junctions into position to seal the barrier and scission part of the cell to 

facilitate extrusion, before triggering assembly of a contractile multicellular F-actin ring in 

its neighbours (Eisenhoffer et al., 2012; Gu et al., 2011). Another intriguing possibility is 

that contractility and rosette formation during the initial phase provides an essential 

mechanical signal to the surrounding cells by transiently increasing junctional tension and 

local cellular density. This could perhaps activate molecular mechanisms similar to those 

involved in cell extrusion in response to overcrowding in epithelia (Eisenhoffer et al., 

2012). Future work will be necessary to precisely determine how each phase contributes to 

overall extrusion, what signals coordinate the transition from the initial apical-contraction 

phase to the extrusion phase, and whether basal extrusion is the result of a 

defective extrusion by the surrounding cells.  

Our computational simulations of the apical contraction phase indicated that increases in 

myosin contractilityΓD in the dying cell alone were sufficient to drive rosette formation. 

Interestingly, an increase in adhesionΛN of surrounding cells to one another could also 

drive rosette formation, something that should manifest itself as an increase in cadherin 
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recruitment to intercellular junctions between the surrounding cells. Further work will be 

necessary to determine if and to what extent, an increase in intercellular adhesion between 

surrounding cells also contributes to rosette formation. Finally, the physical processes 

underlying the extrusion phase still remain unclear and 3-D computational models 

explicitly modelling the apical area, basal adhesion, and lateral junctions are required to 

gain the necessary physical insight to tackle this.  
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Materials and methods 

Cell culture 

Madin-Darby Canine Kidney II (MDCK) cells were maintained at 37oC/5% CO2 in 

Dulbecco’s Modified Eagle Medium (DMEM) with 10% fetal calf serum and 1% 

penicillin/streptomycin. MDKC-expression mosaics were created by mixing cell-lines 

expressing proteins tagged with different fluorophores in a 1:10 ratio before plating. 

Generation of cell lines 

MDCK-cell lines stably expressing fluorescent markers for F-actin and myosin (actin-

mRFP and MRLC-GFP) were generated as described in (Charras et al., 2006). Lifeact-

GFP and lifeact-ruby (Riedl et al., 2008) were gifts from R. Wedlich-Soldner (MPI, 

Martinsried). Retroviruses generation and cell subcloning are described in (Harris et al., 

2012). To establish MDCK cells stably expressing mCherry-p50RhoGAP catalytic 

domain in a tetracycline-inducible manner, MDCK-pTR cells (Hogan et al., 2009) were 

transfected with pcDNA/TO/mCherry-p50RhoGAP catalytic domain (Hogan et al., 

2009), followed by selection in medium containing 5μg.ml-1 of blasticidin (Invitrogen) 

and 400μg.ml-1 of zeocin (Invitrogen). Cells were then subcloned to obtain a monoclonal 

cell line with an epithelial phenotype. 

Inducing cell death of individual cells by UV-exposure 

Cells were exposed to UV light for 3 minutes in a Stratalinker1800 to induce cell death 

(Rosenblatt et al., 2001). For the majority of live-imaging experiments an aluminium mask 

with eight holes (1.5mm apart) was placed in the epifluorescence light-path of a 

microscope resulting in ~10μm diameter illumination spots (75μm apart) on the sample. 

UV-exposure (20min) resulted in death of individual cells within 2h, while surrounding 

cells remained healthy.  

Single cell ablation and junction cutting 

Cell ablations and intercellular junction cutting were carried out using a Chameleon-XR 

Ti-sapphire laser coupled to a Zeiss LSM510Meta upright confocal microscope. Cells 

were ablated by scanning 890nm laser light over a 9x9 pixel ROI (0.28μm2 pixels) at 

100% laser power (63mW nominal) and dwell time of 3.2μs.pixel−1 for 20 iterations, using 

a 40x 0.8NA objective. To cut junctions, 4x4 pixel ROIs, 20% laser power, 720nm 
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(12mW) and dwell time of 164μs.pixel−1  were used. 

Confocal imaging 

Fixed samples were imaged using an inverted Zeiss LSM510Meta microscope, 63x oil 

objective (NA1.4) or a 20x objective (NA0.7). For live-imaging cells were placed in a 

heated chamber (37oC, 5% CO2) on a spinning-disk confocal microscope (Ultraview-ERS, 

Perkin-Elmer, 40x oil objective (NA1.3). Z-stacks (26x0.7μm) were recorded at 30 second 

intervals over 4-6 hours. In some experiments, 1μg/ml of propidium iodide was added to 

the imaging medium to identify permeabilized cells. For laser-ablations Z-stacks were 

acquired in 7 planes at 1μm separation at 30 second intervals. 

Immunocytochemistry 

For ZO-1 staining, monolayers were simultaneously fixed and permeabilised using a 

solution of: 1.75% paraformaldehyde, 1% sucrose, and 0.5% triton-X in PBS:DMEM at 

37oC for 20min. For pMLC and RhoA staining, monolayers were fixed with a solution 

of 4% paraformaldehyde in DMEM at RT for 15min, and either exposed to acetone at 

-20oC for 5min (pMLC) or 0.5% Triton-X in PBS, 4oC for 5min (RhoA). Samples were 

incubated for 10min at 4oC in blocking solution (10 mg.ml−1 BSA in PBS) prior to 

incubation in primary antibodies. The following primary and secondary antibodies were 

used: anti-ZO1 (rabbit polyclonal, 2.5μg.ml−1, Invitrogen), anti-pMLC (1:100 dilution, 

rabbit polyclonal, Cell Signalling), anti-RhoA-GTP (5 μg.ml−1, mouse monoclonal, 

NewEast Biosciences), goat anti-mouse Alexa-Fluor647 and Alexa-488 (10μg.ml−1, 

Invitrogen),  donkey anti-rabbit Alexa-Fluor568 (10 μg.ml−1, Invitrogen). Phalloidin-

Alexa488 (Invitrogen) or Atto-647 (Sigma) were used at 33-50nM and DAPI at 1μM. 

Inhibitors 

The myosin-II inhibitor blebbistatin was added to the culture medium immediately after 

UV-exposure and left for the duration of the experiment. For live-imaging ruby-lifeact-

MDCK cells were used (568nm excitation) to circumvent photo-inactivation/phototoxicity 

issues reported with blebbistatin at 488nm (Sakamoto et al., 2005). 

Image processing and analysis  

XYZT image-stacks were cropped into smaller regions (50 μm2) around individual cell 

death events using custom written Matlab routines. Each cell death event was then 
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examined in ImageJ using the View5D plugin (Rainer Heintzmann). Quantitative 

analysis was performed using Matlab.  To generate kymographs the final image of 

actin ring closure was superimposed onto an image prior to ring formation (for Figure 

1b, the image at 18min from Figure S1a was superimposed onto the image at 0min). A 

line was drawn through the centre of ring and intensity values along this line were plotted 

as a function of time (red line, left panel, Figure 1b). The time over which ring 

contraction took place was measured (in Figure 1b, between 120 and 140min) and the 

slopes of the movement of the junctions were used to calculate the speed and time taken 

for closure. 

Quantification of changes in myosin activity 

Quantification of changes in myosin activity was effected using Matlab routines. Briefly, 

the perimeter of the dying cell was manually drawn in the apical-junctional plane using 

the MRLC-GFP time-lapse images (or brightfield images) for time-points separated by 

2min intervals starting from 10min prior to any observable movement of the cell junctions 

up until rosette formation. We assumed rosette formation was complete when the area of 

the dying cell in the confocal plane had decreased by 90%.  

To measure the temporal evolution of the myosin intensity along the cell contour, we 

positioned ROIs (area 4 μm2) around the cell perimeter. The mean ROI intensity at each 

time-point was calculated for the z-plane of maximum myosin intensity. Background 

(mean intensity for an image plane below the coverslip) was subtracted for each data set. 

Time-series were smoothed with a running average of window-size 3. 

Vertex model of tissue mechanics for MDCK-monolayers growing on a substrate 

To model MDCK-monolayers growing on a substrate, we adapted an existing 

computational model of drosophila epithelium (Marinari et al., 2012) based upon previous 

vertex models (Farhadifar et al., 2007; Kafer et al., 2007). It uses the following work 

function W: 

� �  ∑ �

�� ��� � ���� 	 ∑ 2Λ��� 	 ∑ �

����,�
 
�
�  

The first term in the work function reflects an area constraint where Kα is the effective 

bulk modulus, Aα the current area and A0 the preferred area of a cell α. The second and 

third terms have a certain degree of redundancy. The second term represents a line tension 

acting along the length of a junction l connecting vertices i and j reflecting the balance of 

intercellular adhesion and cortical tension. The third term represents the actomyosin 
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contractility Γ acting around the cell perimeter Lα due to forces acting along the 

intracellular actin belt present at adherens junctions. We showed uniform localization of 

myosin at the cell cortex throughout apical contraction and reasoned that a tension applied 

to the entire perimeter of the cell was sufficient to reflect the mechanical contribution of 

cortical myosins and thus cortical tension could be represented byΓ alone and that Λ was 

only due to intercellular adhesion. 

The energy of the system is minimised via random sampling, using a Monte Carlo method. 

The probability of a vertex move being accepted or rejected depends on the associated 

energy change in the work function: if the move decreases the energy of the system, we 

accept the move: ΔW < 0, P=1; if the move does not change the energy of the system, the 

move is accepted with a probability of 0.5: ΔW = 0, P=0.5; if the move increases the 

energy of the system, the move is rejected: ΔW > 0, P=0.  

We undertook a thorough calibration to choose parameters K, Λ, and Γ representative of 

our experimental conditions (rather than the original drosophila notum. This involved 

running simulations to find the parameter set best able to replicate experimental data used 

for calibration.  

To probe the mechanical properties of the system, we used laser-ablation to cut individual 

intercellular junctions. By comparing the movement of the vertices of the cut junction to 

simulations, it was possible to calibrate the relative magnitudes of model parameters Λ 

and Γ (Farhadifar et al., 2007). Following ablation, the vertices of the cut junction moved 

apart from one another. Simultaneously, the perimeters of the two cells expanded a small 

amount. Equilibrium was reached within 40-140s. The length change of the cut junction 

and the area and perimeter changes for the two cells linked by the cut junction were 

measured (9 cuts, 3 experiments): junction length increased by 1.0±1.0 μm, while cellular 

perimeter increased by 2.5±2.5 μm (average perimeter: 9±4 μm), suggesting that junction 

cutting affects both Λ and Γ. If only Λ for the cut junction was affected, the absolute 

increase in cell perimeter should be the same as the change in junction length. However, 

the perimeter of both cells increased by a length 2.5-fold greater than the increase in 

junction length, suggesting that Γ was also affected. The outward movement of the 

vertices showed that junctions were under positive line tension. To numerically simulate 

junction cutting, a random junction was chosen from an equilibrium configuration of the 

tissue. For that junction, adhesion Λ and contractility Γ were set to zero for the two cells 
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linked by the cut junction, as in Farhadifar et al. (2007). The other parameters remained 

unchanged. The change in the ‘cut’ junction length was then calculated. 

In addition, we performed experiments in which we ablated a single cell. Following 

ablation, the area change was measured in the targeted cells and compared to simulations 

to estimate the relative magnitudes of K andΓ. Laser-ablation caused outward recoil of 

the surrounding cell junctions that relaxed over a period of ~140s and the ablated cell’s 

area increased by 15±10% (12 cells, 3 experiments). Laser ablation damaged the target 

cells and we assumed that this decreased cellular elastic modulus due to permeabilization 

and perturbation of the cell (Figure 5). The outward junctional movement suggested that 

the targeted cell relinquished its pull on neighbouring cells, and therefore that both Γ and 

Λ were affected by ablation. Since some cellular remnants were still present following 

ablation, we assumed that cellular elasticity K and adhesion energy Λ were not reduced to 

zero. In our simulation of single cell ablation, a random cell was chosen from an 

equilibrium configuration of the tissue. For that cell, the effective bulk modulus K and the 

adhesion Λ were set to half of their original values and the contractility Γ to zero. The 

change in the ‘ablated’ cell area was then calculated. 

To calibrate the model, simulations were run to find the parameter set best able to 

replicate the experimental data gathered from analysis of cell packing, single junction cuts, 

and single cell ablations. The aim was to find a configuration representative of the 

principal forces acting across the monolayer which could then be used as the equilibrium 

starting point from which to simulate rosette formation during cell death. Our goal was to 

generate an equilibrium configuration with mechanical properties that could replicate 

junction cutting, cell ablation experiments, and attain configurations that approximated 

observed MDCK-cell packing. 

Simulations were run varying: Λ, Γ, K and the amount of compression applied to the 

monolayer (Farhadifar et al., 2007). For each parameter set, the starting configuration was 

a network of 30 hexagonal cells of perimeter length L = 6. This was allowed to ‘grow’ for 

a specified number of cell divisions or time-steps. The resulting configuration was then 

used to simulate junction cutting and single cell ablation. The simulations were compared 

to experimental data using four criteria: 1) ∆lcut: the percentage length change in the cut 

junction. 2) ∆Scut: the percentage area change in the cells linked by the cut junction. 3) 

∆Sablate: the percentage area change in the ablated cell. 4) ∆P: the sum of squared 
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deviations for the probability of n-sided cells (Gibson et al., 2006): Δ� �  ∑ �����
 ��
���

��
�����. The parameter set best able to replicate our experimental calibration data was 

�

�
� 6  and  

�

�
� � 1.4, after one round of cell division with the preferred area A0 of 

daughter cells equal to that of mother cells. Numerical results are compared to 

experimental data in Table 1. Given that the model is a simplified description of an 

adherent MDCK-monolayer, we would not expect it to perfectly mimic experiments. In 

particular, simplifying assumptions made in generating the numerical model and in the 

boundary conditions chosen for junction cutting and ablation experiments may contribute 

to differences between numerical simulation results and experiments. However, with the 

optimal parameter set, our model was able to replicate all of the qualitative results of the 

calibration experiments as well as most of the quantitative results. 

In Silico extrusion experiments 

To investigate the respective role of the dying cell and its neighbours in the process of 

rosette formation, our code allowed us to separately specify the physical parameters for the 

dying cell (KD, ΛD, and ΓD) and that of its immediate neighbours (KN, ΛN, and ΓN). Using 

initial conditions in which monolayers had reached mechanical equilibrium, we carried out 

numerical experiments in which, at time t=0, we changed the physical properties of either 

the dying cell (to test mechanisms driven by a single dying cell, parameterized by ΛD, ΓD, 

KD), of its immediate neighbours (to test mechanisms in which neighbours participated, 

parameterized by ΛN, ΓN, KN), or both the dying cell and its immediate neighbours. The 

code was then run until it reached mechanical equilibrium and the area change of the 

dying cell was determined. Based on experimental observations, we defined rosette 

formation as resulting in a greater than 80% reduction in the apical area of the dying cell. 
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Table 1: 
Model Data

% length change of cut junction 17 ± 13 17 ± 13 
% area change of two cells joined by the cut 
junction 

42 ± 12 20 ± 10 

% area change of ablated cell 10 ± 7 15 ± 10 

Table 1: Numerical results from Vertex model of tissue mechanics for MDCK-monolayers growing on a 
substrate compared to experimental data. 
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Figure Legends: 

Figure 1. Removal of dying cells: a two-stage process consisting of apical contraction 

followed by extrusion. (a) Confocal time-lapse images (individual Z planes) of 

UV-treated lifeact-GFP MDCK cells. Timings start 1 h 20 min after UV-treatment; xz and 

xy planes indicated by corresponding lines (green). Distances given for xy planes are 

measured from the basal-most plane; note the chosen xy plane is not the same for each 

time point. 0min: No visible signs of actin activity or cellular shape changes were apparent. 

15-30min apical contraction and enclosure: an F-actin ring forms in the apical plane 

cleaving the apex of the dying cell and enclosing the basal part within the monolayer. 

30min: the apical junctions of the neighbouring cells have joined to make a rosette (arrow). 

(b) Kymograph revealing the dynamics of junctional closure (left panel). The kymograph 

was generated from time-lapse images shown in Figure S1a. Right panel, superimposed 

image of the cell junctions prior to closure and once closure was completed (see Materials 

and Methods). The red line indicates the location at which the kymograph was acquired. 

At t1, the junctions began moving at an approximately constant rate. At t2, the opposing 

junctions met and there appeared to be actin enrichment at the contact point. Time (min) 

after UV-exposure indicated. (c) Extrusion phase of the time-lapse sequence shown 

continued from (a). 45-7 min: apical-lateral membranes of neighbouring cells move towards 

the basal plane and the dying cell is extruded.  75 min: neighbouring cells crawl underneath 

the dying cell to heal the wound. See Movie 1for entire time-lapse sequence. Scale bars, 

10μm. (d) Schematic diagram depicting the cellular events underlying apical contraction, 

enclosure and extrusion.  

Figure 2.  Cell membranes permeabilise after extrusion not before.  

Confocal images from 3-D time-lapse movies of UV-treated lifeact-GFP MDCK cells. 

Propidium iodide (PI) and Annexin V-Alexa633 were included in the medium to reveal 

membrane permeabilization to reveal the appearance of phosphatidylserine (PS) on the 

outer leaflet of the plasma membrane. (a) Time-lapse series 0 to 15min: during the initial 

apical contraction and rosette formation phase, no PI/PS fluorescence can be seen 

indicating that the membrane of the dying cell (*) was not compromised. At 15 min a 

rosette has formed enclosing the dying cell (arrow). 30 min: the dying cell is extruded and 

PS (blue) can be seen as the cell leaves the monolayer (arrow). (b) PI and annexin 

staining in extruded cells at the monolayer apical surface. Left panel: on the monolayer 

surface, 
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extruded cells can seen labelled with both PI and annexin (arrows). Right panels: boxed 

regions from left panel. The cell has been fully extruded and its neighbours form a 

continuous layer beneath it (arrow in the lower, xz panel), indicating that the extrusion 

phase is complete. Green lines in each image indicate the location of the xz and xy images. 

Scale bars, 10µm in a/ b (right panels), 50µm in b (left panel). 

Figure 3. An actin ring in the dying cell drives apical contraction, enclosure and 

rosette formation whereas an actin ring in the neighbouring cells drives extrusion. 

(a) Cellular mosaics of lifeact-GFP (green) and actin-mRFP (red) MDCK cells. Boxes 

indicate areas shown in b and c. (b) Extrusion of a dying cell (GFP) surrounded by 4 

mRFP cells (GFP shown only). Actin activity is observed in two distinct planes within the 

dying cell. Apically (top sequence, line A in xz) an actin ring (arrow) contracts and 

cleaves the dying cell’s apex. Basally (middle sequence, line B in xz), the dying cell 

retracts from the substrate. Times are from 2h 20min after UV-exposure. See Movies 3 

and 4. (c) Dying cell (mRFP) surrounded by 3 GFP cells (GFP shown only). Surrounding 

cells spread to enclose the dying cell within the monolayer (apical sequence, line A in xz), 

see Movie 5. Basally, no signs of migration to close the wound (basal sequence, line B in 

xz). Times are from 2h 12m after UV-exposure. (d) XZ profile, F-Actin activity in a cell 

adjacent to a dying cell (*) during apical contraction and enclosure; time (mins), from 1h 

50min after UV-exposure. Apical contraction and enclosure occurs between 5 and 40min 

with no obvious actin enrichment in neighbouring cells during this phase. Extrusion 

occurs at 45-60 min; F-Actin enrichment initially at apical contact between surrounding 

and dying cell, moves basally as extrusion progresses. Finally, adjacent cell crawls 

beneath dying cell to close wound. See Movie 6 (GFP and mRFP) and 7 (GFP alone). 

Scale bars, 20µm for and 10 µm for b, c and d.  

Figure 4.  An intracellular F-actin ring forms during the apical contraction phase 

and an intercellular F-actin ring forms during the extrusion phase. 

MDCK cells fixed 2h (a) and 2.5h (b) after UV-exposure.  (a) Apical contraction phase: 

cell appears to be in the process of apical cleavage by an F-actin ring in the plane of the 

tight junctions. The nucleus displays signs of condensation characteristic of cell death. The 

line scan (for far right image) reveals that F-actin enrichment (red line) is contained 

within the ZO-1 expression (green line), indicating that the F-actin ring is contained within 

the dying cell. (b) Extrusion phase: the condensed nucleus indicates a late apoptotic 
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cell. The nucleus of the dying cell is apical to that of its healthy neighbours and F-actin 

enrichment appears below and around the dying cell, indicating extrusion. Line scan (for 

far right image) reveals that F-actin enrichment (red line) is external to the ZO-1 staining 

(green line), indicating that the F-actin enrichment is due to an intercellular F-actin ring in 

the surrounding cells. All colour-merged images show F-actin (red), tight junctions labelled 

with anti-ZO-1 (green) and nuclei stained with DAPI (blue). The position of the xy images 

(1 and 2) are indicated by green lines in the lower xz images. Scale bar for (a) and (b), 

10μm. 

Figure 5.  Cell death via laser-ablation induces the formation of an intercellular F-

actin ring in neighbouring cells.  

Time-lapse sequence of lifeact-GFP MDCK cells before and after laser ablation of the 

central cell (*). Green lines indicate locations of the corresponding xz and xy profiles. 

Distances given are measured from the basal-most plane and indicate the shift in position 

of the xy plane displayed. 0min: immediately after ablation, fluorescence decreases in the 

cytoplasm of targeted cell, indicating cell permeabilization. Concurrently, junctions with 

adjacent cells move outwards (estimated increase in surface area of the ablated cell 

~10%). 10-25min: an actin ring forms at the apical junctions of neighbouring cells. It 

contracts and moves towards the basal plane, as described previously (Tamada et al., 

2007). 30 to 40min: the actin ring reaches the basal plane and the neighbours join to 

form a rosette.  Scale bar, 10μm.      

Figure 6. Myosin activity is required for rosette formation, apical contraction and 

enclosure. (a) Myosin accumulates at the site of the actin ring during apical contraction 

and rosette formation. Time-lapse sequence of MRLC-GFP MDCK cells, from 2h 40min 

after UV-exposure. Initially MRLC-GFP localization is diffuse with some enrichment at 

focal adhesions. At 5-20min apical contraction of the dying cell is observed. Myosin 

enrichment is seen around the periphery of the dying cell and is visible in the form of a 

myosin ring, see Movie 8. (b) Single confocal section of a dying cell during the apical 

contraction phase labelled with anti-phosphorylated myosin light chain (pMLC, green), F-

actin (red) and nucleic acids (blue). The dying cell (arrow) is enriched in pMLC.  Zx 

images are displayed below; the location of xy and zx profiles are indicated by green 

lines. (c) Time-lapse images of a dying cell in the presence of 10 μM blebbistatin (ruby-

lifeact 
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MDCK cells) show apical contraction is incomplete in the presence of low concentrations 

of the myosin inhibitor. At 0min: no evidence of F-actin activity or shape change. 

17-34min: an actin ring forms and contracts in the apical plane. 34-51min: having reached 

~1/3 of its initial diameter, ring closure stalls, the dying cell ruptures, and surrounding 

cells relax back to their initial positions, see Movie 9. (d) At higher concentrations (100 

µM), blebbistatin prevents apical contraction. Images of a dying cell (*) which shows no 

inward contraction yet ruptures at ~40min. Overlays of the first (green) and last (red) 

images in the sequence reveal outward movement of the surrounding cells upon central 

cell rupture. In the basal plane, the healthy surrounding cells extend lamellipodia beneath 

the dying cell to heal the wound via crawling. Time indicated from 2h 15min after 

UV-exposure. Scale bar, 10µm.    

Figure 7. Rho-mediated contractility in the dying cell is necessary for apical 

contraction and rosette formation. (a) Single confocal sections (top panels) showing a 

dying cell during the apical contraction phase labelled for active RhoA (RhoA-GTP, 

green), F-actin (red), and nucleic acids (blue). Lower panels, xz images at the position 

indicated by the green lines. The dying cell (arrow) is enriched in RhoA-GTP at its apex 

(see xz profile). (b-c) Time-lapse images of UV-exposed mosaics of lifeact-GFP (green) 

and RhoGAP-mcherry (red) MDCK cells. In (b) a dying lifeact-GFP cell (*) undergoes F-

actin ring closure and apical scission despite having RhoGAP-mCherry neighbours (3 of 5 

cells) that are unable to contract. Note, GFP-only shown in greyscale panels. Upper xy 

panels: actin ring is not localised in a single plane and in xz (lower panels) it appears tilted 

(left side higher than the right side, arrows). See Movie 10. (c) A dying RhoGAP-mcherry 

cell cannot drive apical contraction and rosette formation. First panel, dying cell (*) and 

its neighbours, two of which are lifeact-GFP cells (green) and two are RhoGAP-mCherry 

(red). At 0-27min: cell borders adjacent to the dying cell move inwards. 36min: apical 

contraction fails and cells move away from one another. 45+min: F-actin at the apical 

membranes of neighbouring cells, which crawl basally around/under the dying cell (see xz 

panels). See Movie 11. Times are from 2h 10min after UV-exposure.  Scale bar, 10µ m. 

Figure 8. Numerical simulations indicate increased myosin contractility in the dying 

cell is sufficient to drive rosette formation. (a) Representative images of monolayers 

from computational model before perturbation and at equilibrium following changes of a 
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single parameter (indicated) in the dying cell (yellow). (b) Area reductions for different 

sets of parameter changes in simulations. Dotted line, rosettes considered formed for 

reductions >80%. (c) Conceptual model of cell removal following death due to UV-

exposure and laser ablation. UV-exposure: both the dying cell and its neighbours are 

involved in driving epithelial repair in a two-stage process: apical contraction and 

enclosure in the monolayer followed by extrusion. a: Enclosure initiates with formation of 

an actomyosin ring in the apical-junctional plane of the dying cell (red). b,c: Ring 

contraction draws in surrounding cells (green) in the apical plane, forming a rosette. Ring 

closure scissions the dying cell, leaving a portion on the apical surface. The majority of 

the cell is enclosed within the monolayer below the rosette. Coincident with junctional 

closure, the dying cell detaches from substrate. d: extrusion begins with formation of a 

multicellular F-actin ring in neighbouring cells. e: The intercellular actin ring moves 

basally to extrude the cell. f: Neighbouring cells heal basal area via crawling. 

Laser-ablation: Neighbouring cells heal the wound by closure of an intercellular F-actin 

ring combined with crawling along the substrate, mirroring the later phases (d-f) of cell 

removal following UV-exposure. 
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