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Planetary science beyond the boundaries of our
Solar System is today in its infancy. Until a couple
of decades ago, the detailed investigation of the
planetary properties was restricted to objects orbiting
inside the Kuiper Belt. Today, we cannot ignore that
the number of known planets has increased by two
orders of magnitude nor that these planets resemble
anything but the objects present in our own Solar
System. Whether this fact is the result of a selection
bias induced by the kind of techniques used to
discover new planets—mainly radial velocity and
transit—or simply the proof that the Solar System is
a rarity in the Milky Way, we do not know yet. What
is clear, though, is that the Solar System has failed to
be the paradigm not only in our Galaxy but even “just’
in the solar neighbourhood. This finding, although
unsettling, forces us to reconsider our knowledge of
planets under a different light and perhaps question
a few of the theoretical pillars on which we base
our current ‘understanding’. The next decade will
be critical to advance in what we should perhaps
call Galactic planetary science. In this paper, I review
highlights and pitfalls of our current knowledge of
this topic and elaborate on how this knowledge might
arguably evolve in the next decade. More critically, I
identify what should be the mandatory scientific and
technical steps to be taken in this fascinating journey
of remote exploration of planets in our Galaxy.

1. Introduction

If T had to select a single word to define the field of
exoplanets, that word would be revolutionary. During the
past years, over 1000 planets have been found around
every type of star from A to M, including pulsars
and binaries. Being the leftover of the stellar formation
processes, planets appear to be rather ubiquitous and,
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in reality, the presence of a host star is not even a mandatory circumstance. The current statistical
estimates indicate that, on average, every star in our Galaxy hosts at least one planetary
companion [1], i.e. our Milky Way is crowded with one hundred billion planets.

The most revolutionary aspect of this young field is the discovery that the Solar System does
not appear to be the paradigm in our Galaxy, but rather one of the many possible configurations
we are seeing out there. These include planets completing a revolution in less than 1 day, as well
as planets orbiting two stars or moving on trajectories so eccentric as to resemble comets. This
variety of stellar and orbital parameters converts into planetary temperatures that span over two
orders of magnitude. Unexpectedly, planetary sizes and masses do not appear to be ‘quantized’,
as happens in the Solar System, where the terrestrial planets are well separated from Neptune
and Uranus, and those are, in turn, quite distinct from Jupiter and Saturn. Instead, a continuum
of sizes and masses appear to exist, from the super-Jupiter down to the sub-Earth objects [2,3].

While the relative frequency of ‘odd” planets compared to the ‘normal” ones—assuming the
Solar System planets represent the normality—might be the result of some selection effects caused
by the detection techniques used so far—mainly radial velocity and transit—it is undoubtable
that a great diversity of planets does exist around other stars. In the short term, we should be
able to shed light on this issue. The European Space Agency’s GAIA mission is expected to find
several thousand new planets through astrometry [4,5], a technique sensitive to planets lying in
a different region of the parameter space compared to transit and radial velocity, in particular to
planets at intermediate separation—typically a few astronomical units—from their mother star.
The instruments ESO-VLT SPHERE [6], Gemini Planet Imager [7] and Subaru SCEXAO [8] were
built to detect young, massive planets at large separation from the stars, a regime not yet well
explored till now.

With these numbers and premises, emphasis in the field of exoplanetary science must shift
from discovery to understanding: understanding the nature of exoplanetary bodies and their
history. The following fundamental questions need to be addressed:

— What is the origin of the observed exoplanet diversity?
— How and where do exoplanets form?
— What are the physical processes responsible for exoplanet evolution?

In all disciplines, taxonomy is often the first step towards understanding, yet we do not have,
to date, even a simple taxonomy of planets and planetary systems. For planets transiting in
front of their parent stars—of which over 400 are known today—the simplest observables are
the planetary radius and, when combined with radial velocity, the mass. Mass and radius allow
us to estimate the planetary bulk density. From figure 1, it is evident that even gas giants
have a broad range of interior structures and core compositions, as shown from the different
bulk densities observed [10,11]. While this has stimulated very interesting theoretical work on
planetary interiors and equations of state of hydrogen at high pressure and temperature, the
implications on, for example, planetary formation and evolution mechanisms are still unclear.
Most probably, the different bulk densities reflect the different nature and size of the planets’
cores, which in turn will depend on both the formation mechanism and the ‘birth distance” from
the parent star. Objects lighter than 10 Earth masses (super-Earths/sub-Neptunes, figure 1b) are
even more enigmatic, as they often can be explained in different ways [12-14]. Among those,
Kepler-10 b, Kepler-78 b, CoRoT-7 b and 55 Cnc e all have high densities and orbit G stars like
our Sun with periods of less than 1 day. By contrast, G] 1214 b and Kepler-11 d, e, f have much
lower densities and are subjected to less intense insolation because of their longer period or
cooler parent star. In the next years, dedicated space missions, such as NASA TESS [15] and
ESA CHEOPS [16], combined with radial velocity surveys, will measure the sizes and masses of
a few thousand new planets, completing the current statistics of available planetary densities in
the solar neighbourhood down to the terrestrial regime.

As explained earlier, density is a very important parameter, but alone it cannot be used as
a discriminant of the variety of cases we are seeing out there. We need additional information
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Figure 1. Masses and radii of currently confirmed transiting planets [9]. Extrasolar planets are denoted by circles (red online)
and Solar System planets are represented by triangles (green online). The grey lines (green and red online, respectively) denote
Earth-like composition (67% rock, 33% iron) and Mercury-like composition (40% rock, 60% iron). (Online version in colour.)
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Figure 2. (a) Phase curve of the hot Jupiter HAT-P7b while orbiting around its mother star as observed by Kepler [17]. The transit

and eclipse events occur at 10 hand 35 h, respectively. (b) Image of the planet 3-Pich, located 8—15 astronomical units from the
star, as observed with instrument VLT-Naco [18]. (Online version in colour.)

to proceed. The other key observable for planets is the chemical composition and state of their
atmosphere. Knowing what atmospheres are made of is essential to clarify, for instance, whether
a planet was born in the orbit it is observed in or whether it has migrated a long way; it is
also critical to understand the role of stellar radiation on escape processes, chemical evolution
and global circulation. To date, two methods can be used to sound exoplanetary atmospheres:
transit and eclipse spectroscopy, and direct imaging spectroscopy. These are very complementary
methods and we should pursue both to get a coherent picture of planets outside our Solar System
(figure 2).
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2. Brief review of exoplanet spectroscopic observations

(@) Transit

When a planet passes in front of its host star (transit), the star flux is reduced by a few per
cent, corresponding to the planet/star projected area ratio (transit depth). The planetary radius
Rp can be inferred from this measurement. If atomic or molecular species are present in the
exoplanet’s atmosphere, the inferred radius is larger at some specific wavelengths (absorption)
corresponding to the spectral signatures of these species [19-21]. The transit depth «(}) as a
function of wavelength (1) is given by

B RE +2 5™ (Rp +2)(1 — e ") dz
K()“) - R2 7
*

2.1)

where R, is the stellar radius, z the altitude above Rp, and 7 the optical depth. Equation (2.1)
has a unique solution, provided we know R, accurately; Ry, is the planetary radius at which the
planet becomes opaque at all A. For a terrestrial planet, R, usually coincides with the radius at
the surface. By contrast, for a gaseous planet, R, may correspond to a pressure pg ~ 1-10 bar
depending on the transparency of the atmosphere.

(b) Eclipse

A measurement of the planet’s emission/reflection can be obtained through the observation of
the planetary eclipse, by recording the difference between the combined star plus planet signal,
measured just before and after the eclipse, and the stellar flux alone, measured during the eclipse.
In contrast with the primary transit observations, the dayside of the planet is observed, which
makes the two methods fully complementary. Observations provide measurements of the flux
emitted and/or reflected by the planet in units of the stellar flux [22,23]. The planet/star flux
ratio ¢(1) is defined as

Rp Fp(3)

d(r) = @F*(A)'

2.2)

(c) Phase curves

In addition to transit and eclipse observations, monitoring the flux of the star plus planet system
over the orbital period allows the retrieval of information on the planet emission at different
phase angles. Such observations have to be performed from space, as they typically span over a
time interval of more than a day [17,24-26].

(d) Directimaging

The planet/star brightness contrast may typically range between 10~* and 10710 depending on
many parameters of the system, i.e. age, distance, planetary size, temperature, etc., and of course
spectral interval. To fix the ideas, Jupiter has a contrast of about 10~ relative to the Sun in the
visible and an angular separation of 0.5” at 10 pc. The use of a coronagraphic system [27,28] is
therefore essential to extract the planetary signal out of the stellar light.

Wavefront aberrations and stellar speckles are another critical problem that needs to
be attenuated. Deformable mirrors [29] and speckle calibration techniques, such as angular
differential imaging [30], can be used effectively to address this issue.

3. Highlights and problems with current photometric and spectroscopic data
(a) Highlights

Water vapour appears to be ubiquitous in the atmospheres of transiting hot Jupiters with
temperatures between 800 and 2200K observed to date [31-38]. The additional presence of
carbon-bearing species, such as methane, carbon monoxide and carbon dioxide, in those
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atmospheres has been supported by both observations and spectral simulations [26,35,39-43],
but their relative abundances are still unclear [40,44-47]. Nitrogen-bearing species (e.g. HCN,
NHj3) are most probably also there [48,49], but current observations are not precise enough
to indicate their presence. Ground-based observations in the L-band have been interpreted as
bearing the signature of methane fluorescence in the atmosphere of one of these hot Jupiters
[50,51]. This would be an important diagnostic of the physical structure of the upper atmosphere
of these planets probed through a minor atmospheric constituent. In the atmosphere of very
hot Jupiters, where temperatures approach 3000 K, exotic species commonly present in brown
dwarfs, such as metal oxides (TiO, VO) or metal hydrides (CrH, TiH, etc.), have been suggested
to explain observations by the Hubble STIS and WFC3 [31,52,53]. These species are important,
as they may influence both the planetary albedo and the vertical thermal structure of the
planet. Sodium and perhaps potassium are present in most hot Jupiters analysed [54-57]. Apart
from these alkali metals, the spectra in the visible appear dominated by Rayleigh scattering or
condensates/hazes [58,59].

Warm Neptunes are expected to be methane-rich [48,60,61], and indeed photometric
observations of GJ 436b may point in this direction [62]. Spectroscopy will be needed to unravel
the full picture of this and other objects, such as GJ 3740b [63,64]. The ~6 Earth-mass, warm planet
GJ 1214b is the first super-Earth that has been probed spectroscopically [65]. The VLT observations
were followed by other space and ground observations [66] that are suggestive of an atmosphere
heavier than pure molecular hydrogen, but additional observations are needed to confirm its
composition [67].

Information on the stability of the atmospheres of transiting planets has been collected through
UV observations with Hubble [68-70]: hydrodynamic escape processes are likely to occur for most
of the planets orbiting too close to their parent star [71-75]. Also, orbital phase curves in the
IR [24,25,76] and eclipse mapping measurements [77,78] have provided first constraints on the
thermal properties and dynamics of hot Jupiters” atmospheres.

In parallel with transit studies, in the next decade direct imaging techniques are expected to
allow observations of hot, young planets at large separations from their parent star, i.e. gaseous
planets newly formed in the outer regions of their planetary disc and not (yet?) migrated inward.

Multiple-band photometry and spectroscopy in the near-IR (1-5 um) have been obtained for
a few young gaseous planets, such as p Pic-b [79,80], GJ 504 b [81] and the planets around HR
8799 [82]. These observations will be perfected and extended to tens of objects with dedicated
instruments, such as SPHERE and GPI. The comparison of the chemical composition of these
young gaseous objects with the composition of their migrated siblings probed through transit
will enable us to understand the role played by migration and by extreme irradiation on
gaseous planets.

(b) Issues and possible solutions

Although the field of exoplanet spectroscopy has been very successful in past years, there are a
few serious hurdles that need to be overcome to progress in this area, in particular the following:

1. Instrument systematics are often difficult to disentangle from the signal. In the past, parametric
models have extensively been used by most teams to remove instrument systematics. This
approach has caused many debates regarding the use of different parametric choices to
remove the systematic errors. Parametric models approximate systematic noise by fitting
a linear combination of optical state vectors to the data (e.g. X- and Y-positional drifts of
the star or the spectrum on the detector, the focus and the detector temperature changes,
positional angles of the telescope on the sky). Even when the parametrization is sufficient,
it is often difficult to determine which combination of these parameters may best capture
the systematic effects of the instrument.

Unsupervised machine learning algorithms do not need to be trained prior to use
and do not require auxiliary or prior information on the star, instrument or planet.
The machine learning approach will ‘learn’ the characteristics of an instrument from
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observations, allowing one to de-trend systematics from the astrophysical signal. This
approach guarantees a higher degree of objectivity compared with traditional methods.
In Waldmann [51,83], Waldmann et al. [84] and Morello et al. [85], independent component
analysis (ICA) [86] has been adopted as an effective way to decorrelate the exoplanetary
signal from the instrument systematics in the case of Hubble NICMOS and Spitzer IRS and
IRAC data.

. Especially for transit observations, stellar activity is the largest source of astrophysical noise.
Stellar noise is an important source of spectral and temporal instability in exoplanetary
time-series measurements [87,88]. This is particularly true for M dwarf host stars as well
as many non-main-sequence stars. Correction mechanisms for fluctuations must be an
integral part of the data analysis. The problem of stellar activity removal from time-
series data is a very active field of research. Whereas most instrumental effects can be
measured or calibrated to some degree, stellar and general astrophysical noise does
not usually grant us this luxury. In Waldmann [51] and Danielski et al. [89], the same
methods explained in point 1 to decorrelate the systematic noise were successfully used
to eliminate/reduce the effects of the stellar activity in Kepler photometric light curves.
These methods need to be applied to spectroscopic time series, to assess their validity
and potential also in the spectral domain.

. Data are sparse, i.e. there is not enough wavelength coverage and most of the time the observations
were not recorded simultaneously.
. Absolute calibration at the level of 10~* is not guaranteed by current instruments, and therefore
caution is needed when one combines multiple datasets not recorded simultaneously.
. Transmission and emission spectra, as measured through transit, eclipse and direct imaging, are
intrinsically degenerate. In transit spectroscopy, the degeneracy in the retrieval of molecular
abundances may be caused by the imprecise knowledge of Rp (equation (2.1)). In IR
eclipse and direct imaging spectroscopy, the information on molecular abundances is
entangled with the atmospheric vertical thermal profile; see for instance Tinetti et al.
[90] for a more detailed discussion. For transiting planets, to remove the degeneracy
between molecular abundances/planetary radius or molecular abundances/vertical
thermal gradient, a broad wavelength coverage is needed together with adequate
signal-to-noise ratio (SNR) and spectral resolving power (SRP) (see point 7). Direct
imaging observations also suffer from the lack of knowledge of the planetary radius and
sometimes mass. When the mass and the radius are not known, model estimates need to
be invoked, increasing the source of degeneracy.

. Accurate linelists are an essential element of radiative transfer models, and this fact is not

always appreciated. As a result, the abundances for molecular species are often derived

with linelists that are incomplete or extrapolated from measurements/calculations at
low temperatures. This issue—especially together with point 3—may introduce large

errors. For instance, all the current claims of carbon-rich or carbon-poor planets [91]

published in the literature are unsubstantiated for this reason. This problem is well

known to spectroscopists, and linelists at high temperatures are being calculated ab initio

or measured in the laboratory [92].

. We are dealing with very low SNR observations. While the adoption of new data analysis

methods and models might address some of the issues listed above, the lack of good data

is something we cannot solve in the short term. I indicate below the SNR per spectral
resolution element and SRP that would be needed to guarantee a sound spectral retrieval.

The reader should refer to Tinetti et al. [90] and Tessenyi et al. [93] for a more extensive

discussion of these parameters.

(a) Basic. SNR ~ 5 and SRP ~ 50 for A < 5 pum and SRP ~ 30 for A > 5 pm. Key molecular
species can be detected and the main thermal properties are captured.

(b) Deep. SNR ~ 10 and SRP ~ 100 for A <5 pm and SRP ~ 30 for A > 5pum. Molecular
abundances (i.e. the abundance of one component relative to that of all other
components) are retrieved and so is the vertical thermal structure.
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Table 1. Warm Neptune: minimum detectable abundances (mixing ratios) for a basic, deep and ultradeep retrieval. The bulk
composition of the planetary atmosphere in this simulation is molecular hydrogen with a small fraction of helium. See Tessenyi
et al. [93] for further details on the method.

(0,

retrieval ) . 6 |L 28 um 43y A 10.5 wm
ultradeep 1077 0 10 10-° 1077 1077 07 107 10°° 1077

425pm  8um

Table 2. Hotsuper-Earth, around a G-type star: minimum detectable abundances (mixing ratios) for a basic, deep and ultradeep
retrieval. The bulk composition of the planetary atmosphere in this simulation is H,0. See Tessenyi et al. [93] for further details
on the method and the impact of other main atmospheric components on the results.

retrieval ) 1-16 um

ultradeep 10~ 10~ 10~ 10-° 1077 10~°
deep 1074 1073 1073 10 106 104
hasic 1073 — — 10~ 10-° —

(c) Ultradeep. SNR ~ 20 and SRP ~ 300 for 2 <5 pm and SRP ~ 30 for A > 5 pm. A very
thorough spectral retrieval study can be performed.

In tables 1 and 2, I show the detectable molecular abundances at fixed SNR and SRP for a
typical warm Neptune, for example, GJ 436 b, and a hot super-Earth, for example, 55 Cnc
e. The results for hot Jupiters are very similar to the ones reported for warm Neptunes.
The reader should refer to Tessenyi et al. [93] for the case of temperate super-Earths
around late dwarfs.

4. The next decade and beyond

In §3b, L identified the hurdles that cannot be solved in the short term (in particular, points 3, 4 and
7): a new generation of ground and space facilities is needed to tackle those. In the next decade,
new large, general-purpose observatories from space and the ground will come online, notably
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JWST and E-ELT. It is understood that, among many other science goals, they will contribute
significantly to exoplanet spectroscopic observations, in both transit and direct imaging [94-96].
More crucially for this field, dedicated instruments and missions are being studied or planned.

The idea of a dedicated IR observatory in space to study exoplanetary atmospheres is clearly
not new: back in the 1980s Bracewell [97] and Angel et al. [98] proposed that exoplanets around
nearby stars could be detected in the IR (6-17 pm) and their spectra analysed, searching for CO»,
H>O, O3, CHy and NH3 spectral features. The proposal to implement this idea under the form
of an IR nulling interferometer in space came almost ten years later [99]. The concept, named
DARWIN, was first proposed to ESA in 1993, when the only known planets were the nine in our
Solar System (plus three around a neutron star). Its principal objectives were to detect Earth-like
planets around nearby stars, to analyse the composition of their atmospheres and to assess their
ability to sustain life as we know it. Similar mission concepts were proposed to NASA in the
USA (Terrestrial Planet Finder-Interferometer [100]). The working hypothesis of an Earth-twin
plus Sun-twin as the only cradle of life was too geocentric to survive the ‘exoplanet revolution’
and none of these very challenging missions have been implemented. A couple of decades of
exoplanet discoveries have taught us that the pathways to habitable planets are multiple, but the
most interesting ones are those able to cast light on a host of physical and chemical processes not
entirely understood or missing altogether in our Solar System [101,102].

In past years, mission concepts for IR transit spectroscopy from space were proposed to and
studied by both ESA and NASA, in particular THESIS [103], Finesse [104] and EChO [105]. The
transit and eclipse spectroscopy methods allow us to measure atmospheric signals from the
planet at levels of at least 107* relative to the star. No angular resolution is needed, as the
signals from the star and from the planet are differentiated using knowledge of the planetary
ephemerides. This can only be achieved in conjunction with a carefully designed, stable payload
and satellite platform. EChO, the Exoplanet Characterization Observatory, is currently one of the five
M3 mission candidates being assessed by ESA, for a possible launch in 2022.! If selected, EChO
will provide low—mid resolution (R =30-300), simultaneous multi-wavelength spectroscopic
observations (0.55-11 um, goal 0.4-16 pm) of a few hundred planets, including hot, warm and
temperate gaseous planets and super-Earths around different stellar types. These measurements
will allow the retrieval of the molecular composition and thermal structure of the atmospheres
observed. The design of the whole detection chain and satellite will be optimized to achieve a
high degree of photometric stability (i.e. approx. 100 ppm in 10 h) and repeatability: the telescope
will have a collecting area of 1.13 m?2, will be diffraction-limited at 3 pm and positioned at L2.
This Lagrangian point provides a cold and stable thermal environment, as well as a large field
of regard to allow efficient time-critical observation of targets randomly distributed over the sky.
I show in figure 3 the simulated performances achievable by EChO to observe the warm super-
Earth GJ 1214 b. Planets that are much smaller (less than 1.5 Earth radii) and colder than this one
(colder than 300 K) will be challenging for an EChO-like mission. Temperate super-Earths may be
observable only around bright late M dwarfs.

Provided a small/medium-size transit spectroscopy mission is launched in the next decade,
would it make sense to envisage a large spectroscopy mission later on? Probably not. To illustrate
why, it is useful to first discuss a few basic concepts. The numbers of electrons per spectral element
on the detector from the star (N) and planet (Np) are

_ AF*Aefant
n

N, and Np=¢N.=¢ 4.1)

AR AefinQ
n
where ¢ is the planet/star contrast defined in (2.2), AF, is the stellar flux in the spectral
band observed (photons s 1m™2), A is the effective collecting area (m?), n is the instrumental
throughput (dimensionless), Q is the detector quantum efficiency (e™/photon) and f is the
integration time (s). If we assume the observations to be dominated by the stellar photon noise,

ISee http:/ /sci.esa.int/science-e/www /area/index.cfm?fareaid=124.
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Figure 3. (a) Transit spectroscopic observations of the super-Earth GJ 1214 b recorded with Hubble-WF(3 [66]. (b) Simulations
of EChO performances compatible with a ‘deep retrieval’ In December 2013, about 160 known exoplanets could be observed
with SNR and SRP corresponding to ‘basic, a good fraction of them as ‘deep’ and about 10-20 as ‘ultradeep’; see
http://sci.esa.int/echo/ and Varley et al. [106]. (Online version in colour.)

the SNR per spectral element is

Np —4 AFAegnQt

SNR = =
VN n

(4.2)

The SNR thus scales with /A, i.e. it goes linearly with telescope diameter (D). The cost of a
telescope scales, in the most optimistic cost models, as D to the 1.2 power, with some models
indicating an exponent of 2 [107]. Therefore, an increase in telescope diameter of a factor of 2
means a cost increase of a factor of 2 to 4, while doubling the SNR has a small to negligible impact
on the science.

To be transformational, we should aim at an improvement of at least a factor of 10 in the SNR,
and this would require the idea of an agile, highly stable platform to be abandoned in favour of a
large, deployable structure, as monolithic space telescopes are limited by fairing size to about 4m
diameter. The said structure might represent an encumbrance when trying to reach the pointing
stability required by transit observations and certainly might limit the ability to move and repoint
agilely from one target to another in the sky. Note that a factor of 10 in SNR might not be sufficient
in any case to observe the atmospheres of Earth-like planets around Sun-like stars. For those
targets, in fact, transits are expected to occur once per year, and 5-6 transits (assuming a mission
lifetime of approx. 5 years) will not be enough to collect the required photons.

Direct imaging from space is the expected next step to be taken in space after transit. Space
telescopes with various types of coronagraphs are being studied in the USA, Europe and Japan
[108-114]. A mission for direct imaging would be technically more challenging than a transit
one and certainly more expensive—the telescope cannot be a light bucket, to start with. The said
mission, though, would open up the spectroscopic exploration of planets at larger separation from
the stars, a domain that is impracticable with transits.
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In the past two decades, the field of exoplanets has spoiled us in terms of creativity and
transformational ideas, so perhaps we should not be too surprised if a new technology or a new
observing strategy comes online soon, making all the other techniques obsolete or just inefficient.

Acknowledgements. G.T. is a Royal Society University Research Fellow.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Cassan A et al. 2012 One or more bound planets per Milky Way star from microlensing
observations. Nature 481, 167-169. (d0i:10.1038 /nature10684)

Batalha NM et al. 2013 Planetary candidates observed by Kepler. IIl. Analysis of the first 16
months of data. Astrophys. J. Suppl. 204, 24. (doi:10.1088 /0067-0049 /204 /2 /24)

. Fressin F, Torres G, Charbonneau D, Bryson ST, Christiansen ], Dressing CD, Jenkins JM,

Walkowicz LM Batalha NM. 2013 The false positive rate of Kepler and the occurrence of
planets. Astrophys. J. 766, 81. (d0i:10.1088 /0004-637X/766/2/81)

. Sozzetti A. 2010 The Gaia astrometric survey. Highlights Astron. 15, 716-717. (doi:10.1017/

51743921310011142)

. Sozzetti A, Giacobbe P, Lattanzi MG, Micela G, Morbidelli R, Tinetti G. 2013 Astrometric

detection of giant planets around nearby M dwarfs: the Gaia potential. Mon. Not. R. Astron.
Soc. 437, 497-509. (d0i:10.1093 /mnras/stt1899)

. Beuzit J-L et al. 2008 SPHERE: a planet finder instrument for the VLT. In Ground-based and

airborne instrumentation for astronomy II (eds IS McLean, MM Casali). Proc. SPIE, vol. 7014,
701418 (12 pp.). Bellingham, WA: SPIE. (d0i:10.1117/12.790120)

. Hartung M et al. 2013 Final A&T stages of the Gemini planet finder. (http://arxiv.org/

abs/1311.4423)

. Jovanovic N et al. 2013 SCExAO as a precursor to an ELT exoplanet direct imaging

instrument. (http://arxiv.org/abs/1310.0476)

. Howard AW. et al. 2013 A rocky composition for an Earth-sized exoplanet. Nature 503, 381

384. (d0i:10.1038 /naturel2767)

Guillot T. 2005 The interiors of giant planets: models and outstanding questions. Annu. Rev.
Earth Planet. Sci. 33, 493-530. (doi:10.1146/annurev.earth.32.101802.120325)

Fortney JJ, Marley MS, Barnes JW. 2007 Planetary radii across five orders of magnitude
in mass and stellar insolation: application to transits. Astrophys. ]. 659, 1661-1672.
(doi:10.1086/512120)

Adams ER, Seager S, Elkins-Tanton, L. 2008 Ocean planet or thick atmosphere: on the
mass-radius relationship for solid exoplanets with massive atmospheres. Astrophys. J. 673,
1160-1164. (doi:10.1086/524925)

Grasset O, Schneider J, Sotin C. 2009 A study of the accuracy of mass-radius relationships
for silicate-rich and ice-rich planets up to 100 Earth masses. Astrophys. ]J. 693, 722-733.
(doi:10.1088/0004-637X/693/1/722)

Valencia D, Guillot T, Parmentier V, Freedman RS. 2013 Bulk composition of GJ 1214b and
other sub-Neptune exoplanets. Astrophys. J. 775, 10. (d0i:10.1088 /0004-637X/775/1/10)
Ricker GR et al. 2010 Transiting Exoplanet Survey Satellite (TESS). In American Astronomical
Society Meeting Abstracts no. 215. Bulletin of the American Astronomical Society, no. 42,
p- 450.06. Washington, DC: American Astronomical Society. See http:/ /adsabs.harvard.edu/
abs/2010AAS...21545006R.

Broeg C et al. 2013 CHEOPS: a transit photometry mission for ESA’s small mission
programme. Eur. Phys. ]. Web Conf. 47, 3005. (d0i:10.1051/ epjconf/20134703005)

Borucki WJ et al. 2009 Kepler’s optical phase curve of the exoplanet HAT-P-7b. Science 325,
709. (doi:10.1126/science.1178312)

Lagrange A-M et al. 2010 A giant planet imaged in the disk of the young star B Pictoris.
Science 329, 57-59. (d0i:10.1126 /science.1187187)

Seager S, Sasselov DD. 2000 Theoretical transmission spectra during extrasolar giant planet
transits. Astrophys. J. 537, 916-921. (doi:10.1086/309088)

Brown TM. 2001 Transmission spectra as diagnostics of extrasolar giant planet atmospheres.
Astrophys. | 553, 1006-1026. (d0i:10.1086/320950)

Tinetti G, Liang M-C, Vidal-Madjar A, Ehrenreich D, Lecavelier des Etangs A, Yung YL.
2007 Infrared transmission spectra for extrasolar giant planets. Astrophys. J. 654, L99-1102.
(d0i:10.1086/510716)

iy S


http://dx.doi.org/doi:10.1038/nature10684
http://dx.doi.org/doi:10.1088/0067-0049/204/2/24
http://dx.doi.org/doi:10.1088/0004-637X/766/2/81
http://dx.doi.org/doi:10.1017/S1743921310011142
http://dx.doi.org/doi:10.1017/S1743921310011142
http://dx.doi.org/doi:10.1093/mnras/stt1899
http://dx.doi.org/doi:10.1117/12.790120
http://arxiv.org/abs/1311.4423
http://arxiv.org/abs/1311.4423
http://arxiv.org/abs/1310.0476
http://dx.doi.org/doi:10.1038/nature12767
http://dx.doi.org/doi:10.1146/annurev.earth.32.101802.120325
http://dx.doi.org/doi:10.1086/512120
http://dx.doi.org/doi:10.1086/524925
http://dx.doi.org/doi:10.1088/0004-637X/693/1/722
http://dx.doi.org/doi:10.1088/0004-637X/775/1/10
http://adsabs.harvard.edu/abs/2010AAS...21545006R
http://adsabs.harvard.edu/abs/2010AAS...21545006R
http://dx.doi.org/doi:10.1051/epjconf/20134703005
http://dx.doi.org/doi:10.1126/science.1178312
http://dx.doi.org/doi:10.1126/science.1187187
http://dx.doi.org/doi:10.1086/309088
http://dx.doi.org/doi:10.1086/320950
http://dx.doi.org/doi:10.1086/510716
http://rsta.royalsocietypublishing.org/

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Downloaded from rsta.royalsocietypublishing.org on August 18, 2014

Charbonneau D ef al. 2005 Detection of thermal emission from an extrasolar planet. Astrophys.
J. 626, 523-529. (doi:10.1086/429991)

Deming D, Seager S, Richardson L], Harrington J. 2005 Infrared radiation from an extrasolar
planet. Nature 434, 740-743. (doi:10.1038 /nature03507)

Harrington ], Hansen BM, Luszcz SH, Seager S, Deming D, Menou K, Cho JY-K, Richardson
LJ. 2006 The phase-dependent infrared brightness of the extrasolar planet v Andromedae b.
Science 314, 623-626. (doi:10.1126/science.1133904)

Knutson HA, Charbonneau D, Allen LE, Fortney JJ, Agol E, Cowan NB, Showman AP,
Cooper CS, Megeath ST. 2007 A map of the day—night contrast of the extrasolar planet HD
189733b. Nature 447, 183-186. (doi:10.1038 /nature05782)

Snellen IAG, de Kok RJ, de Mooij EJW, Albrecht S. 2010 The orbital motion, absolute mass
and high-altitude winds of exoplanet HD 209458b. Nature 465, 1049-1051. (doi:10.1038/
nature09111)

Lyot B. 1939 The study of the solar corona and prominences without eclipses (George Darwin
Lecture, 1939). Mon. Not. R. Astron. Soc. 99, 580.

Guyon O. 2013 Imaging Earth-like planets around late-type stars with low-inner working
angle PIAA coronagraphy. In Techniques and instrumentation for detection of exoplanets VI (ed
S Shaklan). Proc. SPIE, vol. 8864, 886414 (8pp.). Bellingham, WA: SPIE. (doi:10.1117/12.
2025319)

Trauger JT, Traub WA. 2007 A laboratory demonstration of the capability to image an Earth-
like extrasolar planet. Nature 446, 771-773. (d0i:10.1038 /nature05729)

Marois C, Macintosh B, Barman T, Zuckerman B, Song I, Patience J, Lafreniere D, Doyon R.
2008 Direct imaging of multiple planets orbiting the star HR 8799. Science 322, 1348-1352.
(d0i:10.1126 /science.1166585)

Barman T. 2007 Identification of absorption features in an extrasolar planet atmosphere.
Astrophys. ]. 661, L191-1.194. (doi:10.1086/518736)

Tinetti G et al. 2007 Water vapour in the atmosphere of a transiting extrasolar planet. Nature
448, 169-171. (d0i:10.1038 /nature06002)

Grillmair CJ, Burrows A, Charbonneau D, Armus L, Stauffer ], Meadows V, van Cleve ], von
Braun K, Levine D. 2008 Strong water absorption in the dayside emission spectrum of the
planet HD 189733b. Nature 456, 767-769. (d0i:10.1038 /nature07574)

Beaulieu JP et al. 2010 Water in the atmosphere of HD 209458b from 3.6-8um
IRAC photometric observations in primary transit. Mon. Not. R. Astron. Soc. 409, 963-974.
(doi:10.1111/j.1365-2966.2010.16516.x)

Swain MR, Vasisht G, Tinetti G. 2008 The presence of methane in the atmosphere of an
extrasolar planet. Nature 452, 329-331. (d0i:10.1038 /nature06823)

Crouzet N, McCullough PR, Burke C, Long D. 2012 Transmission spectroscopy of
exoplanet XO-2b observed with Hubble Space Telescope NICMOS. Astrophys. ]. 761, 7.
(d0i:10.1088/0004-637X/761/1/7)

Deming D et al. 2013 Infrared transmission spectroscopy of the exoplanets HD 209458b and
XO-1b using the wide field camera-3 on the Hubble Space Telescope. Astrophys. |. 774, 95.
(d0i:10.1088 /0004-637X/774/2/95)

Birkby JL, de Kok R], Brogi M, de Mooij EJW, Schwarz H, Albrecht S, Snellen IAG. 2013
Detection of water absorption in the day side atmosphere of HD 189733 b using ground-
based high-resolution spectroscopy at 3.2um. Mon. Not. R. Astron. Soc. 436, L35-L39.
(doi:10.1093 /mnrasl/slt107)

Swain MR, Vasisht G, Tinetti G, Bouwman J, Chen P, Yung Y, Deming D, Deroo P. 2009
Molecular signatures in the near-infrared dayside spectrum of HD 189733b. Astrophys. ]. 690,
L114-L117. (doi:10.1088/0004-637X/690/2/1.114)

Swain MR et al. 2009 Water, methane, and carbon dioxide present in the dayside
spectrum of the exoplanet HD 209458b. Astrophys. ]. 704, 1616-1621. (d0i:10.1088 /0004-637X /
704/2/1616)

Tinetti G, Deroo P, Swain MR, Griffith CA, Vasisht G, Brown LR, Burke C, McCullough P.
2010 Probing the terminator region atmosphere of the hot-Jupiter XO-1b with transmission
spectroscopy. Astrophys. J. 712, L139-1L142. (d0i:10.1088/2041-8205/712/2/1139)

Brogi M, Snellen IAG, de Kok RJ, Albrecht S, Birkby J, de Mooij EJW. 2012 The signature of
orbital motion from the dayside of the planet v Bottis b. Nature 486, 502-504. (doi:10.1038/
naturel1161)

Lo g Sobundiaiors


http://dx.doi.org/doi:10.1086/429991
http://dx.doi.org/doi:10.1038/nature03507
http://dx.doi.org/doi:10.1126/science.1133904
http://dx.doi.org/doi:10.1038/nature05782
http://dx.doi.org/doi:10.1038/nature09111
http://dx.doi.org/doi:10.1038/nature09111
http://dx.doi.org/doi:10.1117/12.2025319
http://dx.doi.org/doi:10.1117/12.2025319
http://dx.doi.org/doi:10.1038/nature05729
http://dx.doi.org/doi:10.1126/science.1166585
http://dx.doi.org/doi:10.1086/518736
http://dx.doi.org/doi:10.1038/nature06002
http://dx.doi.org/doi:10.1038/nature07574
http://dx.doi.org/doi:10.1111/j.1365-2966.2010.16516.x
http://dx.doi.org/doi:10.1038/nature06823
http://dx.doi.org/doi:10.1088/0004-637X/761/1/7
http://dx.doi.org/doi:10.1088/0004-637X/774/2/95
http://dx.doi.org/doi:10.1093/mnrasl/slt107
http://dx.doi.org/doi:10.1088/0004-637X/690/2/L114
http://dx.doi.org/doi:10.1088/0004-637X/704/2/1616
http://dx.doi.org/doi:10.1088/0004-637X/704/2/1616
http://dx.doi.org/doi:10.1088/2041-8205/712/2/L139
http://dx.doi.org/doi:10.1038/nature11161
http://dx.doi.org/doi:10.1038/nature11161
http://rsta.royalsocietypublishing.org/

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

Downloaded from rsta.royalsocietypublishing.org on August 18, 2014

de Kok RJ, Brogi M, Snellen IAG, Birkby ], Albrecht S, de Mooij EJW. 2013 Detection of
carbon monoxide in the high-resolution day-side spectrum of the exoplanet HD 189733b.
Astron. Astrophys. 554, A82. (doi:10.1051/0004-6361/201321381)

Madhusudhan N, Seager S. 2009 A temperature and abundance retrieval method for
exoplanet atmospheres. Astrophys. J. 707, 24-39. (doi:10.1088/0004-637X/707 /1/24)

Lee J-M, Fletcher LN, Irwin PG]J. 2012 Optimal estimation retrievals of the atmospheric
structure and composition of HD 189733b from secondary eclipse spectroscopy. Mon. Not.
R. Astron. Soc. 420, 170-182. (d0i:10.1111/j.1365-2966.2011.20013.x)

Line MR, Zhang X, Vasisht G, Natraj V, Chen P, Yung YL. 2012 Information content of
exoplanetary transit spectra: an initial look. Astrophys. J. 749, 93. (doi:10.1088/0004-637X/
749/1/93)

Tinetti G et al. 2010 Exploring extrasolar worlds: from gas giants to terrestrial habitable
planets. Faraday Discuss. 147, 369-377. (d0i:10.1039 /c005126h)

Moses JI et al. 2011 Disequilibrium carbon, oxygen, and nitrogen chemistry in the
atmospheres of HD 189733b and HD 209458b. Astrophys. ]. 737, 15. (d0i:10.1088 /0004-637X/
737/1/15)

Venot O, Hébrard E, Agindez M, Dobrijevic M, Selsis F, Hersant F, Iro N, Bounaceur R.
2012 A chemical model for the atmosphere of hot Jupiters. Astron. Astrophys. 546, A43.
(doi:10.1051/0004-6361/201219310)

Swain MR et al. 2010 A ground-based near-infrared emission spectrum of the exoplanet HD
189733b. Nature 463, 637-639. (d0i:10.1038 /nature08775)

Waldmann IP. 2012 Of ‘cocktail parties” and exoplanets. Astrophys. J. 747, 12. (d0i:10.1088/
0004-637X/747/1/12)

Swain M et al. 2013 Probing the extreme planetary atmosphere of WASP-12b. Icarus 225,
432-445. (doi:10.1016/j.icarus.2013.04.003)

Stevenson KB, Bean JL, Seifahrt A, Desert J-M, Madhusudhan N, Bergmann M, Kreidberg
L, Homeier D. 2013 Transmission spectroscopy of the hot-Jupiter WASP-12b from 0.7 to 5
microns. Astrophys. ]. Submitted. (http://arxiv.org/abs/1305.1670)

Charbonneau D, Brown TM, Noyes RW, Gilliland RL. 2002 Detection of an extrasolar planet
atmosphere. Astrophys. |. 568, 377-384. (doi:10.1086/338770)

Redfield S, Endl M, Cochran WD, Koesterke L. 2008 Sodium absorption from the
exoplanetary atmosphere of HD 189733b detected in the optical transmission spectrum.
Astrophys. J. 673, L87-L90. (doi:10.1086/527475)

Snellen IAG, Albrecht S, de Mooij EJW, Le Poole RS. 2008 Ground-based detection of sodium
in the transmission spectrum of exoplanet HD 209458b. Astron. Astrophys. 487, 357-362.
(d0i:10.1051/0004-6361:200809762)

Colon KD, Ford EB, Redfield S, Fortney JJ, Shabram M, Deeg HJ, Mahadevan S.
2011 Probing potassium in the atmosphere of HD 80606b with tunable filter transit
spectrophotometry from the Gran Telescopio Canarias. Mon. Not. R. Astron. Soc. 419,
2233-2250. (d0i:10.1111/j.1365-2966.2011.19878.x)

Knutson HA, Charbonneau D, Noyes RW, Brown TM, Gilliland RL. 2007 Using stellar limb-
darkening to refine the properties of HD 209458b. Astrophys. J. 655, 564-575. (d0i:10.1086/
510111)

Sing DK ef al. 2011 Hubble Space Telescope transmission spectroscopy of the exoplanet HD
189733b: high-altitude atmospheric haze in the optical and near-ultraviolet with STIS. Mon.
Not. R. Astron. Soc. 416, 1443-1455. (doi:10.1111/§.1365-2966.2011.19142.x)

Line MR, Liang MC, Yung YL. 2010 High-temperature photochemistry in the atmosphere of
HD 189733b. Astrophys. |. 717, 496-502. (doi:10.1088/0004-637X/717 /1/496)

Venot O, Agtindez M, Selsis F, Tessenyi M, Iro N. 2013 The atmospheric chemistry of the
warm Neptune GJ 3470b: influence of metallicity and temperature on the CHy/CO ratio.
Astron. Astrophys. 562, A51 (11pp.). (d0i:10.1051/0004-6361/201322485)

Beaulieu J-P et al. 2011 Methane in the atmosphere of the transiting hot Neptune GJ 436b?
Astrophys. . 731, 16. (d0i:10.1088/0004-637X/731/1/16)

Fukui A et al. 2013 Optical-to-near-infrared simultaneous observations for the hot Uranus
GJ 3470b: a hint of a cloud-free atmosphere. Astrophys. |. 770, 95. (doi:10.1088/0004-637X/
770/2/95)

Nascimbeni V, Piotto G, Pagano I, Scandariato G, Sani E, Fumana M. 2013 The blue sky of GJ
3470b: the atmosphere of a low-mass planet unveiled by ground-based photometry. Astron.
Astrophys. 559, A32. (doi:10.1051/0004-6361/201321971)

Lo g Sobundiaiors


http://dx.doi.org/doi:10.1051/0004-6361/201321381
http://dx.doi.org/doi:10.1088/0004-637X/707/1/24
http://dx.doi.org/doi:10.1111/j.1365-2966.2011.20013.x
http://dx.doi.org/doi:10.1088/0004-637X/749/1/93
http://dx.doi.org/doi:10.1088/0004-637X/749/1/93
http://dx.doi.org/doi:10.1039/c005126h
http://dx.doi.org/doi:10.1088/0004-637X/737/1/15
http://dx.doi.org/doi:10.1088/0004-637X/737/1/15
http://dx.doi.org/doi:10.1051/0004-6361/201219310
http://dx.doi.org/doi:10.1038/nature08775
http://dx.doi.org/doi:10.1088/0004-637X/747/1/12
http://dx.doi.org/doi:10.1088/0004-637X/747/1/12
http://dx.doi.org/doi:10.1016/j.icarus.2013.04.003
http://arxiv.org/abs/1305.1670
http://dx.doi.org/doi:10.1086/338770
http://dx.doi.org/doi:10.1086/527475
http://dx.doi.org/doi:10.1051/0004-6361:200809762
http://dx.doi.org/doi:10.1111/j.1365-2966.2011.19878.x
http://dx.doi.org/doi:10.1086/510111
http://dx.doi.org/doi:10.1086/510111
http://dx.doi.org/doi:10.1111/j.1365-2966.2011.19142.x
http://dx.doi.org/doi:10.1088/0004-637X/717/1/496
http://dx.doi.org/doi:10.1051/0004-6361/201322485
http://dx.doi.org/doi:10.1088/0004-637X/731/1/16
http://dx.doi.org/doi:10.1088/0004-637X/770/2/95
http://dx.doi.org/doi:10.1088/0004-637X/770/2/95
http://dx.doi.org/doi:10.1051/0004-6361/201321971
http://rsta.royalsocietypublishing.org/

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

Downloaded from rsta.royalsocietypublishing.org on August 18, 2014

Bean JL, Miller-Ricci Kempton E, Homeier D. 2010 A ground-based transmission spectrum
of the super-Earth exoplanet GJ 1214b. Nature 468, 669-672. (d0i:10.1038 /nature09596)

Berta ZK et al. 2012 The flat transmission spectrum of the super-Earth GJ 1214b from wide
field camera 3 on the Hubble Space Telescope. Astrophys. . 747, 35. (d0i:10.1088 /0004-637X/
747/1/35)

Kreidberg L et al. 2014 Clouds in the atmosphere of the super-Earth exoplanet GJ 1214b.
Nature 505, 69-72. (d0i:10.1038 /nature12888)

Vidal-Madjar A, Lecavelier des Etangs A, Désert ]-M, Ballester GE, Ferlet R, Hébrard G,
Mayor M. 2003 An extended upper atmosphere around the extrasolar planet HD 209458b.
Nature 422, 143-146. (d0i:10.1038 /nature01448)

Linsky JL, Yang H, France K, Froning CS, Green JC, Stocke ]JT, Osterman SN. 2010
Observations of mass loss from the transiting exoplanet HD 209458b. Astrophys. |. 717,
1291-1299. (doi:10.1088/0004-637X /717 /2/1291)

Fossati L et al. 2010 Metals in the exosphere of the highly irradiated planet WASP-12b.
Astrophys. |. Lett. 714, L222-1.227. (d0i:10.1088 /2041-8205/714 /2 /1.222)

Yelle RV. 2004 Aeronomy of extra-solar giant planets at small orbital distances. Icarus 170,
167-179. (doi:10.1016/j.icarus.2004.02.008)

Koskinen T, Aylward A, Miller S. 2007 A stability limit for the atmospheres of giant extrasolar
planets. Nature 450, 845-848. (d0i:10.1038 /nature06378)

Garcifa Mufioz A. 2007 Physical and chemical aeronomy of HD 209458b. Planet. Space Sci. 55,
1426-1455. (doi:10.1016/j.pss.2007.03.007)

Koskinen TT, Harris MJ, Yelle RV, Lavvas P. 2013 The escape of heavy atoms from the
ionosphere of HD 209458b. I. A photochemical and dynamical model of the thermosphere.
Icarus 226, 1678-1694. (doi:10.1016/j.icarus.2012.09.027)

Koskinen TT, Yelle RV, Harris M], Lavvas P. 2013 The escape of heavy atoms from the
ionosphere of HD 209458b. II. Interpretation of the observations. Icarus 226, 1695-1708.
(d0i:10.1016 /j.icarus.2012.09.026)

Crossfield IJM, Hansen BMS, Harrington J, Cho ], Deming D, Menou K, Seager S.
2010 A new 24 micron phase curve for v Andromedae b. Astrophys. ]. 723, 1436-1446.
(d0i:10.1088/0004-637X/723/2/1436)

Majeau C, Agol E, Cowan NB. 2012 A two-dimensional infrared map of the extrasolar planet
HD 189733b. Astrophys. |. Lett. 747, 1L.20. (doi:10.1088 /2041-8205/747 /2 /1.20)

de Wit J, Gillon M, Demory B-O, Seager S. 2012 Towards consistent mapping of distant
worlds: secondary-eclipse scanning of the exoplanet HD 189733b. Astron. Astrophys. 548,
A128. (d0i:10.1051/0004-6361/201219060)

Bonnefoy M et al. 2013 The near-infrared spectral energy distribution of B Pictoris b. Astron.
Astrophys. 555, A107. (doi:10.1051/0004-6361/201220838)

Currie T et al. 2013 A combined Very Large Telescope and Gemini study of the atmosphere
of the directly imaged planet, p Pictoris b. Astrophys. |. 776, 15. (d0i:10.1088/0004-637X/
776/1/15)

Janson M et al. 2013 Direct imaging detection of methane in the atmosphere of GJ 504 b.
Astrophys. J. Lett. 778, L4. (doi:10.1088/2041-8205/778/1/14)

Konopacky QM, Barman TS, Macintosh BA, Marois C. 2013 Detection of carbon monoxide
and water absorption lines in an exoplanet atmosphere. Science 339, 1398-1401. (doi:10.1126/
science.1232003)

Waldmann IP. 2013 On signals faint and sparse: the ACICA algorithm for blind de-trending
of exoplanetary transits with low signal-to-noise. Astrophys. J. 780, 23 (10pp.). (d0i:10.1088/
0004-637X/780/1/23)

Waldmann IP, Tinetti G, Deroo P, Hollis MD], Yurchenko SN, Tennyson J. 2013 Blind
extraction of an exoplanetary spectrum through independent component analysis. Astrophys.
J. 766, 7. (d0i:10.1088 /0004-637X /766 /1/7)

Morello G, Waldmann IP, Tinetti G, Micela G, Peres G, Howarth I. 2013 A new look at Spitzer
primary transit observations of the exoplanet HD 189733b. Astrophys. |. Submitted.
Hyvarinen A. 1999 Gaussian moments for noisy independent component analysis. IEEE
Signal Process. Lett. 6, 145-147. (d0i:10.1109/97.763148)

Agol E, Cowan NB, Knutson HA, Deming D, Steffen JH, Henry GW, Charbonneau D.
2009 The climate of HD 189733b from fourteen transits and eclipses measured by Spitzer.
Astrophys. . 721, 1861-1877. (doi:10.1088/0004-637X/721/2/1861)

iy S


http://dx.doi.org/doi:10.1038/nature09596
http://dx.doi.org/doi:10.1088/0004-637X/747/1/35
http://dx.doi.org/doi:10.1088/0004-637X/747/1/35
http://dx.doi.org/doi:10.1038/nature12888
http://dx.doi.org/doi:10.1038/nature01448
http://dx.doi.org/doi:10.1088/0004-637X/717/2/1291
http://dx.doi.org/doi:10.1088/2041-8205/714/2/L222
http://dx.doi.org/doi:10.1016/j.icarus.2004.02.008
http://dx.doi.org/doi:10.1038/nature06378
http://dx.doi.org/doi:10.1016/j.pss.2007.03.007
http://dx.doi.org/doi:10.1016/j.icarus.2012.09.027
http://dx.doi.org/doi:10.1016/j.icarus.2012.09.026
http://dx.doi.org/doi:10.1088/0004-637X/723/2/1436
http://dx.doi.org/doi:10.1088/2041-8205/747/2/L20
http://dx.doi.org/doi:10.1051/0004-6361/201219060
http://dx.doi.org/doi:10.1051/0004-6361/201220838
http://dx.doi.org/doi:10.1088/0004-637X/776/1/15
http://dx.doi.org/doi:10.1088/0004-637X/776/1/15
http://dx.doi.org/doi:10.1088/2041-8205/778/1/L4
http://dx.doi.org/doi:10.1126/science.1232003
http://dx.doi.org/doi:10.1126/science.1232003
http://dx.doi.org/doi:10.1088/0004-637X/780/1/23
http://dx.doi.org/doi:10.1088/0004-637X/780/1/23
http://dx.doi.org/doi:10.1088/0004-637X/766/1/7
http://dx.doi.org/doi:10.1109/97.763148
http://dx.doi.org/doi:10.1088/0004-637X/721/2/1861
http://rsta.royalsocietypublishing.org/

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

Downloaded from rsta.royalsocietypublishing.org on August 18, 2014

Ballerini P, Micela G, Lanza AF, Pagano 1. 2012 Multiwavelength flux variations induced
by stellar magnetic activity: effects on planetary transits. Astron. Astrophys. 539, A140.
(doi:10.1051/0004-6361/201117102)

Danielski C, Kacprzak T, Tinetti G, Jagoda P. 2014 Gaussian process for star and planet
characterisation. Astrophys. . In press.

Tinetti G, Encrenaz T, Coustenis A. 2013 Spectroscopy of planetary atmospheres in our
Galaxy. Astron. Astrophys. Rev. 21, 63. (d0i:10.1007 /s00159-013-0063-6)

Madhusudhan N et al. 2011 A high C/O ratio and weak thermal inversion in the atmosphere
of exoplanet WASP-12b. Nature 469, 64—67. (doi:10.1038 /nature09602)

Tennyson J, Yurchenko SN. 2012 ExoMol: molecular line lists for exoplanet and other
atmospheres. Mon. Not. R. Astron. Soc. 425, 21-33. (d0i:10.1111/j.1365-2966.2012.21440.x)
Tessenyi M, Tinetti G, Savini G, Pascale E. 2013 Molecular detectability in exoplanetary
emission spectra. Icarus 226, 1654-1672. (doi:10.1016/j.icarus.2013.08.022)

Clampin M. 2010 Pathways towards habitable planets: JWST’s capabilities for exoplanet
science. In Pathways towards habitable planets (eds V Coudé du Foresto, DM Gelino, I Ribas).
Astron. Soc. Pac. Conf. Ser., no. 430, p. 167. San Francisco, CA: Astronomical Society of the
Pacific.

Snellen I. 2013 Characterization of exoplanet atmospheres using high-dispersion
spectroscopy with the E-ELT and beyond. Eur. Phys. ]. Web Conf. 47, 11001. (doi:10.1051/
epjconf/20134711001)

Kasper M, Verinaud C, Mawet D. 2013 Roadmap for PCS, the planetary camera and
spectrograph for the E-ELT. In Adaptive optics for extremely large telescopes, Proc. 3rd AO4ELT
Conf., Florence, Italy, 26-31 May (eds S Esposito, L Fini), paper 12804. Florence, Italy:
INAF-Osservatorio Astrofisico di Arcetri. (doi:10.12839/A0O4ELT3.12804)

Bracewell RN. 1978 Detecting nonsolar planets by spinning infrared interferometer. Nature
274, 780-781. (d0i:10.1038 /274780a0)

Angel JRP, Cheng AYS, Woolf NJ. 1986 A space telescope for infrared spectroscopy of Earth-
like planets. Nature 322, 341-343. (doi:10.1038/322341a0)

Léger A, Mariotti JM, Mennesson B, Ollivier M, Puget JL, Rouan D, Schneider J. 1996 The
DARWIN project. Astrophys. Space Sci. 241, 135-146. (doi:10.1007 /BF00644221)

TPF Science Working Group. 1999 The Terrestrial Planet Finder (TPF): A NASA Origins Program
to search for habitable planets (eds CA Beichman, NJ Woolf, CA Lindensmith). JPL Publication
99-003. See http://exep.jpl.nasa.gov/TPE/tpf_book/TOC_d.pdf.

Absil O et al. (on behalf of the Blue Dots community). 2010 Blue Dots Report, v2.02. See
http:/ /www.blue-dots.net/sites /blue-dots/IMG/pdf/BD_report_V2-02.pdf.

Coudé du Foresto V, Gelino DM, Ribas I (eds). 2010 Pathways towards habitable planets, Proc.
Conf., Barcelona, Spain, 14-18 September. Astron. Soc. Pac. Conf. Ser., no. 430. San Francisco,
CA: Astronomical Society of the Pacific.

Swain MR, Deming D, Vasisht G, Grillmair C, Henning T, Bouwman ], Akeson R.
2009 THESIS—the Terrestrial and Habitable-zone Exoplanet Spectroscopy Infrared Spacecraft.
Astro2010: The Astronomy and Astrophysics Decadal Survey, Technology Development
White Papers, no. 62. Washington, DC: National Academies. See http://www8.national
academies.org/astro2010/DetailFileDisplay.aspx?id=560.

Deroo PD, Swain MR, Green RO. 2012 Spectroscopy of exoplanet atmospheres with the
FINESSE Explorer mission. In Space telescopes and instrumentation 2012: optical, infrared, and
millimeter wave (eds MC Clampin, GG Fazio, HA MacEwen, JM Oschmann, Jr). Proc. SPIE,
vol. 8442, 844241 (9pp.). Bellingham, WA: SPIE. (d0i:10.1117/12.925236)

Tinetti G et al. 2012 EChO. Exp. Astron. 34, 311-353. (d0i:10.1007 /s10686-012-9303-4)

Varley R et al. 2014 Generation of an optimal target list for the Exoplanet Characterisation
Observatory (EChO). Exp. Astron. submitted (EChO special issue). (http://arxiv.org/abs/
1403.0357v1)

Stahl HP, Henrichs T, Luedtke A, West M. 2012 Update on multivariable parametric cost
models for ground and space telescopes. In Space telescopes and instrumentation 2012: optical,
infrared, and millimeter wave (eds MC Clampin, GG Fazio, HA MacEwen, JM Oschmann, Jr).
Proc. SPIE, vol. 8442, 844224 (6pp.). Bellingham, WA: SPIE. (doi:10.1117/12.926363)
Clampin M, Lyon R. 2010 The Extrasolar Planetary Imaging Coronagraph. In Pathways
towards habitable planets (eds V Coudé du Foresto, DM Gelino, I Ribas). Astron. Soc. Pac.
Contf. Ser., no. 430, p. 383. San Francisco, CA: Astronomical Society of the Pacific.

vtz y o s g Sosusnsiaoiorss [


http://dx.doi.org/doi:10.1051/0004-6361/201117102
http://dx.doi.org/doi:10.1007/s00159-013-0063-6
http://dx.doi.org/doi:10.1038/nature09602
http://dx.doi.org/doi:10.1111/j.1365-2966.2012.21440.x
http://dx.doi.org/doi:10.1016/j.icarus.2013.08.022
http://dx.doi.org/doi:10.1051/epjconf/20134711001
http://dx.doi.org/doi:10.1051/epjconf/20134711001
http://dx.doi.org/doi:10.12839/AO4ELT3.12804
http://dx.doi.org/doi:10.1038/274780a0
http://dx.doi.org/doi:10.1038/322341a0
http://dx.doi.org/doi:10.1007/BF00644221
http://exep.jpl.nasa.gov/TPF/tpf_book/TOC_d.pdf
http://www.blue-dots.net/sites/blue-dots/IMG/pdf/BD_report_V2-02.pdf
http://www8.nationalacademies.org/astro2010/DetailFileDisplay.aspx?id=560
http://www8.nationalacademies.org/astro2010/DetailFileDisplay.aspx?id=560
http://dx.doi.org/doi:10.1117/12.925236
http://dx.doi.org/doi:10.1007/s10686-012-9303-4
http://arxiv.org/abs/1403.0357v1
http://arxiv.org/abs/1403.0357v1
http://dx.doi.org/doi:10.1117/12.926363
http://rsta.royalsocietypublishing.org/

109.

110.

111.

112.

113.

114.

Downloaded from rsta.royalsocietypublishing.org on August 18, 2014

Cash W & New Worlds Study Team. 2010 The New Worlds Observer: the astrophysics strategic
mission concept study. In Pathways towards habitable planets (eds V Coudé du Foresto, DM
Gelino, I Ribas). Astron. Soc. Pac. Conf. Ser., no. 430, p. 353. San Francisco, CA: Astronomical
Society of the Pacific.

Kasdin NJ et al. 2012 Technology demonstration of starshade manufacturing for NASA’s
Exoplanet Mission Program. In Space telescopes and instrumentation 2012: optical, infrared, and
millimeter wave (eds MC Clampin, GG Fazio, HA MacEwen, JM Oschmann, Jr). Proc. SPIE,
vol. 8442, 84420A (16pp.). Bellingham, WA: SPIE. (d0i:10.1117/12.926790)

Guyon O, Hinz PH, Cady E, Belikov R, Martinache F. 2013 High performance Lyot
and PIAA coronagraphy for arbitrarily shaped telescope apertures. Astrophys. J. 780, 171.
(doi:10.1088/0004-637X/780/2/171)

Serabyn E, Trauger ], Moody D, Mawet D, Liewer K, Krist J, Kern B. 2013 High-contrast
imaging results with the vortex coronagraph. In Society of Photo-Optical Instrumentation
Engineers (SPIE) Conference Series, no. 8864. (doi:10.1117/12.2024660)

Boccaletti A, Maire A-L, Galicher R, Baudoz P, Schneider J. 2013 SPICES a small space
coronagraph to characterize giant and telluric planets in reflected light. Eur. Phys. J. Web
Conf. 47,15004. (d0i:10.1051/epjconf/20134715004)

Enya K et al. 2011 The SPICA coronagraphic instrument (SCI) for the study of exoplanets.
Adv. Space Res. 48, 323-333. (d0i:10.1016/j.asr.2011.03.010)

iy S


http://dx.doi.org/doi:10.1117/12.926790
http://dx.doi.org/doi:10.1088/0004-637X/780/2/171
http://dx.doi.org/doi:10.1117/12.2024660
http://dx.doi.org/doi:10.1051/epjconf/20134715004
http://dx.doi.org/doi:10.1016/j.asr.2011.03.010
http://rsta.royalsocietypublishing.org/

	Introduction
	Brief review of exoplanet spectroscopic observations
	Transit
	Eclipse
	Phase curves
	Direct imaging

	Highlights and problems with current photometric and spectroscopic data
	Highlights
	Issues and possible solutions

	The next decade and beyond
	References

