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Long-term potentiation in hippocampal
oriens interneurons: postsynaptic
induction, presynaptic expression and
evaluation of candidate retrograde factors

Elizabeth Nicholson and Dimitri M. Kullmann

UCL Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK

Several types of hippocampal interneurons exhibit a form of long-term

potentiation (LTP) that depends on Ca2þ-permeable AMPA receptors and

group I metabotropic glutamate receptors. Several sources of evidence

point to a presynaptic locus of LTP maintenance. The retrograde factor

that triggers the expression of LTP remains unidentified. Here, we show

that trains of action potentials in putative oriens-lacunosum-moleculare

interneurons of the mouse CA1 region can induce long-lasting potentiation

of stimulus-evoked excitatory postsynaptic currents that mimics LTP elicited

by high-frequency afferent stimulation. We further report that blockers of

nitric oxide production or TRPV1 receptors failed to prevent LTP induction.

The present results add to the evidence that retrograde signalling underlies

N-methyl-D-aspartate (NMDA) receptor-independent LTP in oriens inter-

neurons, mediated by an unidentified factor.
1. Introduction
Plasticity of glutamatergic synapses onto hippocampal interneurons has been

proposed to play several roles, including stabilizing network excitability and preser-

ving the fidelity of spatio-temporal processing in the face of long-term potentiation

(LTP) at synapses among excitatory neurons [1–3]. LTP and long-term depression

(LTD) in the inhibitory circuitry may also affect the input–output relationship of

principal cells in qualitatively different ways than that achieved by plasticity

restricted to excitatory neurons. Plasticity of inhibition may have further adaptive

roles particular to specific types of interneurons [4]. For example, LTP of glutama-

tergic synapses on somatostatin-positive interneurons located in stratum oriens,

which tend to innervate targets in strata radiatum and lacunosum-moleculare,

is likely to enhance CA1 inputs from CA3 by disinhibiting Schaffer-collateral-

associated interneurons, while concomitantly inhibiting extrahippocampal

perforant path inputs to the apical dendrites of CA1 pyramidal neurons [5].

Induction of LTP at glutamatergic synapses on several types of interneurons

in stratum oriens is independent of N-methyl-D-aspartate (NMDA) receptors,

but requires Ca2þ influx through Ca2þ-permeable a-amino-3-hydroxy-5-

methyl-4-isoxazolepropionic acid (AMPA) receptors as well as activation of

group I metabotropic glutamate receptors (mGluRs) [6–12]. Among these are

interneurons with dendrites running parallel to stratum pyramidale that project

an axon to stratum lacunosum-moleculare [13]. Oriens-lacunosum-moleculare

(O-LM) cells can be further recognized by their regular firing pattern upon

injection of depolarizing current, voltage sag upon injection of hyperpolarizing

current and expression of somatostatin and mGluR1a [14–17]. An efficient LTP

induction stimulus is to hyperpolarize the postsynaptic membrane potential

while stimulus trains are delivered to axon collaterals of pyramidal neurons run-

ning in the alveus. This ‘anti-Hebbian’ LTP protocol has been hypothesized to

maximize Ca2þ influx via rectifying AMPA receptors [8,11], although nicotinic

receptors have also been proposed to play a role [18,19].
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Figure 1. LTP in an O-LM cell. (a) Electrical properties of an identified O-LM cell. Top: schematic showing recording pipette and electrical stimulation designed to
activate pyramidal neuron axon collaterals innervating the interneuron. Below: response to hyper- and depolarizing currents, showing a pronounced voltage sag
upon 2150 pA current injection and regular firing with deep afterhyperpolarization (AHP) upon þ50 pA current injection. (b) Reconstructed interneuron filled with
biocytin, showing horizontally orientated dendrites (top) contained within stratum oriens (S.O.) and an axon passing through strata pyramidale and radiatum, (S.P.
and S.R.) arborizing in stratum lacunosum-moleculare (S.L.M.). (c) LTP experiment in the same cell shown in (a,b). Tetanic stimulation (2 � 100 Hz, 1 s) was
delivered at the time indicated by the arrow to one pathway (red, grey in printed version). The tetanized pathway EPSP slope increased approximately 100%
while the control pathway was unaffected. Insets: averaged EPSPs in the two pathways before (thin lines) and 20 min after (thick lines) tetanic stimulation.
(The stimulus artefact was blanked for the control pathway.) Scale bars, 1 mV, 2 ms. (Online version in colour.)
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NMDA receptor-independent LTP in stratum oriens inter-

neurons is associated with a decrease in the rate of failures of

stimulus-evoked transmission, a decrease in the paired-pulse

ratio (PPR) of excitatory postsynaptic currents or potentials

(EPSC/Ps), a decrease in normalized coefficient of varia-

tion (equivalently, an increase in the parameter CV22) and an

increase in estimated AMPA receptor occupancy [8,10,13].

All these observations strongly argue for a presynaptic locus

of expression of LTP, in striking contrast with conventional

NMDA receptor-dependent LTP at glutamatergic synapses

on pyramidal neurons [20]. A recent report has however

suggested that anti-Hebbian LTP in parvalbumin-positive

interneurons may also be expressed postsynaptically [21].

The postsynaptic induction requirements and evidence for

presynaptic expression of LTP on O-LM cells and other inter-

neurons in stratum oriens imply the existence of a retrograde

messenger. Identification of this factor has been hampered by

the relative difficulty of eliciting LTP while recording in the

whole-cell configuration of the patch-clamp method [8,11].

We therefore first set out to identify recording conditions

where LTP could be reliably elicited in whole-cell mode and

systematically interleaved control experiments throughout

this study whenever pharmacological interventions were

applied. We confirm that LTP requires postsynaptic Ca2þ and

show that it can be induced by trains of action potentials eli-

cited in the interneuron alone, implying that multiple sources

of Ca2þ may converge on the induction trigger. We pro-

vide further evidence of presynaptic expression, and test two

candidate retrograde factors.
2. Material and methods
(a) Brain slicing
Horizontal brain slices were prepared from postnatal day 21–25

mice in accordance with the UK Animals (Scientific Procedures)

Act 1986. Slices (300 mm thick) were cut using a vibrating micro-

tome (Leica VT 1200) in an ice-cold solution bubbled with 95%
O2 and 5% CO2, containing (in mM): sucrose, 75; NaCl, 80; KCl,

2.5; CaCl2, 0.5; MgCl2, 7; NH2PO4, 1; NaHCO3, 25 and glucose,

10. Slices were warmed to 328C for 15 min, and then stored at

room temperature in a solution containing (in mM): NaCl, 119;

KCl, 2.5; CaCl2, 0.5; MgSO4, 1.3; NaH2PO4, 1.25; NaHCO3, 25

and glucose, 10, bubbled with 95% O2 and 5% CO2.
(b) Electrophysiology
Slices were anchored in a recording chamber mounted on the stage

of an upright microscope (BX51WI, Olympus) and visualized with a

�20 water immersion objective with infrared differential inter-

ference contrast optics. Slices were continuously perfused at a rate

of 3 ml min21 with a carbogen-bubbled solution containing (in

mM): NaCl, 119; KCl, 2.5; CaCl2, 2.5; MgSO4, 1.3; MgCl2, 2;

NaH2PO4, 1.25; NaHCO3, 25; glucose, 10. To block NMDA,

gamma-aminobutyric acid A (GABAA) and GABAB receptors, we

routinely added 50 mM D-aminophosphonovalerate (AP5), 100 mM

picrotoxin and 1 mM CGP 52432. The pipette solution contained

(in mM): K-gluconate, 80; NaCl, 8; KOH-HEPES, 20; EGTA, 0.2 or

BAPTA, 25; biocytin, 0.5. Polyamines were deliberately omitted to

relieve the voltage dependence of AMPA receptor conductance.

Interneurons within stratum oriens of CA1 with dendrites

running parallel to stratum pyramidale were patch-clamped

with 4–5 MV glass pipettes, to achieve an access resistance of

less than 20 MV. Data were acquired using a Multiclamp 700 B

amplifier (Molecular Devices), low-pass filtered (4–5 kHz) and

digitized at 10–20 kHz (National Instruments).

Neurons were held in current clamp mode, and current

was injected when needed to maintain the membrane potential

between 270 and 275 mV. Passive membrane properties and

firing patterns were tested with hyperpolarizing and depolarizing

steps. Cells that did not display a voltage sag, deep afterhyper-

polarization (AHP) and regular firing pattern typical of O-LM

cells (figure 1a) were discarded.

Stimuli were delivered via two concentric bipolar electrodes,

connected to constant current isolated stimulators (Digitimer), posi-

tioned in the alveus/stratum oriens border, 100–300 mm either side

of the recorded interneuron. The stimulus duration was 100 ms and

its intensity was adjusted between 20 and 320 mA to elicit an EPSP

with peak amplitude of approximately 5 mV. Paired stimuli with
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an interstimulus interval of 50 ms were alternately delivered via

each electrode every 20 s. The LTP induction protocol consisted

of 100 stimuli at 100 Hz, delivered twice with a 20 s interval.

We tested a second protocol consisting of 20 depolarizing current

injections (500 pA, 500 ms, interval 5 s) to elicit trains of action

potentials at a frequency of approximately 60 Hz.

LTP was studied by measuring the initial EPSP slope (2–4 ms

from onset) to restrict attention to monosynaptic transmission

[22–24]. For pooled data, the initial slopes of EPSPs evoked in

the test and control pathways were normalized to their baselines

and paired t-tests applied, with significance set at p , 0.05.

Paired-pulse ratios (PPRs) were calculated in cells which exhibited

LTP by averaging approximately 20 consecutive traces and

expressed as the ratio of the second to the first EPSP slope. Cells

with an action potential on the second pulse were omitted from

PPR analysis. Failures of evoked transmission were identified

by sight, and when averaged together showed no systematic

deviation from the baseline, although were sometimes followed

by polysynaptic EPSPs. Spontaneous EPSP frequency and ampli-

tude were analysed using CLAMPFIT v. 10.2 (Axon Instruments)

using the first 100 events prior to LTP induction, starting at the

beginning of the experiment, and 100 events 20 min after the

LTP induction protocol. In both cases, the spontaneous EPSPs

were obtained from periods immediately prior to stimulation.

Stimulus control, and data acquisition and analysis, were

achieved with custom software (National Instruments, LABVIEW)

and PCLAMP v. 10 software. Data are presented as mean+ s.e.m.

(c) Anatomical analysis
Some interneurons were filled with biocytin during whole-cell

recordings. Brain slices were then fixed in 4% paraformaldehyde

overnight. After washing in phosphate-buffered saline (PBS),

slices were incubated in PBS containing 0.3% triton and 0.1% strep-

tavidin-alexa-488 for 3 h at room temperature, washed in PBS and

mounted on coverslips with Vectashield mounting medium. Cells

were visualized with an AxioImager microscope (Zeiss) and

drawn in Photoshop.

(d) Drugs
CGP 52432 and 50-Iodoresiniferatoxin were purchased from

Tocris (Bristol) and AP5 was purchased from Ascent. Picrotoxin,

BAPTA and L-NNA were purchased from Sigma-Aldrich.
3. Results
(a) Long-term potentiation at glutamatergic synapses

onto putative oriens-lacunosum-moleculare
interneurons

We recorded from cells with horizontal dendrites in stratum

oriens in whole-cell current clamp mode and only conti-

nued the experiment if they showed a voltage sag with

hyperpolarizing current injection, and a regular firing pattern

with a deep AHP upon depolarizing current injection, typical

of O-LM cells [8,13] (figure 1a). Of the 12 cells that were filled

with biocytin and subsequently reconstructed, nine showed

the typical O-LM morphology with an axon projecting into

stratum lacunosum-moleculare (figure 1b). No axon was

observed in the remaining three reconstructed cells, suggesting

that it may have been cut during the slicing procedure.

We evoked monosynaptic EPSPs via two stimulation

electrodes positioned at either side of the interneuron and

recorded a baseline period lasting at least 5 min. Two high-

frequency stimulation trains were then delivered via one

electrode (100 Hz, 1 s, �2 separated by 20 s), while stimulation
via the other electrode was interrupted. The membrane poten-

tial was allowed to vary during the tetanus and the cells fired

at an average rate of 34+22 Hz (mean+ s.d.). In the example

cell (figure 1c), the control pathway EPSP slope remained

around 0.43 mV ms21, while in the tetanized pathway it

approximately doubled from 0.83 to 1.6 mV ms21 (figure 1c).

When repeated in 29 similar experiments, we observed a

robust potentiation of approximately 77% in the tetanized

pathway ( p , 0.001, paired t-test; figure 2a).

(b) Evidence of presynaptic long-term potentiation
expression

In previously unidentified stratum oriens interneurons, LTP

has been proposed to have a presynaptic locus of expression

[7,8]. LTP in identified O-LM cells is associated with an increase

in CV22 [13], consistent with an increase in glutamate release

probability, although this could also be explained by postsyn-

aptic unsilencing of AMPA receptor clusters [25]. We assessed

several parameters to determine whether a presynaptic locus of

LTP expression holds true for the cells recorded in this study.

The failure rate decreased by approximately half in the teta-

nized pathway ( p , 0.005), with no change in the control

pathway ( p ¼ 0.29; figure 2b). LTP was also associated with a

decrease in paired-pulse facilitation in the tetanized pathway

( p ¼ 0.002), with no change in the control pathway ( p ¼ 0.15;

figure 2c). We also observed an increase in the frequency of

spontaneous EPSPs after LTP induction, with a significant

decrease in inter-event interval ( p , 0.05; figure 2d,e) and

a non-significant trend towards an increase in amplitude

( p ¼ 0.11; figure 2f ). These findings argue strongly for an

increase in presynaptic transmitter release.

(c) Long-term potentiation requires postsynaptic Ca2þ

LTP in horizontal oriens interneurons requires both Ca2þ

influx through Ca2þ-permeable AMPA receptors and acti-

vation of group I mGluRs, with evidence for both Ca2þ

release from intracellular stores and Ca2þ influx through

transient receptor potential channels [6,8,10–13]. We took

advantage of the whole-cell recording mode to chelate intra-

cellular Ca2þ, by substituting BAPTA (25 mM) for EGTA

(0.2 mM). Ca2þ chelation prevented LTP induction (n ¼ 8,

figure 3a), while interleaved control experiments continued

to exhibit robust LTP ( p ¼ 0.005, n ¼ 9; figure 3b). High-fre-

quency stimulation was followed by an increase in PPR

when Ca2þ was chelated in postsynaptic neurons ( p ¼ 0.02,

n ¼ 8; figure 3c). This is opposite to the pattern seen in control

experiments, although the decrease in PPR in this set of

experiments did not reach significance ( p ¼ 0.29, n ¼ 9; cf.

figure 2c). The increase in PPR was unexpected and may reflect

additional presynaptic plasticity unrelated to NMDA receptor-

independent LTP. Inclusion of 25 mM BAPTA also prevented

the increase in spontaneous EPSP frequency ( p ¼ 0.76, n ¼ 6;

figure 3d), which was seen in interleaved controls ( p ¼ 0.05,

n ¼ 8; figure 3d).

(d) Long-term potentiation can be induced by
postsynaptic action potentials alone

We asked whether postsynaptic Ca2þ influx via voltage-gated

channels could induce LTP. EPSPs were evoked as before, but

rather than delivering tetanic stimulation, twenty depolarizing

currents (500 pA for 100 ms) were injected via the recording
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pipette to elicit action potential trains at approximately 60 Hz.

This protocol was followed by a persistent increase in EPSP

slope to approximately 150% of control, which lasted for at

least 20 min ( p , 0.001, n ¼ 15; figure 4a). The potentiation eli-

cited by action potential trains was associated with a decrease

in paired-pulse ratio ( p ¼ 0.004, n ¼ 15; figure 4b) and spon-

taneous EPSP inter-event interval ( p ¼ 0.015, n ¼ 8; figure 4c).

We asked whether the potentiation evoked by action

potential trains occluded LTP. After eliciting action potential

trains, tetanic stimulation failed to induce a further increase

in EPSP slope (n ¼ 11; figure 4d ). Similarly, action potential

trains failed to increase EPSP slope after tetanus-induced

LTP (n ¼ 8; figure 4e).

The two-way occlusion and similarity of effects on PPR

and spontaneous EPSP frequency suggest that action poten-

tial trains and tetanic LTP converge on a common synaptic

plasticity induction mechanism. However, an alternative

possibility is that ‘washout’ of cytoplasmic constituents

impaired induction of additional plasticity after a delay. To

address this hypothesis, we performed a further set of exper-

iments where high-frequency stimulation was delivered to

the control pathway 30 min after inducing LTP in the test
pathway. The tetanus-induced increases in EPSP slope in

each pathway were not significantly different from one

another ( p ¼ 0.92; unpaired t-test, n ¼ 15; figure 4f ), arguing

against washout as an alternative explanation for the data

summarized in figure 4d,e.
(e) No evidence of involvement of nitric oxide and
transient receptor potential vanilloid 1 channel
receptors in long-term potentiation

The dependence of LTP induction on postsynaptic Ca2þ,

together with the evidence for a presynaptic locus of expression,

suggests that a retrograde message signals from the postsyn-

aptic interneuron to presynaptic glutamatergic boutons to

increase glutamate release. A prominent candidate retrograde

messenger that has been invoked in other examples of presyn-

aptic LTP is nitric oxide (NO) [26–31]. Consistent with NO

triggering LTP is the finding that NMDA receptor-independent

LTP can be elicited in NO synthase (NOS)-positive ivy cells [12].

Direct evidence of a role of NO in LTP in unidentified stratum

oriens interneurons has, moreover, been reported [32].
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We incubated slices for at least 4 h in 100 mM NG-nitro-L-

arginine (L-NNA), an inhibitor of NOS, prior to and during

LTP experiments. Tetanus-induced LTP was no different in

treated slices ( p , 0.05, n ¼ 8; figure 5a) than in interleaved

controls (n ¼ 11; figure 5b).

Another candidate retrograde messenger that has been

postulated to mediate plasticity at glutamatergic synapses on

stratum radiatum interneurons is the eicosanoid 12-hydroperox-

yeicosatetraenoic acid (12-(S)-HPETE), acting on presynaptic

transient receptor potential vanilloid 1 channel (TRPV1) recep-

tors [33]. Although in stratum radiatum interneurons this

cascade has been reported to mediate LTD induction, in seve-

ral other brain circuits presynaptic TRPV1 receptor activation

facilitates glutamate release [34–36]. Numerous endogenous

ligands can gate TRPV1 receptors, including anandamide and

lipoxygenase derivatives of arachidonic acid [37–45]. These

substrates can be released upon group I mGluR activation

[33,40,46,47] and group I mGluR activation is a requirement of

LTP onto O-LM cells [7,10,11].

To examine whether a similar mechanism may be

involved in potentiating excitatory synapses onto putative
O-LM cells, we applied the TRPV1 receptor antagonist,

100 nM 50-iodoresiniferatoxin, prior to and throughout the

induction of LTP. Blocking TRPV1 had no effect on LTP

(n ¼ 10; figure 5c) compared with interleaved controls

(n ¼ 15; figure 5d ).

We thus obtained no evidence to support a role for either NO

or TRPV1 receptors in the induction of tetanus-induced LTP.
4. Discussion
The present results add to the evidence that NMDA receptor-

independent LTP in stratum radiatum interneurons depends

on postsynaptic Ca2þ and is expressed through a presynaptic

increase in glutamate release probability. Although this argues

for a retrograde factor, we have found no positive evidence to

support a role for two candidate signalling mechanisms that

have been invoked previously. Neither blockade of NOS nor

of TRPV1 receptors affected LTP.

We focused on ‘horizontal’ interneurons with electrical

properties typical of positively identified O-LM cells. We
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reconstructed only a subset of interneurons but confirmed

that their dendritic arborization was confined to stratum

oriens, and that they projected an axon to stratum lacunosum-

moleculare. Because a positive identification was not available

for all interneurons, we refer to the cells in this study as putative

O-LM interneurons. Importantly, however, we systematically

interleaved all experiments where either BAPTA or NOS or

TRPV1 blockade were tested with control experiments. More-

over, we used a control pathway to verify that LTP was

confined to the tetanized pathway. Another refinement in this

study was to record from interneurons in whole-cell mode,

with a pipette solution devoid of polyamines. Although

prolonged whole-cell recording profoundly diminishes the suc-

cess rate for induction of LTP, omitting polyamines removes

the preferential requirement for hyperpolarization during

presynaptic stimulation (anti-Hebbian LTP) [8]. The induction

protocol is thus more akin to that used in several other studies

that have reported on LTP in stratum oriens interneurons [7,10].

For the purpose of this study, we suggest that the relatively

unphysiological induction protocol is justified by the ability

to manipulate postsynaptic Ca2þ chelation and introduce

biocytin without re-patching neurons.

Surprisingly, trains of postsynaptic action potentials could

induce a persistent potentiation of transmission. Although cells

fired during the LTP induction protocol, the total number of

action potentials induced by postsynaptic current injection

was approximately 10-fold higher. This difference may explain

why tetanic stimulation-induced LTP was pathway-specific.

Although back-propagating action potentials have been
invoked in LTP induction in principal cells, this also requires

presynaptic glutamate release to activate NMDA receptors

[48]. Postsynaptic Ca2þ influx alone only in principal cells

elicits a transient potentiation of transmission [49]. In this

study, postsynaptic activity was sufficient to induce a long-

lasting potentiation in the absence of presynaptic stimulation.

However, we cannot rule out the possibility that spontaneous

glutamate release during the action potentials was sufficient

for minimal activation of Ca2þ-permeable AMPA receptors

and/or group I mGluRs. Postsynaptic hyperpolarization

paired with pharmacological group I mGluR activation has

also previously been reported to be sufficient to trigger a per-

sistent potentiation in stratum oriens interneurons, which

occludes anti-Hebbian LTP [11]. A direct comparison of these

results is difficult because this study was carried out using

whole-cell patch-clamp recordings. Nevertheless, we tenta-

tively speculate that, in contrast to principal cells, several

sources of Ca2þ can converge on an LTP-inducing cascade at

glutamatergic synapses on stratum oriens interneurons. The

difference between these synapses and those on pyramidal

neurons may to some extent be explained by the biochemical

compartmentalization offered by dendritic spines in the latter.

The NOS inhibitor L-NNA had no effect on LTP induction.

Although we did not perform additional control experiments

to detect positive effects of L-NNA, this lends no support to

the hypothesis that NO acts as a retrograde messenger in this

system. Previous studies of LTP in principal cells have reported

divergent results regarding the role of NO. Differences in

species and strains, developmental stage, temperature and

http://rstb.royalsocietypublishing.org/
http://rstb.royalsocietypublishing.org/


rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

369:20130133

8

 on January 22, 2014rstb.royalsocietypublishing.orgDownloaded from 
stimulus protocols have been invoked to explain some of the

discrepancies [50–54]. Nevertheless, it is generally establi-

shed that NO synthesis in pyramidal neurons is triggered by

Ca2þ influx through NMDA receptors [55,56]. LTP in O-LM

cells is NMDA receptor independent [13]. While one study

reported that an NOS inhibitor prevented LTP induction in

alveus/oriens interneurons [32], this form of plasticity also

required NMDA receptors. NMDA receptor-dependent LTP

is not prominent in stratum oriens interneurons [8], but has

been demonstrated in hippocampal interneurons in strata

radiatum and pyramidale [21,24,57]. However, ‘Hebbian’

NMDA receptor-dependent LTP in interneurons is not associ-

ated with changes in PPR or receptor occupancy, arguing

against presynaptic expression [21,24].

TRPV1 receptors have been reported in hippocampal

neurons with mRNA, immunohistochemistry and radioligand

binding [58–62], although data from a genetically altered

TRPV1 reporter mouse suggest that TRPV1 receptors are not

abundant [63]. The effect of presynaptic TRPV1 activation

on synaptic transmission is also unclear, with some studies

reporting a depression of synaptic release [33] through down-

regulation of voltage-gated Ca2þ channels [64,65], and others
reporting a potentiation of presynaptic release [34–36].

Although endogenous TRPV1 ligands can be released upon

group I mGluR activation [33,40,46,47], and group I mGluR

activation is required for NMDA receptor-independent LTP

[7,10,11], we observed no evidence for TRPV1 involvement in

LTP in this study: the blocker 50-iodoresiniferatoxin, applied

prior to and during the induction protocol at a concentration

previously reported as effective in similar preparations [33],

had no effect on LTP.

In conclusion, LTP induction in putative O-LM cells

depends on postsynaptic Ca2þ. It is associated with changes

in PPR, failures of transmission and spontaneous EPSP

frequency strongly suggestive of presynaptic expression.

However, we found no evidence of a role of either NO or

TRPV1 receptors in its induction. The retrograde messenger

remains to be identified.
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Input-specific learning rules at excitatory synapses
onto hippocampal parvalbumin-expressing
interneurons. J. Physiol. 591, 1809 – 1822. (doi:10.
1113/jphysiol.2012.245852)

22. Maccaferri G, McBain CJ. 1996 Long-Term
Potentiation in distinct subtypes of hippocampal
nonpyramidal neurons. J. Neurosci. 16, 5334 – 5343.

http://dx.doi.org/10.1038/nrn2207
http://dx.doi.org/10.1016/j.neuron.2012.07.030
http://dx.doi.org/10.1016/j.neuron.2009.01.013
http://dx.doi.org/10.1016/j.neuron.2009.01.013
http://dx.doi.org/10.1523/JNEUROSCI.2012-10.2010
http://dx.doi.org/10.1038/nn.3235
http://dx.doi.org/10.1113/jphysiol.2006.112896
http://dx.doi.org/10.1113/jphysiol.2006.112896
http://dx.doi.org/10.1113/jphysiol.2003.053603
http://dx.doi.org/10.1126/science.1137450
http://dx.doi.org/10.1126/science.1137450
http://dx.doi.org/10.1523/JNEUROSCI.3481-09.2010
http://dx.doi.org/10.1073/pnas.161493498
http://dx.doi.org/10.1073/pnas.161493498
http://dx.doi.org/10.1523/JNEUROSCI.6265-10.2011
http://dx.doi.org/10.1523/JNEUROSCI.6265-10.2011
http://dx.doi.org/10.1523/JNEUROSCI.0206-12.2012
http://dx.doi.org/10.1523/JNEUROSCI.3251-08.2009
http://dx.doi.org/10.1523/JNEUROSCI.3251-08.2009
http://dx.doi.org/10.1111/j.1460-9568.1995.tb00638.x
http://dx.doi.org/10.1111/j.1469-7793.1998.185bu.x
http://dx.doi.org/10.1111/j.1469-7793.1998.185bu.x
http://dx.doi.org/10.1111/j.1460-9568.2009.07058.x
http://dx.doi.org/10.1111/j.1460-9568.2009.07058.x
http://dx.doi.org/10.1523/JNEUROSCI.1070-12.2013
http://dx.doi.org/10.1523/JNEUROSCI.1070-12.2013
http://dx.doi.org/10.1113/jphysiol.2011.221127
http://dx.doi.org/10.1113/jphysiol.2011.221127
http://dx.doi.org/10.1113/jphysiol.2012.245852
http://dx.doi.org/10.1113/jphysiol.2012.245852
http://rstb.royalsocietypublishing.org/
http://rstb.royalsocietypublishing.org/


rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

369:20130133

9

 on January 22, 2014rstb.royalsocietypublishing.orgDownloaded from 
23. Glickfeld LL, Scanziani M. 2006 Distinct timing in
the activity of cannabinoid-sensitive and
cannabinoid-insensitive basket cells. Nat. Neurosci.
9, 807 – 815. (doi:10.1038/nn1688)

24. Lamsa K, Heeroma JH, Kullmann DM. 2005 Hebbian
LTP in feed-forward inhibitory interneurons and the
temporal fidelity of input discrimination. Nat.
Neurosci. 8, 916 – 924. (doi:10.1038/nn1486)

25. Kullmann DM. 1994 Amplitude fluctuations of dual-
component EPSCs in hippocampal pyramidal cells:
implications for long-term potentiation. Neuron 12,
1111 – 1120. (doi:10.1016/0896-6273(94)90318-2)

26. Hardingham N, Fox K. 2006 The role of nitric oxide
and GluR1 in presynaptic and postsynaptic
components of neocortical potentiation. J. Neurosci.
26, 7395 – 7404. (doi:10.1523/JNEUROSCI.
0652-06.2006)

27. Schuman EM, Madison DV. 1991 A requirement for
the intercellular messenger nitric oxide in long-term
potentiation. Science 254, 1503 – 1506. (doi:10.
1126/science.1720572)

28. O’Dell TJ, Hawkins RD, Kandel ER, Arancio O. 1991
Tests of the roles of two diffusible substances in
long-term potentiation: evidence for nitric oxide as
a possible early retrograde messenger. Proc. Natl
Acad. Sci. USA 88, 11 285 – 11 289. (doi:10.1073/
pnas.88.24.11285)
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60. Tóth A, Boczán J, Kedei N, Lizanecz E, Bagi Z, Papp
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