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Abstract

This thesis is concerned with the study of the massless Dirac operator in dimen-

sion three and is, in part, based upon [12, 22, 21, 26, 25].

An introduction is given in Chapter 1.

In Chapter 2 we study a special version of Cosserat elasticity, with deformations

induced by rotations only, and no displacements. We prove that for a particular

choice of elastic moduli and in the stationary setting (harmonic dependence on

time) our mathematical model reduces to the massless Dirac equation.

Chapter 3 contains a description of the progress recently made in the spectral

theory of first order systems, with a particular focus on dimension three presented

in Chapter 4.

We prove in Chapter 5 that the second asymptotic coefficient of the counting

function of a first order system has the geometric meaning of the massless Dirac

action.

Finally, in Chapter 6 we examine the spectral asymmetry of the massless Dirac

operator. We work on a 3-torus equipped, initially, with a Euclidean metric and

consider the behaviour of the spectrum under a perturbation of the metric. We

derive an explicit asymptotic formula for the eigenvalue closest to zero.
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Chapter 1

Introduction

1.1 The massless Dirac operator: an overview

This thesis is concerned with the massless Dirac operator in dimension three. This

is directly related to the accepted mathematical model for a massless neutrino or

antineutrino.

The massless Dirac operator is a particular self-adjoint complex two-by-two ma-

trix partial differential operator acting on two-columns of complex-valued scalar

fields. In theoretical physics and differential geometry this pair of complex-valued

scalars is referred to as a spinor. When we say that the components of a spinor

are scalars we mean that they are anholonomic objects, i.e. they do not depend

on the choice of local coordinates.

Although reasonably familiar when defined on R3, one can work with a more gen-

eral operator defined on a Riemannian 3-manifold (that is, a 3-manifold equipped

with a Riemannian metric). For simplicity, in this thesis we will always work on

either R3 or an oriented compact Riemannian 3-manifold, M , unless otherwise

stated.

7
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We give two explicit formulae for the massless Dirac operator, W , both of which

are utilised in the thesis. In matrix form we have

W := −iσα
[
∂

∂xα
+

1

4
σβ

(
∂σβ

∂xα
+

{
β

αγ

}
σγ
)]

. (1.1.1)

Here summation is carried out over repeated tensor indices α = 1, 2, 3 and

σβ = σβ(x), β = 1, 2, 3, are a set of Pauli matrices. These matrices span the

3-dimensional real vector space of trace-free two-by-two Hermitian matrices and

satisfy the defining relation

σασβ + σβσα = 2gαβI2×2, (1.1.2)

where gαβ is the metric tensor and I2×2 the two-by-two identity matrix. In gen-

eral, the Pauli matrices depend upon local coordinates xβ ∈ M , β = 1, 2, 3. In

addition, in (1.1.1)
{
α
βγ

}
are the Christoffel symbols, the Levi-Civita connection

coefficients, given by

{
α

βγ

}
=

1

2
gαδ
(
∂gδβ
∂xγ

+
∂gγδ
∂xβ

− ∂gβγ
∂xδ

)
. (1.1.3)

An alternative formulation of the massless Dirac operator, utilising so-called

spinor notation, is

W := −iσαȧb∇α. (1.1.4)

Aside from the appearance of the covariant derivative ∇ with respect to the Levi-

Civita connection, see Section I.A in [81], this formula differs from (1.1.1) in its

use of spinor indices ȧ = 1̇, 2̇, b = 1, 2.

The appearance of a dotted index in formula (1.1.4) is a matter of tradition.

We could have written all formulae containing spinor indices without using dots.

The necessity to distinguish dotted and undotted indices arises when working in

the more general 4-dimensional Lorentzian setting. In dimension four the spin

group, which determines transformation properties of spinors under changes of

the corresponding anholonomic basis, is reducible, having two distinct irreducible
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subgroups. This necessitates the introduction of two types of index (dotted/un-

dotted) indicating the so-called left- or right-handedness of spinors, i.e. distin-

guishing two possible types of spinor determined by behaviour under changes of

anholonomic basis.

In three dimensions this is not a critical issue: the spin group is irreducible and, as

such, all spinors transform in the same manner under changes of the anholonomic

basis. We need not, therefore, use dotted indices at all. However, to preserve

accord between the formulae appearing in this thesis and those in the literature,

we maintain the dotted indices.

The use or spinor indices, or lack thereof, in formulae (1.1.1) and (1.1.4) is made

clear by the formulation of the massless Dirac equation, the accepted mathe-

matical model for a massless neutrino or antineutrino. Forming the massless

Dirac equation is equivalent to the introduction of time into our problem, that

is, considering the dynamic equation

(Dt +W )w = 0. (1.1.5)

Here, Dt := −i∂/∂t and w(t, x) is a column-function on R ×M . Rewriting this

equation in spinor form, for example, we arrive at the standard formulation of

the massless Dirac equation

− i
(
−σ0

ȧb∂t + σαȧb∇α

)
ζb = 0. (1.1.6)

Here ζ denotes a two-component complex-valued spinor field on R ×M , sum-

mation is carried out over repeated spinor indices b = 1, 2, and σ0
ȧb is the

negative identity matrix (this is again a relic of the 4-dimensional setting), see

Appendix 2.A. In addition, the subscript attached to the partial derivative ∂ indi-

cates the variable with respect to which partial differentiation occurs (e.g. ∂1 :=

∂/∂x1).

We see that the massless Dirac equation is a system of two (ȧ = 1, 2) complex

linear partial differential equations on the 4-manifold R ×M for the unknown
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spinor field w. Note that the mapping σ0
ȧb 7→ −σ0

ȧb is equivalent to switching

our object of study from a neutrino to an antineutrino.

Of course, (1.1.5) and (1.1.6) are two equivalent ways of writing the same hyper-

bolic system of equations. In particular, the elements of the 2-column w are the

components of the spinor ζ. We use different notation in (1.1.5) and (1.1.6) as a

matter of tradition.

For clarity, we state the explicit form of the massless Dirac equation when the

massless Dirac operator is defined on R3. In this instance the formulae are partic-

ularly simple and will allow us to demonstrate various properties of the massless

Dirac operator with ease throughout this thesis. On R3 the Pauli matrices σα

are constant and so, taking the canonical choice, see (2.A.4) in Appendix 2.A, we

are able to write the massless Dirac equation as

− i

 ∂t + ∂3 ∂1 − i∂2

∂1 + i∂2 ∂t − ∂3

ζ1

ζ2

 = 0. (1.1.7)

In this thesis we eventually consider a spectral problem arising from the separa-

tion of variables in equation (1.1.5). In particular, we seek a separable solution

w(t, x) = e−itλv(x) and consider the corresponding spectral problem

Wv = λv. (1.1.8)

In fact, we study this problem for a more general operator than W in arbitrary

dimension (greater than, or equal to, 2), focusing on the massless Dirac operator

at a later stage, see Chapter 3 and Chapter 4.

We study the spectral and counting functions, defined respectively as

e(λ, x, x) :=
∑

0<λk<λ

‖vk(x)‖2, (1.1.9)

N(λ) :=
∑

0<λk<λ

1 =

∫
M

e(λ, x, x)
√

det gαβ dx, (1.1.10)
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where λk is an eigenvalue of the operator W determined from (1.1.8) and vk(x) a

corresponding normalised eigenfunction evaluated at the point x ∈M , λ ∈ R is a

positive parameter, ‖·‖2 is the square of the Euclidean norm, and dx = dx1dx2dx3.

In other words, the counting function N(λ) is the number of eigenvalues λk

between zero and λ, and e(λ, x, x) its local (pointwise) version. Again, we begin

by studying (1.1.9) and (1.1.10) for more general operators before eventually

considering the special case of the massless Dirac operator.

The purpose of this thesis is to consider the massless Dirac operator from a new

geometric point of view. The formulae (1.1.1)-(1.1.10) are our basic objects of

study in this endeavour.

We start in Chapter 2 by developing a novel theory of elasticity centred around

rotations of material points. This is based somewhat on the work of the Cosserat

brothers and is linked to the study of Teleparallel gravity, an alternative field

theory developed by A. Einstein and É. Cartan. Although seemingly disconnected

from the study of the massless Dirac operator, we are able to give a theorem

connecting our theory with plane wave solutions of the massless Dirac equation,

an unusual geometric link.

We go on in Chapter 3 to present recent developments in the theory of general

first order matrix (pseudo)differential operators. Reducing this to the case of

the massless Dirac operator in three dimensions we then compute two-term spec-

tral asymptotics for the spectral and counting functions: this work is found in

Chapter 4.

For a specific class of operators (those featured in Chapter 4 under the additional

assumption of vanishing subprincipal symbol), the second asymptotic term is

shown to be related to the massless Dirac action. A comprehensive discussion

concerning this relationship is given in Chapter 5.

Finally, in Chapter 6 we consider the issue of spectral asymmetry of the massless

Dirac operator. We show that, by perturbing the metric on a 3-torus, we are

able to achieve spectral asymmetry. We develop a perturbation theory taking
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into account some of the unique properties of the massless Dirac operator in

dimension three and present several families of Riemannian metrics for which we

can compute explicitly the shift of the zero eigenvalue.

Note that, as this thesis draws on a number of different areas of mathematics, it

has not been possible to achieve complete consistency in the use of notation. For

example, in Chapter 2 we denote by ξ a nonvanishing spinor field, whereas ξ in

Chapters 3–6 stands for the dual variable (momentum). Within each particular

chapter the notation is consistent.

In addition, a number of lengthy calculations that would add significantly to

the overall length of this thesis have been omitted, although, of course, details

are always provided to assist the interested reader in the derivation. The author

welcomes requests for further details regarding such calculations, and the omission

of a detailed calculation is always noted in the text of this thesis.

For greater clarity, a more detailed introduction to each chapter of this thesis is

given below.

1.2 Cosserat elasticity and the massless Dirac

equation

In Chapter 2 we develop a new theory of elastic media which we name Rotational

elasticity. Working in 3-dimensional Euclidean space, which we view as an elastic

continuum, we develop a theory of elasticity in which deformations of our medium

correspond only to rotations of material points.

While this may seem exotic, it is a natural limit case of a more general theory of

elastic media developed by the Cosserat brothers in the early twentieth century. A

general deformation in this case corresponds to both a displacement and rotation

of material points. It is interesting to note that classical linear elasticity, wherein
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deformations are induced only by displacements of material points, is a well-

studied limit case of Cosserat elasticity.

Rotational elasticity is an interesting topic of study for several reasons. Unlike

its more famous cousin, linear elasticity, Rotational elasticity has received very

little attention from the academic community. It is therefore a beneficial exercise

to contrast these two theories. In addition, as we show, there are unexpected

links both with gravitation and the massless Dirac operator.

The essential geometric object in this construction is the coframe, the field of

orthonormal covector fields ej, j = 1, 2, 3, defined over R3. The orthogonality

condition is expressed as a kinematic constraint on the coframe:

g = δ = δjke
j ⊗ ek (1.2.1)

or, equivalently, component-wise

gαβ = δαβ = δjke
j
αe

k
β, α, β = 1, 2, 3. (1.2.2)

Here, for simplicity, we assume the metric to be Euclidean (i.e. gαβ = δαβ where

δ is the Kronecker delta). Note that we select coframes satisfying (1.2.1) which

leaves us with three real degrees of freedom at each point in R3. This justifies

our description of (1.2.1) as a kinematic constraint.

We take as the dynamical variables of our theory the coframe ej and a real

positive density ρ. Following the same logic as in classical elasticity, we define

an appropriate measure of deformation of our medium which, in our case, is the

torsion tensor of the connection generated by our coframe. More specifically,

the connection generated by the coframe is the Teleparallel connection, a metric

compatible affine connection with vanishing curvature but non-vanishing torsion.

The connection coefficients can be expressed explicitly in terms of the coframe

and its partial derivatives, and are given by

Γαβγ = ek
α∂e

k
γ

∂xβ
, α, β, γ = 1, 2, 3, (1.2.3)
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where

ek
α := δkjg

αβejβ (1.2.4)

is the “inverse” of the coframe: see Section 4.3 for further discussion. The com-

ponents of the torsion tensor are defined as the difference

Tαβγ := Γαβγ − Γαγβ. (1.2.5)

This is an important observation that links Chapter 2 with Chapter 3 and

Chapter 4.

We are then able to define both a potential and kinetic energy in terms of the

torsion tensor, coframe, and density which allows us to construct a Lagrangian

(energy functional) from which we can determine appropriate equations of motion

for waves propagating in our elastic continuum.

However, achieving this aim while maintaining the kinematic constraint (1.2.1)

is extremely difficult. To ameliorate this problem, we reformulate our model in

terms of spinors. It is known that, in three dimensions, a coframe and positive

density ej, ρ are equivalent to a spinor field ζb (modulo the sign of the field).

Taking advantage of this fact, we are able to rewrite our Lagrangian in a more

user-friendly manner, avoiding the constraint (1.2.1), and immediately seek plane

wave solutions.

The main results presented in Chapter 2 are the following theorems.

Firstly, we present a theorem concerning plane wave solutions, i.e. spinors satis-

fying the field equations of Rotational elasticity of the form

ζ(t, x1, x2, x3) =

1

0

 ei(p0t+p1x1+p2x2+p3x3), (1.2.6)

where pi ∈ R, i = 0, 1, 2, 3, and p0 6= 0. Note that we can always map one of the

components of our plane wave spinor field to zero by performing a rotation of the

coordinate system. This justifies our choice of spinor field in (1.2.6).
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We can then state the following theorem in which v1 and v2 are real constants

expressed via the elastic moduli of the underlying elastic continuum, see formula

(2.8.22).

Theorem 1.2.1. Plane wave solutions of Rotational elasticity can, up to rescaling

and rotation, be explicitly written down in the form (1.2.6) with arbitrary non-

zero p0 and p = (p1, p2, p3) determined as follows.

• If v1 > 0 and v2 > 0 and v1 6= v2 then we have two possibilities:

– p =

(
0, 0,±p0

v1

)
(type 1 wave), or

– p =

(
|p0|
v2

cosϕ,
|p0|
v2

sinϕ, 0

)
where ϕ ∈ R is arbitrary (type 2 wave).

• If v1 > 0 and v2 > 0 and v1 = v2 then p is an arbitrary 3-vector satisfying

‖p‖ =
|p0|
v1

.

• If v1 > 0 and v2 = 0 then p =

(
0, 0,±p0

v1

)
.

• If v1 = 0 and v2 > 0 then p =

(
|p0|
v2

cosϕ,
|p0|
v2

sinϕ, 0

)
where ϕ ∈ R is

arbitrary.

This theorem classifies all plane wave solutions of Rotational elasticity. This

allows us to compare our model directly with linear elasticity, in particular the

existence of longitudinal and transverse waves and their modes of propagation.

The existence of plane wave solutions is highly nontrivial due to the nonlinear

nature of the system of partial differential equations governing our model of

elasticity. This nonlinearity persists even when we simplify matters by writing

our equations in terms of spinors. As such, this theorem is a surprising result.

While we are not sure exactly why this holds, we suspect it is related to underlying

group-theoretic properties of our model.

Our next result forges a link between Rotational elasticity and the massless Dirac

equation for the case when we choose to deal with an axial material, that is, a
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material for which the two constants are specified as follows:

v1 = 1, v2 = 0. (1.2.7)

Under this condition we have the following theorem.

Theorem 1.2.2. In the case of a purely axial material a plane wave spinor field

is a solution of Rotational elasticity if and only if it is a solution of one of the

two (±) massless Dirac equations (1.1.6)

− i

±∂t + ∂3 ∂1 − i∂2

∂1 + i∂2 ±∂t − ∂3

ζ1

ζ2

 = 0. (1.2.8)

This somewhat surprising result motivated us to investigate the structure of the

massless Dirac operator in more detail with a particular focus on the role of

geometry. To achieve this aim we first had to develop an understanding of more

general first order systems of partial differential equations. An overview of this

work is provided in the following section.

1.3 Microlocal analysis of first order systems I

In order to develop a deeper understanding of the massless Dirac operator we

first consider the more general case of an arbitrary first order system of par-

tial differential equations under certain assumptions. The material appearing in

Chapter 3 contains an abridged version of [22]. Certain aspects of this material

are also investigated in [20].

Initially, we consider a classical first order self-adjoint pseudodifferential operator

A acting onm-columns of complex-valued half-densities over a connected compact

n-dimensional manifold without boundary, M , where both m,n ≥ 2.

Note that the dynamical variable in this case is not a spinor field as in Section 1.1

and Section 1.2. We work instead with half-densities. A half-density v ∈ C∞(M)
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changes in a specific manner under changes of local coordinates. We say that,

given two choices of local coordinates x, x̃ ∈ M , v(x) is a half-density if v(x) =

J1/2(x)ṽ(x̃(x)) where ṽ is the representation of v in the coordinates x̃ and J(x) =

| det ∂x̃/∂x| is the Jacobian determinant.

Half-densities are useful to work with as one is able to invariantly define an

inner product without any additional assumptions or constructions. In particular,

define the inner product for half-densities v, w ∈ C∞(M)

〈v, w〉 :=

∫
M

w∗v dx. (1.3.1)

Here the ∗ indicates complex conjugation. Note that (1.3.1) as defined here

extends to the case when v, w are columns of half-densities: in this case the ∗

must be understood as indicating both complex conjugation and transposition,

i.e. as Hermitian conjugation.

As we work with matrix operators throughout this thesis this more general notion

of an inner product will be useful. Under changes of local coordinates the inner

product (1.3.1) is invariant. This gives an invariantly defined notion of formal

self-adjointness for our operator A:

〈Av,w〉 =

∫
M

w∗(Av) dx =

∫
M

(Aw)∗v dx = 〈v,Aw〉. (1.3.2)

Again, (1.3.2) extends to the case when v, w are columns of half-densities and A

is an appropriate matrix operator.

Our aim is to construct the propagator, i.e. the one-parameter family of operators

defined as

U(t) := e−itA =
∑
k

e−itλkvk(x)

∫
M

[vk(y)]∗( · )dy, (1.3.3)

t ∈ R. The propagator provides a solution of the Cauchy problem

(Dt + A)w = 0, w|t=0 = v, (1.3.4)
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cf. (1.1.5). Of course, the solution of the Cauchy problem (1.3.4) can be written

in terms of the propagator (1.3.3) as w = U(t)v. We construct the propagator

(1.3.3) explicitly in terms of oscillatory integrals, modulo an integral operator

with an infinitely smooth kernel, see Chapter 3 for technical details.

This allows us to derive two-term asymptotics for the spectral function (1.1.9) of

the operator A in the form

e(λ, x, x) = a(x)λn + b(x)λn−1 + o(λn−1) (1.3.5)

as λ→ +∞. Formal integration of (1.3.5) over the manifold M gives an asymp-

totic formula for the counting function (1.1.10) of the operator A. Section 8 of

[22] gives the details of the assumptions under which this argument holds, in

particular Theorems 8.3 and 8.4 are required to justify this statement.

Our major result is being able to state explicit formulae for the coefficients a(x)

and b(x) appearing in (1.3.5). This is significant as previous publications on

the subject have either stopped short of providing such formulae or have given

incorrect expressions, see Section 3.6 in Chapter 3. We show that

a(x) =
m+∑
j=1

∫
h(j)<1

d̄ξ, (1.3.6)

b(x) = −n
m+∑
j=1

∫
h(j)<1

[
[v(j)]∗Asubv

(j)

− i

2
{[v(j)]∗, A1 − h(j), v(j)}+

i

n− 1
h(j){[v(j)]∗, v(j)}

]
d̄ξ, (1.3.7)

where m+ is the number of positive eigenvalues h(j) = h(j)(x, ξ) of the principal

symbol A1 of the operator A, v(j)(x) are the corresponding eigenvectors of the

principal symbol, Asub is the subprincipal symbol of A, {·, ·} and {·, ·, ·} are the

Poisson bracket on matrix-functions and its further generalisation, and d̄ξ =
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(2π)−ndξ = (2π)−ndξ1 . . . dξn, see Chapter 3 for further details and complete

definitions.

1.4 Microlocal analysis of first order systems II

In Chapter 4 we reduce the general setting described in Section 1.3 to the par-

ticular case wherein:

Assumption 1: The dimension of our manifold is three, n = 3.

Assumption 2: We are dealing with a 2× 2 matrix operator, m = 2.

Assumption 3: Our operator is differential as opposed to pseudodifferential.

Assumption 4: The principal symbol of our operator is trace-free.

This reduction is motivated by our interest in the massless Dirac operator. How-

ever, the massless Dirac operator defined in Section 1.1 is not an operator of the

type discussed above: it acts on spinors, not half-densities. Fortunately, on a

parallelizable manifold one can identify the components of a spinor with half-

densities (and, as we show in Chapter 4, the existence of the principal symbol

of the operator A implies the 3-manifold M is parallelizable). When we per-

form this identification for the massless Dirac operator (1.1.1) we refer to the

resulting operator as the massless Dirac operator on half-densities, see (4.A.3) in

Appendix 4.A. Using this fact we will, in due course, be able to apply the tools

developed in Chapter 3 to the massless Dirac operator on half-densities. The

results can then be mapped to the case of the massless Dirac operator (1.1.1)

itself.

Under Assumptions 1–4, the principal symbol of our operator A admits a com-

plete geometric description. In particular, a number of geometric objects are

encoded in the principal symbol:
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• The metric. We observe that the determinant of the principal symbol is a

negative definite quadratic form

detA1(x, ξ) = −gαβ(x)ξαξβ (1.4.1)

and the coefficients gαβ(x), α, β = 1, 2, 3, in (1.4.1) can be interpreted

as the components of a symmetric contravariant Riemannian metric. In

particular, this implies that the two eigenvalues of the (trace-free) principal

symbol are of the form

±
√
gαβ(x)ξαξβ. (1.4.2)

• The Teleparallel connection. This is the affine connection defined in an

operator-theoretic manner as follows. Given a point x ∈M and a covector

ξ ∈ T ′xM (T ′xM = T ∗xM\{ξ = 0}, i.e. the cotangent fibre with zero removed)

we can construct a parallel (co)vector ξ̃ ∈ T ′x̃M at the point x̃ ∈ M by

solving the system of linear equations

A1(x, ξ) = A1(x̃, ξ̃). (1.4.3)

Equation (1.4.3) is equivalent to a real algebraic system of three linear equa-

tions for three unknowns, the components of ξ̃. This system has a unique

solution and, furthermore, preserves the Riemannian norm of (co)vectors,

i.e. the connection is metric compatible. As the parallel transport defined by

(1.4.3) is independent of the curve along which we transport the (co)vector,

the connection has zero curvature. In other words, (1.4.3) defines a Telepar-

allel connection.

• The topological charge. As is mentioned above, the existence of a principal

symbol implies our 3-manifold M is parallelizable and, hence, orientable.

Specifying a given orientation, we only allow changes of local coordinates

x ∈ M which preserve orientation. We then define the topological charge

as

c := − i
2

√
det gαβ tr [(A1)ξ1(A1)ξ2(A1)ξ3 ] . (1.4.4)
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As we demonstrate in Chapter 4, the quantity c takes one of only two

values, ±1, and expresses the orientation of the principal symbol relative

to the specified orientation of local coordinates.

Note that the Teleparallel connection appears in Chapter 2 as (1.2.3), although

(1.4.3) is expressed in an operator-theoretic manner. In addition, the topologi-

cal charge (1.4.4) is implicitly present in Chapter 2 and takes the value +1 by

definition.

We are able to express the asymptotic coefficients of the spectral function (1.3.6),

(1.3.7) for operators obeying Assumptions 1–4 in terms of the three geometric

objects given above. Indeed, the following theorem is one of the main results of

Chapter 4.

Theorem 1.4.1. The coefficients of the two-term asymptotics of the spectral

function (1.3.6), (1.3.7) for operators under Assumptions 1–4 are given by the

formulae

a(x) =
1

6π2

√
det gαβ(x) , (1.4.5)

b(x) =
1

8π2

(
[ 3 c ∗T ax − 2 trAsub ]

√
det gαβ

)
(x) , (1.4.6)

where

T ax
αβγ :=

1

3
(Tαβγ + Tγαβ + Tβγα) (1.4.7)

is axial torsion (totally antisymmetric piece of the torsion tensor) and ∗ is the

Hodge star, see formula (4.3.4) in Chapter 4.

Turning our attention to the massless Dirac operator on half-densities, using

Theorem 1.4.1 we can state a second theorem addressing the following question:

is a given operator A, under Assumptions 1–4, a massless Dirac operator on

half-densities? The answer is given by the following:

Theorem 1.4.2. The operator A is a massless Dirac operator on half-densities

if and only if the following conditions are satisfied at every point of the manifold

M :
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• The subprincipal symbol of the operator A is proportional to the identity

matrix.

• The second asymptotic coefficient of the spectral function, b(x), is zero.

This theorem completely characterizes the massless Dirac operator in terms of

spectral theoretic quantities.

1.5 The massless Dirac action as the second

coefficient in the asymptotics of the

counting function

In Chapter 5 we study the massless Dirac action rather than the massless Dirac

operator, i.e. the variational functional corresponding to the operator (1.1.1).

This is motivated by the following observations.

Observation 1. The formula for the second asymptotic coefficient of the spectral

function for an operator A under Assumptions 1–4, (1.4.6), contains a term

proportional to the subprincipal symbol, Asub. If we consider operators un-

der Assumptions 1–4 with the additional assumption that the subprincipal

principal is identically zero, then:

• The operator A is completely determined by its principal symbol.

• The second asymptotic coefficient of the spectral function of the oper-

ator A, (1.4.6), is proportional to the Hodge star of the axial torsion

of the Teleparallel connection (1.4.7).

Observation 2. It is known that the massless Dirac action is directly related to

axial torsion, see for example [23].

These two facts motivate our interest in the massless Dirac action. Our aim

in Chapter 5 is to investigate the geometric meaning of the second asymptotic
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coefficient of the spectral and counting functions and, as we will show, link this to

the massless Dirac action. Therefore, in this chapter, we work with a first order

differential 2× 2 matrix operator acting on two-columns of complex-valued half-

densities over a compact oriented 3-manifold under the following assumptions.

Assumption 5: The principal symbol of our operator is trace-free.

Assumption 6: The subprincipal symbol of our operator is identically zero.

As in Chapter 4, there are a number of objects encoded in our operator A.

• The metric. As we again work with a 2× 2 matrix operator we are free to

use the metric defined by (1.4.1).

• The nonvanishing spinor field. The determinant of the principal symbol

(metric) does not uniquely determine the principal symbol itself. Supposing

that the metric (1.4.1) is fixed, we are able to define a new geometric object

by considering operators corresponding to the same metric. To make this

more precise, fixing a reference principal symbol B1 corresponding to the

prescribed metric and considering all principal symbols A1 corresponding

to the same metric that are sufficiently close (a more detailed discussion is

presented in Chapter 5) we are able to relate the two through

A1(x, ξ) = R(x)B1(x, ξ)R∗(x) (1.5.1)

where R is an infinitely smooth SU(2) matrix-function close to the identity.

In other words, particular SU(2) matrix-functions parametrise principal

symbols corresponding to a given metric.

It is known that SU(2) matrices can be conveniently described by a (Weyl)

spinor, i.e. a pair of complex numbers ζa, a = 1, 2. The relationship between

the spinor field and SU(2) matrices is given by the formula

R =
1

‖ζ‖

 ζ1 ζ2

−ζ2 ζ1

 , (1.5.2)
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where complex conjugation is denoted by the overline and ‖ ·‖ is the appro-

priate Euclidean norm. Equation (1.5.2) establishes a one-to-one correspon-

dence between SU(2) matrices and non-zero spinors, modulo a rescaling of

the spinor by an arbitrary positive real factor.

Note that in this introduction we assume, for simplicity, that the spinor

field is normalised, i.e. ‖ζ‖2 = |ζ1|2 + |ζ2|2 = 1. In Chapter 5 we actually

deal with a more general weighted spectral problem which leads to a natural

scaling of the spinor field, but we want to minimise the technical details at

this point.

• The topological charge. As indicated in Chapter 4, the existence of a princi-

pal symbol implies our manifold is parallelizable and, hence, orientable. In

accordance with the argument given in Chapter 4, we use the topological

charge as defined by (1.4.4).

Having identified these three geometric objects encoded within our operator A, it

is reasonable to assume that the corresponding coefficients of the spectral/count-

ing functions would be expressed through these same objects. The key result of

Chapter 5 is the following theorem which confirms this assertion.

Theorem 1.5.1. The coefficients in the two-term asymptotics of the counting

function (1.1.10) for the operator A as described in this section and under As-

sumptions 5 and 6 above are given by the formulae

a =
1

6π2

∫
M

‖ζ‖3
√

det gαβ dx , (1.5.3)

b =
S(ζ)

2π
, (1.5.4)

where S(ζ) is the massless Dirac action (5.A.1) with Pauli matrices

σα := (B1)ξα (1.5.5)



Introduction 25

Note that the topological charge c does not appear in (1.5.1) explicitly. However,

it is implicitly present in our choice of Pauli matrices.

In addition formula (1.5.3) contains the term ‖ζ‖3. As indicated, in this intro-

duction we assume the spinor field to be normalised. We wrote formula (1.5.3) in

a way that would make it applicable in the more general case dealt with in Chap-

ter 5. The theorem applies equally well to a normalised spinor field nonetheless.

Theorem 1.5.1 provides a new perspective on two-term spectral asymptotics for

first order systems. The operator we have described in this section (first order

differential 2 × 2 matrix operator in dimension three with trace-free principal

symbol and vanishing subprincipal symbol) is, compared to a general system, a

very special mathematical object. However, even for this relatively simple case,

the two-term spectral asymptotics have a highly nontrivial geometric meaning.

1.6 Spectral asymmetry and the massless Dirac

operator

In the final chapter of this thesis we consider the issue of spectral asymmetry of

the massless Dirac operator on a 3-torus. It is known that, taking the standard

Euclidean metric on the 3-torus, the spectrum of the massless Dirac operator can

be calculated explicitly. Indeed, the spectrum is symmetric about zero and zero

is itself an eigenvalue. We will show that, by perturbing the metric, one can shift

the zero eigenvalue and thus achieve spectral asymmetry.

The main reason for studying this problem is that producing explicit examples

of spectral asymmetry for the massless Dirac operator is difficult. While it is

known that there is no particular reason that the spectrum of the massless Dirac

operator should be symmetric on a general oriented Riemannian 3-manifold, to

our knowledge the only explicit example is given in [65]. The example is based

on selecting a 3-manifold with Euclidean metric but highly nontrivial topology.
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In Chapter 6 we take a different approach. We maintain a simple topology and

perturb the metric instead. We present a theorem concerning a general pertur-

bation of this kind and then explicitly construct several families of Riemannian

metrics which produce various shifts of the zero eigenvalue.

From this point we work on the unit torus T3 parametrised by periodic coordinates

xα, α = 1, 2, 3, of period 2π. Taking the (unperturbed) metric to be Euclidean

(gαβ = δαβ) the massless Dirac operator (corresponding to the standard spin

structure, see Section 5.4) reads

W = −i

 ∂3 ∂1 − i∂2

∂1 + i∂2 −∂3

 , (1.6.1)

cf. (1.1.7) and (1.1.8). The operator (1.6.1) admits separation of variables, i.e. one

can seek eigenfunctions of the form v(x) = ueimαx
α

with u ∈ C2\{0} and m ∈ Z3:

eigenvalues and eigenfunctions can be calculated explicitly in this case.

The spectrum of (1.6.1) is as follows.

• Zero is an eigenvalue of multiplicity two.

• For each m ∈ Z3 \ {0}, ‖m‖ is an eigenvalue with corresponding eigen-

function of the form ueimαx
α
, where u is unique up to multiplication by a

constant factor.

• For each m ∈ Z3 \ {0}, −‖m‖ is an eigenvalue with corresponding eigen-

function of the form ueimαx
α
, where u is unique up to multiplication by a

constant factor.

The spectrum of (1.6.1) is clearly symmetric about zero.

We now perturb the metric, i.e. consider a new metric gαβ(x; ε), the components

of which are smooth functions of the cyclic coordinates xα, α = 1, 2, 3, and a

small real parameter ε such that

gαβ(x; 0) = δαβ. (1.6.2)
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We aim to demonstrate that, by choosing an appropriate perturbation, we can

break the symmetry of the spectrum of the massless Dirac operator corresponding

to the perturbed metric.

Demonstrating spectral asymmetry for the massless Dirac operator is complicated

by the following issues.

Issue 1. One way of establishing spectral asymmetry is to compare the asymp-

totic distribution of large positive eigenvalues and large negative eigenval-

ues, see Section 10 of [22] for details of the application of this technique

to generic first order differential operators. However, the massless Dirac

operator is special in the sense that the second asymptotic coefficient of its

counting function is zero, see Theorem 1.4.2. Therefore, in the first two

approximations, its large positive eigenvalues are distributed in the same

way as its large negative eigenvalues. To circumvent this issue, we will deal

instead with small eigenvalues to demonstrate spectral asymmetry.

Issue 2. The massless Dirac operator commutes with the antilinear operator of

charge conjugation, C, defined by

v =

v1

v2

→
−v2

v1

 =: C(v). (1.6.3)

Therefore, if v is an eigenfunction of the massless Dirac operator, so is

C(v). This means that all eigenvalues have even multiplicity. As a result of

this property we are unable to apply standard techniques to calculate the

shift of the zero eigenvalue under a perturbation of the metric as described

above. To counter this difficulty, we develop a perturbation theory that

takes into account the charge conjugation symmetry of the massless Dirac

operator. The double eigenvalue at zero does not split under perturbation,

and we show that it can, effectively, be treated as a simple eigenvalue.

The perturbation theory we develop culminates in the theorem presented below.

Note that we raise and lower tensor indices using the Euclidean metric throughout
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the rest of this section. In addition, given a function f : T3 → C, we denote by

f̂(m) :=
1

(2π)3

∫
T3

e−imαx
α

f(x)dx, m ∈ Z3, (1.6.4)

its Fourier coefficients. We can now state the following theorem, the main result

of Chapter 6.

Theorem 1.6.1. Let W (ε) be the massless Dirac operator corresponding to the

perturbed metric gαβ(x; ε) so that

W (0) = −i

 ∂3 ∂1 − i∂2

∂1 + i∂2 −∂3

 . (1.6.5)

Let λ0(ε) be the eigenvalue of W (ε) with smallest modulus and

hαβ(x) :=
∂gαβ
∂ε

∣∣∣∣
ε=0

. (1.6.6)

Then, we have

λ0(ε) = cε2 +O(ε3) as ε→ 0, (1.6.7)

where the constant c is given by the formula

c =
i

16
εαβγ

∑
m∈Z3\{0}

(
δµν −

mµmν

‖m‖2

)
mαĥβµ(m)ĥγν(m), (1.6.8)

with the overline standing for complex conjugation and where ε is the totally

antisymmetric quantity, ε123 := +1.

At the end of Chapter 6 we present two families of Riemannian metrics on T3

for which the eigenvalue with smallest modulus can be calculated explicitly. One

family gives a quadratic shift of the zero eigenvalue, and the other produces

a quartic shift. We show that, for both families, the explicit formulae for the

eigenvalue with smallest modulus are in agreement with Theorem 1.6.1. Finally,

we consider the relationship between Theorem 1.6.1 and the eta invariant, the

traditional measure of spectral asymmetry.



Chapter 2

Rotational elasticity

2.1 Introduction

We work in 3-dimensional Euclidean space and view it as an elastic continuum

whose material points can experience no displacements, only rotations, with ro-

tations of different material points being kinematically independent. Rotations

of material points of the 3-dimensional elastic continuum are described mathe-

matically by attaching to each geometric point an orthonormal basis. This gives

a field of orthonormal bases called the coframe.

The purpose of Chapter 2 is to develop a theory of elasticity on rotations, i.e. a

theory of elasticity in which the coframe plays the role of the dynamical vari-

able (unknown quantity). Recall that in classical elasticity the vector field of

displacements is the dynamical variable.

Our motivation for studying such a seemingly exotic problem comes from four

main sources.

The first source is Cosserat elasticity. In 1909 the Cosserat brothers proposed

a theory of elasticity [24] which generalised classical elasticity by giving each

material point rotational degrees of freedom. Cosserat elasticity has since become

an accepted part of solid mechanics, though for most real life materials effects

29
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resulting from rotations of material points are small compared to effects resulting

from displacements. From a purely mathematical point of view classical elasticity

and rotational elasticity are two limit cases of Cosserat elasticity. One of these

limit cases, classical elasticity, has been extensively studied so it seems natural

to now examine the other limit case.

The second source is Teleparallelism (= absolute parallelism = fernparallelismus),

a subject promoted by A. Einstein and É. Cartan [18, 73, 79] in the late 1920s.

The idea of rotating material points lies at the heart of Teleparallelism and can

easily be traced back to Cosserat elasticity: when in 1922 Cartan started develop-

ing what eventually became modern differential geometry he acknowledged [17]

that he drew inspiration from the ‘beautiful’ work of the Cosserat brothers. The

relationship between Cosserat elasticity and Teleparallelism is examined in detail

in the review paper [39]. The basic difference between Teleparallelism and our

model is that in Teleparallelism the metric is viewed as a dynamical variable

rather than as a prescribed tensor field: formula (2.2.1) ceases being a kinematic

constraint and becomes the definition of the metric. Consequently, in Telepar-

allelism the coframe is varied without any constraints whatsoever which, on the

one hand, makes calculations easier and, on the other, allows one to model grav-

itational phenomena.

The third source is the theory of liquid crystals and, in particular, the concept of

an Ericksen fluid. According to [29], in a liquid crystal one can observe ‘orienta-

tion waves which propagate, inducing little or no motion of the fluid’ and Erick-

sen’s mathematical model is the natural way of describing this phenomenon. The

only difference between Ericksen’s model and ours is that in Ericksen’s model one

attaches to each geometric point a single unit vector rather than an orthonormal

basis as we do. More precisely, in Ericksen’s model there is also no distinction be-

tween the head and tail of the unit vector, which leads to mathematical analysis

based on projective geometry.

Finally, the fourth source is the concept of gyrocontinuum proposed by M. Bro-

cato and G. Capriz [13]. Quoting from [13], Brocato and Capriz “consider a body
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endowed with the fine structure of very many, very small gyroscopes and describe

it as a sort of composite (perhaps constrained) Cosserat continuum (gyrocontin-

uum)”. Note that even though the basic idea of a rotating material point in [13]

is similar to ours, there are substantial differences between our model and that of

[13]. In particular, the equations in [13] are nonlinear both in terms of geometry

and material behaviour (while the material behaves linearly in our model) and

the displacements of material points in [13] are nonzero.

From a physical point of view we are studying a classical field theory which gives

a novel description of fermions, i.e. elementary particles such as the neutrino

and the electron. Our theory produces a wave description for particles, however,

a formal quantisation scheme is yet to be developed. This means that we are

attempting to model “world aether” rather than some realistic macroscopic ma-

terial. A more modern way of rephrasing this is that we are modelling possible

excitations of the vacuum and giving them a particle interpretation.

Chapter 2 has the following structure. In Section 2.2 we define our dynamical

variables (unknowns of our theory), in Section 2.3 we write down the kinetic en-

ergy and in Section 2.4 we write down the potential energy. The Lagrangian of

rotational elasticity is written down in Section 2.5. In Section 2.6 we reformulate

our model in the language of spinors and in Section 2.7 we discuss the corre-

sponding Euler–Lagrange equation. In Section 2.8 we construct an explicit class

of solutions which we call plane wave solutions; this construction is summarised

in Theorem 2.8.1 which is the main result of Chapter 2. Finally, in Section 2.9

we compare our model with the massless Dirac equation and in Section 2.10 we

briefly outline a linearised version of rotational elasticity.

2.2 Setting the playing field

We work in Euclidean space R3 equipped with Cartesian coordinates xα, α =

1, 2, 3, and standard Euclidean metric. We denote time by t. Partial differentia-

tion in t and xα, α = 1, 2, 3, is denoted by ∂t and ∂α respectively.
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The coframe e is a triple of orthonormal covector fields ej, j = 1, 2, 3, in R3.

Each covector field ej can be written more explicitly as ejα where the tensor

index α = 1, 2, 3 enumerates the components. The orthonormality condition for

the coframe can be represented as a single tensor identity

g = δjke
j ⊗ ek (2.2.1)

where δ is the Kronecker delta and gαβ = δαβ is the Euclidean metric. For the sake

of clarity we repeat formula (2.2.1) giving tensor indices explicitly and performing

summation over frame indices explicitly:

δαβ = e1
αe

1
β + e2

αe
2
β + e3

αe
3
β (2.2.2)

where α and β run through the values 1, 2, 3. We view the identity (2.2.1) as a

kinematic constraint: the covector fields ej are chosen so that they satisfy (2.2.1),

which leaves us with three real degrees of freedom at every point of R3.

We work only with coframes which have positive orientation, i.e. which satisfy

the condition

det ejα = +1 > 0. (2.2.3)

If one views ejα as a 3×3 real matrix function, then conditions (2.2.1) and (2.2.3)

mean that this matrix function is special orthogonal. Thus, the coframe can be

thought of as a field of special orthogonal matrices. This matrix approach is

explained in greater detail in Appendix 2.E.

As dynamical variables in our model we choose the coframe e and a positive

density ρ. Our coframe and density are functions of Cartesian coordinates xα,

α = 1, 2, 3, as well as of time t. At a physical level, making the density ρ a

dynamical variable means that we view our continuum more like a fluid rather

than a solid. In other words, we allow the material to redistribute itself so that it

finds its equilibrium density distribution. Observe that the total number of real
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dynamical degrees of freedom contained in the coframe e and positive density ρ

is four, exactly as in a two-component complex-valued spinor field.

The underlying motivation for taking the density to be a dynamical variable is our

aim of modelling quantum mechanical phenomena. This will become clear when

we eventually switch to spinors: we will arrive at formula (2.6.3) which is the

standard formula for the density of a massless neutrino field (zeroth component

of the neutrino 4-current).

Note that there is nothing fundamentally wrong in taking a prescribed density

(as opposed to a density which is a dynamical variable): the theory one gets is

very similar to the one described in the current chapter and most formulae carry

through with minimal changes. We will briefly examine a version of our theory

with prescribed ρ in the very end of Chapter 2, in Section 2.10.

Below is the list of the main assumptions on which our model will be based.

Assumption 1: our model is geometrically nonlinear. This means that we do not

linearise rotations and we do not linearise the density. In other words, we

allow our material points to experience full turns and we allow our density

to experience changes comparable to the density itself.

Assumption 2: our material is physically linear. This means that our potential

energy is chosen to be quadratic in torsion (the latter serves as the measure

of rotational deformations, see Section 2.4.1). Note that physical linearity

does not contradict geometric nonlinearity: locally (in space and time)

material points “do not know” that they may eventually experience full

rotations and the density “does not know” that it may eventually experience

a change comparable to its current value. This assumption is similar to

the hyperelasticity assumption sometimes made in classical elasticity. It

describes a highly idealised situation which is not likely to occur in realistic

materials.
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Assumption 3: our material is homogeneous and isotropic. Homogeneity means

that physical properties of the material are the same at all points of our

continuum and isotropy means that there are no preferred directions.

Assumption 4: our model is invariant under rigid rotations of the coframe. By

a rigid rotation of the coframe we understand the transformation

ej 7→ Oj
ke
k (2.2.4)

where Oj
k is a constant special orthogonal matrix. The thinking here is

that when we attach an orthonormal basis to each geometric point of our

continuum there is no reason to associate one particular direction with e1,

another with e2 and a third with e3. What matters is how these directions

change when we move from one point to another, i.e. how orthonormal

bases at different points differ relative to each other. A rigid rotation of

the coframe means that we simultaneously rotate all our orthonormal bases

by the same angle around the same axis. We view rigid rotations of the

coframe as gauge transformations and assume that our model does not feel

them. See also [51] for a detailed exposition of gauge theory for problems

similar to the ones considered in Chapter 2.

Assumption 4 effectively means that the actual dynamical variable in our model

is not the coframe itself, but the coframe modulo a rigid rotation. A loose way

of rephrasing this would be to say that the actual dynamical variable is not the

coframe but rather its rotation.

Assumption 4 is similar to the assumption of objectivity or frame-indifference

in classical (without displacements) elasticity theory. However, it is not the

same. When in classical elasticity one talks of objectivity or frame-indifference

this normally refers to rotations of the coordinate system. Assumption 4, on the

other hand, refers to “internal” degrees of freedom present in the rotating material

point and the coframe here is unrelated to the choice of coordinate system.
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2.3 Kinetic energy

Kinetic energy is given by the formula

K(t) = ckin

∫
‖ω‖2ρ dx1dx2dx3 (2.3.1)

where ckin is some positive constant and ω is the (pseudo)vector of angular velocity

ω =
1

2
∗ (δjke

j ∧ ∂tek). (2.3.2)

Here ∧ is the exterior product and ∗ is the Hodge star (2.A.1).

In writing the formula for kinetic energy (2.3.1) we think of each material point

as a uniform ball possessing a moment of inertia and without a preferred axis of

rotation.

If we were to consider a more complete model, with displacements, the formula for

angular velocity (2.3.2) would change as displacements generate macrorotations.

We give for reference a more explicit version of the formula for angular velocity

(2.3.2):

ωα =
1

2

3∑
j=1


ej2∂te

j
3 − ej3∂te

j
2

ej3∂te
j
1 − ej1∂te

j
3

ej1∂te
j
2 − ej2∂te

j
1

 . (2.3.3)

2.4 Potential energy

2.4.1 Measuring rotational deformations

In order to write down the formula for the potential energy we need to measure

deformations caused by rotations of the coframe. More specifically, we need to

measure deformations caused by the fact that at different points the coframe is

oriented differently. Obvious candidates for a measure of deformations are the
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rank two tensors

Kj := ∂ej, j = 1, 2, 3, (2.4.1)

or, in more explicit form, Kj
αβ := ∂αe

j
β. The problem is that taken separately

the three rank two tensors (2.4.1) are not invariant under rigid rotations of the

coframe (2.2.4). The natural way of forming a truly invariant object is to make

one rank three tensor out of the three rank two tensors Kj according to the

formula

K := δjke
j ⊗Kk = δjke

j ⊗ ∂ek. (2.4.2)

The rank three tensor K is invariant under rigid rotations of the coframe (2.2.4)

and, moreover, the individual rank two tensors Kj can be recovered from K as

Kj
γδ = ejαKαγδ, where ejα = ejβg

αβ, so there is no loss of information.

Let us examine the symmetries of the tensor K. Observe that formula (2.2.1)

implies

0 = ∂αgβγ = ∂α(δjke
j
βe

k
γ) = δjk(∂αe

j
β)ekγ + δjke

j
β(∂αe

k
γ) = Kγαβ +Kβαγ

which means that the rank three tensor K is antisymmetric in the first and third

indices,

Kγαβ = −Kβαγ. (2.4.3)

Now, let us introduce another rank three tensor

T := δjke
j ⊗ dek (2.4.4)

where d stands for the exterior derivative, see Definition 5.5, Section 5.4.2, in [53].

The tensor (2.4.4) is obviously antisymmetric in the second and third indices

Tαβγ = −Tαγβ (2.4.5)
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and is expressed via our original deformation tensor (2.4.2) as

Tαβγ = Kαβγ −Kαγβ. (2.4.6)

Formulae (2.4.6) and (2.4.3) imply

Tαβγ = Kαβγ +Kβγα,

Tγαβ = Kγαβ +Kαβγ,

Tβγα = Kβγα +Kγαβ

where the last two identities were obtained from the first one by a cyclic relabelling

of tensor indices. Adding up the first and second identities and subtracting the

third one we get

Kαβγ =
1

2
(Tαβγ + Tγαβ − Tβγα) =

1

2
(Tαβγ + Tβαγ + Tγαβ) (2.4.7)

(here we also used (2.4.5)). Note that the argument carried out above is a rephras-

ing of the standard argument that for a metric compatible affine connection con-

tortion can be expressed via torsion, see Section 7.2.6 in [53].

Formulae (2.4.6) and (2.4.7) show that the tensors K and T are expressed via

each other so either of them can be used as a measure of rotational deformations.

We choose to use the tensor T because it has a clear geometric meaning: it is

the torsion of the Teleparallel connection generated by the coframe e, see Ap-

pendix A of [15] for a concise exposition. An additional advantage of using the

tensor T is that the definition (2.4.4) of this tensor does not require the use of

covariant derivatives so it works when the metric g appearing in formula (2.2.1) is

not assumed to be Euclidean. The latter was important for Einstein and Cartan

who arrived at the mathematical model similar to the one described in in Chap-

ter 2 coming from general relativity. Recall that in general relativity the metric

plays the role of dynamical variable so for someone with a relativistic background

assuming the metric to be Euclidean (i.e. space to be flat) is unnatural.
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Starting from Einstein’s works [79] torsion is traditionally used as a measure

of deformations when modelling elastic continua with rotations. We shall follow

this tradition and construct our potential energy as a function(al) of T . However,

before writing down the formula for potential energy we will simplify matters by

using the fact that we are working in three dimensions (our previous arguments

were dimension-independent).

Applying the Hodge star (2.A.1) in the second and third indices we switch from

the original torsion tensor T to the tensor

∗
Tαβ :=

1

2
Tα

γδεγδβ. (2.4.8)

Of course, the tensor T can be recovered from
∗
T as

Tαβγ =
∗
Tα

δεδβγ. (2.4.9)

Formulae (2.4.8) and (2.4.9) show that the tensors T and
∗
T are expressed via

each other so either of them can be used as a measure of rotational deformations.

We choose to use the tensor
∗
T because it has lower rank, two instead of three.

Formulae (2.4.4) and (2.4.8) imply

∗
T = δjke

j ⊗ ∗dek = δjke
j ⊗ curl ek. (2.4.10)

We see that
∗
T is a rank two tensor without any symmetries and with arbitrary

trace. This is the tensor we will be using as a measure of rotational deformations

when writing down the formula for potential energy. The tensor
∗
T is sometimes

called the dislocation density tensor [49] .
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We give for reference a more explicit version of formula (2.4.10):

∗
Tαβ =

3∑
j=1


ej1∂2e

j
3 − ej1∂3e

j
2 ej1∂3e

j
1 − ej1∂1e

j
3 ej1∂1e

j
2 − ej1∂2e

j
1

ej2∂2e
j
3 − ej2∂3e

j
2 ej2∂3e

j
1 − ej2∂1e

j
3 ej2∂1e

j
2 − ej2∂2e

j
1

ej3∂2e
j
3 − ej3∂3e

j
2 ej3∂3e

j
1 − ej3∂1e

j
3 ej3∂1e

j
2 − ej3∂2e

j
1

 .

(2.4.11)

2.4.2 Irreducible decomposition of rotational deformations

Recall the logic of classical linear elasticity [50]: after identifying the measure

of deformation one decomposes it into irreducible pieces. We follow this logic

by decomposing the tensor
∗
T into irreducible pieces. The construction presented

below is similar to [50], the only difference being that instead of a symmetric rank

two tensor, strain, we deal with a rank two tensor,
∗
T , without any symmetries.

Decomposing the rank two tensor
∗
T into irreducible pieces means the following.

We fix a point in R3 and at this point look at all real rank two tensors P . Such

tensors can be viewed as elements of a real 9-dimensional vector space V equipped

with inner product

(P,Q)V := PαβQ
αβ (2.4.12)

and corresponding norm

‖P‖V =
√

(P, P )V =
√
PαβPαβ . (2.4.13)

Let us now examine what happens when we rotate our Cartesian coordinate

system xα, i.e. when we perform a linear change of coordinates preserving the

metric gαβ and orientation. The components of our tensors Pαβ change in a

particular way under rotations of the coordinate system, so we get an action of

the group SO(3) on the vector space V . Looking for irreducible pieces of torsion

means identifying subspaces of V which are invariant under the action of the

group SO(3), i.e. which map into themselves, and which do not contain smaller

nontrivial invariant subspaces.
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In our case the invariant subspaces can be shown to be

• the 1-dimensional subspace of real rank two tensors proportional to the

metric,

• the 3-dimensional subspace of real antisymmetric rank two tensors and

• the 5-dimensional subspace of real symmetric trace-free rank two tensors.

These three subspaces are irreducible and mutually orthogonal in the inner prod-

uct (2.4.12); explicit calculations are omitted for brevity.

Our rank two tensor
∗
T can now be written as a sum of three irreducible pieces

∗
T =

∗
T ax +

∗
T vec +

∗
T ten (2.4.14)

where

∗
T ax
αβ :=

∗
T γγ

3
gαβ , (2.4.15)

∗
T vec
αβ :=

∗
Tαβ −

∗
T βα

2
, (2.4.16)

∗
T ten
αβ :=

∗
Tαβ −

∗
T ax
αβ −

∗
T vec
αβ =

∗
Tαβ +

∗
T βα

2
−
∗
T γγ

3
gαβ . (2.4.17)

We label the irreducible pieces (2.4.15), (2.4.16) and (2.4.17) by the adjectives

axial, vector and tensor respectively, which is terminology traditional in alterna-

tive theories of gravity [39]. Note that authors working in “mainstream” Cosserat

elasticity use different terminology. Say, Neff’s [46, 57, 58, 59, 60, 61, 62] use of

the adjective “axial” corresponds to our vector piece (2.4.16).
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2.4.3 Formula for potential energy

Following the logic of classical linear elasticity [50] we now write down the explicit

formula for potential energy:

P (t) =

∫ (
cax‖

∗
T ax‖2

V + cvec‖
∗
T vec‖2

V + cten‖
∗
T ten‖2

V

)
ρ dx1dx2dx3 (2.4.18)

where cax, cvec and cten are some nonnegative constants (elastic moduli), not all

zero, and ‖ · ‖V is the norm (2.4.13). Comparing our formula (2.4.18) with

formula (4.3) from [50] we see a difference between classical and rotational elas-

ticity: classical elasticity involves two elastic moduli whereas rotational elasticity

involves three. The extra elastic modulus cvec is needed because the tensor
∗
T

which we use as measure of rotational deformations is not necessarily symmetric.

Formula (2.4.18) is traditionally used in Teleparallelism. This formula already

appears in the original papers of Einstein [79], though for some reason1 Einstein

did not include the axial term cax‖
∗
T ax‖2. Subsequent authors always used three

terms, see, for example, formula (26) in [39].

2.4.4 Simplifying the formula for potential energy

Let us introduce the (pseudo)scalar

f :=
∗
Tαα (2.4.19)

and the vector

vα :=
∗
T βγεβγα . (2.4.20)

Formulae (2.4.13)–(2.4.17), (2.4.19) and (2.4.20) imply

‖
∗
T ax‖2

V =
1

3
f 2, (2.4.21)

1The reason could be that Einstein was primarily interested in providing a geometric inter-
pretation of electromagnetism and might have felt that the axial term would not contribute to
the electromagnetic field.
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‖
∗
T vec‖2

V =
1

2
‖v‖2, (2.4.22)

‖
∗
T ten‖2

V = ‖
∗
T‖2

V −
1

3
f 2 − 1

2
‖v‖2. (2.4.23)

Substituting (2.4.11) into (2.4.19) and (2.4.20) we get more explicit formulae for

f and v:

f =
3∑
j=1

(ej1∂2e
j
3− ej1∂3e

j
2 + ej2∂3e

j
1− ej2∂1e

j
3 + ej3∂1e

j
2− ej3∂2e

j
1), (2.4.24)

vα =
3∑
j=1


ej2∂1e

j
2 − ej2∂2e

j
1 − ej3∂3e

j
1 + ej3∂1e

j
3

ej3∂2e
j
3 − ej3∂3e

j
2 − ej1∂1e

j
2 + ej1∂2e

j
1

ej1∂3e
j
1 − ej1∂1e

j
3 − ej2∂2e

j
3 + ej2∂3e

j
2

 . (2.4.25)

Substituting formulae (2.4.19)–(2.4.21) into formula (2.4.18) we get

P (t) =

∫ (
cax − cten

3
f 2 +

cvec − cten

2
‖v‖2 + cten

∗
Tαβ

∗
Tαβ

)
ρ dx1dx2dx3 . (2.4.26)

The advantage of writing potential energy in the form (2.4.26) is that the geo-

metric quantities f , v and
∗
T appearing in this formula have relatively compact

explicit representations (2.4.24), (2.4.25) and (2.4.11).

2.5 Lagrangian of Rotational elasticity

We combine our potential energy (2.4.26) and kinetic energy (2.3.1) to form the

action (variational function) of dynamic rotational elasticity

SRe(e, ρ) =

∫
(P (t)−K(t))dt =

∫
LRe(e, ρ) dt dx1dx2dx3 (2.5.1)

where

LRe(e, ρ) =

(
cax − cten

3
f 2 +

cvec − cten

2
‖v‖2 + cten

∗
Tαβ

∗
Tαβ − ckin‖ω‖2

)
ρ (2.5.2)
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is the Lagrangian density. Recall that the geometric quantities f , v,
∗
T and ω

appearing in formula (2.5.2) are defined by formulae (2.4.24), (2.4.25), (2.4.11)

and (2.3.3) respectively.

An equivalent matrix representation of the Lagrangian density (2.5.2) is provided

in Appendix 2.E.

It is worth noting that the choice of parameters in the Lagrangian of Cosserat

elasticity is highly controversial. The Cosserat model as such is not accepted in

the mainstream elasticity theory community and it has never been shown to be

superior to classical models. On the positive side, the Cosserat model allows for

the rigorous derivation [59, 60] of certain plate theories.

A comprehensive analysis of the equations of Cosserat elasticity in the complete

(with both displacements and microrotations) setting was performed in [46, 57,

58, 59, 60, 61, 62]. In particular, the authors of [62] performed a scale analysis

which led them to the conclusion that the constants cax and cvec appearing in

formula (2.5.2) should be zero. We do not believe that the arguments presented

in [62] are directly relevant to our case because the authors of [62] assumed the

strain part of the Lagrangian to be nonzero. In other words, the authors of [62]

had in mind a realistic macroscopic material whereas we do not aim at modelling

such a material.

2.6 Reformulating the problem in the language

of spinors

Our field equations (Euler–Lagrange equations) are obtained by varying the ac-

tion (2.5.1) with respect to the coframe e and density ρ. Varying with respect to

the density ρ is easy: this gives the field equation

cax − cten

3
f 2 +

cvec − cten

2
‖v‖2 + cten

∗
Tαβ

∗
Tαβ − ckin‖ω‖2 = 0 (2.6.1)
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which is equivalent to LRe(e, ρ) = 0. Varying with respect to the coframe e is

more difficult because we have to maintain the kinematic constraint (2.2.1).

This technical difficulty can be overcome by switching to a different dynamical

variable. Namely, it is known [23] that in dimension 3 a coframe e and a (positive)

density ρ are equivalent to a 2-component complex-valued spinor field

ξ = ξa =

ξ1

ξ2

 (2.6.2)

modulo the sign of ξ (i.e. modulo a factor ±1). The explicit formulae establishing

this equivalence are

ρ = ξ̄ȧσ0ȧbξ
b, (2.6.3)

(e1 + ie2)α = ρ−1εċḃσ0ḃaξ
aσαċdξ

d, (2.6.4)

e3
α = ρ−1ξ̄ȧσαȧbξ

b. (2.6.5)

Here σ are Pauli matrices and ε is “metric spinor” (see (2.A.2)–(2.A.4)), the free

tensor index α runs through the values 1, 2, 3, and the spinor summation indices

run through the values 1, 2 or 1̇, 2̇. The advantage of switching to a spinor field

ξ is that there are no kinematic constraints on its components, so the derivation

of field equations becomes straightforward.

We give for reference more explicit versions of formulae (2.6.3)–(2.6.5):

ρ = ξ̄1̇ξ1 + ξ̄2̇ξ2, (2.6.6)

(e1 + ie2) = (ξ̄1̇ξ1 + ξ̄2̇ξ2)−1


(ξ1)2 − (ξ2)2

i(ξ1)2 + i(ξ2)2

−2ξ1ξ2

 , (2.6.7)

e3 = (ξ̄1̇ξ1 + ξ̄2̇ξ2)−1


ξ̄2̇ξ1 + ξ̄1̇ξ2

iξ̄2̇ξ1 − iξ̄1̇ξ2

ξ̄1̇ξ1 − ξ̄2̇ξ2

 . (2.6.8)
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Let us rewrite the geometric quantities f , v,
∗
T and ω appearing in formula (2.5.2)

in terms of the spinor field ξ. The spinor representation of angular velocity ω

was derived in [23]:

ωα = i
ξ̄ȧσαȧb∂tξ

b − ξbσαȧb∂tξ̄ȧ

ξ̄ ċσ0ċdξd
(2.6.9)

or, more explicitly,

ω =
1

ξ̄1̇ξ1 + ξ̄2̇ξ2


iξ̄2̇∂tξ

1 + iξ̄1̇∂tξ
2

−ξ̄2̇∂tξ
1 + ξ̄1̇∂tξ

2

iξ̄1̇∂tξ
1 − iξ̄2̇∂tξ

2

+ c.c. (2.6.10)

where the “c.c.” stands for “complex conjugate term”. The spinor representation

of the tensor
∗
T is derived in Appendix 2.B, see formula (2.B.1) or its more explicit

version (2.B.7). Substituting (2.B.1) or (2.B.7) into (2.4.19) and (2.4.20) we arrive

at spinor representations for the (pseudo)scalar f and vector v:

f = −2i
ξ̄ȧσαȧb∂αξ

b − ξbσαȧb∂αξ̄ȧ

ξ̄ ċσ0ċdξd
, (2.6.11)

vα = −iεβγα
ξ̄ȧσβȧb∂

γξb − ξbσβȧb∂γ ξ̄ȧ

ξ̄ ċσ0ċdξd
(2.6.12)

where ∂α := gαβ∂β = ∂α, or, more explicitly,

f =
2

ξ̄1̇ξ1 + ξ̄2̇ξ2
(−iξ̄1̇∂1ξ

2 − iξ̄2̇∂1ξ
1 − ξ̄1̇∂2ξ

2 + ξ̄2̇∂2ξ
1 − iξ̄1̇∂3ξ

1 + iξ̄2̇∂3ξ
2) + c.c.,

(2.6.13)

v =
1

ξ̄1̇ξ1 + ξ̄2̇ξ2


iξ̄1̇∂2ξ1 − iξ̄2̇∂2ξ2 − ξ̄1̇∂3ξ2 + ξ̄2̇∂3ξ1

iξ̄1̇∂3ξ2 + iξ̄2̇∂3ξ1 − iξ̄1̇∂1ξ1 + iξ̄2̇∂1ξ2

ξ̄1̇∂1ξ2 − ξ̄2̇∂1ξ1 − iξ̄1̇∂2ξ2 − iξ̄2̇∂2ξ1

+ c.c. (2.6.14)

Note that formula (2.6.11) is a rephrasing of formula (B.5) from [23].

From now on we write our action (2.5.1) and Lagrangian density (2.5.2) as SRe(ξ)

and LRe(ξ) rather than SRe(e, ρ) and LRe(e, ρ), thus indicating that we have

switched to spinors. The explicit formula for LRe(ξ) is obtained by substituting
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formulae (2.6.3), (2.6.11), (2.6.12), (2.B.1) and (2.6.9) into (2.5.2). The nonvan-

ishing spinor field ξ is the new dynamical variable and it will be varied without

any constraints.

2.7 Euler–Lagrange equation

Let us perform a formal variation of our spinor field ξ 7→ ξ + δξ, where δξ :

R×R3 → C2 is an arbitrary (infinitely) smooth function with compact support.

Then, after integration by parts, the variation of our action can be written as

δSRe =

∫
(Fȧδξ̄

ȧ + F̄aδξ
a) dt dx1dx2dx3 (2.7.1)

where F is a dotted spinor field uniquely determined by the undotted spinor field

ξ. The Euler–Lagrange for our unknown spinor field ξ is, therefore,

F = 0. (2.7.2)

The map

ξ 7→ F (2.7.3)

defines a nonlinear second order partial differential operator in the variables t

(time) and xα, α = 1, 2, 3 (Cartesian coordinates).

We shall refrain from writing down the Euler–Lagrange equation (2.7.2) explicitly.

The reason for this is that in the current chapter we are interested in finding a

particular class of solutions for which the procedure is much simpler.

Note that for the special case of a purely axial material, i.e. material with

cvec = 0, cten = 0, (2.7.4)
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the Euler–Lagrange equation (2.7.2) was written down explicitly in [23]. The

calculations in [23] were carried out under the additional assumption

ckin =
4

3
cax (2.7.5)

which can always be achieved by rescaling time t.

2.8 Plane wave solutions

In this section, as well as in Section 2.9 and Appendix 2.C, we denote time by x0

and the time derivative by ∂0. This will allow us to simplify notation.

We seek solutions of the form

ξ(x) = e−ip·xζ (2.8.1)

where ζ 6= 0 is a constant (complex) spinor and p is a constant real covector.

Here we use relativistic notation, incorporating time x0 into our coordinates.

This means that x = (x0, x1, x2, x3) and p = (p0, p1, p2, p3); bold type indicates

that we are working in (1+3)-dimensional spacetime. The number |p0| is the wave

frequency and the covector (p1, p2, p3) is the wave vector in original 3-dimensional

Euclidean space. The 4-component covector p = (p0, p1, p2, p3) has the meaning

of relativistic 4-momentum.

Throughout this section, as well as the next one, we assume that

p0 6= 0 (2.8.2)

which means that we are not interested in static (time-independent) solutions.

The sign of p0 can be arbitrary.

Our Euler–Lagrange equation (2.7.2) is highly nonlinear so it is by no means

obvious that one can seek solutions in the form of plane waves (2.8.1). Fortunately
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(and miraculously) this is the case. In order to see this, we rewrite our Euler–

Lagrange equation (2.7.2) in equivalent form

eip·xF = 0. (2.8.3)

Note that the sign in the exponent in (2.8.3) is opposite to that in (2.8.1). We

have

Lemma 2.8.1. If the spinor field ξ is a plane wave (2.8.1) then the left-hand

side of equation (2.8.3) is constant, i.e. it does not depend on x.

Of course, Lemma 2.8.1 can be equivalently reformulated as follows: the nonlinear

partial differential operator (2.7.3) maps a plane wave (2.8.1) into a plane wave

with the same relativistic 4-momentum p.

The proof of Lemma 2.8.1 is quite technical and is given in Appendix 2.C.

Lemma 2.8.1 justifies separation of variables, i.e. it reduces the study of the

nonlinear partial differential equation (2.7.2) for the unknown spinor field ξ to the

study of the rational algebraic equation (2.8.3) for the unknown constant spinor ζ.

We suspect that the underlying group-theoretic reason for our nonlinear partial

differential equation (2.7.2) admitting separation of variables is the fact that our

model is U(1)-invariant, i.e. it is invariant under the multiplication of the spinor

field ξ by a complex constant of modulus 1. Hence, it is feasible that one could

prove Lemma 2.8.1, as well as Lemma 2.8.2 stated further down in this section,

without performing the laborious calculations presented in Appendix 2.C.

We are now faced with the task of writing down the LHS of equation (2.8.3)

explicitly and with minimal calculations. To this end we address a seemingly

different issue: we examine what happens when we substitute our plane wave

(2.8.1) into our Lagrangian density LRe(ξ) (i.e. (2.5.2) rephrased in terms of

spinors, see Section 2.6 for details), rather than the Euler–Lagrange equation

(2.7.2).
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Substituting formula (2.8.1) into formulae (2.6.3), (2.6.11), (2.6.12), (2.B.1) and

(2.6.9) we get

ρ = ζ̄ ȧσ0ȧbζ
b, (2.8.4)

f = −4ζ̄ ȧσαȧbpαζ
b

ζ̄ ċσ0ċdζd
, (2.8.5)

vα = −2εβγαζ̄
ȧσβȧbp

γζb

ζ̄ ċσ0ċdζd
, (2.8.6)

∗
Tαβ = 2

ζ̄ ȧσβȧbpαζ
b − ζ̄ ȧσγȧbpγζbgαβ
ζ̄ ċσ0ċdζd

, (2.8.7)

ωα =
2ζ̄ ȧσαȧbp0ζ

b

ζ̄ ċσ0ċdζd
, (2.8.8)

or, more explicitly,

ρ = ζ̄ 1̇ζ1 + ζ̄ 2̇ζ2, (2.8.9)

f =
4

ζ̄ 1̇ζ1 + ζ̄ 2̇ζ2

(
p1(−ζ̄ 1̇ζ2 − ζ̄ 2̇ζ1) + ip2(ζ̄ 1̇ζ2 − ζ̄ 2̇ζ1) + p3(−ζ̄ 1̇ζ1 + ζ̄ 2̇ζ2)

)
,

(2.8.10)

v =
2

ζ̄ 1̇ζ1 + ζ̄ 2̇ζ2


p2

(
ζ̄ 1̇ζ1 − ζ̄ 2̇ζ2

)
+ ip3

(
ζ̄ 1̇ζ2 − ζ̄ 2̇ζ1

)
p3

(
ζ̄ 1̇ζ2 + ζ̄ 2̇ζ1

)
+ p1

(
−ζ̄ 1̇ζ1 + ζ̄ 2̇ζ2

)
ip1

(
−ζ̄ 1̇ζ2 + ζ̄ 2̇ζ1

)
+ p2

(
−ζ̄ 1̇ζ2 − ζ̄ 2̇ζ1

)
 , (2.8.11)



∗
T 11
∗
T 12
∗
T 13
∗
T 21
∗
T 22
∗
T 23
∗
T 31
∗
T 32
∗
T 33



=
2

ζ̄ 1̇ζ1 + ζ̄ 2̇ζ2



ip2

(
ζ̄ 1̇ζ2 − ζ̄ 2̇ζ1

)
+ p3

(
−ζ̄ 1̇ζ1 + ζ̄ 2̇ζ2

)
ip1

(
−ζ̄ 1̇ζ2 + ζ̄ 2̇ζ1

)
p1

(
ζ̄ 1̇ζ1 − ζ̄ 2̇ζ2

)
p2

(
ζ̄ 1̇ζ2 + ζ̄ 2̇ζ1

)
p3

(
−ζ̄ 1̇ζ1 + ζ̄ 2̇ζ2

)
+ p1

(
−ζ̄ 1̇ζ2 − ζ̄ 2̇ζ1

)
p2

(
ζ̄ 1̇ζ1 − ζ̄ 2̇ζ2

)
p3

(
ζ̄ 1̇ζ2 + ζ̄ 2̇ζ1

)
ip3

(
−ζ̄ 1̇ζ2 + ζ̄ 2̇ζ1

)
p1

(
−ζ̄ 1̇ζ2 − ζ̄ 2̇ζ1

)
+ ip2

(
ζ̄ 1̇ζ2 − ζ̄ 2̇ζ1

)



, (2.8.12)

ω =
2p0

ζ̄ 1̇ζ1 + ζ̄ 2̇ζ2


−iζ̄ 1̇ζ2 − iζ̄ 2̇ζ1

−ζ̄ 1̇ζ2 + ζ̄ 2̇ζ1

−iζ̄ 1̇ζ1 + iζ̄ 2̇ζ2

 . (2.8.13)
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Substituting formulae (2.8.4)–(2.8.8) or their more explicit versions (2.8.9)–(2.8.13)

into formula (2.5.2) we arrive at a Lagrangian density LRe(ζ; p) which does not

depend on x. The self-contained formula for this Lagrangian density, written in

terms of 4-momentum p and 4-current

jα := ζ̄ ȧσαȧbζ
b, (2.8.14)

is

LRe(ζ; p)=
2

j0

(
cvec+ cten

)
‖p‖2‖j‖2

+
4

j0

(
4

3
cax− 1

2
cvec+

1

6
cten

)
(j · p)2 − 4

j0

ckinp2
0‖j‖2. (2.8.15)

Here we write our 4-covectors as p = (p0, p) and j = (j0, j), where p and j are

3-covectors.

We view the 4-momentum p as a parameter and the constant spinor ζ 6= 0 as

the dynamical variable. The Lagrangian density LRe(ζ; p) is a smooth function

of Re ζ and Im ζ, so varying ζ we get

δLRe = Gȧδζ̄
ȧ + Ḡaδζ

a (2.8.16)

where G is a dotted constant spinor expressed via the partial derivatives of

LRe(ζ; p) with respect to Re ζ and Im ζ. It is natural to ask the question: what

is the relationship between the spinor field F appearing in formula (2.7.1) and

the constant spinor G appearing in formula (2.8.16)? The answer is given by

Lemma 2.8.2. If the spinor field ξ is a plane wave (2.8.1) then G = eip·xF .

The proof of Lemma 2.8.2 is presented in Appendix 2.C.

Lemma 2.8.2 reduces the construction of plane wave solutions of rotational elas-

ticity to finding the critical, with respect to ζ, points of the function LRe(ζ; p).
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Varying (2.8.15), we arrive at the following equation for critical points:

4

j0

(
cvec + cten

)
‖p‖2jασαȧbζ

b − 2

j2
0

(
cvec + cten

)
‖p‖2‖j‖2σ0ȧbζ

b

+
8

j0

(
4

3
cax − 1

2
cvec +

1

6
cten

)
(j·p)pασαȧbζb−

4

j2
0

(
4

3
cax − 1

2
cvec +

1

6
cten

)
(j·p)2σ0ȧbζ

b

− 8

j0

ckinp2
0j
ασαȧbζ

b +
4

j2
0

ckinp0
2‖j‖2σ0ȧbζ

b = 0. (2.8.17)

Recall that the 4-current j = (j0, j) appearing in the above equation is defined in

accordance with formula (2.8.14).

It now remains to find the 4-momenta p and spinors ζ 6= 0 which satisfy equation

(2.8.17). We carry out the analysis of equation (2.8.17) assuming that

ρ = j0 = ζ̄ 1̇ζ1 + ζ̄ 2̇ζ2 = 1. (2.8.18)

Condition (2.8.18) is a normalisation of the density: general plane wave solutions

differ from those satisfying condition (2.8.18) by a real scaling factor. Further-

more, we assume that

ζb =

1

0

 . (2.8.19)

Indeed, any spinor ζ satisfying condition (2.8.18) can be transformed into the

spinor (2.8.19) by the linear transformation

ζ 7→ Uζ (2.8.20)

where U is a special (detU = 1) unitary matrix. The transformation (2.8.20)

leads to a rotation of the spatial part of the 4-current (2.8.14), so plane wave

solutions with general ζ differ from those with ζ of the form (2.8.19) by a rotation.
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Substituting (2.8.17), (2.8.19), (2.A.3), (2.A.4) and (2.8.13) into (2.8.16) we get

4
(
cvec + cten

)
‖p‖2

1

0

− 2
(
cvec + cten

)
‖p‖2

1

0


+ 8

(
4

3
cax − 1

2
cvec +

1

6
cten

)
p3

 p3

p1 + ip2

− 4

(
4

3
cax − 1

2
cvec +

1

6
cten

)
p2

3

1

0


− 4ckin

p2
0

0

 = 0,

or, equivalently,

2
(
cvec + cten

)‖p‖2

0

+4

(
4

3
cax − 1

2
cvec +

1

6
cten

) p2
3

2p3(p1 + ip2)

−4ckin

p2
0

0

= 0.

(2.8.21)

Put

v1 :=

√
4cax + 2cten

3ckin
, v2 :=

√
cvec + cten

2ckin
. (2.8.22)

Note that because we assumed our three elastic moduli to be nonnegative and

not all zero, our v1 and v2 are nonnegative and not both zero. Using (2.8.22) we

can now rewrite equation (2.8.21) in more compact form

v2
2

‖p‖2

0

+ (v2
1 − v2

2)

 p2
3

2p3(p1 + ip2)

−
p2

0

0

 = 0. (2.8.23)

The analysis of equation (2.8.23) is elementary and the outcome is summarised

in the following theorem, which is the main result of Chapter 2.

Theorem 2.8.1. Plane wave solutions of rotational elasticity can, up to rescaling

and rotation, be explicitly written down in the form (2.8.1), (2.8.19) with arbitrary

nonzero p0 and p = (p1, p2, p3) determined as follows.

• If v1 > 0 and v2 > 0 and v1 6= v2 then we have two possibilities:

– p =

(
0, 0,±p0

v1

)
(type 1 wave), or
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– p =

(
|p0|
v2

cosϕ,
|p0|
v2

sinϕ, 0

)
where ϕ ∈ R is arbitrary (type 2 wave).

• If v1 > 0 and v2 > 0 and v1 = v2 then p is an arbitrary 3-vector satisfying

‖p‖ =
|p0|
v1

.

• If v1 > 0 and v2 = 0 then p =

(
0, 0,±p0

v1

)
.

• If v1 = 0 and v2 > 0 then p =

(
|p0|
v2

cosϕ,
|p0|
v2

sinϕ, 0

)
where ϕ ∈ R is

arbitrary.

Theorem 2.8.1 shows that rotational elasticity, like classical linear elasticity, pro-

duces two distinct types of plane wave solutions. We call these solutions type 1

and type 2 and they propagate with velocities v1 and v2 respectively, with v1 and

v2 given by formulae (2.8.22).

However, unlike with classical linear elasticity, in rotational elasticity the two

wave velocities, v1 and v2, are not ordered, i.e. we do not know a priori which

one, v1 or v2, is bigger. The reason the two wave velocities are not ordered is

because rotational elasticity has three elastic moduli compared to the two elastic

moduli of classical linear elasticity. The “extra” elastic modulus is cvec, the one

associated with the antisymmetric part of the rank two tensor
∗
T which we use

as a measure of rotational deformations. If we set cvec = 0, we end up with the

inequality

v1 ≥
√

4

3
v2 (2.8.24)

similar to the well known inequality from classical linear elasticity, see formula

(22.5) in [50].

Throughout this chapter we considered our equations of rotational elasticity in

the whole of R3. It would be natural to examine, in due course, boundary value

problems in domains of R3, starting with the static case. We do not yet have

existence or uniqueness theorems for static boundary value problems generated

by the Lagrangian of rotational elasticity. Note that for the complete (with both

displacements and microrotations) Cosserat model theorems of this type have
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been proved in [46, 57, 58, 59, 60, 61, 62]. Note also that the result of [63] may

be particularly useful in the proof of possible existence theorems for rotational

elasticity: as shown in [63], partial derivatives of the coframe are bounded from

above by the norm of torsion.

2.9 The massless Dirac equation

In this section we consider a purely axial material (2.7.4), (2.7.5). Substituting

(2.7.4) and (2.7.5) into (2.8.22) we get v1 = 1 and v2 = 0, so a purely axial

material supports only type 1 waves. Throughout this section we also retain the

assumption (2.8.2).

Note that a purely axial material has the remarkable property that its potential

energy is invariant under conformal rescalings of the spatial metric by an arbi-

trary positive scalar function. We do not elaborate on this issue in the current

chapter because we chose to work with a specific (standard Euclidean) metric.

The appropriate arguments are presented in Section 2 of [23].

Our aim is to compare our model with the linear partial differential equation (or,

more precisely, system of two linear partial differential equations)

i(±σ0
ȧb∂0 + σαȧb∂α)ξb = 0. (2.9.1)

Here ∂0 is the time derivative, ∂α are spatial derivatives, σ are Pauli matrices

(2.A.3), (2.A.4), the free spinor index ȧ runs through the values 1̇, 2̇, summation

is carried out over the tensor index α = 1, 2, 3 as well as the spinor index b = 1, 2,

and ξ is the unknown spinor field. We give for reference a more explicit version

of equation (2.9.1):

i

∓∂0 + ∂3 ∂1 − i∂2

∂1 + i∂2 ∓∂0 − ∂3

ξ1

ξ2

 = 0. (2.9.2)
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Equation (2.9.1) is called the massless Dirac equation or the Weyl equation. This

equation is the accepted mathematical model for a massless neutrino field. The

two choices of sign in (2.9.1) give two versions of the massless Dirac equation

which differ by time reversal. Thus, we have a pair of massless Dirac equations.

We want to compare plane wave solutions (see (2.8.1)) of our model with those

of the massless Dirac equation. As both models are invariant under the rescaling

of the spinor field by a positive real constant as well as the rotations of Euclidean

3-space, it is sufficient to compare plane wave solutions for ζ of the form (2.8.19).

Substituting (2.8.1) and (2.8.19) into (2.9.1) or its more explicit version (2.9.2)

we get p = (0, 0,±p0) which is exactly what Theorem 2.8.1 gives us. Thus, we

have established

Theorem 2.9.1. In the case of a purely axial material a plane wave spinor field

is a solution of rotational elasticity if and only if it is a solution of one of the two

massless Dirac equations (2.9.1).

It turns out that, in fact, a much stronger result holds. Consider a spinor field of

the form

ξ(x0, x1, x2, x3) = e−ip0x0

η(x1, x2, x3). (2.9.3)

We will call spinor fields of the form (2.9.3) stationary. Here, stationary refers to

“time-harmonic” as opposed to “time-independent” as is shown by (2.9.3): while

this is slightly non-standard language, it preserves accord between this thesis and

[23]. In considering stationary spinor fields what we are doing is separating out

time only as opposed to separating out all the variables.

The following result generalises Theorem 2.9.1.

Theorem 2.9.2. In the case of a purely axial material a nonvanishing stationary

spinor field is a solution of rotational elasticity if and only if it is a solution of

one of the two massless Dirac equations (2.9.1).

Theorem 2.9.2 was proved in [23] and the proof is quite delicate. It involves an

argument which reduces a nonlinear second order partial differential equation of
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a particular type to a pair of linear first order partial differential equations, which

is, effectively, a form of integrability. An abstract self-contained version of this

argument is given in Appendix B of [16].

It is interesting that Brocato and Capriz wrote in Section 6 of [13] “we are not

aiming at a model for ether”. Theorem 2.9.2 shows that one can, in fact, model

world aether (ether) based on their idea of gyrocontinuum.

2.10 The linearised problem

Let R be the matrix function (2.E.1). Suppose that R ≈ I, i.e. the coframe is

almost aligned with the coordinate axes. Then

R = e∗w = I + ∗w +O(w2) (2.10.1)

where w is a vector function. In Cosserat elasticity literature the vector function

w is called the vector of microrotations. It should not be confused with the

vector of macrorotations which is one half of the curl of the vector function of

displacements.

Formula (2.10.1) can be equivalently rewritten as

ej 7→ ej + w × ej +O(w2), j = 1, 2, 3, (2.10.2)

where ej = ejα is the jth element of the coframe and × denotes the cross (vector)

product.

Substituting formula (2.10.2) into formulae (2.4.24), (2.4.25), (2.4.11) and (2.3.3)

and linearising in w, we get

f = −2 divw, (2.10.3)

v = curlw, (2.10.4)

∗
Tαβ = ∂αwβ − δαβ divw, (2.10.5)
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ω = ẇ (2.10.6)

where the dot indicates the time derivative. Finally, substituting formulae (2.10.3)–

(2.10.6) into the Lagrangian density (2.5.2) of our rotational theory of elasticity,

we get

LRe(w, ρ) =(
4cax

3
(divw)2+

cvec

2
‖ curlw‖2+ cten

∥∥∥∥∂αwβ + ∂βwα
2

− δαβ
3

divw

∥∥∥∥2

V

− ckin‖ẇ‖2

)
ρ

(2.10.7)

where the norm ‖ · ‖V of a rank two tensor is defined in accordance with (2.4.13).

Formula (2.10.7) is similar to the formula for the Lagrangian density of classical

linear elasticity, the only difference being the appearance of the term with curlw.

Up till now in this chapter we viewed the density ρ as a dynamical variable. The

aim of this section is to formulate a linear analogue of the nonlinear problem

considered in Sections 2.2–2.9 and in order to achieve this we have to make our

density ρ prescribed. Moreover, as we assume our material to be homogeneous,

the prescribed value of ρ will be constant. This leaves us with only one dynamical

variable, the vector function w.

The linear field equation corresponding to the quadratic Lagrangian density

(2.10.7) is

ẅ = v2
1 grad divw − v2

2 curl curlw (2.10.8)

where v1 and v2 are defined by (2.8.22). Equation (2.10.8) is the equation of

classical linear elasticity, the only difference being that we do not have the a

priori inequality (2.8.24).

The equations of linearised Cosserat elasticity were previously examined by a

number of authors. Publications [56, 55, 54] give a good overview of the subject.

The difference between [56, 55, 54] and what is done in the current section is

that in [56, 55, 54] the authors consider a model with both displacements and
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microrotations whereas in our model the vector of microrotations is the only

dynamical variable. Our Lagrangian density (2.10.7) is a special case of the

Lagrangian density from [56, 55, 54] and our equation (2.10.8) is a special case

of the equations from [56, 55, 54].

Equation (2.10.8) gives two types of waves, longitudinal waves propagating with

velocity v1 and transversal waves propagating with velocity v2. Of course, care

is required in interpreting the terms “longitudinal” and “transversal” as w has

the geometric meaning of the vector function of microrotations rather than the

vector function of displacements (as it would be in classical linear elasticity).

Comparing the results of this section with Theorem 2.8.1 we see that the wave

velocities are the same. This indicates that the mathematical model presented in

the main part of Chapter 2 (Sections 2.2–2.5) is a natural geometrically nonlinear

extension of linear rotational elasticity. Type 1 waves from Theorem 2.8.1 are

a nonlinear version of longitudinal waves from equation (2.10.8) whereas type 2

waves are a nonlinear version of transversal ones.

2.A Notation

In Chapter 2 our notation follows [15, 23, 16, 81]. The only difference with [15, 81]

is that in the latter the spacetime metric has opposite signature. In [23, 16] the

signature is the same as in the current chapter, i.e. the 3-dimensional spatial

metric has signature + + + .

We use Greek letters for tensor (holonomic) indices and Latin letters for frame

(anholonomic) indices. We identify differential forms with covariant antisymmet-

ric tensors.

We define the action of the Hodge star on a rank r antisymmetric tensor X as

(∗X)αr+1...α3 := (r!)−1Xα1...αrεα1...α3 (2.A.1)
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where ε is the totally antisymmetric quantity, ε123 := +1.

We use two-component complex-valued spinors (Weyl spinors) whose indices run

through the values 1, 2 or 1̇, 2̇. Complex conjugation makes the undotted indices

dotted and vice versa.

We define the “metric spinor”

εab = εȧḃ = εab = εȧḃ =

0 −1

1 0

 (2.A.2)

and choose Pauli matrices

σ0ȧb =

1 0

0 1

 = −σ0
ȧb, (2.A.3)

σ1ȧb =

0 1

1 0

 = σ1
ȧb, σ2ȧb =

0 −i

i 0

 = σ2
ȧb, σ3ȧb =

1 0

0 −1

 = σ3
ȧb .

(2.A.4)

Here the first index enumerates rows and the second enumerates columns.

2.B Spinor representation of torsion

We show in this appendix that the tensor
∗
Tαβ defined by formula (2.4.10) (it is

the Hodge dual, in the last pair indices, of the torsion tensor) is expressed via

the spinor field ξ as

∗
Tαβ = i

ξ̄ȧσβȧb∂αξ
b − ξbσβȧb∂αξ̄ȧ − (ξ̄ȧσγȧb∂γξ

b − ξbσγȧb∂γ ξ̄ȧ)gαβ
ξ̄ ċσ0ċdξd

. (2.B.1)

Note that formula (2.B.1) is invariant under the rescaling of our spinor field by

an arbitrary positive scalar function.

Formula (2.B.1) is proved by direct substitution of formulae (2.6.4) and (2.6.5)

into (2.4.10). In order to simplify calculations we observe that the expressions in
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the left- and right-hand sides of formula (2.B.1) have an invariant nature, hence

it is sufficient to prove formula (2.B.1) at a point at which the spinor field takes

the value ξa =

1

0

. Then at this point we have

ejβ = δjβ , (2.B.2)

∂α(e1 + ie2) =


∂αξ

1 − ∂αξ̄1̇

i∂αξ
1 − i∂αξ̄1̇

−2∂αξ
2

 , ∂αe
3 =


∂αξ

2 + ∂αξ̄
2̇

−i∂αξ2 + i∂αξ̄
2̇

0

 , (2.B.3)

where α = 1, 2, 3. Note that formulae (2.B.3) imply

curl(e1 + ie2) =


−2∂2ξ

2 − ∂3(iξ1 − iξ̄1̇)

2∂1ξ
2 + ∂3(ξ1 − ξ̄1̇)

∂1(iξ1 − iξ̄1̇)− ∂2(ξ1 − ξ̄1̇)

 , (2.B.4)

curl e3 =


−∂3(−iξ2 + iξ̄2̇)

∂3(ξ2 + ξ̄2̇)

∂1(−iξ2 + iξ̄2̇)− ∂2(ξ2 + ξ̄2̇)

 . (2.B.5)

We now rewrite formula (2.4.10) in the form

∗
T =

1

2
(e1− ie2)⊗curl(e1 + ie2)+

1

2
(e1 + ie2)⊗curl(e1− ie2)+e3⊗curl e3. (2.B.6)

Substituting formulae (2.B.2), (2.B.4) and (2.B.5) into formula (2.B.6) we get

∗
T =


−∂2(ξ2 + ξ̄2̇)− i∂3(ξ1 − ξ̄1̇) ∂1(ξ2 + ξ̄2̇) i∂1(ξ1 − ξ̄1̇)

i∂2(ξ2 − ξ̄2̇) −i∂1(ξ2 − ξ̄2̇)− i∂3(ξ1 − ξ̄1̇) i∂2(ξ1 − ξ̄1̇)

i∂3(ξ2 − ξ̄2̇) ∂3(ξ2 + ξ̄2̇) −i∂1(ξ2 − ξ̄2̇)− ∂2(ξ2 + ξ̄2̇)


which coincides with the RHS of formula (2.B.1). This completes the proof.
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We give for reference a more explicit version of formula (2.B.1):



∗
T 11
∗
T 12
∗
T 13
∗
T 21
∗
T 22
∗
T 23
∗
T 31
∗
T 32
∗
T 33



=
1

ξ̄1̇ξ1 + ξ̄2̇ξ2



ξ̄2̇∂2ξ
1 − ξ̄1̇∂2ξ

2 + iξ̄2̇∂3ξ
2 − iξ̄1̇∂3ξ

1

ξ̄1̇∂1ξ
2 − ξ̄2̇∂1ξ

1

iξ̄1̇∂1ξ
1 − iξ̄2̇∂1ξ

2

iξ̄2̇∂2ξ
1 + iξ̄1̇∂2ξ

2

−iξ̄1̇∂1ξ
2 − iξ̄2̇∂1ξ

1 − iξ̄1̇∂3ξ
1 + iξ̄2̇∂3ξ

2

iξ̄1̇∂2ξ
1 − iξ̄2̇∂2ξ

2

iξ̄1̇∂3ξ
2 + iξ̄2̇∂3ξ

1

ξ̄1̇∂3ξ
2 − ξ̄2̇∂3ξ

1

−iξ̄1̇∂1ξ
2 − iξ̄2̇∂1ξ

1 + ξ̄2̇∂2ξ
1 − ξ̄1̇∂2ξ

2



+ c.c. (2.B.7)

2.C Separation of variables

In this appendix we prove Lemmata 2.8.1 and 2.8.2. Note that it would suffice

to prove Lemma 2.8.2 only, because Lemma 2.8.1 follows from Lemma 2.8.2.

However, we prove Lemma 2.8.1 first for the sake of clarity of exposition.

Throughout this appendix we denote time by x0 and the time derivative by ∂0.

Let us arrange the (pseudo)scalar f , the three components of the vector vα, the

nine components of the tensor
∗
Tαβ and the three components of the (pseudo)vector

ωα into one 16-component “vector” VJ , J = 1, . . . , 16. Then our Lagrangian den-

sity (2.5.2) can be written as

LRe(ξ) = ρ

16∑
J=1

AJV
2
J (2.C.1)

where the AJ are some real constants. Put WJ :=
√
ρ VJ . Then formula (2.C.1)

takes the form

LRe(ξ) =
16∑
J=1

AJW
2
J . (2.C.2)
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According to formulae (2.6.11), (2.6.12), (2.B.1), (2.6.9) and (2.6.3) the compo-

nents of the “vector” W are expressed via the spinor field ξ as

WJ = i
ξ̄ȧBα

J ȧb∂αξ
b − ξbBα

J ȧb∂αξ̄
ȧ

(ξ̄ ċσ0ċdξd)1/2
(2.C.3)

where Bα
J ȧb are some constants and summation is carried out over the spinor

indices ȧ = 1̇, 2̇, b = 1, 2, and over α = 0, 1, 2, 3. Here we use bold type to

indicate relativistic notation, when time x0 is viewed as one of the coordinates in

(1+3)-dimensional spacetime.

Note that for given J and α the 2 × 2 matrices Bα
J ȧb are Hermitian. This is

because each of these matrices is a linear combination with real coefficients of the

Pauli matrices σβȧb, β = 1, 2, 3.

Our action is SRe(ξ) =
∫
LRe(ξ) dx

0dx1dx2dx3. Substituting (2.C.3) into (2.C.2)

and varying the spinor field ξ we get

δSRe(ξ) = 2

∫ 16∑
J=1

AJ

(
i
(δξ̄ȧ)Bα

J ȧb∂αξ
b − ξbBα

J ȧb∂αδξ̄
ȧ

(ξ̄ ċσ0ċdξd)1/2
− (δξ̄ȧ)σ0ȧbξ

b

2ξ̄ ċσ0ċdξd
WJ

)
WJ+c.c.

where we wrote down explicitly the terms with δξ̄ and incorporated the terms with

δξ into the “c.c.” (complex conjugate term). Here, when writing the integral, we

dropped, for the sake of brevity, dx0dx1dx2dx3. Integrating the term with ∂αδξ̄
ȧ

by parts and taking out the common factor δξ̄ȧ we rewrite the above formula as

δSRe(ξ) = 2

∫
(δξ̄ȧ)

16∑
J=1

AJ

[
iWJB

α
J ȧb∂αξ

b

(ξ̄ ċσ0ċdξd)1/2
− W 2

Jσ0ȧbξ
b

2ξ̄ ċσ0ċdξd
+ i∂α

(
WJB

α
J ȧbξ

b

(ξ̄ ċσ0ċdξd)1/2

)]
+c.c.

Comparing this formula with formula (2.7.1) we conclude that the spinor field F

appearing in the latter is given by formula

Fȧ = 2
16∑
J=1

AJ

[
iWJB

α
J ȧb∂αξ

b

(ξ̄ ċσ0ċdξd)1/2
− W 2

Jσ0ȧbξ
b

2ξ̄ ċσ0ċdξd
+ i∂α

(
WJB

α
J ȧbξ

b

(ξ̄ ċσ0ċdξd)1/2

)]
(2.C.4)

where the WJ are, in turn, given by formula (2.C.3).
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If we now substitute the plane wave (2.8.1) into formula (2.C.3) we get

WJ =
2ζ̄ ȧBα

J ȧbpαζ
b

(ζ̄ ċσ0ċdζd)1/2
. (2.C.5)

Note that the above WJ are constant (do not depend on x), which simplifies the

next step: substituting (2.8.1) into (2.C.4) and dividing through by the common

factor e−ip·x we get

eip·xFȧ = 2
16∑
J=1

AJ

[
2WJB

α
J ȧbpαζ

b

(ζ̄ ċσ0ċdζd)1/2
− W 2

Jσ0ȧbζ
b

2ζ̄ ċσ0ċdζd

]
. (2.C.6)

The remarkable feature of formula (2.C.6) is that its RHS is constant, i.e. it does

not depend on x. This completes the proof of Lemma 2.8.1.

Let us now substitute the plane wave (2.8.1) directly into our Lagrangian density

(2.C.2). Our Lagrangian density takes the form

LRe(ζ; p) =
16∑
J=1

AJW
2
J (2.C.7)

where the WJ are given by formula (2.C.5). The Lagrangian density (2.C.7)

does not depend on x. The dynamical variable in this Lagrangian density is the

constant 2-component complex spinor ζ, whereas the relativistic 4-momentum p

plays the role of a parameter. Varying the spinor ζ we get

δLRe(ζ; p) = 2
16∑
J=1

AJ

(
2(δζ̄ ȧ)Bα

J ȧbpαζ
b

(ζ̄ ċσ0ċdζd)1/2
− (δζ̄ ȧ)σ0ȧbζ

b

2ζ̄ ċσ0ċdζd
WJ

)
WJ + c.c.

Comparing this formula with formula (2.8.16) we conclude that the constant

spinor G appearing in the latter is given by formula

Gȧ = 2
16∑
J=1

AJ

[
2WJB

α
J ȧbpαζ

b

(ζ̄ ċσ0ċdζd)1/2
− W 2

Jσ0ȧbζ
b

2ζ̄ ċσ0ċdζd

]
. (2.C.8)
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It remains to observe that the right-hand sides of formulae (2.C.6) and (2.C.8)

are the same. This completes the proof of Lemma 2.8.2.

2.D Conservation of mass

In this appendix we address the issue of conservation of total mass of our con-

tinuum. We feel the need to clarify this matter because in the main part of

this chapter (Sections 2.2–2.9) we took the density ρ to be a dynamical variable,

making it an arbitrary function of time t and spatial coordinates xα, α = 1, 2, 3.

A variable density ρ generates a material flow with velocity V . These are related

by the continuity equation

∂tρ+ div(ρV ) = 0. (2.D.1)

If we take the flow to be potential, V = gradφ, then equation (2.D.1) becomes

∂tρ+ div(ρ gradφ) = 0. (2.D.2)

Equation (2.D.2) is Poisson’s equation for the unknown velocity potential φ.

As equation (2.D.2) is written in the whole of R3, it has to be supplemented by

an appropriate condition at infinity. Assume, for definiteness, that ∂tρ → 0 and

ρ → const > 0 as ‖x‖ → ∞, and that convergence is sufficiently fast. Then the

natural condition at infinity is

φ→ 0 as ‖x‖ → ∞. (2.D.3)

The problem (2.D.2), (2.D.3) has a unique solution φ which admits the asymptotic

expansion

φ = c‖x‖−1 +O(‖x‖−2) as ‖x‖ → ∞. (2.D.4)
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This means that the total flow at infinity is −4πc. More specifically, if the

constant c in equation (2.D.4) is positive then we have material flowing from

infinity, and if it is negative then we have material flowing to infinity. In other

words, we implicitly assume in our model that infinity can act as a source or a

sink.

It remains to examine what happens when we seek plane wave solutions (2.8.1)

or, more generally, stationary solutions (2.9.3). Substituting (2.8.1) or (2.9.3)

into (2.6.3) we see that in this case the density ρ is static, hence the velocity

potential φ is identically zero and there is no flow to or from infinity.

2.E Matrix representation of the Lagrangian of

Rotational elasticity

In Chapter 2 we predominantly use tensor notation which comes from alternative

theories of gravity [39]. This requires care in distinguishing upper indices from

lower indices and tensor (holonomic) indices from frame (anholonomic) indices.

In this appendix we establish correspondence between our notation and the more

user-friendly matrix notation of [46, 57, 58, 59, 60, 61, 62, 63] the advantage of

which is that it does not require such a high degree of sophistication: all indices

become lower indices, there is no distinction between tensor and frame indices,

and only the order of indices is important.

Define the 3× 3 special orthogonal matrix function R which is expressed via our

coframe e as

Rjα := ejα (2.E.1)

with the index j enumerating the rows of the matrix R and the index α enumer-

ating the columns. This matrix function R is the matrix function R from [59],

we simply dropped the bar because in our setting we do not have to distinguish

macro- and microrotations (we have only microrotations).
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Formulae (2.3.2) and (2.E.1) imply that the vector of angular velocity ω can be

rewritten in terms of the matrix function R as

ω = ∗(RT Ṙ) (2.E.2)

where the dot indicates the time derivative and the application of the Hodge star

is justified because the matrix RT Ṙ is antisymmetric (we can identify it with a

rank two antisymmetric tensor).

Define the 3 × 3 matrix function CurlR in accordance with formula (2.1) from

[63]:

(CurlR)jγ := (curl ej)γ = (∗dej)γ = εαβγ∂αe
j
β (2.E.3)

with the index j enumerating the rows of the matrix CurlR and the index γ

enumerating the columns.

Let us now examine our rank two tensor
∗
T defined by formula (2.4.10). We can

view the tensor
∗
T as a matrix function with the first tensor index enumerating

the rows and the second index enumerating the columns. Formulae (2.4.10) and

(2.E.3) imply the matrix identity

∗
T = RT CurlR. (2.E.4)

Formulae (2.E.2), (2.E.4), (2.4.19) and (2.4.20) imply that the Lagrangian density

of rotational elasticity (2.5.2) can be rewritten as

LRe(R, ρ) =
(cax

3
[tr(RT CurlR)]2 + cvec‖ skew(RT CurlR)‖2

V

+ cten‖ dev sym(RT CurlR)‖2
V −

ckin

2
‖RT Ṙ‖2

V

)
ρ (2.E.5)

where devX = X − 1
3
(trX)I, symX = 1

2
(X + XT ), skewX = 1

2
(X −XT ) and

‖ · ‖V is the Frobenius norm (2.4.13).



Chapter 3

Microlocal analysis of first order

systems I

The purpose of this chapter is to study an elliptic self-adjoint m×m first order

pseudodifferential operator A acting on m-columns of half-densities over a con-

nected compact n-dimensional manifold M without boundary, where m,n ≥ 2.

We construct the propagator which provides a solution to the Cauchy problem for

the dynamic equation, evolving the solution to the Cauchy problem in time. This

object is related to the spectral function and counting function of the operator

A. We go on to present the two-term asymptotic expansions of the spectral and

counting functions, correcting errors in the literature.

The structure of this chapter is as follows. We give the absolute minimum mi-

crolocal analysis theory, providing definitions and references. We state the key

results of [22] and give an overview of the iterative process developed to construct

the propagator. The appearance of a U(1) connection in our construction is dis-

cussed, and we consider briefly the issue of spectral asymmetry (which, in part,

led us towards the work presented in Chapter 6). Finally, we provide a short

review discussing the literature and motivating this study.

67
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3.1 Key ideas in microlocal analysis

In this chapter we work, as stated, on an n-dimensional connected compact man-

ifold M without boundary. By T ∗M we denote the cotangent bundle of the

manifold M , and by

T ′M = T ∗M \ {ξ = 0} (3.1.1)

the cotangent bundle with the zero section removed. Local coordinates on our

manifold M are denoted by x = (x1, . . . , xn) and their dual coordinates (referred

to as momentum in the physics literature) ξ = (ξ1, . . . , ξn) on the fibre T ∗xM .

Then (x, ξ) are local coordinates on the cotangent bundle.

A highly detailed treatment of the differential geometry required in this thesis

(including (co)tangent bundles) can be found in [53], Chapter 9.

3.1.1 Hamiltonian trajectories

A Hamiltonian h(j)(x, ξ) is a nonvanishing smooth function on T ′M , positively

homogeneous of degree 1 in ξ, that is, for λ ∈ R s.t. λ > 0:

h(j)(x, λξ) = λh(j)(x, ξ). (3.1.2)

Although seemingly redundant at this stage, the use of the additional superscript

(j) will become clear in due course: the Hamiltonians h(j), j = 1, . . . ,m, will be

the eigenvalues of the principal symbol of our pseudodifferential operator A.

Given a Hamiltonian h(j)(x, ξ) and a point (y, η) ∈ T ′M we denote by

(
x(j)(t; y, η), ξ(j)(t; y, η)

)
, t ∈ R, (3.1.3)
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the integral curve of the Hamiltonian vector field generated by h(j)(x, ξ), i.e. the

parametric curve in T ′M providing the solution of the Hamiltonian system

ẋ(j)(t; y, η) = h
(j)
ξ (x(j)(t; y, η), ξ(j)(t; y, η)), (3.1.4)

ξ̇(j)(t; y, η) = −h(j)
x (x(j)(t; y, η), ξ(j)(t; y, η)), (3.1.5)

where the dot denotes differentiation in the parameter t ∈ R, with initial condi-

tion (
x(j)(0; y, η), ξ(j)(0; y, η)

)
= (y, η). (3.1.6)

The curve (x(j)(t; y, η), ξ(j)(t; y, η)) is referred to as the Hamiltonian trajectory

generated by the Hamiltonian h(j) starting at the point (y, η). The Hamiltonian

is preserved along Hamiltonian trajectories.

The abstract situation described above becomes relevant to our study when the

Hamiltonians are taken to be the eigenvalues of the principal symbol (see Sec-

tion 3.2). Roughly speaking, the Hamiltonian trajectories trace out the path

of waves governed by the hyperbolic equation (3.2.3) and, therefore, are a basic

building block in the construction of the propagator.

3.1.2 Oscillatory integrals

Basic to our construction is the notion of an oscillatory integral. Using this object

we will be able to define pseudodifferential operators. Oscillatory integrals are

also important for the construction of the propagator: in this case we must extend

the most basic definition of an oscillatory integral given in this section to a more

general time-dependent object.

Let Ω be a sufficiently small open set in M . (By “sufficiently small” we mean

that by introducing local coordinates x we can identify Ω with an open set in

Rn.)
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We denote by Sl the class of complex-valued infinitely smooth m × m matrix-

functions a(x, y, ξ) which admit the asymptotic expansion

a(x, y, ξ) ∼
∞∑
k=0

al−k(x, y, ξ), |ξ| → ∞ (3.1.7)

with each al−k(x, y, ξ) positively homogeneous in ξ of degree l − k.

We assume that for a ∈ Sl

supp a ⊂ K ×K × (Rn \ {ξ = 0}) (3.1.8)

where K ⊂ Ω is some compact set. This can be achieved by introducing a suitable

cutoff function, see Example 3.10 and Definition 3.11 from [71].

Note that Sp ⊂ Sq for q > p, and define S−∞ := ∩lSl. Then S−∞ consists of all

infinitely smooth matrix-functions decreasing with all derivatives faster than any

power of |ξ| as |ξ| → ∞.

The formal integral

Ia(x, y) =

∫
ei(x−y)αξαa(x, y, ξ)d̄ξ (3.1.9)

with a ∈ Sl is called an oscillatory integral of order l with (matrix) amplitude a.

While this integral may not converge in the usual sense, it can be treated as a

distribution in the variable x or the variable y. This means that one can operate

with (3.1.9) as though it were a convergent integral, that is, one can formally

integrate by parts, differentiate under the integral sign, etc.

Note that it is possible to replace the function (x − y)αξα appearing in (3.1.9)

with a more general phase function which must satisfy certain nondegeneracy

conditions. See [72], Section 2.1, for further details.
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3.1.3 Pseudodifferential operators

Consider the oscillatory integral (3.1.9) to be the distribution kernel of an oper-

ator A, which is then expressed explicitly as

Au(x) =

∫
ei(x−y)αξαa(x, y, ξ)u(y)dyd̄ξ (3.1.10)

where x, y are coordinates on Ω ⊂M and u(x) = (u1(x) . . . um(x))T is a column

of complex-valued half-densities, cf. Subsection 1.3. An operator A of the form

(3.1.10) is called anm×mmatrix pseudodifferential operator of order l on Ω acting

in the space of half-densities. Throughout Chapter 3 we will always consider

operators acting on m-columns of half-densities.

We can extend this definition to the whole manifold M as follows. We say the

operator A is an m×m matrix pseudodifferential operator of order l on M if its

distribution kernel (3.1.9) is infinitely smooth outside the diagonal

{(x, y) ∈M ×M : x = y} , (3.1.11)

and if, for any point on the diagonal, there exists a neighbourhood Σ ⊂M ×M

such that the distribution kernel of A can be written in the form (3.1.9) with

a ∈ Sl and Σ ⊂ Ω× Ω.

We can remove the dependence on the variable y (or x) in the amplitude of the

pseudodifferential operator (3.1.10). Indeed, if A is an m×m pseudodifferential

operator of order l with amplitude a ∈ Sl, then A differs by an integral operator

with a C∞ kernel from the pseudodifferential operator with amplitude A(x, ξ),

(x, ξ) ∈ T ′M , given by

A(x, ξ) ∼
∑
α

i−|α|

α!

(
∂αξ ∂

α
y a(x, y, ξ)

)∣∣
y=x

. (3.1.12)

This is achieved by expanding the amplitude a at the point y = x using Taylor’s

formula and then integrating by parts in the variable ξ. Equivalently, we can
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express (3.1.10) as follows:

Au(x) =

∫
ei(x−y)αξαA(x, ξ)u(y) dyd̄ξ (mod C∞) (3.1.13)

where A(x, ξ) is given by (3.1.12). The reduced amplitude A(x, ξ) is called the

(full) symbol of the operator A. The symbol A(x, ξ) determines the operator

A modulo an integral operator with infinitely smooth kernel. Conversely, the

operator A determines the symbol A(x, ξ) modulo an amplitude from S−∞.

As A(x, ξ) ∈ Sl it can be expanded asymptotically as the sum

A(x, ξ) ∼
∞∑
k=0

Al−k(x, ξ), |ξ| → +∞ (3.1.14)

where each term Al−k(x, ξ) is positively homogeneous in ξ of degree l − k. The

leading term Al(x, ξ) in the expansion (3.1.14) is called the principal symbol of

the pseudodifferential operator A.

The principal symbol Al(x, ξ) is invariant under changes of local coordinates.

However, the term Al−1(x, ξ) is not invariant. To combat this issue, we introduce

the subprincipal symbol of the operator A, defined as

Asub(x, ξ) = Al−1(x, ξ) +
i

2
(Al)xαξα (x, ξ). (3.1.15)

The subprincipal symbol (3.1.15) is positively homogeneous of degree l − 1 in ξ

and invariant under changes of local coordinates. The (full) symbol behaves in a

more complicated manner under changes of local coordinates.

As stated in the introduction of this chapter, we work with elliptic pseudodiffer-

ential operators. An m×m pseudodifferential operator A of order l is said to be

elliptic if detAl(x, ξ) 6= 0, ∀(x, ξ) ∈ T ′M .

Note that, as stated in Subsection 3.1.1, the nonzero Hamiltonians h(j), j =

1, . . . ,m, will be the eigenvalues of the principal symbol of our intended object of
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study, a first order elliptic pseudodifferential operator. The fact that our Hamilto-

nians are nonvanishing is encoded in the ellipticity condition, i.e. the nonvanishing

of the determinant of the principal symbol, see Section 3.2 for further details.

3.1.4 Time-dependent oscillatory integrals

The final component of established theory we need to proceed to the key results

from [22] pertains to so-called time-dependent oscillatory integrals. At a formal

level, one can view the extension from the local case, see Subsection 3.1.2, to the

time-dependent case as the introduction of time dependence into the definition

of the oscillatory integral (specifically into the phase function and amplitude).

At a more fundamental level, we relate this time dependence to an underlying

Hamiltonian system as described in Subsection 3.1.1.

The purpose of this construction is reasonably clear. One of the key applications

of the microlocal techniques presented here is to allow us to study the propagation

of the singularities of solutions of certain hyperbolic systems. We construct the

propagator for our system as a sum of global oscillatory integrals. The propagator

is the object that shows how a solution evolves in time, and the singularities of

our initial data under its action will propagate along Hamiltonian trajectories.

The limitations of the definition of oscillatory integrals in this regard are obvious:

oscillatory integrals of the form (3.1.9) are defined only on (sufficiently small)

open sets Ω ⊂ M . The highly local nature of this definition means we are,

in effect, unable to propagate information between, say, any two points of our

compact connected manifold M .

The definition of time-dependent oscillatory integrals is a delicate issue and must

be handled with care. Our construction of time-dependent oscillatory integrals

follows [72]. The remarkable feature of the technique proposed in [72] is that the

time-dependent oscillatory integrals developed are global, in the sense that they

are global in time, t ∈ R, and do not, in general, depend on the choice of local

coordinates on M .
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The superlative reference for scalar operators is [72]: we follow this treatment,

using notation adapted for systems. A matrix version of this construction was

previously considered in [64].

From this point until the end of this section we associate a seemingly redundant

index (j) with a number of different quantities. This will become essential in

Section 3.2 when the index j will enumerate the eigenvalues of the principal

symbol of our operator of study.

The (formal) integral

Iϕ(j),a(j)(t, x; y) =

∫
eiϕ

(j)(t,x;y,η)a(j)(t, x; y, η)ς(j)(t, x; y, η)dϕ(j)(t, x; y, η)d̄η,

(3.1.16)

is called a time-dependent oscillatory integral of order l, where the expressions

appearing in (3.1.16) have the following meaning.

• The function ϕ(j)(t, x; y, η) is a phase function, i.e. a function R × M ×

T ′M → C positively homogeneous in η of degree 1 and satisfying the con-

ditions

ϕ(j)(t, x; y, η) = (x− x(j)(t; y, η))α ξ(j)
α (t; y, η) +O(|x− x(j)(t; y, η)|2),

(3.1.17)

Imϕ(j)(t, x; y, η) ≥ 0, (3.1.18)

detϕ
(j)
xαηβ

(t, x(j)(t; y, η); y, η) 6= 0. (3.1.19)

Recall that according to Corollary 2.4.5 from [72] we are guaranteed to have

(3.1.19) if we choose a phase function

ϕ(j)(t, x; y, η) = (x− x(j)(t; y, η))α ξ(j)
α (t; y, η)

+
1

2
C

(j)
αβ (t; y, η) (x− x(j)(t; y, η))α (x− x(j)(t; y, η))β

+O(|x− x(j)(t; y, η)|3) (3.1.20)
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with complex-valued symmetric matrix-function C
(j)
αβ satisfying the strict

inequality ImC(j) > 0 (our original requirement (3.1.18) implies only the

non-strict inequality ImC(j) ≥ 0). Note that even though the matrix-

function C
(j)
αβ is not a tensor, the inequalities ImC(j) ≥ 0 and ImC(j) > 0

are invariant under transformations of local coordinates x; see Remark 2.4.9

in [72] for details.

• The quantity a(j)(t, x; y, η) is the amplitude of our oscillatory integral, i.e. a

complex-valued m×m matrix-function R×M×T ′M → Cm2
which admits

the asymptotic expansion

a(j)(t, x; y, η) ∼
∞∑
k=0

a
(j)
l−k(t, x; y, η) (3.1.21)

as |η| → +∞, where each a
(j)
l−k is positively homogeneous of degree l− k in

η.

Remark 3.1.1. A great deal of this chapter deals with the construction of the

propagator, a formal definition of which is given later in (3.2.1). We construct

the propagator as a sum of time-dependent oscillatory integrals, i.e. integrals of

the type we are defining in this section. An important property of these particular

time-dependent oscillatory integrals is that their amplitudes are independent of the

variable x, that is, they are actually time-dependent symbols u(j)(t; y, η) rather

than amplitudes (3.1.21).

• The quantity dϕ(j)(t, x; y, η) is defined in accordance with formula (2.2.4)

from [72] as

dϕ(j)(t, x; y, η) := (det2ϕ
(j)
xαηβ

)1/4 = | detϕ
(j)
xαηβ
|1/2 e i arg(det2ϕ

(j)
xαηβ

)/4
. (3.1.22)

Note that in view of (3.1.19) our dϕ(j) is well-defined and smooth for x close

to x(j)(t; y, η). It is known [72] that under coordinate transformations dϕ(j)

behaves as a half-density in x and as a half-density to the power −1 in y.
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In formula (3.1.22) we wrote (det2ϕ
(j)
xαηβ

)1/4 rather than (detϕ
(j)
xαηβ

)1/2 in

order to make this expression truly invariant under coordinate transforma-

tions. Recall that local coordinates x and y are chosen independently and

that η is a covector based at the point y. Consequently, detϕ
(j)
xαηβ

changes

sign under inversion of one of the local coordinates xα, α = 1, . . . , n, or yβ,

β = 1, . . . , n, whereas det2ϕ
(j)
xαηβ

retains sign under inversion.

The choice of (smooth) branch of arg(det2ϕ
(j)
xαηβ

) is assumed to be fixed.

Thus, for a given phase function ϕ(j) formula (3.1.22) defines the quantity

dϕ(j) uniquely up to a factor eikπ/2, k = 0, 1, 2, 3. Observe now that if

we set t = 0 and choose the same local coordinates for x and y, we get

ϕ
(j)
xαηβ

(0, y; y, η) = I. This implies that we can fully specify the choice of

branch of arg(det2ϕ
(j)
xαηβ

) by requiring that dϕ(j)(0, y; y, η) = 1.

The introduction of the factor dϕ(j) in (3.1.16) is important in the con-

struction of the propagator, discussed in Remark 3.1.1. The purpose of the

factor is twofold.

(a) It ensures that the symbol of the propagator, u(j), is a function on

R× T ′M in the full differential geometric sense of the word, i.e. that

it is invariant under transformations of local coordinates x and y.

(b) It ensures that the principal symbol u
(j)
0 does not depend on the choice

of phase function ϕ(j). See Remark 2.2.8 in [72] for more details.

• The quantity ς(j)(t, x; y, η) is a smooth cut-off function R×M ×T ′M → R

satisfying the following conditions.

(a) ς(j)(t, x; y, η) = 0 on the set {(t, x; y, η) : |h(j)(y, η)| ≤ 1/2}.

(b) ς(j)(t, x; y, η) = 1 on the intersection of a small conic neighbourhood

of the set

{(t, x; y, η) : x = x(j)(t; y, η)} (3.1.23)

with the set {(t, x; y, η) : |h(j)(y, η)| ≥ 1}.

(c) ς(j)(t, x; y, λη) = ς(j)(t, x; y, η) for |h(j)(y, η)| ≥ 1, λ ≥ 1.
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• It is known (see Section 2.3 in [72] for details) that Hamiltonian trajecto-

ries generated by a Hamiltonian h(j)(x, ξ) positively homogeneous in ξ of

degree 1 satisfy the identity

(x(j)
η )αβξ(j)

α = 0, (3.1.24)

where (x
(j)
η )αβ := ∂(x(j))α/∂ηβ. Formulae (3.1.17) and (3.1.24) imply

ϕ(j)
η (t, x(j)(t; y, η); y, η) = 0. (3.1.25)

This allows us to apply the stationary phase method in the neighbourhood

of the set (3.1.23) and disregard what happens away from it.

The definition of a time-dependent oscillatory integral (3.1.16) is the last piece

of established theory needed to proceed with the statement of the key results

from [22].

3.2 Main results

Consider a first order classical pseudodifferential operator A acting on columns

v =
(
v1 . . . vm

)T
of complex-valued half-densities over a connected compact

n-dimensional manifold M without boundary. As stated above we assume that

m,n ≥ 2 .

We assume the symbol of the operator A to be infinitely smooth. We also assume

that the operator A is formally self-adjoint (symmetric):

∫
M

w∗(Av) dx =

∫
M

(Aw)∗v dx

for all infinitely smooth v, w : M → Cm. Here and further on the superscript ∗

in matrices, rows and columns indicates Hermitian conjugation in Cm.
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Let A1(x, ξ) be the principal symbol of the operator A and h(j)(x, ξ) its (Hamil-

tonian) eigenvalues. We assume these eigenvalues to be nonzero (this is a version

of the ellipticity condition) but do not make any assumptions on their sign. We

also assume that the eigenvalues h(j)(x, ξ) are simple for all (x, ξ) ∈ T ′M . The

techniques developed in [22] do not work in the case when eigenvalues of the prin-

cipal symbol have variable multiplicity, though they could probably be adapted

to the case of constant multiplicity different from multiplicity 1.

We enumerate the eigenvalues of the principal symbol h(j)(x, ξ) in increasing

order, using a positive index j = 1, . . . ,m+ for positive h(j)(x, ξ) and a negative

index j = −1, . . . ,−m− for negative h(j)(x, ξ). Here m+ is the number of positive

eigenvalues of the principal symbol and m− is the number of negative ones. Of

course, m+ +m− = m.

Under the above assumptions A is a self-adjoint operator, in the full functional

analytic sense, in the Hilbert space L2(M ;Cm) (Hilbert space of square integrable

complex-valued column “functions”) with domain H1(M ;Cm) (Sobolev space of

complex-valued column “functions” which are square integrable together with

their first partial derivatives) and the spectrum of A is discrete.

Let λk and vk =
(
vk1(x) . . . vkm(x)

)T
be the eigenvalues and normalised eigen-

functions of the operator A. The eigenvalues λk are enumerated in increasing

order with account of multiplicity, using a positive index k = 1, 2, . . . for positive

λk and a nonpositive index k = 0,−1,−2, . . . for nonpositive λk. If the operator

A is bounded from below (i.e. if m− = 0) then the index k runs from some integer

value to +∞; if the operator A is bounded from above (i.e. if m+ = 0) then the

index k runs from −∞ to some integer value; and if the operator A is unbounded

from above and from below (i.e. if m+ 6= 0 and m− 6= 0) then the index k runs

from −∞ to +∞.

We will be studying the following three objects.
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Object 1. Our first object of study is the propagator, which is the one-parameter

family of operators defined as

U(t) := e−itA =
∑
k

e−itλkvk(x)

∫
M

[vk(y)]∗( · ) dy , (3.2.1)

t ∈ R. The propagator provides a solution to the Cauchy problem

w|t=0 = v (3.2.2)

for the dynamic equation

Dtw + Aw = 0 , (3.2.3)

where Dt := −i∂/∂t. Namely, it is easy to see that if the column of half-densities

v = v(x) is infinitely smooth, then, setting w := U(t) v, we get a time-dependent

column of half-densities w(t, x) which is also infinitely smooth and which satisfies

the equation (3.2.3) and the initial condition (3.2.2). The use of the letter “U”

for the propagator is motivated by the fact that for each t the operator U(t) is

unitary.

Object 2. Our second object of study is the spectral function, which is the real

density defined as

e(λ, x, x) :=
∑

0<λk<λ

‖vk(x)‖2, (3.2.4)

where ‖vk(x)‖2 := [vk(x)]∗vk(x) is the square of the Euclidean norm of the eigen-

function vk evaluated at the point x ∈M and λ is a positive parameter (spectral

parameter).

Object 3. Our third and final object of study is the counting function

N(λ) :=
∑

0<λk<λ

1 =

∫
M

e(λ, x, x) dx . (3.2.5)

In other words, N(λ) is the number of eigenvalues λk between zero and λ.

It is natural to ask the question: why, in defining the spectral function (3.2.4)
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and the counting function (3.2.5), did we choose to perform summation over

all positive eigenvalues up to a given positive λ rather than over all negative

eigenvalues up to a given negative λ? There is no particular reason. One case

reduces to the other by the change of operator A 7→ −A. This issue will be

revisited in Section 3.5.

Further on we assume that m+ > 0, i.e. that the operator A is unbounded from

above.

Our objectives are as follows.

Objective 1. We aim to construct the propagator (3.2.1) explicitly in terms of

oscillatory integrals, modulo an integral operator with an infinitely smooth, in

the variables t, x and y, integral kernel.

Objectives 2 and 3. We aim to derive, under appropriate assumptions on

Hamiltonian trajectories, two-term asymptotics for the spectral function (3.2.4)

and the counting function (3.2.5), i.e. formulae of the type

e(λ, x, x) = a(x)λn + b(x)λn−1 + o(λn−1), (3.2.6)

N(λ) = aλn + bλn−1 + o(λn−1) (3.2.7)

as λ→ +∞. Obviously, here we expect the real constants a, b and real densities

a(x), b(x) to be related in accordance with

a =

∫
M

a(x) dx, (3.2.8)

b =

∫
M

b(x) dx. (3.2.9)

It is well known that the above three objectives are closely related: if one achieves

Objective 1, then Objectives 2 and 3 follow via Fourier Tauberian theorems [27,

72, 45, 70].

We are now in a position to state the main results from [22].
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Result 1. We construct the propagator as a sum of m oscillatory integrals

U(t)
modC∞

=
∑
j

U (j)(t) , (3.2.10)

where the phase function of each oscillatory integral U (j)(t) is associated with

the corresponding Hamiltonian h(j)(x, ξ). The symbol of the oscillatory inte-

gral U (j)(t) is a complex-valued m × m matrix-function u(j)(t; y, η), where y =

(y1, . . . , yn) is the position of the source of the wave (i.e. this is the same y that ap-

pears in formula (3.2.1)) and η = (η1, . . . , ηn) is the corresponding dual variable.

When |η| → +∞, the symbol admits an asymptotic expansion

u(j)(t; y, η) = u
(j)
0 (t; y, η) + u

(j)
−1(t; y, η) + . . . (3.2.11)

into components positively homogeneous in η, with the subscript indicating de-

gree of homogeneity.

The formula for the principal symbol of the oscillatory integral U (j)(t) is known

[69, 64] and reads as follows:

u
(j)
0 (t; y, η) = [v(j)(x(j)(t; y, η), ξ(j)(t; y, η))] [v(j)(y, η)]∗

× exp

(
−i
∫ t

0

q(j)(x(j)(τ ; y, η), ξ(j)(τ ; y, η)) dτ

)
, (3.2.12)

where v(j)(z, ζ) is the normalised eigenvector of the principal symbol A1(z, ζ)

corresponding to the eigenvalue (Hamiltonian) h(j)(z, ζ), (x(j)(t; y, η), ξ(j)(t; y, η))

is the Hamiltonian trajectory originating from the point (y, η), and q(j) : T ′M →

R is the function

q(j) := [v(j)]∗Asubv
(j) − i

2
{[v(j)]∗, A1 − h(j), v(j)} − i[v(j)]∗{v(j), h(j)}. (3.2.13)

Curly brackets in formula (3.2.13) denote the Poisson bracket on matrix-functions

{P,R} := PzαRζα − PζαRzα (3.2.14)
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and its further generalisation

{P,Q,R} := PzαQRζα − PζαQRzα . (3.2.15)

Formula (3.2.12) is invariant under changes of local coordinates on the manifold

M , i.e. elements of the m × m matrix-function u
(j)
0 (t; y, η) are scalars on R ×

T ′M . Moreover, formula (3.2.12) is invariant under the transformation of the

eigenvector of the principal symbol

v(j) 7→ eiφ
(j)

v(j), (3.2.16)

where

φ(j) : T ′M → R (3.2.17)

is an arbitrary smooth function. When some quantity is defined up to the action

of a certain transformation, theoretical physicists refer to such a transformation

as a gauge transformation. We follow this tradition. Note that our particular

gauge transformation (3.2.16), (3.2.17) is quite common in quantum mechanics:

when φ(j) is a function of the position variable x only (i.e. when φ(j) : M → R)

this gauge transformation is associated with electromagnetism.

Both Yu. Safarov [69] and W.J. Nicoll [64] assumed that the operator A is

semi-bounded from below but this assumption is not essential and their formula

(3.2.12) remains true in the more general case that we are dealing with.

However, knowing the principal symbol (3.2.12) of the oscillatory integral U (j)(t)

is not enough if one wants to derive two-term asymptotics (3.2.6) and (3.2.7).

One needs information about u
(j)
−1(t; y, η), the component of the symbol of the

oscillatory integral U (j)(t) which is positively homogeneous in η of degree -1, see

formula (3.2.11), but here the problem is that u
(j)
−1(t; y, η) is not a true invariant

in the sense that it depends on the choice of phase function in the oscillatory

integral. We overcome this difficulty by observing that U (j)(0) is a pseudodiffer-

ential operator, hence, it has a well-defined subprincipal symbol [U (j)(0)]sub. We
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prove that

tr[U (j)(0)]sub = −i{[v(j)]∗, v(j)} (3.2.18)

and subsequently show that information contained in formulae (3.2.12) and (3.2.18)

is sufficient for the derivation of two-term asymptotics (3.2.6) and (3.2.7).

Note that the RHS of formula (3.2.18) is invariant under the gauge transformation

(3.2.16), (3.2.17).

Formula (3.2.18) plays a central role in [22].

Let us elaborate briefly on the geometric meaning of the RHS of (3.2.18) (a more

detailed exposition is presented in Section 3.4). The eigenvector of the principal

symbol is defined up to a gauge transformation (3.2.16), (3.2.17) so it is natural

to introduce a U(1) connection on T ′M as follows: when parallel transporting

an eigenvector of the principal symbol along a curve in T ′M we require that

the derivative of the eigenvector along the curve be orthogonal to the eigenvector

itself. This is equivalent to the introduction of an (intrinsic) electromagnetic field

on T ′M , with the 2n-component real quantity

i ( [v(j)]∗v
(j)
xα , [v(j)]∗v

(j)
ξγ

) (3.2.19)

playing the role of the electromagnetic covector potential. Our quantity (3.2.19)

is a 1-form on T ′M , rather than on M itself as is the case in “traditional” elec-

tromagnetism. The above U(1) connection generates curvature which is a 2-form

on T ′M , an analogue of the electromagnetic tensor. Out of this curvature 2-form

one can construct, by contraction of indices, a real scalar. This scalar curvature

is the expression appearing in the RHS of formula (3.2.18).

Observe now that
∑

j U
(j)(0) is the identity operator on half-densities. The sub-

principal symbol of the identity operator is zero, so formula (3.2.18) implies

∑
j

{[v(j)]∗, v(j)} = 0. (3.2.20)
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One can check the identity (3.2.20) directly, without constructing the oscillatory

integrals U (j)(t): it follows from the fact that the v(j)(x, ξ) form an orthonormal

basis, see end of Section 3.4 for details. We mentioned the identity (3.2.20) in

order to highlight, once again, the fact that the curvature effects we have identified

are specific to systems and do not have an analogue in the scalar case.

Results 2 and 3. We prove, under appropriate assumptions on Hamiltonian

trajectories (see Theorems 8.3 and 8.4 from [22], asymptotic formulae (3.2.6) and

(3.2.7) with

a(x) =
m+∑
j=1

∫
h(j)(x,ξ)<1

d̄ξ , (3.2.21)

b(x) = −n
m+∑
j=1

∫
h(j)(x,ξ)<1

(
[v(j)]∗Asubv

(j)

− i

2
{[v(j)]∗, A1 − h(j), v(j)}+

i

n− 1
h(j){[v(j)]∗, v(j)}

)
(x, ξ) d̄ξ , (3.2.22)

and a and b expressed via the above densities (3.2.21) and (3.2.22) as (3.2.8)

and (3.2.9). In (3.2.21) and (3.2.22) the Poisson bracket on matrix-functions

{ · , · } and its further generalisation { · , · , · } are defined by formulae (3.2.14)

and (3.2.15) respectively.

To our knowledge, formula (3.2.22) is a new result. Note that in [69] this formula

(more precisely, its integrated over M version (3.2.9)) was written incorrectly,

without the curvature terms

− ni

n− 1

∫
h(j){[v(j)]∗, v(j)}d̄ξ. (3.2.23)

See also Section 3.6 where we give a more detailed bibliographic review.

It is easy to see that the right-hand sides of (3.2.21) and (3.2.22) behave as

densities under changes of local coordinates on the manifold M and that these

expressions are invariant under gauge transformations (3.2.16), (3.2.17) of the

eigenvectors of the principal symbol. Moreover, the right-hand sides of (3.2.21)



Microlocal analysis of first order systems I 85

and (3.2.22) are unitarily invariant, i.e. invariant under the transformation of the

operator

A 7→ RAR∗, (3.2.24)

where

R : M → U(m) (3.2.25)

is an arbitrary smooth unitary matrix-function. The fact that the RHS of (3.2.22)

is unitarily invariant is non-trivial: the appropriate calculations are presented in

Section 9 of [22]. The observation that without the curvature terms (3.2.23) (as

in [69]) the RHS of (3.2.22) is not unitarily invariant was a major motivating

factor in the writing of [22].

Formula (3.2.22) is the main result of this chapter. Note that even though the

two-term asymptotic expansion (3.2.6) holds only under certain assumptions on

Hamiltonian trajectories (loops), the second asymptotic coefficient (3.2.22) is,

in itself, well-defined irrespective of how many loops we have. If one wishes to

reformulate the asymptotic expansion (3.2.6) in such a way that it remains valid

without assumptions on the number of loops, this can easily be achieved, say, by

taking a convolution with a function from Schwartz space S(R): see Theorem 7.1

from [22].

3.3 Overview of the algorithm for the

construction of the propagator

We construct the propagator as a sum of m oscillatory integrals (3.2.10) where

each integral is of the form

U (j)(t) =

∫
eiϕ

(j)(t,x;y,η) u(j)(t; y, η) ς(j)(t, x; y, η) dϕ(j)(t, x; y, η) ( · ) dy d̄η , (3.3.1)

defined in accordance with Subsection 3.1.4. Our task now is to construct the

symbols u
(j)
0 (t; y, η), j = 1, . . . ,m, so that our oscillatory integrals U (j)(t), j =
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1, . . . ,m, satisfy the dynamic equations

(Dt + A(x,Dx))U
(j)(t)

modC∞
= 0 (3.3.2)

and initial condition ∑
j

U (j)(0)
modC∞

= I , (3.3.3)

where I is the identity operator on half-densities; compare with formulae (3.2.3),

(3.2.2) and (3.2.10). Note that the pseudodifferential operator A in formula

(3.3.2) acts on the oscillatory integral U(t) in the variable x; say, if A is a differ-

ential operator this means that in order to evaluate AU (j)(t) one has to perform

the appropriate differentiations of the oscillatory integral (3.3.1) in the variable

x. Following the conventions of Section 3.3 of [72], we emphasise the fact that the

pseudodifferential operator A in formula (3.3.2) acts on the oscillatory integral

U(t) in the variable x by writing this pseudodifferential operator as A(x,Dx),

where Dxα := −i∂/∂xα.

We examine first the dynamic equation (3.3.2). We have

(Dt + A(x,Dx))U
(j)(t) = F (j)(t) ,

where F (j)(t) is the oscillatory integral

F (j)(t) =

∫
eiϕ

(j)(t,x;y,η) f (j)(t, x; y, η) ς(j)(t, x; y, η) dϕ(j)(t, x; y, η) ( · ) dy d̄η

whose matrix-valued amplitude f (j) is given by the formula

f (j) = Dtu
(j) +

(
ϕ

(j)
t + (dϕ(j))−1(Dtdϕ(j)) + s(j)

)
u(j), (3.3.4)

where the matrix-function s(j)(t, x; y, η) is defined as

s(j) = e−iϕ
(j)

(dϕ(j))−1A(x,Dx) (eiϕ
(j)

dϕ(j)) . (3.3.5)
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When |η| → +∞ the matrix-valued amplitude f (j)(t, x; y, η) defined by formula

(3.3.4) admits an asymptotic expansion

f (j)(t, x; y, η) = f
(j)
1 (t, x; y, η) + f

(j)
0 (t, x; y, η) + f

(j)
−1 (t, x; y, η) + . . . (3.3.6)

into components positively homogeneous in η, with the subscript indicating de-

gree of homogeneity.

Note that in (3.3.1) there are no terms containing derivatives of ς(j)(t, x; y, η):

as ς(j)(t, x; y, η) is infinitely smooth in all independent variables, its’ derivatives

give an infinitely smooth contribution which is dealt with by the “mod C∞” in

(3.3.2).

Note the following differences between formulae (3.2.11) and (3.3.6).

• The leading term in (3.3.6) has degree of homogeneity 1, rather than 0 as

in (3.2.11). In fact, the leading term in (3.3.6) can be easily written out

explicitly

f
(j)
1 (t, x; y, η) = (ϕ

(j)
t (t, x; y, η) + A1(x, ϕ(j)

x (t, x; y, η)))u
(j)
0 (t; y, η) , (3.3.7)

where A1(x, ξ) is the (matrix-valued) principal symbol of the pseudodiffer-

ential operator A.

• Unlike the symbol u(j)(t; y, η), the amplitude f (j)(t, x; y, η) depends on x.

We now need to exclude the dependence on x from the amplitude f (j)(t, x; y, η).

This can be done by means of the algorithm described in Subsection 2.7.3 of [72].

We outline this algorithm below.

Working in local coordinates, define the matrix-function ϕ
(j)
xη in accordance with

(ϕ
(j)
xη )α

β := ϕ
(j)
xαηβ

and then define its inverse (ϕ
(j)
xη )−1 from the identity

(ϕ(j)
xη )α

β[(ϕ(j)
xη )−1]β

γ := δα
γ.
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Define the “scalar” first order linear differential operators

L(j)
α := [(ϕ(j)

xη )−1]α
β (∂/∂xβ), α = 1, . . . , n. (3.3.8)

Note that the coefficients of these differential operators are functions of the posi-

tion variable x and the dual variable ξ (as well as t and y). It is known, see part

2 of Appendix E in [72], that the operators (3.3.8) commute: L
(j)
α L

(j)
β = L

(j)
β L

(j)
α ,

α, β = 1, . . . , n.

Denote L
(j)
α := (L

(j)
1 )α1 · · · (L(j)

n )αn , (−ϕ(j)
η )α := (−ϕ(j)

η1 )α1 · · · (−ϕ(j)
ηn )αn , and,

given an r ∈ N, define the “scalar” linear differential operator

P
(j)
−1,r := i(dϕ(j))−1 ∂

∂ηβ
dϕ(j)

1 +
∑

1≤|α|≤2r−1

(−ϕ(j)
η )α

α! (|α|+ 1)
L(j)
α

L
(j)
β , (3.3.9)

where |α| := α1 + . . . + αn, α! = α1! · · ·αn!, and the repeated index β indicates

summation over β = 1, . . . , n.

Recall Definition 2.7.8 from [72]: the linear operator L is said to be positively

homogeneous in η of degree p ∈ R if for any q ∈ R and any function f positively

homogeneous in η of degree q the function Lf is positively homogeneous in η of

degree p+ q. It is easy to see that the operator (3.3.9) is positively homogeneous

in η of degree −1 and the first subscript in P
(j)
−1,r emphasises this fact.

Let S
(j)
0 be the (linear) operator of restriction to x = x(j)(t; y, η),

S
(j)
0 := ( · )|x=x(j)(t;y,η) , (3.3.10)

and let

S
(j)
−r := S

(j)
0 (P

(j)
−1,r)

r (3.3.11)

for r = 1, 2, . . .. Observe that our linear operators S
(j)
−r, r = 0, 1, 2, . . ., are

positively homogeneous in η of degree −r. This observation allows us to define
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the linear operator

S(j) :=
+∞∑
r=0

S
(j)
−r , (3.3.12)

where the series is understood as an asymptotic series in inverse powers of η.

According to Subsection 2.7.3 of [72], the dynamic equation (3.3.2) can now be

rewritten in the equivalent form

S(j)f (j) = 0 , (3.3.13)

where the equality is understood in the asymptotic sense, as an asymptotic expan-

sion in inverse powers of η. Recall that the matrix-valued amplitude f (j)(t, x; y, η)

appearing in (3.3.13) is defined by formulae (3.3.4) and (3.3.5).

Substituting (3.3.12) and (3.3.6) into (3.3.13) we obtain a hierarchy of equations

S
(j)
0 f

(j)
1 = 0, (3.3.14)

S
(j)
−1f

(j)
1 + S

(j)
0 f

(j)
0 = 0, (3.3.15)

S
(j)
−2f

(j)
1 + S

(j)
−1f

(j)
0 + S

(j)
0 f

(j)
−1 = 0,

. . .

positively homogeneous in η of degree 1, 0, −1, . . .. These are the transport equa-

tions for the determination of the unknown homogeneous components u
(j)
0 (t; y, η),

u
(j)
−1(t; y, η), u

(j)
−2(t; y, η), . . ., of the symbol of the oscillatory integral (3.3.1).

Let us now examine the initial condition (3.3.3). Each operator U (j)(0) is a

pseudodifferential operator, only written in a slightly nonstandard form. The

issues here are as follows.

• We use the invariantly defined phase function ϕ(j)(0, x; y, η) = (x−y)α ηα+

O(|x−y|2) rather than the linear phase function (x−y)α ηα written in local

coordinates.
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• When defining the (full) symbol of the operator U (j)(t) we excluded the

variable x from the amplitude rather than the variable y. Note that when

dealing with pseudodifferential operators it is customary to exclude the

variable y from the amplitude; exclusion of the variable x gives the dual

symbol of a pseudodifferential operator, see Subsection 2.1.3 in [72]. Thus,

at t = 0, our symbol u(j)(0; y, η) resembles the dual symbol of a pseudodif-

ferential operator rather than the “normal” symbol.

• We have the extra factor dϕ(j)(0, x; y, η) in our representation of the operator

U (j)(0) as an oscillatory integral.

The (full) dual symbol of the pseudodifferential operator U (j)(0) can be calculated

in local coordinates in accordance with the following formula which addresses the

issues highlighted above:

∑
α

(−1)|α|

α!

(
Dα
x ∂

α
η

[
u(j)(0; y, η) eiω

(j)(x;y,η) dϕ(j)(0, x; y, η)
])∣∣

x=y
, (3.3.16)

where ω(j)(x; y, η) = ϕ(j)(0, x; y, η)− (x− y)β ηβ . Formula (3.3.16) is a version of

the formula from Subsection 2.1.3 of [72], only with the extra factor (−1)|α|. The

latter is needed because we are writing down the dual symbol of the pseudodif-

ferential operator U (j)(0) (no dependence on x) rather than its “normal” symbol

(no dependence on y).

The initial condition (3.3.3) can now be rewritten in explicit form as

∑
j

∑
α

(−1)|α|

α!

(
Dα
x ∂

α
η

[
u(j)(0; y, η) eiω

(j)(x;y,η) dϕ(j)(0, x; y, η)
])∣∣

x=y
= I ,

(3.3.17)

where I is the m × m identity matrix. Condition (3.3.17) can be decomposed

into components positively homogeneous in η of degree 0,−1,−2, . . ., giving us

a hierarchy of initial conditions. The leading (of degree of homogeneity 0) initial

condition reads ∑
j

u
(j)
0 (0; y, η) = I , (3.3.18)
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whereas lower order initial conditions are more complicated and depend on the

choice of our phase functions ϕ(j).

Sections 3 and 4 of [22] go on to apply the algorithm presented above. In particu-

lar, (3.2.12) and (3.2.18) are proved. This provides us with sufficient information

concerning the propagator U (j)(t) to apply Fourier Tauberian theorems which, in

turn, allow us to determine the asymptotics of the spectral and counting functions

(3.2.6) and (3.2.7). The appropriate calculations, under suitable assumptions on

Hamiltonian trajectories, are given in Sections 6-8 of [22]. In particular, Theorems

8.3 and 8.4 from [22] provide the required conditions on Hamiltonian trajectories.

3.4 U(1) connection

In the Sections 2-4 of [22] we presented technical details of the construction of

the propagator; an overview of this scheme is presented in Section 3.3. We saw

that the eigenvectors of the principal symbol, v(j)(x, ξ), play a major role in this

construction. As pointed out in Section 3.2, each of these eigenvectors is defined

up to a U(1) gauge transformation (3.2.16), (3.2.17). In the end, the full symbols

(3.2.11) of our oscillatory integrals U (j)(t) do not depend on the choice of gauge

for the eigenvectors v(j)(x, ξ). However, the effect of the gauge transformation

(3.2.16), (3.2.17) is not as trivial as it may appear at first sight. We will demon-

strate in this section that the gauge transformation (3.2.16), (3.2.17) shows up, in

the form of invariantly defined curvature, in the lower order terms u
(j)
−1(t; y, η) of

the symbols of our oscillatory integrals U (j)(t). More precisely, we will show that

the RHS of formula (3.2.18) is the scalar curvature of a connection associated

with the gauge transformation (3.2.16), (3.2.17). Further on in this section, until

the very last paragraph, the index j enumerating eigenvalues and eigenvectors of

the principal symbol is assumed to be fixed.

Consider a smooth curve Γ ⊂ T ′M connecting points (y, η) and (x, ξ). We write

this curve in parametric form as (z(t), ζ(t)), t ∈ [0, 1], so that (z(0), ζ(0)) = (y, η)
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and (z(1), ζ(1)) = (x, ξ). Put

w(t) := eiφ(t)v(j)(z(t), ζ(t)) , (3.4.1)

where φ : [0, 1]→ R is an unknown function which is to be determined from the

condition

iw∗ẇ = 0 (3.4.2)

with the dot indicating the derivative with respect to the parameter t. Substi-

tuting (3.4.1) into (3.4.2) we get an ordinary differential equation for φ which is

easily solved, giving

φ(1) = φ(0) +

∫ 1

0

(żα(t)Pα(z(t), ζ(t)) + ζ̇γ(t)Q
γ(z(t), ζ(t))) dt

= φ(0) +

∫
Γ

(Pαdz
α +Qγdζγ) , (3.4.3)

where

Pα := i[v(j)]∗v
(j)
zα , Qγ := i[v(j)]∗v

(j)
ζγ
. (3.4.4)

Note that the 2n-component real quantity (Pα, Q
γ) is a covector field (1-form)

on T ′M . This quantity already appeared in Section 3.2 as formula (3.2.19).

Put f(y, η) := eiφ(0), f(x, ξ) := eiφ(1) and rewrite formula (3.4.3) as

f(x, ξ) = f(y, η) ei
∫
Γ(Pαdzα+Qγdζγ). (3.4.5)

Let us identify the group U(1) with the unit circle in the complex plane, i.e.

with f ∈ C, |f | = 1. We see that formulae (3.4.5) and (3.4.4) give us a rule for

the parallel transport of elements of the group U(1) along curves in T ′M . This

is the natural U(1) connection generated by the normalised field of columns of

complex-valued scalars

v(j)(z, ζ) =
(
v

(j)
1 (z, ζ) . . . v

(j)
m (z, ζ)

)T
. (3.4.6)

Recall that the Γ appearing in formula (3.4.5) is a curve connecting points (y, η)
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and (x, ξ), whereas the v(j)(z, ζ) appearing in formulae (3.4.4) and (3.4.6) enters

our construction as an eigenvector of the principal symbol of our m×m matrix

pseudodifferential operator A.

In practice, dealing with a connection is not as convenient as dealing with the

covariant derivative ∇. The covariant derivative corresponding to the connection

(3.4.5) is determined as follows. Let us view the (x, ξ) appearing in formula

(3.4.5) as a variable which takes values close to (y, η), and suppose that the curve

Γ is a short straight (in local coordinates) line segment connecting the point (y, η)

with the point (x, ξ). We want the covariant derivative of our function f(x, ξ),

evaluated at (y, η), to be zero. Examination of formula (3.4.5) shows that the

unique covariant derivative satisfying this condition is

∇α := ∂/∂xα − iPα(x, ξ), ∇γ := ∂/∂ξγ − iQγ(x, ξ). (3.4.7)

We define the curvature of our U(1) connection as

R := −i

∇α∇β −∇β∇α ∇α∇δ −∇δ∇α

∇γ∇β −∇β∇γ ∇γ∇δ −∇δ∇γ

 . (3.4.8)

It may seem that the entries of the (2n) × (2n) matrix (3.4.8) are differential

operators. They are, in fact, operators of multiplication by “scalar functions”.

Namely, the more explicit form of (3.4.8) is

R =

 ∂Pα
∂xβ
− ∂Pβ

∂xα
∂Pα
∂ξδ
− ∂Qδ

∂xα

∂Qγ

∂xβ
− ∂Pβ

∂ξγ

∂Qγ

∂ξδ
− ∂Qδ

∂ξγ

 . (3.4.9)

The (2n)× (2n) - component real quantity (3.4.9) is a rank 2 covariant antisym-

metric tensor (2-form) on T ′M . It is an analogue of the electromagnetic tensor.
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Substituting (3.4.4) into (3.4.9) we get an expression for curvature in terms of

the eigenvector of the principal symbol

R = i

[v
(j)

xβ
]∗v

(j)
xα − [v

(j)
xα ]∗v

(j)

xβ
[v

(j)
ξδ

]∗v
(j)
xα − [v

(j)
xα ]∗v

(j)
ξδ

[v
(j)

xβ
]∗v

(j)
ξγ
− [v

(j)
ξγ

]∗v
(j)

xβ
[v

(j)
ξδ

]∗v
(j)
ξγ
− [v

(j)
ξγ

]∗v
(j)
ξδ

 . (3.4.10)

Examination of formula (3.4.10) shows that, as expected, curvature is invariant

under the gauge transformation (3.2.16), (3.2.17).

It is natural to take the trace of the upper right block in (3.4.8) which, in the

notation (3.2.14), gives us

− i(∇α∇α −∇α∇α) = −i{[v(j)]∗, v(j)}. (3.4.11)

Thus, we have shown that the RHS of formula (3.2.18) is the scalar curvature of

our U(1) connection.

We end this section by proving, as promised in Section 3.2, formula (3.2.20)

without referring to microlocal analysis. In the following arguments we use our

standard notation for the orthogonal projections onto the eigenspaces of the prin-

cipal symbol, i.e. we write P (k) := v(k)[v(k)]∗. We have tr{P (j), P (j)} = 0 and∑
l P

(l) = I which implies

0 =
∑
l,j

tr(P (l){P (j), P (j)})

=
∑
j

tr(P (j){P (j), P (j)}) +
∑
l,j: l 6=j

tr(P (l){P (j), P (j)}). (3.4.12)

But, according to formula (4.15) from [22], for l 6= j we have

tr(P (l){P (j), P (j)}) = − tr(P (j){P (l), P (l)}),

so the expression in the last sum in the RHS of (3.4.12) is antisymmetric in the

indices l, j, which implies that this sum is zero. Hence, formula (3.4.12) can be
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rewritten as ∑
j

tr(P (j){P (j), P (j)}) = 0.

It remains only to note that, according to formula (4.17) from [22],

tr(P (j){P (j), P (j)}) = {[v(j)]∗, v(j)}.

3.5 Spectral asymmetry

In this section we deal with the special case when the operator A is differential

(as opposed to pseudodifferential). Our aim is to examine what happens when we

change the sign of the operator. In other words, we compare the original operator

A with the operator Ã := −A. In theoretical physics the transformation A 7→ −A

would be interpreted as time reversal, see equation (3.2.3).

It is easy to see that for a differential operator the number m (number of equations

in our system) has to be even and that the principal symbol has to have the same

number of positive and negative eigenvalues. In the notation of Section 3.2 this

fact can be expressed as m = 2m+ = 2m−.

It is also easy to see that the principal symbols of the two operators, A and Ã,

and the eigenvalues and eigenvectors of the principal symbols are related as

A1(x, ξ) = Ã1(x,−ξ), (3.5.1)

h(j)(x, ξ) = h̃(j)(x,−ξ), (3.5.2)

v(j)(x, ξ) = ṽ(j)(x,−ξ), (3.5.3)

whereas the subprincipal symbols are related as

Asub(x) = −Ãsub(x). (3.5.4)
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Formulae (3.2.21), (3.2.22), (3.2.15), (3.2.14) and (3.5.1)–(3.5.4) imply

a(x) = ã(x), b(x) = −b̃(x). (3.5.5)

Substituting (3.5.5) into (3.2.8) and (3.2.9) we get

a = ã, b = −b̃. (3.5.6)

Formulae (3.2.7) and (3.5.6) imply that the spectrum of a generic first order

differential operator is asymmetric about λ = 0. This phenomenon is known as

spectral asymmetry [4, 5, 6, 7].

If we square our operator A and consider the spectral problem A2v = λ2v, then

the terms ±bλn−1 cancel out and the second asymptotic coefficient of the count-

ing function (as well as the spectral function) of the operator A2 turns to zero.

This is in agreement with the known fact that for an even order semi-bounded

matrix differential operator acting on a manifold without boundary the second

asymptotic coefficient of the counting function is zero, see Section 6 of [80] and

[68].

3.6 Bibliographic review

To our knowledge, the first publication on the subject of two-term spectral asymp-

totics for systems was Ivrii’s 1980 paper [42] in Section 2 of which the author

stated, without proof, a formula for the second asymptotic coefficient of the

counting function. In a subsequent 1982 paper [43] Ivrii acknowledged that the

formula from [42] was incorrect and gave a new formula, labelled (0.6), followed

by a “proof”. In his 1984 Springer Lecture Notes [44] Ivrii acknowledged on page

226 that both his previous formulae for the second asymptotic coefficient were

incorrect and stated, without proof, yet another formula.
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Roughly at the same time Rozenblyum [67] also stated a formula for the second

asymptotic coefficient of the counting function of a first order system.

The formulae from [42], [43] and [67] are fundamentally flawed because they are

proportional to the subprincipal symbol. As our formulae (3.2.9) and (3.2.22)

show, the second asymptotic coefficient of the counting function may be nonzero

even when the subprincipal symbol is zero. This illustrates, yet again, the differ-

ence between scalar operators and systems.

The formula on page 226 of [44] gives an algorithm for the calculation of the

correction term designed to take account of the effect described in the previous

paragraph. This algorithm requires the evaluation of a limit of a complicated

expression involving the integral, over the cotangent bundle, of the trace of the

symbol of the resolvent of the operator A constructed by means of pseudodiffer-

ential calculus. This algorithm was revisited in Ivrii’s 1998 book, see formulae

(4.3.39) and (4.2.25) in [45].

The next contributor to the subject was Safarov who, in his 1989 DSc Thesis [69],

wrote down a formula for the second asymptotic coefficient of the counting func-

tion which was “almost” correct. This formula appears in [69] as formula (2.4).

As explained in Section 3.2, Safarov lost only the curvature terms (3.2.23). Sa-

farov’s DSc Thesis [69] provides arguments which are sufficiently detailed and we

were able to identify the precise point (page 163) at which the mistake occurred.

In 1998 Nicoll rederived [64] Safarov’s formula (3.2.12) for the principal symbols

of the propagator, using a method slightly different from [69], but stopped short

of calculating the second asymptotic coefficient of the counting function.

In 2007 Kamotski and Ruzhansky [47] performed an analysis of the propagator

of a first order elliptic system based on the approach of Rozenblyum [67], but

stopped short of calculating the second asymptotic coefficient of the counting

function.



Chapter 4

Microlocal analysis of first order

systems II

In this chapter we present a detailed consideration of elliptic first order self-

adjoint differential operators acting over a connected compact 3-manifold without

boundary, with an eventual focus on the massless Dirac operator (1.1.1).

The motivation for this study is simple. The massless Dirac operator in three

dimensions considered in Chapter 4 is a special case of the type of operator

considered in Chapter 3. We are therefore in a position to apply the theory

developed in Chapter 3 to the massless Dirac operator.

4.1 Main results

Consider a first order differential operator A acting on 2-columns v =
(
v1 v2

)T
of complex-valued half-densities over a connected compact 3-dimensional mani-

fold M without boundary. (cf. Section 1.3 for the definition of a half-density.)

We assume the coefficients of the operator A to be infinitely smooth. We also

98
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assume that the operator A is formally self-adjoint (symmetric):

∫
M

w∗(Av) dx =

∫
M

(Aw)∗v dx (4.1.1)

for all infinitely smooth v, w : M → C2. Here and further on the superscript ∗

in matrices, rows and columns indicates Hermitian conjugation in C2 and dx :=

dx1dx2dx3, where x = (x1, x2, x3) are local coordinates on M .

Let A1(x, ξ) be the principal symbol of the operator A, i.e. matrix obtained by

leaving in A only the leading (first order) derivatives and replacing each ∂/∂xα by

iξα, α = 1, 2, 3. Here ξ = (ξ1, ξ2, ξ3) is the variable dual to the position variable

x. Our principal symbol A1(x, ξ) is a 2 × 2 Hermitian matrix-function on the

cotangent bundle T ∗M , linear in every fibre T ∗xM (i.e. linear in ξ).

Throughout Chapter 4 we assume that the principal symbol A1(x, ξ) is trace-free

for all (x, ξ) ∈ T ∗M and that

detA1(x, ξ) 6= 0, ∀(x, ξ) ∈ T ′M, (4.1.2)

where T ′M := T ∗M \ {ξ = 0} (cotangent bundle with the zero section re-

moved). The assumption (4.1.2) is a version of the ellipticity condition (cf. Sub-

section 3.1.3).

Under the above assumptions A is a self-adjoint operator in L2(M ;C2) (Hilbert

space of square integrable complex-valued column “functions”) with domain

H1(M ;C2) (Sobolev space of complex-valued column “functions” which are square

integrable together with their first partial derivatives) and the spectrum of A is

discrete, with eigenvalues accumulating to±∞. Let λk and vk =
(
vk1(x) vk2(x)

)T
be the eigenvalues and eigenfunctions of the operator A. The eigenvalues λk are

enumerated in increasing order with account of multiplicity, using a positive in-

dex k = 1, 2, . . . for positive λk and a nonpositive index k = 0,−1,−2, . . . for

nonpositive λk.
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We will be studying the spectral function (3.2.4) and the counting function (3.2.5)

for the type of operator described above.

We aim to derive, under appropriate assumptions on Hamiltonian trajectories,

two-term asymptotics for the spectral function (3.2.4) and the counting function

(3.2.5), i.e. formulae of the type (3.2.6) and (3.2.7), respectively, as λ → +∞,

where the real constants a, b appearing in (3.2.7) and real densities a(x), b(x) in

(3.2.6) are related in accordance with (3.2.8) and (3.2.9) respectively. Note that,

in Chapter 4, we always work in three dimensions, which reduces the complexity

of the formulae from Chapter 3 somewhat.

In [22] (an overview of which is given in Chapter 3) we performed a comprehensive

analysis of two-term spectral asymptotics for general first order elliptic systems.

In doing this we showed that all previous publications on systems gave formulae

for the second asymptotic coefficient that were either incorrect or incomplete

(i.e. an algorithm for the calculation of the second asymptotic coefficient rather

than an explicit formula), see Section 3.6 for the appropriate bibliographic review.

The correct formula for the coefficient b(x) was the main result presented in

Chapter 3.

The problem examined in Chapter 4 is a special case of that from [22]. Namely,

in Chapter 4 we make the following additional assumptions as compared to [22]

and Chapter 3:

our manifold has dimension 3, (4.1.3)

the number of equations in our system is 2, (4.1.4)

our operator is differential (as opposed to pseudodifferential), (4.1.5)

the principal symbol is trace-free. (4.1.6)

The need for a detailed analysis of the special case (4.1.3)–(4.1.6) is driven by

applications to the massless Dirac operator.

The additional assumptions (4.1.3)–(4.1.6) lead to the following simplifications

as compared to Chapter 3.
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• The subprincipal symbol Asub does not depend on the dual variable ξ (mo-

mentum) and is a function of x (position) only. Recall that the subprincipal

symbol is the zeroth order term of the full symbol of the first order operator

A written in a way which makes it invariant under coordinate transforma-

tions, see formula (4.6.2) for formal definition and Subsection 2.1.3 in [72]

for background material.

• The principal symbol A1 admits a geometric description.

The first of these simplifications is trivial whereas the second is not. We list

below the geometric objects encoded within the principal symbol.

Geometric object 1: the metric. Observe that the determinant of the prin-

cipal symbol is a negative definite quadratic form

detA1(x, ξ) = −gαβξαξβ (4.1.7)

and the coefficients gαβ(x) = gβα(x), α, β = 1, 2, 3, appearing in (4.1.7) can be

interpreted as components of a (contravariant) Riemannian metric. This implies,

in particular, that our Hamiltonian (positive eigenvalue of the principal symbol)

takes the form

h+(x, ξ) =
√
gαβ(x) ξαξβ (4.1.8)

and the x-components of our Hamiltonian trajectories become geodesics.

Geometric object 2: the Teleparallel connection. This is an affine connec-

tion defined as follows. Suppose we have a covector ξ based at the point x ∈ M

and we want to construct a parallel covector ξ̃ based at the point x̃ ∈ M . This

is done by solving the linear system of equations

A1(x̃, ξ̃) = A1(x, ξ). (4.1.9)

Equation (4.1.9) is equivalent to a system of three real linear algebraic equa-

tions for the three real unknowns, components of the covector ξ̃, and it is easy
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to see that this system has a unique solution. It is also easy to see that the

affine connection defined by formula (4.1.9) preserves the Riemannian norm of

covectors, i.e. gαβ(x̃) ξ̃αξ̃β = gαβ(x) ξαξβ, hence, it is metric compatible. The

parallel transport defined by formula (4.1.9) does not depend on the curve along

which we transport the (co)vector, so our connection has zero curvature. Recall

that the word “Teleparallel” (parallel at a distance) is used in theoretical physics

[39] to describe metric compatible affine connections with zero curvature. The

origins of this terminology go back to the works of A. Einstein and É. Cartan

[79, 73, 18], though Cartan preferred to use the term “absolute parallelism” rather

than “Teleparallelism”, see Section 2.1 for further details.

The Teleparallel connection coefficients Γαβγ(x) can be written down explicitly

in terms of the principal symbol, see formula (4.3.7), and this allows us to define

yet another geometric object — the torsion tensor

Tαβγ := Γαβγ − Γαγβ . (4.1.10)

Further on we raise and lower indices of the torsion tensor using the metric.

Geometric object 3: the topological charge. It turns out, see Section 4.3,

that the existence of a principal symbol implies that our manifold M is paral-

lelizable. Parallelizability implies orientability. Having chosen a particular orien-

tation, we allow only changes of local coordinates xα, α = 1, 2, 3, which preserve

orientation.

We define the topological charge as

c := − i
2

√
det gαβ tr

(
(A1)ξ1(A1)ξ2(A1)ξ3

)
, (4.1.11)

with the subscripts ξα indicating partial derivatives. We show in Section 4.3 that

the number c defined by formula (4.1.11) can take only two values, +1 or −1, and

describes the orientation of the principal symbol relative to the chosen orientation

of local coordinates.
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We have identified three geometric objects encoded within the principal symbol

— metric, Teleparallel connection and topological charge. Consequently, one

would expect the coefficient b(x) from formula (3.2.6) to be expressed via these

three geometric objects and the subprincipal symbol. This assertion is confirmed

by the following theorem.

Theorem 4.1.1. The coefficients in the two-term asymptotics (3.2.6) are given

by the formulae

a(x) =
1

6π2

√
det gαβ(x) , (4.1.12)

b(x) =
1

8π2

(
[ 3 c ∗T ax − 2 trAsub ]

√
det gαβ

)
(x) , (4.1.13)

where

T ax
αβγ :=

1

3
(Tαβγ + Tγαβ + Tβγα) (4.1.14)

is axial torsion (totally antisymmetric piece of the torsion tensor) and ∗ is the

Hodge star (4.3.4).

Remark 4.1.1. The spectral and counting functions admit two-term asymptotic

expansions (3.2.6) and (3.2.7) only under appropriate assumptions on geodesic

loops and closed geodesics respectively, see Theorems 8.3 and 8.4 from [22]. How-

ever, one can easily reformulate asymptotic formulae (3.2.6) and (3.2.7) in such

a way that they remain valid without assumptions on geodesics: this can easily be

achieved, say, by taking a convolution with a function from Schwartz space S(R),

see Theorems 7.1 and 7.2 in [22]. Thus, the second asymptotic coefficients of the

spectral and counting functions are well-defined irrespective of how many geodesic

loops or closed geodesics we have. We introduced the second asymptotic coeffi-

cients b(x) and b via the unmollified asymptotic expansions (3.2.6) and (3.2.7)

simply for the sake of clarity of presentation.

The proof of Theorem 4.1.1 is given in Sections 4.2–4.5.

We now turn our attention to the massless Dirac operator. This operator is de-

fined in Appendix 4.A, see formula (4.A.3), and it does not fit into our scheme

because it is an operator acting on a 2-component complex-valued spinor (Weyl
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spinor) rather than a pair of complex-valued half-densities. However, on a par-

allelizable manifold components of a spinor can be identified with half-densities.

We call the resulting operator the massless Dirac operator on half-densities. The

explicit formula for the massless Dirac operator on half-densities is (4.A.19).

The massless Dirac operator on half-densities is an operator of the type we are

considering in Chapter 4, i.e. a self-adjoint first order elliptic differential operator

acting on 2-columns of complex-valued half-densities and with a trace-free prin-

cipal symbol. We address the question: is a given operator A a massless Dirac

operator? The answer is given by the following theorem which the main result of

Chapter 4.

Theorem 4.1.2. The operator A is a massless Dirac operator on half-densities

if and only if the following two conditions are satisfied at every point of the

manifold M :

a) the subprincipal symbol of the operator, Asub(x), is proportional to the identity

matrix, and

b) the second asymptotic coefficient of the spectral function, b(x), is zero.

Note that conditions a) and b) in Theorem 4.1.2 are invariant under special

unitary transformations, i.e. transformations of the operator

A 7→ RAR∗, (4.1.15)

where R : M → SU(2) is an arbitrary smooth special unitary matrix-function.

The invariance of condition b) is obvious. In fact, condition b) is invariant under

the action of a broader group: the unitary matrix-function R(x) appearing in

formula (4.1.15) does not have to be special. As to condition a), its invariance is

established by examination of formula (9.3) from [22] with the use of the special

commutation properties of trace-free Hermitian 2×2 matrices. The fact that the

conditions of Theorem 4.1.2 are SU(2) invariant is not surprising as the massless
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Dirac operator is designed around the concept of SU(2) invariance, see Property

4 in Appendix 4.A.

The proof of Theorem 4.1.2 is given in Sections 4.6 and 4.7.

Theorems 4.1.1 and 4.1.2 tell us that for the massless Dirac operator on half-

densities formulae (3.2.6) and (3.2.7) read

e(λ, x, x) =

√
det gαβ(x)

6π2
λ3 + o(λ2), (4.1.16)

N(λ) =
VolM

6π2
λ3 + o(λ2), (4.1.17)

where VolM is the volume of the Riemannian 3-manifold M .

Remark 4.1.2. The factor
√

det gαβ(x) appears in the RHS of (4.1.16) because

we are working with the massless Dirac operator on half-densities (4.A.19) rather

than with the massless Dirac operator on spinors (4.A.3). For the massless Dirac

operator on spinors the spectral function is a scalar field (as opposed to a density)

and formula (4.1.16) reads e(λ, x, x) = 1
6π2λ

3 + o(λ2).

4.2 Reduction from the general setting

As explained in Section 4.1, the problem considered in Chapter 4 is a special case

of that from [22] and Chapter 3. Formulae (3.2.21) and (3.2.22) from Chapter 3

in this case read

a(x) =

∫
h+(x,ξ)<1

d̄ξ , (4.2.1)

b(x) = b1(x) + b2(x) , (4.2.2)

where

b1(x) = −3

∫
h+(x,ξ)<1

([v+]∗Asubv
+)(x, ξ) d̄ξ , (4.2.3)

b2(x) =
3i

2

∫
h+(x,ξ)<1

{[v+]∗, A1 − 2h+I, v+}(x, ξ) d̄ξ . (4.2.4)
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Here h+(x, ξ) is the positive eigenvalue of the principal symbol (see also for-

mula (4.1.8)), v+(x, ξ) is the corresponding normalized eigenvector (2-column),

d̄ξ is shorthand for d̄ξ := (2π)−3 dξ = (2π)−3 dξ1dξ2dξ3 and I is the 2 × 2 iden-

tity matrix. Curly brackets in formula (4.1.13) denote the Poisson bracket on

matrix-functions (3.2.14) and its further generalization (3.2.15) in three dimen-

sions (rather than n dimensions as was seen in Chapter 3).

Put P+(x, ξ) := [v+(x, ξ)][v+(x, ξ)]∗, which is the orthogonal projection onto the

eigenspace span v+ of the principal symbol. We have A1−2h+I = 2h+P+−3h+I

and {[v+]∗, P+, v+} = 0, so formula (4.2.4) can be rewritten as

b2(x) = −9i

2

∫
h+(x,ξ)<1

(h+{[v+]∗, v+})(x, ξ) d̄ξ . (4.2.5)

Our aim now is to evaluate the integrals (4.2.1), (4.2.3) and (4.2.5) explicitly.

Formulae (4.2.1) and (4.1.8) immediately imply (4.1.12).

In order to evaluate the integral (4.2.3) we rewrite this formula as

b1(x) = −3

∫
h+(x,ξ)<1

tr(AsubP
+)(x, ξ) d̄ξ

and use the fact that P+(x, ξ) = 1
2h+(x,ξ)

(A1(x, ξ) + h+(x, ξ) I). We get

b1(x) = −3

∫
h+(x,ξ)<1

1

2h+(x, ξ)
tr(Asub(A1 + h+I))(x, ξ) d̄ξ .

But Asub does not depend on ξ whereas A1 is an odd function of ξ, so the term

1
2h+ tr(AsubA1) integrates to zero, leaving us with

b1(x) = −3

2
(trAsub)(x)

∫
h+(x,ξ)<1

d̄ξ = − 1

4π2

(
trAsub

√
det gαβ

)
(x) . (4.2.6)
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In order to complete the proof of Theorem 4.1.1 we need to evaluate explicitly

the integral (4.2.5). The next three sections deal with this nontrivial issue.

4.3 Teleparallel connection

We show in this section that the principal symbol generates a Teleparallel con-

nection which allows us to reformulate the results of our spectral analysis in a

much clearer geometric language.

Let us show first that the existence of a principal symbol implies that our manifold

M is parallelizable. The principal symbolA1(x, ξ) is linear in ξ so it can be written

as

A1(x, ξ) = σα(x) ξα , (4.3.1)

where σα(x), α = 1, 2, 3, are some trace-free Hermitian 2 × 2 matrix-functions.

Let us denote the elements of the matrices σα as σαȧb , where the dotted index,

running through the values 1̇, 2̇, enumerates the rows and the undotted index,

running through the values 1, 2, enumerates the columns; this notation is taken

from [23]. Put

e1
α(x) := Reσα1̇2(x), e2

α(x) := − Imσα1̇2(x), e3
α(x) := σα1̇1(x). (4.3.2)

Formula (4.3.2) defines a triple of smooth real vector fields ej(x), j = 1, 2, 3, on

the manifold M . These vector fields are linearly independent at every point x

of the manifold: this follows from formula (4.1.2) via routine calculations. Thus,

the triple of vector fields ej is a frame. The existence of a frame means that the

manifold M is parallelizable.

Conversely, given a frame ej we uniquely recover the principal symbol A1(x, ξ) via

formulae (4.3.1), (4.A.1) and (4.A.2). Thus, a principal symbol is equivalent to a

frame. Of course, this equivalence statement relies on our a priori assumptions

(4.1.1), (4.1.2) and (4.1.3)–(4.1.6).
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It is easy to see that the frame elements ej are orthonormal with respect to the

metric (4.1.7). Moreover, the metric can be determined directly from the frame

as

gαβ = δjkej
α ek

β , (4.3.3)

where the repeated frame indices j and k indicate summation over j, k = 1, 2, 3.

The two definitions of the metric, (4.1.7) and (4.3.3), are equivalent.

Parallelizability implies orientability, see Proposition 13.5 in [52]. Having chosen

a particular orientation, we allow only changes of local coordinates xα, α = 1, 2, 3,

which preserve orientation and define the Hodge star in the standard way: the

action of ∗ on a rank q antisymmetric tensor Q is

(∗Q)γq+1...γ3 := (q!)−1
√

det gαβ Q
γ1...γqεγ1...γ3 , (4.3.4)

where ε is the totally antisymmetric quantity, ε123 := +1, and g is the Riemannian

metric (4.1.7). Here and further on we identify differential forms with covariant

antisymmetric tensors. We raise and lower tensor indices using our metric.

Substituting formulae (4.3.1) and (4.3.2) into (4.1.11) we get

c = sgn det ej
α. (4.3.5)

Formula (4.3.5) provides an equivalent (and more natural) definition of topo-

logical charge. It also explains why the topological charge, initially defined in

Section 4.1 in accordance with formula (4.1.11), can only take values +1 or −1.

The concept of a Teleparallel connection was already defined in Section 4.1 in

accordance with formula (4.1.9). This connection can be equivalently defined via

the frame as follows. Suppose we have a vector v based at the point x ∈ M and

we want to construct a parallel vector ṽ based at the point x̃ ∈M . We decompose

the vector v with respect to the frame at the point x, v = cjej(x), and reassemble

it with the same coefficients cj at the point x̃, defining ṽ := cjej(x̃).
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We now define the covariant derivative corresponding to the Teleparallel connec-

tion. Our Teleparallel connection is a special case of an affine connection, so we

are looking at a covariant derivative acting on vector/covector fields in the usual

manner

∇µv
α = ∂vα/∂xµ + Γαµβ v

β , ∇µwβ = ∂wβ/∂x
µ − Γαµβ wα .

Note that in this thesis we use the symbol ∇ to denote two different covariant

derivatives: one with respect to the Levi-Civita connection, and the other with

respect to the Teleparallel connection. The connection with respect to which the

covariant derivative is defined is always stated. As such, the meaning is clear

from the context in which the symbol is used.

The Teleparallel connection coefficients are defined from the conditions

∇µej
α = 0 , (4.3.6)

where the ej are elements of our frame. Formula (4.3.6) gives a system of 27 linear

algebraic equations for the determination of 27 unknown connection coefficients.

It is known (see, for example, formula (A2) in [15]), that the unique solution of

this system is

Γαµβ = ek
α(∂ekβ/∂x

µ) , (4.3.7)

where

ekβ := δkjgβγej
γ. (4.3.8)

The triple of covector fields ek, k = 1, 2, 3, is called the coframe. The frame and

coframe uniquely determine each other via the relation

ej
αekα = δj

k. (4.3.9)
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One can check by performing explicit calculations that the Teleparallel connection

has the following two important properties. Firstly

∇αg
βγ = 0. (4.3.10)

This follows from (4.3.3) which gives

∇γg
αβ = ∇γ

(
δjkej

α ek
β
)

= δjk (∇γej
α) ek

β + δjkej
α
(
∇γek

β
)

= 0

from condition (4.3.6). This means that the connection is metric compatible.

Secondly

(∇α∇β −∇β∇α)vγ = 0 for any vector field v , (4.3.11)

which means that the Riemann curvature tensor is zero; this follows from a

lengthy calculation which is omitted here for brevity. Properties (4.3.10) and

(4.3.11) are the defining properties of a Teleparallel connection: a Teleparal-

lel connection is, by definition [39], an affine connection satisfying (4.3.10) and

(4.3.11).

The tensor characterizing the “strength” of the Teleparallel connection is not the

Riemann curvature tensor but the torsion tensor (4.1.10). The Teleparallel con-

nection is, in a sense, the opposite of the more common Levi-Civita connection:

the Levi-Civita connection has zero torsion but nonzero curvature, whereas the

Teleparallel connection has nonzero torsion but zero curvature. In Chapter 4

we distinguish these two affine connections by using different notation for con-

nection coefficients: we write the Teleparallel connection coefficients as Γαβγ and

the Levi-Civita connection coefficients (Christoffel symbols) as
{

α
βγ

}
, see formula

(4.A.4). It is known, see formula (7.34) in [53], that the two sets of connection

coefficients are related as

Γαβγ =

{
α

βγ

}
+

1

2
(Tαβγ + Tβ

α
γ + Tγ

α
β). (4.3.12)
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Note that in (4.3.12) the position of indices of the torsion tensor is extremely

important. The indices are raised and lowered using the metric. For absolute

clarity we relate the torsion tensor appearing in (4.3.12) to (4.1.10) in the follow-

ing manner:

Tβ
α
γ = T µνγ gµβ g

να,

see Chapter 7 of [53] for further details.

Substituting (4.3.7) into (4.1.10) we arrive at the following explicit formula for

the torsion tensor of the Teleparallel connection

T = ej ⊗ dej , (4.3.13)

where the d stands for the exterior derivative. For the sake of clarity we rewrite

formula (4.3.13) in more detailed form, retaining all tensor indices,

Tαβγ = ej
α(∂ejγ/∂x

β − ∂ejβ/∂xγ) . (4.3.14)

As always, the repeated index j appearing in formulae (4.3.13) and (4.3.14) in-

dicates summation over j = 1, 2, 3.

Torsion is a rank three tensor antisymmetric in the last two indices. Because we

are working in dimension three, it is convenient, as in Chapter 2, to apply the

Hodge star in the last two indices and deal with the rank two tensor

∗
Tαβ :=

1

2
Tαγδ εγδβ

√
det gµν (4.3.15)

instead. Note that in (4.3.15) the position of the indices of the torsion tensor is

extremely important. Recalling again that indices are raised and lowered using

the metric, we see that the torsion tensor appearing in (4.3.15) is related to

(4.1.10) in accordance with:

Tαγδ = Tαµν g
µγ gνδ.
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Substituting (4.3.13) into (4.3.15) we get

∗
T = ej ⊗ curl ej , (4.3.16)

where

(curl ej)β := (∗dej)β =
1

2
(dej)γδ εγδβ

√
det gµν . (4.3.17)

4.4 Relation between curvature of the U(1)

connection and torsion of the Teleparallel

connection

This section is devoted to the examination of the integrand in formula (4.2.5).

Recall that the curly brackets in this integrand denote the Poisson bracket on

matrix-functions (3.2.14) in three dimensions.

As explained in Section 3.4, the expression −i{[v+]∗, v+} is the scalar curvature of

the U(1) connection generated by the eigenspace span v+ of the principal symbol.

This curvature term appears in the general setting of a first order elliptic system.

A feature of the particular case (4.1.3)–(4.1.6) considered in Chapter 4 is that

the scalar curvature of the U(1) connection can be expressed via torsion of the

Teleparallel connection. This is a substantial simplification. The Teleparallel

connection is a simpler geometric object than the U(1) connection because the

coefficients of the Teleparallel connection do not depend on the dual variable

(momentum), i.e. they are “functions” on the base manifold M . The relationship

between the two connections is established by the following lemma.

Lemma 4.4.1. The scalar curvature of the U(1) connection is expressed via the

torsion of the Teleparallel connection, metric and topological charge as

− i{[v+]∗, v+}(x, ξ) =
c

2

∗
Tαβ(x) ξαξβ

(gµν(x) ξµξν)3/2
. (4.4.1)
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Recall that the topological charge c = ±1 is defined in accordance with formula

(4.1.11) or, equivalently, in accordance with formula (4.3.5).

Proof of Lemma 4.4.1 We give the proof for the case

c = +1 . (4.4.2)

There is no need to give a separate proof for the case c = −1 as the two cases

reduce to one another by means of a) the observation that torsion (4.3.13) is

invariant under inversion of the frame and b) the identity

{[v+]∗, v+}+ {[v−]∗, v−} = 0, (4.4.3)

where v−(x, ξ) is the normalized eigenvector of the principal symbol correspond-

ing to the negative eigenvalue. Formula (4.4.3) is a special case of formula (3.2.20)

from Chapter 3.

We fix an arbitrary point Q ∈ T ′M and prove formula (4.4.1) at this point. As

the LHS and RHS of (4.4.1) are invariant under changes of local coordinates x,

it is sufficient to prove formula (4.4.1) in Riemann normal coordinates, i.e. local

coordinates such that x = 0 corresponds to the projection of the point Q onto

the base manifold, gµν(0) = δµν and ∂gµν
∂xλ

(0) = 0. Moreover, as the formula we

are proving involves only first partial derivatives in x, we may assume, without

loss of generality, that

gµν(x) = δµν (4.4.4)

for all x in some neighbourhood of the origin. In other words, it is sufficient to

prove formula (4.4.1) for the case of Euclidean metric.

As both the LHS and RHS of (4.4.1) have the same degree of homogeneity in ξ,

namely, −1, it is sufficient to prove formula (4.4.1) for ξ of norm 1. Moreover, by

rotating our Cartesian coordinate system we can reduce the case of general ξ of

norm 1 to the case

ξ =
(

0 0 1
)T

. (4.4.5)
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There is one further simplification that can be made: we claim that it is sufficient

to prove formula (4.4.1) for the case when

ej
α(0) = δj

α, (4.4.6)

i.e. for the case when at the point x = 0 the elements of the frame are aligned

with the coordinate axes. This claim follows from the observation that the LHS

of formula (4.4.1) is invariant under rigid special unitary transformations of the

column-function v+, v+ 7→ Rv+ , where “rigid” refers to the fact that the matrix

R ∈ SU(2) is constant. Of course, the column-function Rv+ is no longer an

eigenvector of the original principal symbol, but a new principal symbol obtained

from the old one by the rigid special orthogonal transformation of the frame

(4.A.14) with the 3 × 3 special orthogonal matrix O expressed in terms of the

2 × 2 special unitary matrix R in accordance with (4.A.15). One can always

choose the special unitary matrix R so that at the point x = 0 the elements

of the new frame are aligned with the coordinate axes (in fact, there are two

possible choices of R which differ by sign). It remains only to note that direct

inspection of formula (4.3.13) shows that torsion is also invariant under rigid

special orthogonal transformations of the frame, and, hence, the tensor
∗
T defined

by formula (4.3.15) and appearing in the RHS of formula (4.4.1) is invariant under

rigid special orthogonal transformations of the frame as well.

Having made the simplifying assumptions (4.4.4)–(4.4.6), we are now in a position

to prove formula (4.4.1).

Let us calculate the RHS of (4.4.1) first. In view of (4.4.6) we have, in the linear

approximation in x,
e1

1(x) e1
2(x) e1

3(x)

e2
1(x) e2

2(x) e2
3(x)

e3
1(x) e3

2(x) e3
3(x)

 =


1 w3(x) −w2(x)

−w3(x) 1 w1(x)

w2(x) −w1(x) 1

 , (4.4.7)

where w is some smooth vector-function which vanishes at x = 0. Formula (4.4.7)
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is the standard formula for the linearization of an orthogonal matrix about the

identity; see also formula (2.10.1) in Chapter 2. Note that in Cosserat elasticity

literature the vector-function w is called the vector of microrotations. Substitut-

ing (4.4.7) into (4.3.16) and (4.3.17) we get, at x = 0,

∗
Tαβ = ∂wβ/∂x

α − δαβ divw, (4.4.8)

which is formula (2.10.5) from Chapter 2. Here we freely lower and raise tensor

indices using the fact that the metric is Euclidean (in the Euclidean case (4.4.4)

it does not matter whether a tensor index comes as a subscript or a superscript).

Substituting (4.4.8) and (4.4.5) into the RHS of (4.4.1) we get, at our point

Q ∈ T ′M ,

1

2

∗
Tαβξαξβ

(gµνξµξν)3/2
= −1

2
(∂w1/∂x1 + ∂w2/∂x2) . (4.4.9)

Let us now calculate the LHS of (4.4.1). The equation for the eigenvector v+(x, ξ)

of the principal symbol is e3
αξα − ‖ξ‖ (e1 − ie2)αξα

(e1 + ie2)αξα −e3
αξα − ‖ξ‖

v+
1

v+
2

 = 0 . (4.4.10)

In view of (4.4.5) and (4.4.6) the (normalized) solution of (4.4.10) at our point

Q ∈ T ′M is v+ =

1

0

. Of course, our v+(x, ξ) is defined up to the gauge

transformation

v+ 7→ eiφ
+

v+, (4.4.11)

where

φ+ : T ′M → R (4.4.12)

is an arbitrary smooth function, however the LHS of (4.4.1) is invariant under

this gauge transformation. We now perturb equation (4.4.10) about the point

Q ∈ T ′M , that is, about x = 0, ξ =
(

0 0 1
)

, making use of formula (4.4.7),

which gives us the following equation for the increment δv+ of the eigenvector
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v+(x, ξ) of the principal symbol:

0 0

0 −2

δv+
1

δv+
2

+

 0 −w2(x)− iw1(x)

−w2(x) + iw1(x) 0

1

0


+

 0 δξ1 − iδξ2

δξ1 + iδξ2 −2δξ3

1

0

 = 0,

or, equivalently,

δv+
2 =

1

2
(−w2(x) + iw1(x) + δξ1 + iδξ2). (4.4.13)

Formula (4.4.13) has to be supplemented by the normalization condition

‖v+(x, ξ)‖ = 1, which in its linearized form reads

Re δv+
1 = 0. (4.4.14)

Formulae (4.4.14) and (4.4.13) define δv+ modulo an arbitrary Im δv+
1 , with

this degree of freedom being associated with the gauge transformation (4.4.11),

(4.4.12). Without loss of generality we may assume that the gauge is chosen so

that

Im δv+
1 = 0. (4.4.15)

Combining formulae (4.4.14), (4.4.15) and (4.4.13) we get

δv+ =
1

2

 0

−w2(x) + iw1(x) + δξ1 + iδξ2

 . (4.4.16)

Recall that the w appearing in this formula is some smooth vector-function which

vanishes at x = 0.

Differentiation of (4.4.16) gives us

∂v+

∂xα
=

1

2

 0

−∂w2/∂xα + i∂w1/∂xα

 , (4.4.17)
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∂v+

∂ξ1

=
1

2

0

1

 ,
∂v+

∂ξ2

=
1

2

0

i

 ,
∂v+

∂ξ3

= 0. (4.4.18)

Formulae (4.4.17) and (4.4.18) imply that at our point Q ∈ T ′M

− i{[v+]∗, v+} = −1

2
(∂w1/∂x1 + ∂w2/∂x2). (4.4.19)

Comparing formulae (4.4.9) and (4.4.19) and recalling (4.4.2), we arrive at the

required result (4.4.1). �

4.5 Integration of the curvature term

Substituting (4.4.1) into (4.2.5) we get

b2(x) =
9c

4

∫
h+(x,ξ)<1

∗
Tαβ(x) ξαξβ
gµν(x) ξµξν

d̄ξ . (4.5.1)

Recall that h+(x, ξ) is given by formula (4.1.8).

The tensor
∗
T can be decomposed into pure trace and trace-free pieces, i.e.

∗
Tαβ =

1

3
gαβ

∗
T γγ +

(
∗
Tαβ − 1

3
gαβ

∗
T γγ

)
. (4.5.2)

It is easy to see that the trace-free piece (second term in the RHS of (4.5.2)) does

not contribute to the integral in (4.5.1), hence formula (4.5.1) becomes

b2(x) =
3c

4

∗
T γγ(x)

∫
h+(x,ξ)<1

d̄ξ =
c

8π2

( ∗
T γγ

√
det gαβ

)
(x) . (4.5.3)

But formulae (4.1.14), (4.3.4) and (4.3.15) imply that

∗
T γγ = 3 ∗ T ax. (4.5.4)
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Combining formulae (4.2.2), (4.2.6), (4.5.3) and (4.5.4) we arrive at formula

(4.1.13). This completes the proof of Theorem 4.1.1.

4.6 The subprincipal symbol of the massless Dirac

operator

In this section we calculate the subprincipal symbol of the massless Dirac opera-

tor, which prepares the ground for the proof of Theorem 4.1.2 in the next section.

In view of Remark 2.1.10 from [72], defining the subprincipal symbol for the mass-

less Dirac operator on spinors (4.A.3) is problematic, hence, we work with the

massless Dirac operator on half-densities (4.A.19). For the sake of brevity we

denote the massless Dirac operator on half-densities by A rather than by W1/2 .

Lemma 4.6.1. The subprincipal symbol of the massless Dirac operator on half-

densities (4.A.19) is

Asub(x) =
3c

4

(
∗T ax(x)

)
I , (4.6.1)

where c = ±1 is the topological charge (4.3.5), T ax is axial torsion (4.1.14), ∗ is

the Hodge star (4.3.4) and I is the 2× 2 identity matrix.

Proof We give the proof of (4.6.1) for the case (4.4.2). There is no need to give

a separate proof for the case c = −1 as the two cases reduce to one another by

inversion of the frame: the full symbol of the massless Dirac operator on half-

densities changes sign under inversion of the frame and hence its subprincipal

symbol changes sign under inversion of the frame, whereas torsion (4.3.13) is

invariant under inversion of the frame.

According to formula (3.1.15) from Chapter 3 the subprincipal symbol is defined

as

Asub := A0 +
i

2
(A1)xαξα , (4.6.2)

where A1(x, ξ) and A0(x) are the homogeneous (in ξ) components of the full

symbol A(x, ξ) = A1(x, ξ) + A0(x) of our first order differential operator, with
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the subscript indicating degree of homogeneity. For the massless Dirac operator

on half-densities (4.A.19) these homogeneous components read (4.3.1) and

A0(x) = − i
4
σασβ

(
∂σβ

∂xα
+

{
β

αγ

}
σγ
)

+
i

2
σα
{
β

αβ

}
(4.6.3)

respectively. Note that in writing down (4.6.3) we used the standard formula

1

2 det gκλ

∂ det gµν
∂xα

=

{
β

αβ

}
.

Our task is to substitute (4.3.1) and (4.6.3) into (4.6.2).

We fix an arbitrary point P ∈M and prove formula (4.6.1) at this point. As the

LHS and RHS of (4.6.1) are invariant under changes of local coordinates x, it

is sufficient to check the identity (4.6.1) in Riemann normal coordinates, i.e. lo-

cal coordinates such that x = 0 corresponds to the point P , gµν(0) = δµν and

∂gµν
∂xλ

(0) = 0. Moreover, as the principal symbol is linear in ξ and the formula we

are proving involves only first partial derivatives in x, we may assume, without

loss of generality, that we have (4.4.4) for all x in some neighbourhood of the

origin. In other words, it is sufficient to prove formula (4.6.1) for the case of

Euclidean metric. Furthermore, by rotating our Cartesian coordinate system we

can achieve (4.4.6), which opens the way to the use, in the linear approximation

in x, of formula (4.4.7).

Substituting (4.4.7) into (4.A.1), we get, in the linear approximation in x,

σ1 =

 w2 1 + iw3

1− iw3 −w2

 = σ1 ,

σ2 =

 −w1 −i+ w3

i+ w3 w1

 = σ2 ,

σ3 =

 1 −iw1 − w2

iw1 − w2 −1

 = σ3 . (4.6.4)
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Recall that the w appearing in this formula is some smooth vector-function which

vanishes at x = 0.

Substitution of (4.6.4) into (4.3.1) and (4.6.3) gives us

A1(x, ξ) =

 ξ3 ξ1 − iξ2

ξ1 + iξ2 −ξ3


+

 w2ξ1 − w1ξ2 iw3ξ1 + w3ξ2 + (−iw1 − w2)ξ3

−iw3ξ1 + w3ξ2 + (iw1 − w2)ξ3 −w2ξ1 + w1ξ2

 , (4.6.5)

A0(0) = − i
4

0 1

1 0

0 1

1 0

 ∂w2/∂x1 i∂w3/∂x1

−i∂w3/∂x1 −∂w2/∂x1

+ . . . . (4.6.6)

Here formula (4.6.5) is written in the linear approximation in x, whereas formula

(4.6.6) displays, for the sake of brevity, only one term out of nine (the one cor-

responding to α = β = 1 in (4.6.3)), with the remaining eight terms concealed

within the dots . . .. Note also that the Christoffel symbols disappeared because

of our assumption that the metric is Euclidean.

Substituting (4.6.6) and (4.6.5) into (4.6.2), we get

Asub(0) = −1

2
(divw) I. (4.6.7)

But, according to (4.4.8),
∗
T γγ(0) = −2 divw. (4.6.8)

Formulae (4.6.7), (4.6.8), (4.5.4) and (4.4.2) imply formula (4.6.1) at x = 0. �

4.7 Proof of Theorem 4.1.2

As Theorem 4.1.2 is an if and only if theorem, our proof comes in two parts.



Microlocal analysis of first order systems II 121

Part 1 of the proof Let A be a massless Dirac operator on half-densities. We

need to prove that a) the subprincipal symbol of this operator, Asub(x), is pro-

portional to the identity matrix and b) the second asymptotic coefficient of the

spectral function, b(x), is zero. The required result follows from Lemma 4.6.1

and Theorem 4.1.1.

Part 2 of the proof Let A be a differential operator such that a) the subprincipal

symbol of this operator, Asub(x), is proportional to the identity matrix and b)

the second asymptotic coefficient of the spectral function, b(x), is zero. We need

to prove that A is a massless Dirac operator on half-densities.

Theorem 4.1.1 implies that the subprincipal symbol of our operator A is given

by formula (4.6.1). Let ej be the frame corresponding to the principal symbol

of the operator A, see formulae (4.3.1) and (4.3.2). Now, let B be the massless

Dirac operator on half-densities corresponding to the same frame. Then the

principal symbols of the operators A and B coincide. But Lemma 4.6.1 implies

that the subprincipal symbols of the operators A and B coincide as well. A

first order differential operator is determined by its principal and subprincipal

symbols, hence, A = B. �

4.8 Explicit formula for axial torsion

Torsion is a rank three tensor antisymmetric in the last two indices. It is known,

see Subsection 2.4.2 from Chapter 2, that torsion has three irreducible pieces.

Only one of the three irreducible pieces of torsion, namely, the piece which theo-

retical physicists label by the adjective “axial”, appears in our spectral theoretic

results, see Theorem 4.1.1 and Lemma 4.6.1. It is also interesting that axial

torsion is the irreducible piece which is used when one models the massless neu-

trino [23] or the electron [16] by means of Cosserat elasticity.

Axial torsion is defined as the totally antisymmetric piece of the torsion tensor,

see formula (4.1.14). This means that axial torsion is a 3-form. In view of the
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importance of axial torsion, we give an explicit formula for its Hodge dual in

terms of the principal symbol A1(x, ξ). Formulae (4.3.16), (4.3.17) and (4.5.4)

imply

∗ T ax =
δkl
3

√
det gαβ

[
ek1 ∂e

l
3/∂x

2 + ek2 ∂e
l
1/∂x

3 + ek3 ∂e
l
2/∂x

1

− ek1 ∂e
l
2/∂x

3 − ek2 ∂e
l
3/∂x

1 − ek3 ∂e
l
1/∂x

2
]
. (4.8.1)

Here the coframe ek is determined from the principal symbol in accordance with

formulae (4.3.1), (4.3.2) and (4.3.9), whereas the contravariant metric tensor gαβ

is determined from the principal symbol in accordance with formula (4.1.7).

4.A The massless Dirac operator

Let M be a 3-dimensional connected compact oriented manifold equipped with

a Riemannian metric gαβ, α, β = 1, 2, 3 being the tensor indices. Note that we

are more prescriptive in this appendix than in the main text of Chapter 4: in the

main text orientability emerged as a consequence of the existence of a principal

symbol and the metric was defined via the principal symbol, whereas in this

appendix orientability and metric are introduced a priori.

We work only in local coordinates with prescribed orientation.

It is known [76, 48] that a 3-dimensional oriented manifold is parallelizable,

i.e. there exist smooth real vector fields ej, j = 1, 2, 3, that are linearly indepen-

dent at every point x of the manifold. (This fact is often referred to as Steenrod’s

theorem.) Each vector ej(x) has coordinate components ej
α(x), α = 1, 2, 3. Note

that we use the Latin letter j for enumerating the vector fields (this is an anholo-

nomic or frame index) and the Greek letter α for enumerating their components

(this is a holonomic or tensor index). The triple of linearly independent vector

fields ej, j = 1, 2, 3, is called a frame. Without loss of generality we assume
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further on that the vector fields ej are orthonormal with respect to our metric:

this can always be achieved by means of the Gram–Schmidt process.

Define Pauli matrices

σα(x) := sj ej
α(x) , (4.A.1)

where

s1 :=

0 1

1 0

 = s1 , s2 :=

0 −i

i 0

 = s2 , s3 :=

1 0

0 −1

 = s3 . (4.A.2)

In formula (4.A.1) summation is carried out over the repeated frame index j =

1, 2, 3, and α = 1, 2, 3 is the free tensor index.

The massless Dirac operator is the matrix operator

W := −iσα
(

∂

∂xα
+

1

4
σβ

(
∂σβ

∂xα
+

{
β

αγ

}
σγ
))

, (4.A.3)

where summation is carried out over α, β, γ = 1, 2, 3, and

{
β

αγ

}
:=

1

2
gβδ
(
∂gγδ
∂xα

+
∂gαδ
∂xγ

− ∂gαγ
∂xδ

)
(4.A.4)

are the Christoffel symbols. Here and throughout this appendix we raise and

lower tensor indices using the metric. Note that we chose the letter “W” for

denoting the massless Dirac operator because in theoretical physics literature it

is often referred to as the Weyl operator.

Formula (4.A.3) is the formula from [23], only written in matrix notation (i.e. with-

out spinor indices). Note that in the process of transcribing formulae from [23]

into matrix notation we used the identity

εσαε = (σα)T , (4.A.5)
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α = 1, 2, 3, where

ε :=

0 −1

1 0

 (4.A.6)

is the “metric spinor”. The identity (4.A.5) gives a simple way of raising/lowering

spinor indices in Pauli matrices in the non-relativistic (α 6= 0) setting.

Our definition (4.A.3) of the massless Dirac operator is a special case of the

definition from [28]. The two definitions coincide when we work with a Spin

connection as opposed to a Spinc connection, see Propositions 2.14 and 2.15 in

[28] for details.

Throughout Chapter 4 we work in dimension 3. The definition of the massless

Dirac operator acting over a Riemannian manifold of arbitrary dimension can be

found, for example, in [33, 30, 32].

Physically, our massless Dirac operator (4.A.3) describes a single massless neu-

trino living in a 3-dimensional compact universe M . The eigenvalues of the

massless Dirac operator are the energy levels.

The massless Dirac operator (4.A.3) acts on 2-columns v =
(
v1 v2

)T
of complex-

valued scalar functions. In differential geometry this object is referred to as a

(Weyl) spinor so as to emphasize the fact that v transforms in a particular way

under transformations of the orthonormal frame ej. However, as in our exposition

the frame ej is assumed to be chosen a priori, we can treat the components of

the spinor as scalars. This issue will be revisited below when we state Property

4 of the massless Dirac operator.

We now list the main properties of the massless Dirac operator. We state these

without proofs. The proofs can be found in Appendix 3.A of [20] or in [28].

Property 1. The massless Dirac operator is invariant under changes of local

coordinates x, i.e. it maps 2-columns of smooth scalar functions M → C2 to

2-columns of smooth scalar functions M → C2 regardless of the choice of local

coordinates.
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Property 2. The massless Dirac operator is formally self-adjoint (symmetric)

with respect to the inner product

∫
M

w∗v
√

det gαβ dx (4.A.7)

on 2-columns of smooth scalar functions v, w : M → C2.

Property 3. The massless Dirac operator W commutes

C(Wv) = WC(v) (4.A.8)

with the antilinear map

v 7→ C(v) := εv, (4.A.9)

where ε is the “metric spinor” (4.A.6). In theoretical physics the transformation

(4.A.9) is referred to as charge conjugation [14, 28].

Formula (4.A.8) implies that v is an eigenfunction of the massless Dirac oper-

ator corresponding to an eigenvalue λ if and only if C(v) is an eigenfunction

of the massless Dirac operator corresponding to the same eigenvalue λ. Hence,

all eigenvalues of the massless Dirac operator have even multiplicity. Moreover,

any eigenfunction v and its “partner” C(v) make the same contribution to the

spectral function (3.2.4) at every point x of the manifold M .

If, as in [28], we introduce a magnetic field, then we lose the commutation prop-

erty (4.A.8) and the double eigenvalues split up. This indicates that the double

eigenvalues of the massless Dirac operator correspond to the two different spins.

Property 4. This property has to do with a particular behaviour under SU(2)

transformations. Let R : M → SU(2) be an arbitrary smooth special unitary

matrix-function. Let us introduce new Pauli matrices

σ̃α := RσαR∗ (4.A.10)
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and a new operator W̃ obtained by replacing the σ in (4.A.3) by σ̃. It turns out

(and this is Property 4) that the two operators, W̃ and W , are related in exactly

the same way as the Pauli matrices, σ̃ and σ, that is,

W̃ = RWR∗. (4.A.11)

We now examine the geometric meaning of the transformation (4.A.10). Let us

expand the new Pauli matrices σ̃ with respect to the basis (4.A.2):

σ̃α(x) = sj ẽj
α(x). (4.A.12)

Formulae (4.A.1), (4.A.12) and (4.A.10) give us the following identity relating

the new vector fields ẽj and the old vector fields ej:

RskR∗ek = sj ẽj . (4.A.13)

Resolving (4.A.13) for ẽj we get

ẽj = Oj
kek , (4.A.14)

where the real scalars Ojk are given by the formula

Oj
k =

1

2
tr(sjRs

kR∗) . (4.A.15)

Note that in writing formulae (4.A.13) and (4.A.14) we chose to hide the tensor

index, i.e. we chose to hide the coordinate components of our vector fields. Say,

formula (4.A.14) written in more detailed form reads ẽj
α = Oj

kek
α.

The scalars (4.A.15) can be viewed as elements of a real 3 × 3 matrix-function

O with the first index, j, enumerating rows and the second, k, enumerating

columns. It is easy to check that this matrix-function O is special orthogonal.

Hence, the new vector fields ẽj are orthonormal and have the same orientation as

the old vector fields ej. We have shown that the transformation (4.A.10) has the
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geometric meaning of switching from our original oriented orthonormal frame ej

to a new oriented orthonormal frame ẽj.

Formula (4.A.15) means that the special unitary matrix R is, effectively, a square

root of the special orthogonal matrix O. It is easy to see that for a given matrix

O ∈ SO(3) formula (4.A.15) defines the matrix R ∈ SU(2) uniquely up to sign.

This observation allows us to view the issue of the geometric meaning of the

transformation (4.A.10) the other way round: given a pair of orthonormal frames,

ej and ẽj, with the same orientation (i.e. with sgn det ej
α = sgn det ẽj

α), we can

recover the special orthogonal matrix-function O(x) from formula (4.A.14) and

then attempt finding a smooth special unitary matrix-function R(x) satisfying

(4.A.15). Unfortunately, this may not always be possible due to topological

obstructions. We can only guarantee the absence of topological obstructions when

the two frames, ej and ẽj, are sufficiently close to each other, which is equivalent

to saying that we can only guarantee the absence of topological obstructions when

the special orthogonal matrix-function O(x) is sufficiently close to the identity

matrix for all x ∈M .

We illustrate the possibility of a topological obstruction by means of an explicit

example. Consider the unit torus T3 parameterized by cyclic coordinates xα,

α = 1, 2, 3, of period 2π. The metric is assumed to be Euclidean. Define a pair

of orthonormal frames

ej
α := δj

α (4.A.16)

and

ẽ1
α :=


cos k3x

3

sin k3x
3

0

 , ẽ2
α :=


− sin k3x

3

cos k3x
3

0

 , ẽ3
α :=


0

0

1

 , (4.A.17)

where k3 is an odd integer. Let W and W̃ be the massless Dirac operators

corresponding to the frames (4.A.16) and (4.A.17) respectively. We claim that

there does not exist a smooth matrix-function R : T3 → SU(2) which would give
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(4.A.15), where O(x) is the special orthogonal matrix-function defined by formula

(4.A.14). We justify this claim in two different ways.

Justification 1. Resolving the system (4.A.14)–(4.A.17) locally for R, we get

R(x3) = ±

e i2k3x3
0

0 e−
i
2
k3x3

 , (4.A.18)

and this solution is unique modulo choice of sign; here the freedom in the choice

of sign is not surprising as SU(2) is the double cover of SO(3). Formula (4.A.18)

defines a continuous single-valued matrix-function on the unit torus T3 if and

only if the integer k3 is even, which it is not.

Justification 2. It is sufficient to show that the two operators, W and W̃ , have

different spectra. Straightforward separation of variables shows that zero is an

eigenvalue of the operator W but not an eigenvalue of the operator W̃ .

One can generalize the above example by introducing rotations in three different

directions, which leads to eight genuinely distinct parallelizations. See also [74]

page 524 or [10] page 21.

Let us emphasize that the topological obstructions we were discussing have noth-

ing to do with Stiefel–Whitney classes. We are working on a parallelizable man-

ifold and the Stiefel–Whitney class of such a manifold is trivial. The topological

issue at hand is that our parallelizable manifold may be equipped with different

spin structures.

We say that two massless Dirac operators, W and W̃ , are equivalent if there exists

a smooth matrix-function R : M → SU(2) such that the corresponding Pauli

matrices, σα and σ̃α, are related in accordance with (4.A.10). In view of Property

4 (see formula (4.A.11)) all massless Dirac operators from the same equivalence

class generate the same spectral function (3.2.4) and the same counting function

(3.2.5), so for the purposes of Chapter 4 viewing such operators as equivalent is

most natural.
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As explained above, there may be many distinct equivalence classes of massless

Dirac operators, the difference between which is topological. Studying the spec-

tral theoretic implications of these topological differences is beyond the scope of

Chapter 4. The two-term asymptotics (4.1.16) and (4.1.17) derived in the main

text of Chapter 4 do not feel this topology.

In theoretical physics the SU(2) freedom involved in defining the massless Dirac

operator is interpreted as a gauge degree of freedom. We do not adopt this point

of view (at least explicitly) in order to fit the massless Dirac operator into the

standard spectral theoretic framework.

We defined the massless Dirac operator (4.A.3) as an operator acting on 2-

columns of scalar functions, i.e. on 2-columns of quantities which do not change

under changes of local coordinates. This necessitated the introduction of the

density
√

det gαβ in the formula (4.A.7) for the inner product. In spectral theory

it is more common to work with half-densities. Hence, we introduce the operator

W1/2 := (det gκλ)
1/4W (det gµν)

−1/4 (4.A.19)

which maps half-densities to half-densities. We call the operator (4.A.19) the

massless Dirac operator on half-densities.

4.B The spectrum for the torus and the sphere

In this appendix we examine the massless Dirac operator on the unit torus T3 and

the unit sphere S3 and compare our asymptotic formulae (4.1.16) and (4.1.17)

with known explicit formulae. The torus is assumed to be equipped with Eu-

clidean metric (see also Appendix 4.A) whereas the sphere is assumed to be

equipped with metric induced by the natural embedding of S3 in Euclidean space

R4. Note that in view of the obvious symmetries of the torus and the sphere

the scalar function e(λ, x, x)/
√

det gαβ(x) is constant (see also Remark 4.1.2), so
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formulae (4.1.16) and (4.1.17) are in this case equivalent, in the sense that they

follow from one another. Hence, we will be dealing with formula (4.1.17) only.

We have VolT3 = (2π)3, so for the torus formula (4.1.17) reads

N(λ) =
4

3
πλ3 + o(λ2). (4.B.1)

The nonperiodicity condition (see Definitions 8.3 and 8.4 from [22]) is fulfilled for

the torus, so, according to Theorem 8.4 from [22], the asymptotic formula (4.B.1)

holds as it is, without mollification.

In order to test formula (4.B.1) we calculate the spectrum of the massless Dirac

operator on T3 explicitly. We do this first for the spin structure associated with

the frame (4.A.16). Then the spectrum is as follows.

• Zero is an eigenvalue of multiplicity two.

• For each m ∈ Z3 \ {0} we have the eigenvalue ‖m‖ and unique (up to

rescaling) eigenfunction, with eigenfunctions corresponding to different m

being linearly independent.

• For each m ∈ Z3 \ {0} we have the eigenvalue −‖m‖ and unique (up to

rescaling) eigenfunction, with eigenfunctions corresponding to different m

being linearly independent.

Hence, N(λ)+1 is the number of integer lattice points inside a 2-sphere of radius

λ in R3 centred at the origin. According to [38] the latter admits the asymptotic

expansion
4

3
πλ3 +Oε(λ

21/16+ε) (4.B.2)

as λ → +∞, with ε being an arbitrary positive number. This agrees with our

asymptotic formula (4.B.1).

Let us now consider the spin structure associated with the frame (4.A.17). Then

the spectrum is as follows.
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• For each m ∈ Z3 we have the eigenvalue ‖m − (0, 0, 1/2)‖ and unique (up

to rescaling) eigenfunction, with eigenfunctions corresponding to different

m being linearly independent.

• For each m ∈ Z3 we have the eigenvalue −‖m−(0, 0, 1/2)‖ and unique (up

to rescaling) eigenfunction, with eigenfunctions corresponding to different

m being linearly independent.

Hence, N(λ) is the number of integer lattice points inside a 2-sphere of radius λ in

R3 centred at (0, 0, 1/2). Here the sphere is shifted from the origin so one cannot

apply the result from [38]. However, as the shift is rational, one can reduce the

problem to counting integer lattice points in a rational ellipsoid centred at the

origin, and an application of the result from [19] gives us for the shifted sphere

the same asymptotic expansion (4.B.2) as for the sphere centred at the origin.

As explained in Appendix 4.A, the unit torus T3 admits a total of eight different

spin structures. For each of these the problem of counting positive eigenvalues

of the massless Dirac operator reduces to counting integer lattice points inside a

2-sphere of radius λ in R3 (possibly, shifted from the origin by a rational shift),

so in all eight cases we do get (4.B.1). In fact, we can replace the remainder o(λ2)

in (4.B.1) by Oε(λ
21/16+ε) and this holds for all eight different spin structures.

In the remainder of this appendix we examine the massless Dirac operator on the

unit sphere S3. We have Vol S3 = 2π2, so for the sphere formula (4.1.17) reads

N(λ) =
λ3

3
+ o(λ2). (4.B.3)

The nonperiodicity condition fails for the sphere because all geodesics are closed

with period 2π, so formula (4.B.3) cannot be used in its original form and has

to be mollified, see Remark 4.1.1. We will deal with the mollification issue later

and give explicit formulae for the eigenvalues first.

It is known that S3 admits a unique spin structure, see Section 5 in [10]. The

spectrum of the massless Dirac operator on S3 has been computed by different
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authors using different methods [77, 78, 8, 10] and reads as follows: the eigenvalues

are

±
(
k +

1

2

)
, k = 1, 2, . . . , (4.B.4)

and their multiplicity is

k(k + 1). (4.B.5)

The mollification procedure from Section 7 of [22] goes as follows. Put N(λ) := 0

for λ ≤ 0 and take an arbitrary real-valued even function ρ(λ) from Schwartz

space S(R) whose Fourier transform ρ̂(t) satisfies conditions ρ̂(0) = 1 and supp ρ̂ ⊂

(−2π, 2π). Then, according to Theorem 7.2 from [22], the mollified version of for-

mula (4.B.3) reads ∫
N(λ− µ) ρ(µ) dµ =

λ3

3
+O(λ)

and this result holds notwithstanding the failure of the nonperiodicity condition.

However, for the sphere there is a much simpler way of testing our asymptotic

formula. Let λ ≥ 2 be integer. Taking an integer λ puts us exactly in the middle

of the gap between two consecutive clusters of eigenvalues, see formulae (4.B.4)

and (4.B.5), and achieves the same averaging effect as convolution with a function

from Schwartz space. For integer λ ≥ 2 we get

N(λ) =
λ−1∑
k=1

k(k + 1) =
λ3

3
− λ

3

which agrees with our asymptotic formula (4.B.3).



Chapter 5

Spectral theoretic

characterization of the massless

Dirac action

5.1 Main result

Consider a first order differential operator A acting on 2-columns v =
(
v1 v2

)T
of complex-valued half-densities over a connected compact 3-dimensional mani-

fold M without boundary. We assume the coefficients of the operator A to be

infinitely smooth. We also assume that the operator A is formally self-adjoint,

see (4.1.1).

Let A1(x, ξ) be the principal symbol of the operator A. The principal symbol

A1(x, ξ) is a 2 × 2 Hermitian matrix-function on the cotangent bundle T ∗M ,

linear in every fibre T ∗xM . We assume that the operator A is elliptic in the sense

described by (4.1.2).

We now make two additional assumptions:

Assumption 1: We assume the principal symbol to be trace-free.

133
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Assumption 2: We assume the subprincipal symbol of the operator A to be

zero (see Section 2.1.3 in [72] for background material pertaining to the

subprincipal symbol).

The latter condition implies that our first order differential operator A is com-

pletely determined by its principal symbol. Namely, in local coordinates the full

symbol A(x, ξ) is expressed via the principal symbol A1(x, ξ) as

A(x, ξ) = A1(x, ξ)− i

2
(A1)xαξα(x) (5.1.1)

where the subscripts xα and ξα indicate partial derivatives and the repeated index

α indicates summation over α = 1, 2, 3.

We study the eigenvalue problem

Av = λwv (5.1.2)

where w(x) is a given infinitely smooth positive scalar weight function. Obviously,

the problem (5.1.2) has the same spectrum as the problem

w−1/2Aw−1/2v = λv (5.1.3)

so it may appear that the weight function w(x) is redundant. We will, however,

work with the eigenvalue problem (5.1.2) rather than with (5.1.3) because we want

our problem to possess a gauge degree of freedom (5.5.1). This gauge degree of

freedom will eventually manifest itself as the conformal invariance of the massless

Dirac action, see Section 5.5 for details.

The problem (5.1.2) has a discrete spectrum accumulating to ±∞. Recall the

definition of the counting function from Chapter 3

N(λ) :=
∑

0<λk<λ

1, (5.1.4)
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i.e. the number of eigenvalues λk of the problem (5.1.2), with account of multi-

plicities, between zero and a positive λ.

Theorem 8.4 from [22] states that under appropriate assumptions on periodic

trajectories our counting function admits a two-term asymptotic expansion

N(λ) = aλ3 + bλ2 + o(λ2) (5.1.5)

as λ→ +∞. If one wishes to reformulate the asymptotic formula (5.1.5) in such

a way that it remains valid without assumptions on periodic trajectories, this can

easily be achieved, say, by taking a convolution with a function from Schwartz

space S(R); see Theorem 7.2 in [22] and Chapter 3 for further details.

The objective of Chapter 5 is to establish the geometric meaning of the coeffi-

cient b. The logic behind restricting our analysis to the case when the manifold

is 3-dimensional and A is a 2×2 matrix differential operator with trace-free prin-

cipal symbol and zero subprincipal symbol is that this is the simplest1 eigenvalue

problem for a system of partial differential equations. Hence, it is ideal for the

purpose of establishing the geometric meaning of the coefficient b. In addition,

we are able to build our analysis on that presented in Chapter 3 and Chapter 4:

the problem considered here is a special case of that considered in Chapter 4, the

extra assumption being the vanishing subprincipal symbol.

In order to establish the geometric meaning of the coefficient b we first need to

identify the geometric objects encoded within our eigenvalue problem (5.1.2).

Geometric object 1: the metric. Observe that the determinant of the prin-

cipal symbol is a negative definite quadratic form in the dual variable ξ,

detA1(x, ξ) = −gαβξαξβ , (5.1.6)

1The only way the eigenvalue problem (5.1.2) can be made simpler is by lowering the di-
mension of the manifold to two. Unfortunately, this raises geometric issues which we cannot
currently resolve.
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and the coefficients gαβ(x) = gβα(x), α, β = 1, 2, 3, appearing in (5.1.6) can be

interpreted as the components of a (contravariant) Riemannian metric.

Geometric object 2: the nonvanishing spinor field. The determinant

of the principal symbol does not determine the principal symbol uniquely. In

order to identify a further geometric object encoded within the principal symbol

A1(x, ξ) we will now start varying this principal symbol, assuming the metric g,

defined by formula (5.1.6), to be fixed (prescribed).

Let us fix a reference principal symbol B1(x, ξ) corresponding to the prescribed

metric g and look at all principal symbols A1(x, ξ) which correspond to the same

prescribed metric g and are sufficiently close to the reference principal symbol.

Restricting our analysis to principal symbols which are close to the reference

principal symbol allows us to avoid dealing with certain topological issues; this

restriction will be dropped in Section 5.4. It turns out, see Section 5.2, that the

principal symbols A1(x, ξ) and B1(x, ξ) are related as

A1(x, ξ) = R(x)B1(x, ξ)R∗(x) , (5.1.7)

where

R : M → SU(2) (5.1.8)

is a unique infinitely smooth special unitary matrix-function which is close to the

identity matrix. Thus, special unitary matrix-functionsR(x) provide a convenient

parametrization of principal symbols with prescribed metric g.

Let B be the differential operator with principal symbol B1(x, ξ) and zero sub-

principal symbol. It is important to emphasize that for the operators A and

B themselves, as opposed to their principal symbols, we have, in general, the

inequality A 6= RBR∗ because the substitution of (5.1.7) into (5.1.1) generates

terms with derivatives of the matrix-function R(x). Hence, the transformation

of operators B 7→ A specified by formula (5.1.7) does, in general, change the

spectrum.
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The choice of reference principal symbol B1(x, ξ) in our construction is arbitrary,

as long as this principal symbol corresponds to the prescribed metric g, i.e. as

long as we have detB1(x, ξ) = −gαβ(x) ξαξβ for all (x, ξ) ∈ T ∗M . It is natural to

ask the question: what happens if we choose a different reference principal symbol

B1(x, ξ)? The freedom in choosing the reference principal symbol B1(x, ξ) is a

gauge degree of freedom in our construction and our results are invariant under

changes of the reference principal symbol. This issue is addressed in Section 5.6.

In order to work effectively with special unitary matrices we need to choose

coordinates on the 3-dimensional Lie group SU(2). It is convenient to describe a

2× 2 special unitary matrix by means of a (Weyl) spinor ζ, i.e. a pair of complex

numbers ζa, a = 1, 2. The relationship between a matrix R ∈ SU(2) and a

nonzero spinor ζ is given by the formula

R =
1

‖ζ‖

 ζ1 ζ2

−ζ2 ζ1

 , (5.1.9)

where the overline stands for complex conjugation and ‖ζ‖ :=
√
|ζ1|2 + |ζ2|2.

Here ζa is defined as follows: ζa := ζ
ȧ
. Unlike in Chapter 2, we are able to

avoid introducing dotted spinor indices using instead matrix notation throughout

Chapter 5. This simplifies our calculations.

Formula (5.1.9) establishes a one-to-one correspondence between SU(2) matrices

and nonzero spinors, modulo a rescaling of the spinor by an arbitrary positive

real factor. We choose to specify the scaling of our spinor field ζ(x) in accordance

with

‖ζ(x)‖ = w(x). (5.1.10)

Remark 5.1.1. In Chapter 4 we chose to work with a Teleparallel connection

(metric compatible affine connection with zero curvature) rather than with a

spinor field. These are closely related objects: locally a Teleparallel connection

is equivalent to a normalized ( ‖ζ(x)‖ = 1) spinor field modulo rigid rotations

(5.7.4) of the latter.
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Geometric object 3: the topological charge. It is known, see Section 4.3,

that the existence of a principal symbol implies that our manifold M is paralleliz-

able. Parallelizability, in turn, implies orientability. Having chosen a particular

orientation, we allow only changes of local coordinates xα, α = 1, 2, 3, which

preserve orientation.

We define the topological charge as

c := − i
2

√
det gαβ tr

(
(A1)ξ1(A1)ξ2(A1)ξ3

)
, (5.1.11)

with the subscripts ξα indicating partial derivatives. As explained in Section 4.3,

the number c defined by formula (5.1.11) can take only two values, +1 or −1, and

describes the orientation of the principal symbol relative to the chosen orientation

of local coordinates.

We have identified three geometric objects encoded within the eigenvalue problem

(5.1.2) — metric, nonvanishing spinor field and topological charge — defined in

accordance with formulae (5.1.6)–(5.1.11). Consequently, one would expect the

coefficients a and b from formula (5.1.5) to be expressed via these three geometric

objects. This assertion is confirmed by the following theorem which is the main

result of Chapter 5.

Theorem 5.1.1. The coefficients in the two-term asymptotics (5.1.5) are given

by the formulae

a =
1

6π2

∫
M

‖ζ‖3
√

det gαβ dx , (5.1.12)

b =
S(ζ)

2π2
, (5.1.13)

where S(ζ) is the massless Dirac action (5.A.1) with Pauli matrices

σα := (B1)ξα , α = 1, 2, 3. (5.1.14)

Theorem 5.1.1 warrants the following remarks.
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Firstly, recall that the B appearing in Theorem 5.1.1 is our reference operator

which we need to describe all possible operators A with given metric g. It is

natural to ask the question: what happens if we take A = B? In this case

formula (5.1.13) holds with spinor field ζ1(x) = w(x), ζ2(x) = 0. This in itself is

a nontrivial result.

Secondly, the topological charge c does not appear explicitly in Theorem 5.1.1.

Nevertheless, it is implicitly present in our Pauli matrices (5.1.14). Indeed, for-

mula (5.1.7) implies that the integer quantity

− i

2

√
det gαβ tr

(
(B1)ξ1(B1)ξ2(B1)ξ3

)
(5.1.15)

has the same value as (5.1.11).

Thirdly, it is tempting to apply Theorem 5.1.1 in the case when the operator A

is itself a massless Dirac operator. This cannot be done because a massless Dirac

operator acts on spinors, the components of which are invariant under changes

of local coordinates, rather than on pairs of half-densities. This impediment

can be overcome by switching to a massless Dirac operator on half-densities, see

formula (4.A.3) in Appendix 4.A. However, we cannot take A to be a massless

Dirac operator on half-densities either because, according to Lemma 4.6.1 from

Chapter 4, the latter has a nontrivial subprincipal symbol.

Finally, Theorem 5.1.1 provides a fresh perspective on the history of the subject of

two-term spectral asymptotics for first order systems, see Section 3.6 of Chapter 3

for details. Namely, Theorem 5.1.1 shows that even in the simplest case the

second asymptotic coefficient for a first order system has a highly nontrivial

geometric meaning. At a formal level, the application of microlocal techniques

does not require the use of advanced differential geometric concepts. However,

the calculations involved are so complicated that it is hard to avoid mistakes

without an understanding of the differential geometric content of the spectral

problem.
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Chapter 5 is organized as follows. In Section 5.2 we explain the origins of formula

(5.1.7) and in Section 5.3 we give the proof of Theorem 5.1.1. In Section 5.4 we

introduce the concept of spin structure which allows us to drop the restriction

that our principal symbol A1(x, ξ) is sufficiently close to the reference principal

symbol B1(x, ξ). And in Sections 5.5–5.7 we show that our formula (5.1.13) is

invariant under the action of certain gauge transformations.

5.2 Spinor representation of the principal

symbol

Let A1(x, ξ) and B1(x, ξ) be a pair of trace-free Hermitian 2×2 principal symbols

and let g be a prescribed Riemannian metric. Both A1(x, ξ) and B1(x, ξ) are

assumed to be linear in ξ:

A1(x, ξ) = A
(α)
1 (x) ξα , (5.2.1)

B1(x, ξ) = B
(α)
1 (x) ξα , (5.2.2)

where A
(α)
1 (x) and B

(α)
1 (x), α = 1, 2, 3, are some trace-free Hermitian

2 × 2 matrix-functions. The assumption that our principal symbols A1(x, ξ)

and B1(x, ξ) are linear in ξ means, of course, that we are dealing with differen-

tial operators as opposed to pseudodifferential operators. The principal symbols

A1(x, ξ) and B1(x, ξ) are assumed to satisfy

detA1(x, ξ) = detB1(x, ξ) = −gαβ(x) ξαξβ (5.2.3)

for all (x, ξ) ∈ T ∗M , and are also assumed to be sufficiently close in terms of the

C∞(M) topology applied to the matrix-functions A
(α)
1 (x) and B

(α)
1 (x), α = 1, 2, 3.

Our task in this section is to show that there exists a unique infinitely smooth

special unitary matrix-function (5.1.8) which is close to the identity matrix and
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which relates the principal symbols A1(x, ξ) and B1(x, ξ) in accordance with

formula (5.1.7).

We follow the convention of [23] and Chapter 4 in denoting the elements of the

matrices A
(α)
1 and B

(α)
1 as

(
A

(α)
1

)
ȧb

and
(
B

(α)
1

)
ȧb

respectively, where the dotted

index, running through the values 1̇, 2̇, enumerates the rows and the undotted

index, running through the values 1, 2, enumerates the columns.

Put

e1
α := Re

(
A

(α)
1

)
1̇2
, e2

α := − Im
(
A

(α)
1

)
1̇2
, e3

α := Re
(
A

(α)
1

)
1̇1
, (5.2.4)

f1
α := Re

(
B

(α)
1

)
1̇2
, f2

α := − Im
(
B

(α)
1

)
1̇2
, f3

α := Re
(
B

(α)
1

)
1̇1
. (5.2.5)

As explained in Section 4.3, formula (5.2.4) defines a frame — a triple of infinitely

smooth real orthonormal vector fields ej(x), j = 1, 2, 3, on the manifold M —

and, moreover, the principal symbol A1(x, ξ) is equivalent to the frame ej in the

sense that the principal symbol uniquely determines the frame and the frame

uniquely determines the principal symbol. Similarly, formula (5.2.5) defines a

frame fj which is equivalent to the principal symbol B1(x, ξ).

Condition (5.2.3) implies that the frames ej and fj are orthonormal with respect

to the same metric. Hence, this pair of orthonormal frames is related as

ej
α = Oj

kfk
α, (5.2.6)

where O(x) is a 3× 3 orthogonal matrix-function with elements

Oj
k = δklgαβ ej

αfl
β.

As we assumed the principal symbols A1(x, ξ) and B1(x, ξ) to be close, the frames

ej and fj are also close. Consequently, the matrix-function O(x) is close to the

identity matrix and, hence, special unitary.
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It is well-known that the Lie group SO(3) is locally (in a neighbourhood of the

identity) isomorphic to the Lie group SU(2). According to formulae (4.A.15) and

(4.A.2) from Appendix 4.A, a 3× 3 special orthogonal matrix O is expressed via

a 2× 2 special unitary matrix R as

Oj
k =

1

2
tr(sjRs

kR∗) , (5.2.7)

where

s1 :=

0 1

1 0

 = s1 , s2 :=

0 −i

i 0

 = s2 , s3 :=

1 0

0 −1

 = s3 . (5.2.8)

Formula (5.2.7) tells us that a 3 × 3 special orthogonal matrix is, effectively,

the square of a 2 × 2 special unitary matrix. Formula (5.2.7) provides a local

diffeomorphism between neighbourhoods of the identity in SO(3) and in SU(2).

A straightforward calculation shows that formulae (5.2.1), (5.2.2) and (5.2.4)–

(5.2.8) imply formula (5.1.7).

Let us now define Pauli matrices σα(x) in accordance with formula (5.1.14). Of

course, we have

σα := B
(α)
1 (x), α = 1, 2, 3, (5.2.9)

where the B
(α)
1 are the matrix-functions from formula (5.2.2). We could stick

with the notation B
(α)
1 but we choose to switch to σα because this is how Pauli

matrices are traditionally denoted in the subject.

It is easy to see that formula (5.2.3) implies

σασβ + σβσα = 2Igαβ, (5.2.10)

where I is the 2× 2 identity matrix. Formula (5.2.10) means that our σα satisfy

the defining relation for Pauli matrices.
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Formulae (5.2.6)–(5.2.8), (5.1.9), (5.2.5) and (5.2.9) allow us to express the frame

ej via the spinor field ζ and Pauli matrices σα. We took great care to choose

coordinates on the Lie group SU(2) (i.e. structure of the matrix in the RHS of

formula (5.1.9)) so that the resulting expressions agree with formulae (B.3), (B.4)

and (B.1) from [23]. The only difference is in notation: the ϑj in Appendix B

of [23] stands for ϑjα = δjkgαβ ek
β (compare with formula (5.3.4)) and the spinor

in Appendix B of [23] is denoted by ξ rather than by ζ. We do not denote the

spinor by ξ in the current chapter because in microlocal analysis the letter ξ is

traditionally reserved for denoting momentum.

The fact that our construction agrees with that in [23] will become important in

the next section when we will make use of a particular formula from [23].

Remark 5.2.1. As explained in Section 4.3, the topological charge, initially de-

fined in accordance with formula (5.1.11), can be equivalently rewritten in terms

of frames as

c = sgn det ej
α = sgn det fj

α. (5.2.11)

The paper [23] was written under the assumption that

c = +1 , (5.2.12)

see formula (A.1) in [23]. This means that care is required when using the results

of [23]. Namely, in the next section we will first prove Theorem 5.1.1 for the case

(5.2.12) and then provide a separate argument explaining why formula (5.1.13)

remains true in the case

c = −1 . (5.2.13)
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5.3 Proof of Theorem 5.1.1

We prove Theorem 5.1.1 by examining the equivalent spectral problem (5.1.3).

Note that transition from (5.1.2) to (5.1.3) is a special case of the gauge transfor-

mation (5.5.1). As explained in the beginning of Section 5.5, the gauge transfor-

mation (5.5.1) preserves the structure of our eigenvalue problem: the principal

symbol of the operator w−1/2Aw−1/2 is trace-free and its subprincipal symbol is

zero.

We now apply Theorem 4.1.1 from Chapter 4 to the eigenvalue problem (5.1.3).

Our formula (5.1.12) is an immediate consequence of formula (4.1.12) from Chap-

ter 4 and our formulae (5.1.6) and (5.1.10). Here, of course, we use the fact that

we are working in dimension three.

The proof of formula (5.1.13) is more delicate so we initially consider the case

w(x) = 1, ∀x ∈M. (5.3.1)

In this case, according to formulae (4.1.13) and (4.8.1) from Chapter 4, we have

b =
3c

8π2

∫
M

∗T ax
√

det gαβ dx , (5.3.2)

where

∗ T ax =
δkl
3

√
det gαβ

[
ek1 ∂e

l
3/∂x

2 + ek2 ∂e
l
1/∂x

3 + ek3 ∂e
l
2/∂x

1

− ek1 ∂e
l
2/∂x

3 − ek2 ∂e
l
3/∂x

1 − ek3 ∂e
l
1/∂x

2
]
, (5.3.3)

ejα = δjkgαβ ek
β. (5.3.4)

The real scalar field ∗T ax(x) has the geometric meaning of the Hodge dual of

axial torsion of the Teleparallel connection, see Chapter 4 for details.

Let us now drop the assumption (5.3.1).
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The introduction of a weight function is equivalent to a scaling of the princi-

pal symbol A1(x, ξ) 7→ (w(x))−1A1(x, ξ), which, in view of formulae (5.2.4) and

(5.1.6), leads to a scaling of the frame

ej 7→ w−1ej (5.3.5)

and corresponding scaling of the metric

gαβ 7→ w−2gαβ. (5.3.6)

Substituting (5.3.5) and (5.3.6) into (5.3.4) and (5.3.3) we see that the integrand

in formula (5.3.2) scales as

∗ T ax
√

det gαβ 7→ w2 ∗ T ax
√

det gαβ . (5.3.7)

Here the remarkable fact is that we do not get derivatives of the weight function

because these cancel out due to the antisymmetric structure of the RHS of formula

(5.3.3). In other words, axial torsion, defined by formulae (4.1.14) and (4.3.13)

from Chapter 4, has the remarkable property that it scales in a covariant manner

under scaling of the frame. Note that the full torsion tensor, defined by formula

(4.3.13) from Chapter 4, does not possess such a covariance property.

Formula (5.3.7) tells us that in order to accommodate an arbitrary weight function

w(x) we need to multiply the integrand in formula (5.3.2) by (w(x))2, which gives

us

b =
3c

8π2

∫
M

w2 ∗ T ax
√

det gαβ dx . (5.3.8)

Let us emphasize that the metric and torsion appearing in formula (5.3.8) are

the original, unscaled metric and torsion determined by the original, unscaled

principal symbol A1(x, ξ). The scaling argument has been incorporated into the

factor (w(x))2.

We now need to express the integrand in (5.3.8) in terms of the spinor field ζ.



Spectral theoretic characterization of the massless Dirac action 146

We already have a expression for the weight function in terms of the spinor field,

see formula (5.1.10). So we only need to express the Hodge dual of axial torsion

in terms of the spinor field. Formulae (5.2.4), (5.2.1), (5.2.2), (5.2.9), (5.1.7) and

(5.1.9) allow us to express the frame ej via the spinor field ζ and Pauli matrices

σα. Hence one needs to combine all these formulae to get explicit expressions for

the vector fields ej, j = 1, 2, 3, and substitute these into (5.3.4) and (5.3.3). This

is a massive calculation. Fortunately, for the case (5.2.12) this calculation was

carried out in Appendix B of [23]: in the notation of the current chapter formula

(B.5) from [23] reads

∗ T ax =
4 Re(ζ∗Wζ)

3‖ζ‖2
, (5.3.9)

where W is the massless Dirac operator (4.A.3).

Formulae (5.3.8), (5.1.10), (5.3.9) and (5.A.1) imply formula (5.1.13). This com-

pletes the proof of Theorem 5.1.1 for the case (5.2.12).

In order to prove formula (5.1.13) for the case (5.2.13), we invert coordinates

(xα 7→ −xα), which changes the sign of topological charge and allows us to use

formula (5.1.13). We then invert coordinates again and use the facts that

• the integrand of the massless Dirac action (5.A.1) is invariant under inver-

sion of coordinates and

• our spinor field ζ defined by formulae (5.1.7)–(5.1.10) is an anholonomic

object, i.e. it does not depend on the choice of coordinates. �

5.4 Spin structure

In stating our results in Section 5.1 we assumed the principal symbols A1(x, ξ) and

B1(x, ξ) to be sufficiently close. This was done in order to ensure that equation

(5.1.7) could be resolved with respect to the special unitary matrix-function R(x).

The restriction of closeness of principal symbols can be overcome by means of

the introduction of the concept of spin structure.
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Definition 5.4.1. We say that the principal symbols A1(x, ξ) and B1(x, ξ) have

the same spin structure if there exists an infinitely smooth special unitary matrix-

function (5.1.8) such that we have (5.1.7).

Remark 5.4.1. Principal symbols with the same spin structure form an equiva-

lence class.

The closeness of the principal symbols A1(x, ξ) and B1(x, ξ) is never used in

the proof of Theorem 5.1.1. All that is needed for Theorem 5.1.1 to be true is

for the principal symbols A1(x, ξ) and B1(x, ξ) to have the same spin structure,

i.e. belong to the same equivalence class.

Hence, it would have been more logical to identify the spin structure as a separate

geometric object from the very start, in Section 5.1, and avoid arguments relying

on the closeness of the principal symbols. We chose not to proceed along this

route in order to make the exposition in Section 5.1 as simple and clear as possible.

The only difference between the “local” setting (the principal symbols A1(x, ξ)

and B1(x, ξ) are assumed to be close) and the “global” setting (the principal

symbols A1(x, ξ) and B1(x, ξ) are assumed to have the same spin structure) is that

we can no longer claim that the special unitary matrix-function R(x) appearing

in formula (5.1.7) is unique. In the “local” setting uniqueness was achieved

by requiring R(x) to be close to the identity matrix, whereas in the “global”

setting R(x) is defined modulo sign (not surprising as SU(2) is the double cover

of SO(3)). This sign indeterminacy does not affect formula (5.1.13) because the

massless Dirac action is quadratic in the spinor field.

The number of different spin structures (i.e. number of equivalence classes of

principal symbols) depends on the topology of the manifold. Say, the torus T3

admits eight different spin structures, whereas the sphere S3 admits a unique spin

structure. See Appendices 4.A and 4.B in Chapter 4 and further bibliographic

references therein for more details.
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It may seem that our Definition 5.4.1 is different from the definition of spin struc-

ture in differential geometric literature. Indeed, differential geometers do not op-

erate with concepts such as the principal symbol, using frames instead. However,

it has been shown in Section 4.3 that a principal symbol is equivalent to a frame,

so our “microlocal” definition of spin structure can be easily recast in terms of

frames, bringing it in agreement with the traditional differential geometric one.

Here it is important to emphasize that we do not claim to have redefined the

notion of spin structure for the most general case. We work in the very specific

setting of dimension three.

5.5 Conformal invariance

Let us transform the differential operator A and weight w(x) as

A 7→ e−ϕ/2Ae−ϕ/2, w 7→ e−ϕw, (5.5.1)

where ϕ : M → R is an arbitrary infinitely smooth real-valued scalar function.

The transformation (5.5.1) does not change the spectrum of our eigenvalue prob-

lem (5.1.2) and, moreover, preserves its structure: the principal symbol remains

trace-free and the subprincipal symbol remains zero (the latter follows from the

well-known formula for the subprincipal symbol of a composition of pseudodif-

ferential operators, see formula (1.4) in [27]).

In this section we examine how the gauge transformation (5.5.1) works its way

into scalings of the metric, Pauli matrices and spinor field.

Formulae (5.1.6) and (5.5.1) imply that the metric transforms as

gαβ 7→ e−2ϕgαβ (5.5.2)

which means that we are looking at a conformal scaling of the metric.
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We scale the reference principal symbol B1(x, ξ) the same way as the principal

symbol A1(x, ξ), i.e. as

B1 7→ e−ϕB1, (5.5.3)

because this way we maintain the condition (5.2.3). Formulae (5.1.14) and (5.5.3)

imply that the Pauli matrices scale as

σα 7→ e−ϕσα. (5.5.4)

Of course, the scaling of Pauli matrices (5.5.4) agrees with the scaling of the

metric (5.5.2) in the sense that the scaled Pauli matrices and metric satisfy the

identity (5.2.10).

Formulae (5.1.10) and (5.5.1) imply that the spinor field scales as

ζ 7→ e−ϕζ. (5.5.5)

Let us now examine what happens to the massless Dirac action (5.A.1) under the

transformations (5.5.2) (5.5.4) and (5.5.5).

We first look at the expression Wζ. Examination of formulae (4.A.3) and (4.A.4)

show that the expression Wζ transforms as

Wζ 7→ e−2ϕWζ. (5.5.6)

We see that the expression Wζ scales in a covariant way, with “covariant” mean-

ing that the derivatives of ϕ do not appear in the RHS of (5.5.6). Of course, the

covariance of the massless Dirac operator under conformal scalings of the metric

is a know differential geometric fact: see Theorem 4.3 in [28].

Formulae (5.5.5) and (5.5.6) imply

Re(ζ∗Wζ) 7→ e−3ϕ Re(ζ∗Wζ). (5.5.7)
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Formula (5.5.2) implies gαβ 7→ e2ϕgαβ and, as we are working in dimension 3,

this, in turn, implies that the Riemannian density scales as

√
det gαβ 7→ e3ϕ

√
det gαβ . (5.5.8)

Substituting formulae (5.5.7) and (5.5.8) into formula (5.A.1) we see that our

massless Dirac action is invariant under the transformations (5.5.2) (5.5.4) and

(5.5.5). This is, of course, in agreement with Theorem 5.1.1: as the gauge trans-

formation (5.5.1) does not change the spectrum of our eigenvalue problem (5.1.2),

it does not change the second asymptotic coefficient (5.1.13) of the counting func-

tion.

5.6 SU(2) invariance

Let us transform the reference principal symbol B1(x, ξ) as

B1 7→ QB1Q
∗, (5.6.1)

where Q : M → SU(2) is an arbitrary infinitely smooth special unitary matrix-

function. Formulae (5.1.14) and (5.6.1) imply

σα 7→ QσαQ∗. (5.6.2)

Also, formulae (5.1.7) and (5.6.1) imply R 7→ RQ∗, which can be equivalently

rewritten as

R∗ 7→ QR∗. (5.6.3)

Examining the structure of the matrix R, see formula (5.1.9), we conclude that

formula (5.6.3) is equivalent to the linear transformation of the spinor field

ζ 7→ Qζ. (5.6.4)
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Formulae (5.6.2), (5.6.4) and Property 4 from Appendix 4.A of Chapter 4 tell us

that our massless Dirac action is invariant under the transformation (5.6.1). This

is, of course, in agreement with Theorem 5.1.1: the choice of reference principal

symbol does not affect the spectrum of our eigenvalue problem (5.1.2), hence, it

does not affect the second asymptotic coefficient (5.1.13) of the counting function.

5.7 Invariance under rigid rotations

Let us transform the differential operator A as

A 7→ QAQ∗ (5.7.1)

where

Q =

Q11 Q12

Q21 Q22

 (5.7.2)

is a constant special unitary matrix. The transformation (5.7.1) does not change

the spectrum of our eigenvalue problem (5.1.2) and, moreover, preserves its struc-

ture: the principal symbol remains trace-free and the subprincipal symbol remains

zero. We refer to the transformation (5.7.1) as a rigid rotation because it describes

a rotation of the frame (5.2.4), with this rotation being the same at all points of

the manifold M .

The transformation (5.7.1) is equivalent to the following transformation of the

special unitary matrix-function R(x) appearing in formula (5.1.7):

R 7→ QR. (5.7.3)

Formulae (5.1.9) and (5.1.10) give us a one-to-one correspondence between special

unitary matrix-functions and weight functions on the one hand and nonvanishing

spinor fields on the other. In terms of the spinor field the transformation (5.7.3)
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reads ζ1

ζ2

 7→
 Q21ζ2 + Q22ζ

1

−Q21ζ1 + Q22ζ
2

 . (5.7.4)

Note that, unlike (5.6.3), this transformation is not linear because of the complex

conjugation. The transformation (5.7.4) can be written as a sum of linear and

antilinear transformations:

ζ 7→ Q22ζ −Q21C(ζ) (5.7.5)

where ζ1

ζ2

 7→ C(ζ) :=

−ζ2

ζ1

 (5.7.6)

is the charge conjugation operator, see formula (4.A.9) in Appendix 4.A.

Let us show, by performing explicit calculations, that the massless Dirac action

(5.A.1) is invariant under the transformation (5.7.5). Using the fact that the

massless Dirac operator commutes with the charge conjugation operator, see

Property 3 in Appendix 4.A, we get

(Q22ζ −Q21C(ζ))∗W (Q22ζ −Q21C(ζ))

= |Q22|2 ζ∗Wζ + |Q21|2 (C(ζ))∗C(Wζ)−Q22Q21ζ
∗C(Wζ)−Q22Q21(C(ζ))∗Wζ

= |Q22|2 ζ∗Wζ + |Q21|2 ζ∗Wζ +
{
Q22Q21(C(ζ))T Wζ −Q22Q21(C(ζ))∗Wζ

}
.

But the expression in the curly brackets is purely imaginary, so

Re
[
(Q22ζ −Q21C(ζ))∗W (Q22ζ −Q21C(ζ))

]
= |Q22|2 Re

[
ζ∗Wζ

]
+|Q21|2 Re

[
ζ∗Wζ

]
=
(
|Q22|2+|Q21|2

)
Re
[
ζ∗Wζ

]
= Re

[
ζ∗Wζ

]
.
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5.A The massless Dirac action

In this appendix we define, in a concise manner, the massless Dirac action. For

more details concerning the massless Dirac operator, see Appendix 4.A.

In order to write down the massless Dirac action we need Pauli matrices, i.e. a

triple of trace-free Hermitian 2× 2 matrix-functions σα(x), α = 1, 2, 3, satisfying

the condition (5.2.10). In our case we have Pauli matrices σα(x) readily available:

these are defined in accordance with formula (5.1.14), or, equivalently, in accor-

dance with formulae (5.2.9) and (5.2.2). Covariant Pauli matrices are defined as

σα := gαβσ
β.

The massless Dirac operator is the matrix operator (4.A.3) which acts on 2-

component complex-valued spinor fields ζ =
(
ζ1 ζ2

)T
(such spinors are called

Weyl spinors).

We define the massless Dirac action as

S(ζ) :=

∫
M

Re(ζ∗Wζ)
√

det gαβ dx (5.A.1)

where the star indicates Hermitian conjugation. This is the variational functional

corresponding to the operator (4.A.3). Here, of course, we use the fact that in

view of the self-adjointness of the operator W we have

∫
M

ζ∗Wζ
√

det gαβ dx =

∫
M

(Wζ)∗ζ
√

det gαβ dx =

∫
M

Re(ζ∗Wζ)
√

det gαβ dx .

5.B Example

In this appendix we consider an explicit example illustrating the use of Theo-

rem 5.1.1.
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Consider the unit torus T3 parameterized by cyclic coordinates xα, α = 1, 2, 3, of

period 2π. Let A be the differential operator with principal symbol

A1(x, ξ) =

 ξ3 e2ix3
(ξ1 − iξ2)

e−2ix3
(ξ1 + iξ2) −ξ3

 (5.B.1)

and zero subprincipal symbol. We examine below the eigenvalue problem (5.1.2)

for this particular operator A and trivial weight function (5.3.1).

Substituting (5.B.1) into (5.1.6) we see that the above principal symbol generates

the Euclidean metric

gαβ(x) = δαβ. (5.B.2)

Hence, as the reference principal symbol it is natural to take

B1(x, ξ) =

 ξ3 ξ1 − iξ2

ξ1 + iξ2 −ξ3

 . (5.B.3)

Substituting (5.B.3) into (5.1.14) we get standard Pauli matrices

σ1 =

0 1

1 0

 , σ2 =

0 −i

i 0

 , σ3 =

1 0

0 −1

 . (5.B.4)

It is not a priori obvious that the principal symbols A1(x, ξ) and B1(x, ξ) have

the same spin structure. The only way to establish that they do indeed have

the same spin structure is to resolve equation (5.1.7) with respect to the special

unitary matrix-function R(x). Straightforward calculations give

R(x) = ±

eix3
0

0 e−ix
3

 . (5.B.5)

Of course, the underlying reasons why in this particular case we do not encounter

topological obstructions are that both principal symbols have the same (positive)

topological charge and that the frame encoded in (5.B.1) makes an even number

of turns (two turns) as x3 runs from 0 to 2π. See Appendix 4.A for more details.
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Formulae (5.1.9), (5.1.10), (5.3.1) and (5.B.5) give us the following expression for

the spinor field:

ζ(x) = ±

e−ix3

0

 . (5.B.6)

Substituting formulae (5.B.2), (5.B.4) and (5.B.6) into (4.A.3) and (5.A.1) we get

S(ζ) = −(2π)3. Hence, Theorem 5.1.1 tells us that in our example the two-term

asymptotics (5.1.5) takes the form

N(λ) =
4

3
πλ3 − 4πλ2 + o(λ2) (5.B.7)

as λ→ +∞. Note that the nonperiodicity condition (see Definitions 8.3 and 8.4

in [22]) is fulfilled in our example, so, according to Theorem 8.4 from [22], the

asymptotic formula (5.B.7) holds as it is, without mollification.

Observe now that in our example the spectrum of the operator A can be evaluated

explicitly. Indeed, let B be the differential operator with principal symbol (5.B.3)

and zero subprincipal symbol. In other words, let B = B1(x,−i∂/∂x). Put

Ã := RBR∗, where R is the matrix-function (5.B.5) It is easy to check that the

subprincipal symbol of the operator Ã is −I, where I is the identity matrix.

Hence,

A = RBR∗ + I. (5.B.8)

But the operatorRBR∗ is unitarily equivalent to the operatorB and the spectrum

of B is known, see Appendix 4.B. Using (5.B.8), we conclude that the eigenvalues

of our operator A are as follows.

• 1 is an eigenvalue of multiplicity two.

• For each m ∈ Z3 \ {0} we have the eigenvalue 1 + ‖m‖ and unique (up to

rescaling) eigenfunction, with eigenfunctions corresponding to different m

being linearly independent.
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• For each m ∈ Z3 \ {0} we have the eigenvalue 1 − ‖m‖ and unique (up to

rescaling) eigenfunction, with eigenfunctions corresponding to different m

being linearly independent.

Thus, N(λ)− 1 is the number of integer lattice points inside a 2-sphere of radius

λ− 1 in R3 centred at the origin. Applying the result from [38] we get

N(λ) =
4

3
πλ3 − 4πλ2 +Oε(λ

21/16+ε) (5.B.9)

as λ → +∞, with ε being an arbitrary positive number. The more advanced

number theoretical result (5.B.9) agrees with our asymptotic formula (5.B.7).

Note that the calculations presented in this section remain unchanged if we re-

place everywhere ξ1∓ iξ2 by ξ1± iξ2. This is in agreement with the fact that the

topological charge c does not appear in our formula (5.1.13).



Chapter 6

Spectral asymmetry of the

massless Dirac operator

6.1 Introduction

Let M be a 3-dimensional connected compact oriented manifold without bound-

ary equipped with a smooth Riemannian metric gαβ, α, β = 1, 2, 3 being the tensor

indices. Let W be the corresponding massless Dirac operator, see Appendix 4.A

for definition. There are two basic examples when the spectrum of W can be cal-

culated explicitly. The first is the unit torus T3 equipped with Euclidean metric.

The second is the unit sphere S3 equipped with metric induced by the natural

embedding of S3 in Euclidean space R4. In both examples the spectrum turns

out to be symmetric about zero, see Appendix 4.B for details. Physically, this

means that in these two examples there is no difference between the properties

of the particle (massless neutrino) and antiparticle (massless antineutrino).

As pointed out in [4, 5, 6, 7], for a general oriented Riemannian 3-manifold

(M, g) there is no reason for the spectrum of the massless Dirac operator W to

be symmetric. However, producing explicit examples of spectral asymmetry is a

difficult task. To our knowledge, the only explicit example was constructed in

[65], with the example based on the idea of choosing a 3-manifold with flat metric

157
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but highly nontrivial topology. In this chapter we take a different route: we stick

with the simplest possible topology (torus) and create spectral asymmetry by

perturbing the metric.

Further on in this chapter we work on the unit torus T3 parameterized by cyclic

coordinates xα, α = 1, 2, 3, of period 2π.

Suppose first that the metric is Euclidean. Then the massless Dirac operator

corresponding to the standard spin structure (see formula (4.A.16)) reads

W = −i

 ∂
∂x3

∂
∂x1 − i ∂

∂x2

∂
∂x1 + i ∂

∂x2 − ∂
∂x3

 . (6.1.1)

The operator (6.1.1) admits separation of variables, i.e. one can seek its eigen-

functions in the form v(x) = ueimαx
α
, m ∈ Z3, u ∈ C2, u 6= 0, and calculate the

eigenvalues and eigenfunctions explicitly. The spectrum of the operator (6.1.1) is

as follows.

• Zero is an eigenvalue of multiplicity two.

• For each m ∈ Z3 \ {0} we have the eigenvalue ‖m‖ and unique (up to

rescaling) eigenfunction of the form ueimαx
α
.

• For each m ∈ Z3 \ {0} we have the eigenvalue −‖m‖ and unique (up to

rescaling) eigenfunction of the form ueimαx
α
.

We now perturb the metric, i.e. consider a metric gαβ(x; ε) the components of

which are smooth functions of coordinates xα, α = 1, 2, 3, and small real param-

eter ε, and which satisfies

gαβ(x; 0) = δαβ. (6.1.2)

One way of establishing spectral asymmetry of the perturbed problem is to com-

pare the asymptotic distribution of large positive eigenvalues and large negative



Spectral asymmetry of the massless Dirac operator 159

eigenvalues. As explained in Section 10 of [22], for a generic first order differen-

tial operator this approach allows one to establish spectral asymmetry. Unfortu-

nately, the massless Dirac operator is very special in that the second asymptotic

coefficient of its counting function is zero, see formula (4.1.17), so in the first two

approximations in powers of λ its large positive eigenvalues are distributed the

same way as its large negative eigenvalues. Therefore, in order to demonstrate

spectral asymmetry of the perturbed problem, we will, instead of dealing with

large eigenvalues, deal with small eigenvalues.

6.2 Main result

Let W (ε) be the massless Dirac operator corresponding to the metric gαβ(x; ε).

The difficulty with applying standard perturbation techniques to the operator

W (ε) is that all its eigenvalues have even multiplicity, this being a consequence

of the fact that the massless Dirac operator W (ε) commutes with the antilinear

operator of charge conjugation

v =

v1

v2

 7→
−v2

v1

 =: C(v), (6.2.1)

see Property 3 in Appendix 4.A. In order to overcome this difficulty we develop

in Sections 6.3–6.5 a perturbation theory for the massless Dirac operator which

accounts for this charge conjugation symmetry. We show that perturbation-wise

the double eigenvalues of the massless Dirac operator can be treated as if they

were simple eigenvalues: under perturbation a double eigenvalue remains1 a dou-

ble eigenvalue and all the usual formulae apply, with only one minor modification.

The minor modification concerns the definition of the pseudoinverse of the un-

perturbed operator, see formulae (6.3.8)–(6.3.12). Namely, in the definition of

1Here, of course, it is important that we don’t have a magnetic field. A magnetic field would
split up a double eigenvalue, see [28]. The fact that the massless Dirac operator and the charge
conjugation operator do not commute in the presence of a magnetic covector potential is well
known in theoretical physics: see, for example, formula (2.5) in [41].



Spectral asymmetry of the massless Dirac operator 160

the pseudoinverse we separate out a two-dimensional eigenspace rather than a

one-dimensional eigenspace.

Given a function f : T3 → C, we denote by

f̂(m) :=
1

(2π)3

∫
T3

e−imαx
α

f(x) dx , m ∈ Z3, (6.2.2)

its Fourier coefficients. Here dx := dx1dx2dx3.

Let λ0(ε) be the eigenvalue of the massless Dirac operator with smallest modulus

and let

hαβ(x) :=
∂gαβ
∂ε

∣∣∣∣
ε=0

. (6.2.3)

Further on we raise and lower tensor indices using the Euclidean metric, which

means that raising or lowering a tensor index doesn’t change anything. A repeated

tensor index always indicates summation over the values 1, 2, 3.

The following theorem is the main result of this chapter.

Theorem 6.2.1. We have

λ0(ε) = c ε2 +O(ε3) as ε→ 0, (6.2.4)

where the constant c is given by the formula

c =
i

16
εαβγ

∑
m∈Z3\{0}

(
δµν −

mµmν

‖m‖2

)
mα ĥβµ(m) ĥγν(m) . (6.2.5)

Here εαβγ is the totally antisymmetric quantity, ε123 := +1, and the overline

stands for complex conjugation.

Theorem 6.2.1 warrants the following remarks.

• If the constant c defined by formula (6.2.5) is nonzero, then Theorem 6.2.1

tells us that for sufficiently small nonzero ε the spectrum of our massless

Dirac operator is asymmetric about zero.
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• Theorem 6.2.1 is in agreement with the established view [40, 9] that there

are no topological obstructions preventing the shift of the zero eigenvalue

of the massless Dirac operator.

• Theorem 6.2.1 is in agreement with the results of [2]. This chapter deals

with the Dirac operator in the most general setting. When applied to the

case of a compact oriented Riemannian 3-manifold (not necessarily a 3-

torus with Euclidean metric) with specified spin structure the results of [2]

tell us that if zero is an eigenvalue of the Dirac operator, then the metric

can be perturbed so that the zero eigenvalue gets shifted. Furthermore,

according to [1], the zero eigenvalue can be shifted by perturbing the met-

ric on an arbitrarily small open set, which is also in agreement with our

Theorem 6.2.1.

• Put

Lγνβµ :=
iεαβγ
(2π)3

∑
m∈Z3\{0}

(
δµν −

mµmν

‖m‖2

)
mα

∫
T3

ei(x−y)αmα ( · ) dy ,

Pγνβµ :=
1

4
(Lγνβµ + Lνγβµ + Lγνµβ + Lνγµβ).

This gives us a first order pseudodifferential operator P acting in the vector

space of rank two symmetric complex-valued tensor fields, sβµ 7→ Pγνβµsβµ.

If we equip this vector space with the natural inner product (r, s) :=∫
T3 rαβ sαβ dx then it is easy to see that the operator P is formally self-

adjoint and formula (6.2.5) can be rewritten as c = 1
128π3 (Ph, h), where h is

defined in accordance with (6.2.3). This shows that our coefficient c has a

nonlocal (global) nature, with the source of the nonlocality being the factor

δµν −
mµmν

‖m‖2
(6.2.6)

in the symbol of the pseudodifferential operator P . In other words, for-

mula (6.2.5) cannot be rewritten in terms of (linearized) local differential

geometric quantities such as the curvature tensor and the Cotton tensor.
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• The rank two tensor (6.2.6) can be identified with a linear map in R3,

pµ 7→
(
δµν − mµmν

‖m‖2

)
pν . This linear map is an orthogonal projection: it

projects onto the plane orthogonal to the covector (momentum) m.

• Suppose that we are looking at a conformal scaling of the Euclidean metric,

gαβ(x; ε) = e2εϕ(x)δαβ, where ϕ : T3 → R. Then hαβ(x) = 2ϕ(x)δαβ and

formula (6.2.5) becomes

c =
i

4
εαβγ

∑
m∈Z3\{0}

(
δµν −

mµmν

‖m‖2

)
mαδβµδγν |ϕ̂(m)|2 . (6.2.7)

The expression in the RHS of (6.2.7) is zero because the summand in∑
m∈Z3\{0} is odd in m. (Another reason why the expression in the RHS

of (6.2.7) is zero is that the summand is symmetric in β, γ.) This agrees

with the well-known fact that the zero eigenvalue does not shift under a

conformal scaling of the metric, see Theorem 4.3 in [28].

• Suppose that we replace the tensor hαβ(x) by the tensor hαβ(−x). Then

ĥαβ(m) is replaced by −ĥαβ(−m) and, introducing a new summation index

n := −m in formula (6.2.5), we see that the coefficient c changes sign.

Physically, this means that formula (6.2.5) feels the difference between “left”

and “right”, as one would expect of a formula describing a fermion.

The proof of Theorem 6.2.1 is given in Section 6.6. In Section 6.7 we treat the

special case when the metric gαβ(x; ε) is a function of the coordinate x1 only. In

Sections 6.8 and 6.9 we present families of metrics for which the eigenvalue λ0(ε)

can be evaluated explicitly. Finally, in Section 6.10 we examine the eta invariant

of our ε-dependent massless Dirac operator.

6.3 Perturbation process I: preliminaries

Let M be a 3-dimensional connected compact oriented manifold without bound-

ary equipped with a smooth Riemannian metric gαβ(x), α, β = 1, 2, 3 being the
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tensor indices and x = (x1, x2, x3) being local coordinates. The perturbation

theory developed in this section and Sections 6.4–6.5 does not assume that the

manifold is necessarily a 3-torus.

We perturb the metric in a smooth manner and denote the perturbed metric by

gαβ(x; ε), where ε is a small real parameter. Here we assume that gαβ(x; 0) is the

unperturbed metric described in the previous paragraph.

By W1/2(ε) we denote the massless Dirac operator on half-densities corresponding

to the metric gαβ(x; ε), see Appendix 4.A for details. We choose to work with the

massless Dirac operator on half-densities W1/2(ε) rather than with the massless

Dirac operator W (ε) because we do not want our Hilbert space to depend on

ε. The difference between the operators W (ε) and W1/2(ε) is explained in Ap-

pendix 4.A: compare formulae (4.A.3) and (4.A.19). The spectra of the operators

W (ε) and W1/2(ε) are the same.

The operator W1/2(ε) is actually not a single operator, but an equivalence class

of operators which differ by the transformation

W1/2(ε) 7→ RW1/2(ε)R∗, (6.3.1)

where R(x; ε) is an arbitrary smooth 2 × 2 special unitary matrix-function. See

Property 4 in Appendix 4.A for a detailed discussion regarding the transformation

(6.3.1), noting that the massless Dirac operator on half-densities W1/2(ε) differs

from the massless Dirac operator W (ε) only by “scalar” factors on the left and

on the right — these “scalar” factors commute with matrix-functions R(x; ε)

and R∗(x; ε). Obviously, the transformation (6.3.1) does not affect the spectrum.

Later on, in Section 6.6, we will use this gauge degree of freedom to simplify

calculations, see formula (6.6.11).

The operator W1/2(ε) acts on 2-columns v =

v1

v2

 of complex-valued half-

densities. Our Hilbert space is L2(M ;C2), which is the vector space of 2-columns
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of square integrable half-densities equipped with inner product

〈v, w〉 :=

∫
M

w∗v dx . (6.3.2)

The domain of the operator W1/2(ε) is H1(M ;C2), which is the Sobolev space of 2-

columns of half-densities that are square integrable together with their first partial

derivatives. It is known that the operator W1/2(ε) : H1(M ;C2) → L2(M ;C2) is

self-adjoint and that it has a discrete spectrum, with eigenvalues accumulating to

+∞ and −∞. Note that here neither the Hilbert space nor the domain depend on

ε. It is also known that the eigenfunctions of the operator W1/2(ε) are infinitely

smooth.

The antilinear operator of charge conjugation (6.2.1) maps any element of L2(M ;C2)

to an element of L2(M ;C2) and any element of H1(M ;C2) to an element of

H1(M ;C2). As the massless Dirac operator on half-densities W1/2(ε) differs from

the massless Dirac operator W (ε) only by real “scalar” factors on the left and on

the right, it also commutes with the operator of charge conjugation:

C(W1/2(ε) v) = W1/2(ε) C(v) , (6.3.3)

∀v ∈ H1(M ;C2). Note that the operator of charge conjugation does not itself

depend on ε.

Observe that formulae (6.2.1) and (6.3.2) imply the following useful identities:

C(C(v)) = −v, (6.3.4)

〈v ,C(v)〉 = 0, (6.3.5)

〈C(v) ,C(w)〉 = 〈w, v〉. (6.3.6)

Let

W1/2(ε) = W
(0)
1/2 + εW

(1)
1/2 + ε2W

(2)
1/2 + . . . (6.3.7)
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be the asymptotic expansion of the partial differential operator W1/2(ε) in powers

of the small parameter ε. Obviously, the operators W
(k)
1/2, k = 0, 1, 2, . . ., are

formally self-adjoint first order differential operators which commute with the

antilinear operator of charge conjugation (6.2.1).

Suppose that λ(0) is a double eigenvalue of the operator W
(0)
1/2. As explained in

Appendix 4.A, eigenvalues of the massless Dirac operator have even multiplicity,

so a double eigenvalue is the “simplest” eigenvalue one can get.

Remark 6.3.1. The spectrum of the massless Dirac operator on a 3-torus equipped

with Euclidean metric was written down explicitly in Section 6.1. Examination

of the relevant formulae shows that the only double eigenvalue is the eigenvalue

zero as all others have multiplicity greater than or equal to six. However, in this

section and Sections 6.4–6.5 we do not use the fact that λ(0) = 0.

Let v(0) be a normalized, ‖v(0)‖ = 1, eigenfunction of the operator W
(0)
1/2 corre-

sponding to the eigenvalue λ(0). Formula (6.3.3) and the fact that λ(0) is real

imply that C(v(0)) is also an eigenfunction of the operator W
(0)
1/2 corresponding to

the eigenvalue λ(0). Formula (6.3.6) implies that ‖C(v(0))‖ = 1, and, moreover,

in view of formula (6.3.5), the eigenfunctions v(0) and C(v(0)) are orthogonal.

The argument presented in the previous paragraph shows that, when dealing with

a double eigenvalue of the massless Dirac operator, it is sufficient to construct

only one eigenfunction: the other one is obtained by charge conjugation. The ar-

gument is valid not only for the unperturbed operator W
(0)
1/2, but for the perturbed

operator W1/2(ε) as well, provided that ε is small enough (so that the multiplicity

of the eigenvalue does not increase). Hence, in the perturbation process described

in the next section we shall construct one eigenfunction only.

In the perturbation process that we will describe in the next section we will make

use of the pseudoinverse of the unperturbed operator. This operator, which we

denote by Q, is defined as follows. Consider the problem

(W
(0)
1/2 − λ

(0))v = f (6.3.8)
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where f ∈ L2(M ;C2) is given and v ∈ H1(M ;C2) is to be found. Suppose that

f satisfies the conditions

〈f, v(0)〉 = 〈f,C(v(0))〉 = 0. (6.3.9)

Then the problem (6.3.8) can be resolved for v, however this solution is not

unique. We achieve uniqueness by imposing the conditions

〈v, v(0)〉 = 〈v,C(v(0))〉 = 0 (6.3.10)

and define Q as the linear operator mapping f to v,

Q : f 7→ v. (6.3.11)

Thus, Q is a bounded linear operator acting in the orthogonal complement of the

eigenspace of the operator W
(0)
1/2 corresponding to the eigenvalue λ(0). We extend

this operator to the whole Hilbert space L2(M ;C2) in accordance with

Qv(0) = QC(v(0)) = 0. (6.3.12)

It is clear from the above definition that the bounded linear operator Q is self-

adjoint and commutes with the antilinear operator of charge conjugation (6.2.1).

Note that our definition of the pseudoinverse Q of the unperturbed operator

W
(0)
1/2 − λ(0) is in agreement with Rellich’s, see Chapter 2 Section 2 in [66].

Throughout our perturbation process we will have to deal with various formally

self-adjoint linear operators which commute with the antilinear operator of charge

conjugation (6.2.1). Such operators possess a special property which is the subject

of the following lemma.

Lemma 6.3.1. Let L : C∞(M ;C2) → C∞(M ;C2) be a (possibly unbounded)

formally self-adjoint linear operator which commutes with the antilinear operator
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of charge conjugation (6.2.1). Then for any v ∈ C∞(M ;C2) we have

〈Lv,C(v)〉 = 0. (6.3.13)

Proof Take arbitrary v, w ∈ C∞(M ;C2). Using formula (6.3.6) and the fact that

L is formally self-adjoint and commutes with C, we get

〈LC(w) ,C(v)〉 = 〈C(Lw) ,C(v)〉 = 〈v, Lw〉 = 〈Lv,w〉. (6.3.14)

For w = C(v) formula (6.3.14) reads

〈LC(C(v)) ,C(v)〉 = 〈Lv,C(v)〉. (6.3.15)

But in view of (6.3.4) formula (6.3.15) can be rewritten as

−〈Lv ,C(v)〉 = 〈Lv ,C(v)〉,

which gives us the required identity (6.3.13). �

6.4 Perturbation process II: formal procedure

We now write down the formal perturbation process. A rigorous justification will

be provided in the next section.

Further on in this section as well as in the two following sections (Sections 6.5

and 6.6) we write, for the sake of brevity, A(ε) = W1/2(ε) and A(k) = W
(k)
1/2,

k = 0, 1, 2, . . .. In this new notation formula (6.3.7) reads

A(ε) = A(0) + εA(1) + ε2A(2) + . . . . (6.4.1)
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We need to solve the eigenvalue problem

A(ε) v(ε) = λ(ε) v(ε) . (6.4.2)

We seek the eigenvalue and eigenfunction of the perturbed operator A(ε) in the

form of asymptotic expansions

λ(ε) = λ(0) + ελ(1) + ε2λ(2) + . . . , (6.4.3)

v(ε) = v(0) + εv(1) + ε2v(2) + . . . . (6.4.4)

Note that we do not aim to preserve the normalization of our eigenfunction

throughout the perturbation process.

Let us forget for a moment that we are dealing with a double eigenvalue and

suppose that our eigenvalue is simple. Then the iterative procedure for the de-

termination of λ(k) and v(k), k = 1, 2, . . ., is well known, see Chapter 2 Section 2

in [66]. At the kth step we get the equation

(A(0) − λ(0))v(k) = f (k), (6.4.5)

where

f (k) := F (k)v(0), (6.4.6)

and F (k) is some linear operator. The explicit formula for the operator F (k)

appearing in equations (6.4.5), (6.4.6) is written as follows. Put

D(ε) := (B(0)−B(ε))

(
I +

∞∑
j=1

[
Q (B(0)−B(ε))

]j)
, (6.4.7)

where I is the identity operator, B(ε) := A(ε) − λ(ε)I and the infinite sum

is understood as an asymptotic series. The operator D(ε) can be expanded in
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powers of the small parameter ε,

D(ε) =
∞∑
k=1

εkF (k), (6.4.8)

giving us the required F (k). The real number λ(k) is determined from the condition

〈f (k), v(0)〉 = 0 (6.4.9)

after which we resolve (6.4.5) by setting

v(k) = Qf (k). (6.4.10)

We claim that the above process carries over to the case of a double eigenvalue

that we are dealing with. Indeed, the difference between the cases of a simple

eigenvalue and a double eigenvalue is that at the kth step of the iterative process

in addition to condition (6.4.9) we need to satisfy the condition

〈f (k),C(v(0))〉 = 0. (6.4.11)

The structure of the operator (6.4.7) is such that it is formally self-adjoint and

commutes with the antilinear operator of charge conjugation (6.2.1), so the op-

erator F (k) defined in accordance with formula (6.4.8) has the same properties

and, hence, by Lemma 6.3.1, condition (6.4.11) is satisfied automatically and the

asymptotic process continues as if the eigenvalue were simple.

We end this section by giving, for future reference, the explicit formulae for the

coefficients λ(1) and λ(2) appearing in the asymptotic expansion (6.4.3):

λ(1) = 〈A(1)v(0), v(0)〉, (6.4.12)

λ(2) = 〈A(2)v(0), v(0)〉 − 〈(A(1) − λ(1))Q (A(1) − λ(1)) v(0), v(0)〉 . (6.4.13)
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6.5 Perturbation process III: justification

Recall that by λ(0) = λ(0) we denote a double eigenvalue of the unperturbed

operator A(0) = A(0) (the unperturbed massless Dirac operator on half-densities).

Let us choose a δ > 0 such that λ(0) is the only eigenvalue of the operator A(0)

on the interval [λ(0) − δ, λ(0) + δ].

In order to justify our perturbation process we will need the following lemma.

Lemma 6.5.1. For sufficiently small ε the interval

(λ(0) − δ, λ(0) + δ) (6.5.1)

contains exactly one double eigenvalue of the operator A(ε) and no other eigen-

values.

Proof Denote Cδ := {µ ∈ C | |µ − λ(0)| = δ} (circle in the complex plane) and

Dδ := {µ ∈ C | |µ − λ(0)| < δ} (open disc in the complex plane). Put R
(0)
µ :=

(A(0)−µI)−1. Clearly, for µ ∈ Cδ the operator R
(0)
µ is well-defined and, moreover,

is a bounded operator acting from L2(M ;C2) to H1(M ;C2). Furthermore, the

norm of the operator R
(0)
µ : L2(M ;C2) → H1(M ;C2) is bounded uniformly over

µ ∈ Cδ.

Let us now define the operator

Rµ(ε) :=

(
I +

∞∑
j=1

[
−R(0)

µ (A(ε)− A(0))
]j)

R(0)
µ , (6.5.2)

where µ ∈ Cδ. The operator A(ε) − A(0) is a bounded operator acting from

H1(M ;C2) to L2(M ;C2) and the norm of the operator A(ε) − A(0) :

H1(M ;C2) → L2(M ;C2) tends to zero as ε tends to zero. Hence, the series

in (6.5.2) converges for sufficiently small ε. Furthermore, it is easy to see that

Rµ(ε)→ R(0)
µ as ε→ 0 (6.5.3)
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in the sense of the operator norm L2(M ;C2)→ H1(M ;C2) and this convergence

is uniform over µ ∈ Cδ.

Acting onto (6.5.2) with the operator A(ε)−µI we see that (A(ε)−µI)Rµ(ε) = I,

so Rµ(ε) = (A(ε)− µI)−1. Put

E(ε) :=
1

2πi

∫
Cδ

Rµ(ε) dµ . (6.5.4)

The operator E(ε) is the orthogonal projection onto the span of eigenvectors of the

operator A(ε) corresponding to eigenvalues on the interval (6.5.1). In particular,

E(0) = E(0) is the orthogonal projection onto the span of eigenvectors of the

operator A(0) corresponding to the double eigenvalue λ(0).

Formulae (6.5.3) and (6.5.4) imply

‖E(ε)− E(0)‖op → 0 as ε→ 0, (6.5.5)

where ‖ · ‖op stands for the operator norm in the Banach space of bounded linear

operators L2(M ;C2) → L2(M ;C2). Formula (6.5.5) implies that for sufficiently

small ε we have

‖E(ε)− E(0)‖op < 1. (6.5.6)

Formula (6.5.6) and the fact that the orthogonal projections E(ε) and E(0) have

finite rank imply that rankE(ε) = rankE(0) = 2 . Thus, the operator A(ε) has

two eigenvalues, counted with multiplicities, on the interval (6.5.1). We know, see

Property 3 in Appendix 4.A, that the eigenvalues of the operator A(ε) have even

multiplicity, so we are looking at one double eigenvalue on the interval (6.5.1). �

Let λ(ε) be the unique double eigenvalue of the operator A(ε) from the interval

(6.5.1). Denote by σ(ε) the spectrum of the operator A(ε) and, for a given µ ∈ R,

denote dist(µ, σ(ε)) = min
ν∈σ(ε)

|µ − ν|. Obviously, without additional information
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on µ and on σ(ε) we can only guarantee the inequality

dist(µ, σ(ε)) ≤ |µ− λ(ε)|. (6.5.7)

Choose an arbitrary natural k and denote

λ̃(ε) = λ(0) + ελ(1) + ε2λ(2) + . . .+ εkλ(k), (6.5.8)

ṽ(ε) = v(0) + εv(1) + ε2v(2) + . . .+ εkv(k), (6.5.9)

where the λ(j) and v(j), j = 0, 1, . . . , k, are taken from (6.4.3) and (6.4.4). We

have

‖ṽ(ε)‖ = 1 +O(ε), (6.5.10)

‖(A(ε)− λ̃(ε))ṽ(ε)‖ = O(εk+1), (6.5.11)

where ‖ · ‖ stands for the L2(M ;C2) norm (see (6.3.2) for inner product). As

our operator A(ε) is self-adjoint, formulae (6.5.10) and (6.5.11) imply

dist(λ̃(ε), σ(ε)) ≤ ‖(A(ε)− λ̃(ε))ṽ(ε)‖
‖ṽ(ε)‖

= O(εk+1). (6.5.12)

Formulae (6.5.8) and (6.5.12) and Lemma 6.5.1 imply that for sufficiently small ε,

dist(λ̃(ε), σ(ε)) = |λ̃(ε)− λ(ε)|, (6.5.13)

compare with (6.5.7). Combining formulae (6.5.12) and (6.5.13), we get λ(ε) =

λ̃(ε) +O(εk+1). This completes the justification of our perturbation process.

6.6 Proof of Theorem 6.2.1

The unperturbed massless Dirac operator on half-densities, which we denote by

A(0), is given by the expression in the RHS of (6.1.1). The unperturbed eigenvalue,



Spectral asymmetry of the massless Dirac operator 173

λ(0), is zero and the corresponding normalized eigenfunction is

v(0) =
1

(2π)3/2

1

0

 . (6.6.1)

The pseudoinverse Q of the operator A(0) is given by the formula

Q =
1

(2π)3

∑
m∈Z3\{0}

eimαx
α

 m3 m1 − im2

m1 + im2 −m3

−1 ∫
T3

e−imαy
α

( · ) dy

=
1

(2π)3

∑
m∈Z3\{0}

eimαx
α

‖m‖2

 m3 m1 − im2

m1 + im2 −m3

∫
T3

e−imαy
α

( · ) dy , (6.6.2)

where dy := dy1dy2dy3. The operator (6.6.2) is a self-adjoint pseudodifferential

operator of order −1.

We have

λ(ε) = ελ(1) + ε2λ(2) +O(ε3), (6.6.3)

where the coefficients λ(1) and λ(2) are given by formulae (6.4.12) and (6.4.13)

respectively. Thus, in order to prove Theorem 6.2.1 we need to write down

explicitly the differential operators A(1) and A(2) appearing in the asymptotic

expansion of the perturbed massless Dirac operator on half-densities,

A(ε) = A(0) + εA(1) + ε2A(2) +O(ε3). (6.6.4)

In what follows we use terminology from microlocal analysis. In particular, we use

the notions of the principal and subprincipal symbols of a differential operator,

see Subsection 3.1.3 in the current document or Subsection 2.1.3 in [72] for details.

Let L be a first order 2 × 2 matrix differential operator. We denote its prin-

cipal and subprincipal symbols by L1(x, ξ) and Lsub(x) respectively. Here ξ =

(ξ1, ξ2, ξ3) is the variable dual to the position variable x. The subscript in L1(x, ξ)

indicates the degree of homogeneity in ξ.
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A first order differential operator L is completely determined by its principal and

subprincipal symbols. Indeed, the principal symbol has the form

L1(x, ξ) = M (α)(x) ξα , (6.6.5)

where M (α)(x) are matrix-functions depending only on the position variable x.

It is easy to see that the differential operator L is given by the formula

L = − i
2
M (α)(x)

∂

∂xα
− i

2

∂

∂xα
M (α)(x) + Lsub(x) . (6.6.6)

Given a first order differential operator L, let us consider the expression 〈Lv(0), v(0)〉,

where v(0) is the constant column (6.6.1) and angular brackets indicate the inner

product (6.3.2). Examination of formula (6.6.6) shows that

〈Lv(0), v(0)〉 = 〈Lsubv
(0), v(0)〉

because the terms coming from the principal symbol integrate to zero. Conse-

quently formulae (6.4.12) and (6.4.13) simplify and now read

λ(1) = 〈A(1)
subv

(0), v(0)〉, (6.6.7)

λ(2) = 〈A(2)
subv

(0), v(0)〉 − 〈(A(1) − λ(1))Q (A(1) − λ(1)) v(0), v(0)〉 . (6.6.8)

We see that for the purpose of proving Theorem 6.2.1 we do not need to know

the full operator A(2), only its subprincipal symbol A
(2)
sub.

In order to write down explicitly the massless Dirac operator on half-densities

A(ε) we need the concepts of frame and coframe. The differential geometric

definition of coframe was given in Section 3 of [21]. However, as in the current

chapter we are working in a specified coordinate system, we can adopt a somewhat

simpler approach. For the purposes of the current chapter a coframe is a smooth
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real-valued matrix-function ejα(x; ε), j, α = 1, 2, 3, satisfying the conditions

gαβ(x; ε) = δjk e
j
α(x; ε) ekβ(x; ε) , (6.6.9)

ejα(x; 0) = δjα . (6.6.10)

Here and further on when dealing with matrix-functions we use the convention

that the first index (subscript or superscript) enumerates the rows and the second

index (subscript or superscript) enumerates the columns. Say, in matrix notation

the RHS of (6.6.9) reads as “product of coframe transposed and coframe”.

Note that the reason we imposed condition (6.6.10) is so that our unperturbed

operator has the form (6.1.1). See also formula (6.3.1) and associated discussion.

For a given metric gαβ(x; ε) the coframe ejα(x; ε) is not defined uniquely. We can

multiply the matrix-function ejα(x; ε) from the left by an arbitrary smooth 3× 3

special orthogonal matrix-function O(x; ε) satisfying the condition O(x; 0) = I,

with I denoting the 3× 3 identity matrix. This will give us a new coframe satis-

fying the defining relations (6.6.9) and (6.6.10). As explained in Appendix 4.A,

this freedom in the choice of coframe is a gauge degree of freedom which does not

affect the spectrum. In the current section we specify the gauge by requiring the

matrix-function ejα(x; ε) to be symmetric,

ejα(x; ε) = eαj(x; ε). (6.6.11)

Condition (6.6.11) makes sense because we are working in a specified coordinate

system. Looking ahead, let us point out the main advantage of the symmet-

ric gauge (6.6.11): the asymptotic expansion of the subprincipal symbol of the

massless Dirac operator on half-densities in powers of ε starts with a quadratic

term and, moreover, the coefficient at ε2 has an especially simple structure, see

formulae (6.6.16) and (6.6.19).

In matrix notation condition (6.6.9) now reads “the symmetric positive ma-

trix gαβ(x; ε) is the square of the symmetric matrix ejα(x; ε)”. Conversely, the
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symmetric matrix ejα(x; ε) is the square root of the symmetric positive matrix

gαβ(x; ε). We choose the branch of the square root so that the matrix ejα(x; ε) is

positive.

According to formulae (6.1.2) and (6.2.3) we have

gαβ(x; ε) = δαβ + εhαβ(x) +O(ε2), (6.6.12)

hence, by Taylor’s formula for
√

1 + z ,

ejα(x; ε) = δjα +
ε

2
hjα(x) +O(ε2). (6.6.13)

Here we follow the convention introduced in Section 6.2: we raise and lower

indices in h using the Euclidean metric, which means that raising or lowering

an index doesn’t change anything. We also swap, when needed, tensor (Greek)

indices for frame (Latin) indices, which is acceptable because we are working in

a specified coordinate system.

The frame is the smooth real-valued matrix-function ej
α(x; ε), j, α = 1, 2, 3, de-

fined by the system of linear algebraic equations

ej
α(x; ε) ekα(x; ε) = δj

k. (6.6.14)

Note the position of indices in formula (6.6.14). In matrix notation formula

(6.6.14) reads as “the frame is the transpose of the inverse of the coframe”. As

we chose our coframe to be symmetric, our frame is also symmetric and is simply

the inverse of the coframe. Formula (6.6.13) and Taylor’s formula for (1 + z)−1

imply

ej
α(x; ε) = δj

α − ε

2
hj

α(x) +O(ε2). (6.6.15)
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According to formulae (4.6.1), (4.3.5) and (4.8.1) the subprincipal symbol of the

massless Dirac operator on half-densities is

Asub(x; ε) =
3

4

(
∗T ax(x; ε)

)
I , (6.6.16)

where I is the 2× 2 identity matrix and ∗T ax(x; ε) is the scalar function

∗T ax =
δkl
3

√
det gαβ

[
ek1 ∂e

l
3/∂x

2 + ek2 ∂e
l
1/∂x

3 + ek3 ∂e
l
2/∂x

1

− ek1 ∂e
l
2/∂x

3 − ek2 ∂e
l
3/∂x

1 − ek3 ∂e
l
1/∂x

2
]
. (6.6.17)

Note that formula (6.6.12) implies gαβ(x; ε) = δαβ − εhαβ(x) + O(ε2) , which, in

turn, gives us √
det gαβ(x; ε) = 1− ε

2
trh(x) +O(ε2). (6.6.18)

Substituting formulae (6.6.18) and (6.6.13) into (6.6.17) and using the symmetry

condition (6.6.11), we get

∗T ax(x; ε) =

ε2δkl

12

[
hk1

∂hl3
∂x2

+ hk2
∂hl1
∂x3

+ hk3
∂hl2
∂x1
− hk1

∂hl2
∂x3
− hk2

∂hl3
∂x1
− hk3

∂hl1
∂x2

]
+O(ε3)

= − ε
2

12
εβγδhαβ

∂hαγ
∂xδ

+O(ε3) . (6.6.19)

Formulae (6.6.16) and (6.6.19) imply

A
(1)
sub(x) = 0, (6.6.20)

A
(2)
sub(x) = − 1

16
εβγδ hαβ

∂hαγ
∂xδ

I . (6.6.21)

Substituting (6.6.20) into (6.6.7) we get λ(1) = 0. Formulae (6.6.3) and (6.6.8)

now simplify and read

λ(ε) = c ε2 +O(ε3), (6.6.22)

c = λ(2) = 〈A(2)
subv

(0), v(0)〉 − 〈A(1)QA(1) v(0), v(0)〉 . (6.6.23)
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In order to complete our calculation we now need only to write down the principal

symbol A
(1)
1 (x, ξ) of the differential operator A(1).

According to formulae (4.A.1)–(4.A.3) and (4.A.19) the principal symbol of the

massless Dirac operator on half-densities is

A1(x, ξ; ε) =

 e3
α e1

α − ie2
α

e1
α + ie2

α −e3
α

 ξα . (6.6.24)

Formulae (6.6.24) and (6.6.15) imply

A
(1)
1 (x, ξ) = −1

2

 h3
α h1

α − ih2
α

h1
α + ih2

α −h3
α

 ξα . (6.6.25)

Formulae (6.6.5), (6.6.6), (6.6.20) and (6.6.25) allow us to write down the differ-

ential operator A(1) explicitly:

A(1) =
i

4

 h3
α h1

α − ih2
α

h1
α + ih2

α −h3
α

 ∂

∂xα

+
i

4

∂

∂xα

 h3
α h1

α − ih2
α

h1
α + ih2

α −h3
α

 . (6.6.26)

Substituting formulae (6.6.1), (6.6.2), (6.6.21) and (6.6.26) into (6.6.23) we arrive

at (6.2.5). This completes the proof of Theorem 6.2.1.

6.7 Axisymmetric case

An important special case is when the metric gαβ(x; ε) is a function of the coor-

dinate x1 only. In this case one can choose the coframe and frame so that they

depend on the coordinate x1 only and seek eigenfunctions in the form

v(x) = u(x1)ei(m2x2+m3x3), m2,m3 ∈ Z.
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We get separation of variables, i.e. the original eigenvalue problem for a partial

differential operator reduces to an eigenvalue problem for an ordinary differen-

tial operator depending on the integers m2 and m3 as parameters. As we know

the spectrum of the unperturbed operator (see Section 6.1) and as the eigenval-

ues of the original partial differential operator depend on the small parameter ε

continuously, the eigenvalue with smallest modulus will come from the ordinary

differential operator with m2 = m3 = 0. We call the case m2 = m3 = 0 the

axisymmetric case.

The axisymmetric massless Dirac operator on half-densities reads

W1/2(ε) =

− i

2

 e3
1 e1

1 − ie2
1

e1
1 + ie2

1 −e3
1

 d

dx1
− i

2

d

dx1

 e3
1 e1

1 − ie2
1

e1
1 + ie2

1 −e3
1


+

δjk

4
√

det gαβ

[
ej3

(
dek2

dx1

)
− ej2

(
dek3

dx1

)]
I , (6.7.1)

where I is the 2× 2 identity matrix and

√
det gαβ =

1√
det gαβ

= det ejα =
1

det ejα
.

Here ejα(x1; ε) and ej
α(x1; ε) are the coframe and frame defined in accordance

with formulae (6.6.9), (6.6.10) and (6.6.14).

Of course, for a given metric gαβ(x1; ε) the coframe ejα(x1; ε) and frame ej
α(x1; ε)

are not defined uniquely. We can multiply the matrix-functions ejα(x1; ε) and

ej
α(x1; ε) from the left by an arbitrary smooth 3 × 3 special orthogonal matrix-

function O(x1; ε) satisfying the condition O(x1; 0) = I, with I denoting the 3× 3

identity matrix. This will give us a new coframe and a new frame satisfying

the defining relations (6.6.9), (6.6.10) and (6.6.14). Note that in writing down

formula (6.7.1) we did not assume a particular choice of gauge, compare with

(6.6.11).
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In the axisymmetric case formula (6.2.5) also simplifies and reads now

c = −1

8

∑
m1∈N

m1 tr

ĥ22 ĥ23

ĥ32 ĥ33

0 −i

i 0

ĥ22 ĥ23

ĥ32 ĥ33

∗  , (6.7.2)

where ĥαβ = ĥαβ(m1) and the star stands for Hermitian conjugation.

6.8 Example of quadratic dependence on ε

Consider the metric

gαβ(x1; ε) dxαdxβ =
[
dx1
]2

+
[(

1 + ε
(
cosx1

))
dx2 + ε

(
sinx1

)
dx3
]2

+
[
ε
(
sinx1

)
dx2 +

(
1− ε

(
cosx1

))
dx3
]2
. (6.8.1)

Then

ejα(x1; ε) = δjα + ε


0 0 0

0 cos x1 sinx1

0 sinx1 − cosx1

 (6.8.2)

is a coframe associated with the metric (6.8.1), see formulae (6.6.9), (6.6.10), and

ej
α(x1; ε) =


1 0 0

0 1−ε cosx1

1−ε2 − ε sinx1

1−ε2

0 − ε sinx1

1−ε2
1+ε cosx1

1−ε2

 (6.8.3)

is the corresponding frame, see formula (6.6.14). Note that in writing formula

(6.8.3) we used the fact that

det ejα(x; ε) = 1− ε2 =
√

det gαβ . (6.8.4)
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Substituting formulae (6.8.2)–(6.8.4) into (6.7.1) we get

W (ε) = −i

0 1

1 0

 d

dx1
− ε2

2(1− ε2)
I. (6.8.5)

Note that in the LHS we dropped the subscript 1/2 : as the Riemannian density

is constant, see (6.8.4), there is no need to distinguish the massless Dirac operator

W (ε) and the massless Dirac operator on half-densities W1/2(ε).

It is easy to see that the eigenvalues of the ordinary differential operator (6.8.5)

subject to the (boundary) condition of 2π-periodicity are

λn(ε) = n− ε2

2(1− ε2)
, n ∈ Z,

and that all eigenvalues have multiplicity two. In particular, the eigenvalue with

smallest modulus is

λ0(ε) = − ε2

2(1− ε2)
= −ε

2

2
+O(ε4) as ε→ 0. (6.8.6)

Let us now test Theorem 6.2.1 by comparing the asymptotic formula from this

theorem with formula (6.8.6). Substituting (6.8.1) into (6.2.3) we get

hαβ(x1) = 2


0 0 0

0 cos x1 sinx1

0 sinx1 − cosx1

 .

Application of the Fourier transform (6.2.2) gives us

ĥαβ(m1) =




0 0 0

0 1 −i

0 −i −1

 for m1 = 1,

0 for m1 = 2, 3, . . . .

(6.8.7)



Spectral asymmetry of the massless Dirac operator 182

Substituting (6.8.7) into (6.7.2) we get c = −1
2
, in agreement with (6.8.6).

6.9 Example of quartic dependence on ε

Consider the metric

gαβ(x1; ε) dxαdxβ =
[
dx1 + ε

(
cosx1

)
dx2 + ε

(
sinx1

)
dx3
]2

+
[
dx2
]2

+
[
dx3
]2
. (6.9.1)

Then

ejα(x1; ε) = δjα + ε


0 cos x1 sinx1

0 0 0

0 0 0

 (6.9.2)

is a coframe associated with the metric (6.9.1), see formulae (6.6.9), (6.6.10), and

ej
α(x1; ε) = δj

α − ε


0 0 0

cosx1 0 0

sinx1 0 0

 (6.9.3)

is the corresponding frame, see formula (6.6.14). Note that in writing formula

(6.9.3) we used the fact that

det ejα(x; ε) = 1 =
√

det gαβ . (6.9.4)

Substituting formulae (6.9.2)–(6.9.4) into (6.7.1) we get

W (ε) = −i

0 1

1 0

 d

dx1
− ε2

4
I

+
iε

2

 sinx1 −i cosx1

i cosx1 − sinx1

 d

dx1
+
iε

2

d

dx1

 sinx1 −i cosx1

i cosx1 − sinx1

 . (6.9.5)
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Note that in the LHS we dropped the subscript 1/2 : as the Riemannian density

is constant, see (6.9.4), there is no need to distinguish the massless Dirac operator

W (ε) and the massless Dirac operator on half-densities W1/2(ε).

We shall now rewrite the ordinary differential operator (6.9.5) in a somewhat

more convenient form. To this end, let us introduce the special unitary matrix

R :=
1√
2

 1 1

−1 1

 (6.9.6)

and put

W̃ (ε) := R W (ε)R∗ , (6.9.7)

compare with formula (6.3.1). Clearly, the operator W̃ (ε) has the same spectrum

as the operator W (ε). Substituting (6.9.5) and (6.9.6) into (6.9.7) we arrive at

the following explicit formula for the ordinary differential operator W̃ (ε):

W̃ (ε) = −i

1 0

0 −1

 d

dx1
− ε2

4
I

+
iε

2

 0 −ie−ix1

ieix
1

0

 d

dx1
+
iε

2

d

dx1

 0 −ie−ix1

ieix
1

0

 . (6.9.8)

The coefficients of the ordinary differential operator (6.9.8) are trigonometric

polynomials and one would not normally expect the eigenfunctions to be trigono-

metric polynomials. However, the operator (6.9.8) has a special structure which

ensures that the eigenfunctions are trigonometric polynomials. Namely, put

λn(ε) = −1

2
− ε2

4
+
√

1 + ε2
(
n+

1

2

)
, n ∈ Z, (6.9.9)

v(n)(x1; ε) =

(1 +
√

1 + ε2
)
einx

1

−i ε ei(n+1)x1

 , n ∈ Z. (6.9.10)

It is easy to see that the column-functions (6.9.10) are eigenfunctions of the

operator (6.9.8) corresponding to eigenvalues (6.9.9). Moreover, it is easy to
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see that the charge conjugates, C(v(n)(x1; ε)), of the column-functions (6.9.10)

are eigenfunctions of the operator (6.9.8) corresponding to the same eigenvalues

(6.9.9). This means that the numbers (6.9.9) are eigenvalues of the operator

(6.9.8) of multiplicity at least two. Finally, it is easy to see that

span
{
v(n)(x1; ε), C(v(n)(x1; ε))

∣∣ n ∈ Z
}

= span
{
v(n)(x1; 0), C(v(n)(x1; 0))

∣∣ n ∈ Z
}
, (6.9.11)

where spanS denotes the linear span, i.e. set of all finite linear combinations

of elements of a given set S. Formula (6.9.11) implies that we haven’t missed

any eigenvalues, that is, that the list (6.9.9) contains all the eigenvalues of the

operator (6.9.8) and that each of these eigenvalues has multiplicity two.

Remark 6.9.1. We do not fully understand the underlying reasons why the axi-

symmetric massless Dirac operator corresponding to the metric (6.9.1) admits an

explicit evaluation of the eigenvalues and eigenfunctions. Somehow, this particu-

lar Dirac operator has properties similar to those of an integrable system.

The eigenvalue (6.9.9) with smallest modulus is

λ0(ε) =
2
√

1 + ε2 − 2− ε2

4
= − ε

4

16
+O(ε6) as ε→ 0. (6.9.12)

Let us now test Theorem 6.2.1 by comparing the asymptotic formula from this

theorem with formula (6.9.12). Substituting (6.9.1) into (6.2.3) we get

hαβ(x1) =


0 cos x1 sinx1

cosx1 0 0

sinx1 0 0

 .
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Application of the Fourier transform (6.2.2) gives us

ĥαβ(m1) =




0 1

2
− i

2

1
2

0 0

− i
2

0 0

 for m1 = 1,

0 for m1 = 2, 3, . . . .

(6.9.13)

Substituting (6.9.13) into (6.7.2) we get c = 0, in agreement with (6.9.12).

6.10 The eta invariant

Let H be a first order self-adjoint elliptic m×m matrix classical pseudodifferential

operator acting on m-columns of complex-valued half-densities over a compact

n-dimensional manifold M without boundary. Here ellipticity is understood as

the nonvanishing of the determinant of the principal symbol of H, see Chapter 4.

The eta function of H is defined as

ηH(s) :=
∑ signλ

|λ|s
, (6.10.1)

where summation is carried out over all nonzero eigenvalues λ of H, and s ∈ C is

the independent variable. Asymptotic formulae for the counting function imply

that the series (6.10.1) converges absolutely for Re s > n and defines a holomor-

phic function in this half-plane. It is known [7] that the eta function extends

meromorphically to the whole s-plane. Moreover, it is known, see Theorem 4.5 in

[7], that if the dimension n is odd, then the eta function is holomorphic at s = 0.

This justifies, for odd n, the definition of the eta invariant as the real number

ηH(0). The eta invariant ηH(0) is the traditional measure of spectral asymmetry

of the operator H.
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If we have only a finite number of eigenvalues (i.e. if we are looking at an Her-

mitian matrix rather than a differential operator) then the eta invariant is an

integer number: it is the number of positive eigenvalues minus the number of

negative eigenvalues. However, in the case of a differential operator there is no

reason for the eta invariant to be integer. The basic example [4] is that of the

scalar ordinary differential operator H(ε) := −i d
dx1 + ε acting on the unit circle

parameterized by the cyclic coordinate x1 of period 2π, with ε being a real pa-

rameter. It is known [4] that the eta invariant ηH(ε)(0) of this ordinary differential

operator is the odd 1-periodic function defined by the formula ηH(ε)(0) = 1− 2ε

for ε ∈ (0, 1). In particular, we have ηH(0)(0) = 0 and lim
ε→0±

ηH(ε)(0) = ±1.

The current state of affairs (from an analyst’s perspective) in the subject area

of zeta/eta functions of elliptic operators is described in detail in the two papers

[36, 37]. Let us highlight a few facts.

• The key results are Theorem 2.7 from [36] and Proposition 2.9 from [37].

Arguing along the lines of [7] one can recover from these results, in a rigorous

analytic fashion, properties of the eta function.

• The eta function is holomorphic at s = 0 in any dimension n ∈ N (i.e. with-

out the assumption of n being odd). This fact was proved by P. B. Gilkey

[31].

• The seminal paper of R. T. Seeley [75] contained a small mistake: see page

482 in [36] or Remark 2.6 on page 39 in [37] for details.

The more recent survey papers [34, 35] provide an overview of the subject.

Let us denote our massless Dirac operator on half-densities by A(ε), where ε ∈ R

is the small parameter appearing in our metric gαβ(x; ε). Theorem 6.2.1 implies

the following corollary.

Corollary 6.10.1. Suppose that the coefficient c defined by formula (6.2.5) is

nonzero. Then

lim
ε→0

ηA(ε)(0) = 2 sign c . (6.10.2)
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Note that we have ηA(0)(0) = 0, so formula (6.10.2) implies that the function

ηA(ε)(0) is discontinuous at ε = 0.

Proof of Corollary 6.10.1 Put f(ε, t) := Tr
[
A(ε) e−t(A(ε))2

]
, where t > 0 and Tr

is the operator (as opposed to pointwise) trace2. Having fixed ε, let us examine

the behaviour of f(ε, t) as t → 0+. For a generic first order pseudodifferential

operator A(ε) we would have f(ε, t) = O(t−2). However, as explained in Chapter

II of [11], the Dirac operator in odd dimensions is very special and there are a

lot of cancellations when one computes the asymptotic expansion for f(ε, t) as

t→ 0+. Namely, it was shown in [11] that

• f(ε, t) = O(
√
t ) as t→ 0+,

• ηA(ε)(s) is holomorphic in the half-plane Re s > −2 , and

•

ηA(ε)(s) =
1

Γ
(
s+1

2

) ∫ +∞

0

t(s−1)/2 f(ε, t) dt for Re s > −2 . (6.10.3)

See also Section 1 in [82].

Formula (6.10.3) implies

ηA(ε)(0) =
1√
π

∫ +∞

0

f(ε, t)√
t

dt , (6.10.4)

so in order to prove Corollary 6.10.1 we need to examine the behaviour of the

integral (6.10.4) as ε→ 0.

Let us denote by λ0(ε) the eigenvalue of the operator A(ε) with smallest modulus

and by E0(ε) the orthogonal projection onto the corresponding 2-dimensional

2 The paper [11] to which we are about to refer to actually deals with pointwise estimates,
i.e. the trace in [11] is understood as the matrix trace of the integral kernel on the diagonal
at a given point x of the manifold. We do not need pointwise estimates for the proof of
Corollary 6.10.1.
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eigenspace. Put

A0(ε) := λ0(ε)E0(ε) , Ã(ε) := A(ε)− A0(ε),

f0(ε, t) := Tr
[
A0(ε) e−t(A0(ε))2

]
= 2λ0(ε) e−t(λ0(ε))2

,

f̃(ε, t) := Tr
[
Ã(ε) e−t(Ã(ε))2

]
= f(ε, t)− f0(ε, t).

Then formula (6.10.4) can be rewritten as

ηA(ε)(0) =
1√
π

∫ 1

0

f(ε, t)√
t

dt +
1√
π

∫ +∞

1

f̃(ε, t)√
t

dt

+
2√
π

∫ +∞

1

λ0(ε) e−t(λ0(ε))2

√
t

dt . (6.10.5)

The three terms in the RHS of (6.10.5) are functions of the parameter ε and we

shall now examine how they depend on ε.

The first term in the RHS of (6.10.5) is continuous at ε = 0 because asymptotic

formulae for f(ε, t) as t→ 0+ are uniform in ε. This follows from the construction

of heat kernel type asymptotics for t → 0+: the algorithm is straightforward

and examination of this algorithm shows that the asymptotic coefficients and

remainder term depend on additional parameters in a continuous fashion.

The second term in the RHS of (6.10.5) is continuous at ε = 0 because the

eigenvalues of the operator Ã(ε) depend on ε continuously and because all these

eigenvalues, bar one double eigenvalue, are uniformly separated from zero. The

double eigenvalue in question is identically zero as a function of ε and does not

contribute to the second term in the RHS of (6.10.5).

Thus, the proof of formula (6.10.2) reduces to the proof of the statement

2√
π

lim
ε→0

∫ +∞

1

λ0(ε) e−t(λ0(ε))2

√
t

dt = 2 sign c . (6.10.6)

But formula (6.10.6) is an immediate consequence of formula (6.2.4). �
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The geometric meaning of the eta invariant of the Dirac operator acting over a

compact oriented Riemannian manifold of dimension 4k − 1, k ∈ N, has been

extensively studied in [4, 5, 6, 7]. We are, however, unaware of publications

dealing specifically with the Dirac operator on a 3-torus, though certain 2-torus

bundles over a circle were examined in [3].
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[18] É. Cartan and A. Einstein. Letters on absolute parallelism, 1929–1932.

Princeton University Press, Princeton, N.J., 1979. Original text with English

translation by Jules Leroy and Jim Ritter, Edited by Robert Debever.

[19] F. Chamizo, E. Cristobal, and A. Ubis. Lattice points in rational ellipsoids.

J. Math. Analysis Applications, 350(1):283–289, 2009.

[20] O. Chervova. The massless Dirac operator from the continuum mechanics

and microlocal analysis perspectives. Ph.D. thesis, University College Lon-

don, 2012.

[21] O. Chervova, R. J. Downes, and D. Vassiliev. Spectral theoretic char-

acterization of the massless Dirac operator. Available as a preprint:

http://arxiv.org/abs/1209.3510, 2012.



Bibliography 192

[22] O. Chervova, R. J. Downes, and D. Vassiliev. The spectral function of a first

order system. J. Spectr. Theory, 3(3):317–360, 2013.

[23] O. Chervova and D. Vassiliev. The stationary Weyl equation and Cosserat

elasticity. J. Phys. A: Mathematical and Theoretical, 43(33):335203, 2010.
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